1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implement a loop-aware load elimination pass. 11 // 12 // It uses LoopAccessAnalysis to identify loop-carried dependences with a 13 // distance of one between stores and loads. These form the candidates for the 14 // transformation. The source value of each store then propagated to the user 15 // of the corresponding load. This makes the load dead. 16 // 17 // The pass can also version the loop and add memchecks in order to prove that 18 // may-aliasing stores can't change the value in memory before it's read by the 19 // load. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/LoopAccessAnalysis.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/ScalarEvolutionExpander.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Transforms/Scalar.h" 32 #include "llvm/Transforms/Utils/LoopVersioning.h" 33 #include <forward_list> 34 35 #define LLE_OPTION "loop-load-elim" 36 #define DEBUG_TYPE LLE_OPTION 37 38 using namespace llvm; 39 40 static cl::opt<unsigned> CheckPerElim( 41 "runtime-check-per-loop-load-elim", cl::Hidden, 42 cl::desc("Max number of memchecks allowed per eliminated load on average"), 43 cl::init(1)); 44 45 static cl::opt<unsigned> LoadElimSCEVCheckThreshold( 46 "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden, 47 cl::desc("The maximum number of SCEV checks allowed for Loop " 48 "Load Elimination")); 49 50 51 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE"); 52 53 namespace { 54 55 /// \brief Represent a store-to-forwarding candidate. 56 struct StoreToLoadForwardingCandidate { 57 LoadInst *Load; 58 StoreInst *Store; 59 60 StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store) 61 : Load(Load), Store(Store) {} 62 63 /// \brief Return true if the dependence from the store to the load has a 64 /// distance of one. E.g. A[i+1] = A[i] 65 bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE, 66 Loop *L) const { 67 Value *LoadPtr = Load->getPointerOperand(); 68 Value *StorePtr = Store->getPointerOperand(); 69 Type *LoadPtrType = LoadPtr->getType(); 70 Type *LoadType = LoadPtrType->getPointerElementType(); 71 72 assert(LoadPtrType->getPointerAddressSpace() == 73 StorePtr->getType()->getPointerAddressSpace() && 74 LoadType == StorePtr->getType()->getPointerElementType() && 75 "Should be a known dependence"); 76 77 // Currently we only support accesses with unit stride. FIXME: we should be 78 // able to handle non unit stirde as well as long as the stride is equal to 79 // the dependence distance. 80 if (isStridedPtr(PSE, LoadPtr, L) != 1 || 81 isStridedPtr(PSE, LoadPtr, L) != 1) 82 return false; 83 84 auto &DL = Load->getParent()->getModule()->getDataLayout(); 85 unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType)); 86 87 auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr)); 88 auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr)); 89 90 // We don't need to check non-wrapping here because forward/backward 91 // dependence wouldn't be valid if these weren't monotonic accesses. 92 auto *Dist = cast<SCEVConstant>( 93 PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV)); 94 const APInt &Val = Dist->getAPInt(); 95 return Val == TypeByteSize; 96 } 97 98 Value *getLoadPtr() const { return Load->getPointerOperand(); } 99 100 #ifndef NDEBUG 101 friend raw_ostream &operator<<(raw_ostream &OS, 102 const StoreToLoadForwardingCandidate &Cand) { 103 OS << *Cand.Store << " -->\n"; 104 OS.indent(2) << *Cand.Load << "\n"; 105 return OS; 106 } 107 #endif 108 }; 109 110 /// \brief Check if the store dominates all latches, so as long as there is no 111 /// intervening store this value will be loaded in the next iteration. 112 bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L, 113 DominatorTree *DT) { 114 SmallVector<BasicBlock *, 8> Latches; 115 L->getLoopLatches(Latches); 116 return std::all_of(Latches.begin(), Latches.end(), 117 [&](const BasicBlock *Latch) { 118 return DT->dominates(StoreBlock, Latch); 119 }); 120 } 121 122 /// \brief The per-loop class that does most of the work. 123 class LoadEliminationForLoop { 124 public: 125 LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI, 126 DominatorTree *DT) 127 : L(L), LI(LI), LAI(LAI), DT(DT), PSE(LAI.PSE) {} 128 129 /// \brief Look through the loop-carried and loop-independent dependences in 130 /// this loop and find store->load dependences. 131 /// 132 /// Note that no candidate is returned if LAA has failed to analyze the loop 133 /// (e.g. if it's not bottom-tested, contains volatile memops, etc.) 134 std::forward_list<StoreToLoadForwardingCandidate> 135 findStoreToLoadDependences(const LoopAccessInfo &LAI) { 136 std::forward_list<StoreToLoadForwardingCandidate> Candidates; 137 138 const auto *Deps = LAI.getDepChecker().getDependences(); 139 if (!Deps) 140 return Candidates; 141 142 // Find store->load dependences (consequently true dep). Both lexically 143 // forward and backward dependences qualify. Disqualify loads that have 144 // other unknown dependences. 145 146 SmallSet<Instruction *, 4> LoadsWithUnknownDepedence; 147 148 for (const auto &Dep : *Deps) { 149 Instruction *Source = Dep.getSource(LAI); 150 Instruction *Destination = Dep.getDestination(LAI); 151 152 if (Dep.Type == MemoryDepChecker::Dependence::Unknown) { 153 if (isa<LoadInst>(Source)) 154 LoadsWithUnknownDepedence.insert(Source); 155 if (isa<LoadInst>(Destination)) 156 LoadsWithUnknownDepedence.insert(Destination); 157 continue; 158 } 159 160 if (Dep.isBackward()) 161 // Note that the designations source and destination follow the program 162 // order, i.e. source is always first. (The direction is given by the 163 // DepType.) 164 std::swap(Source, Destination); 165 else 166 assert(Dep.isForward() && "Needs to be a forward dependence"); 167 168 auto *Store = dyn_cast<StoreInst>(Source); 169 if (!Store) 170 continue; 171 auto *Load = dyn_cast<LoadInst>(Destination); 172 if (!Load) 173 continue; 174 Candidates.emplace_front(Load, Store); 175 } 176 177 if (!LoadsWithUnknownDepedence.empty()) 178 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) { 179 return LoadsWithUnknownDepedence.count(C.Load); 180 }); 181 182 return Candidates; 183 } 184 185 /// \brief Return the index of the instruction according to program order. 186 unsigned getInstrIndex(Instruction *Inst) { 187 auto I = InstOrder.find(Inst); 188 assert(I != InstOrder.end() && "No index for instruction"); 189 return I->second; 190 } 191 192 /// \brief If a load has multiple candidates associated (i.e. different 193 /// stores), it means that it could be forwarding from multiple stores 194 /// depending on control flow. Remove these candidates. 195 /// 196 /// Here, we rely on LAA to include the relevant loop-independent dependences. 197 /// LAA is known to omit these in the very simple case when the read and the 198 /// write within an alias set always takes place using the *same* pointer. 199 /// 200 /// However, we know that this is not the case here, i.e. we can rely on LAA 201 /// to provide us with loop-independent dependences for the cases we're 202 /// interested. Consider the case for example where a loop-independent 203 /// dependece S1->S2 invalidates the forwarding S3->S2. 204 /// 205 /// A[i] = ... (S1) 206 /// ... = A[i] (S2) 207 /// A[i+1] = ... (S3) 208 /// 209 /// LAA will perform dependence analysis here because there are two 210 /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]). 211 void removeDependencesFromMultipleStores( 212 std::forward_list<StoreToLoadForwardingCandidate> &Candidates) { 213 // If Store is nullptr it means that we have multiple stores forwarding to 214 // this store. 215 typedef DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *> 216 LoadToSingleCandT; 217 LoadToSingleCandT LoadToSingleCand; 218 219 for (const auto &Cand : Candidates) { 220 bool NewElt; 221 LoadToSingleCandT::iterator Iter; 222 223 std::tie(Iter, NewElt) = 224 LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand)); 225 if (!NewElt) { 226 const StoreToLoadForwardingCandidate *&OtherCand = Iter->second; 227 // Already multiple stores forward to this load. 228 if (OtherCand == nullptr) 229 continue; 230 231 // Handle the very basic case when the two stores are in the same block 232 // so deciding which one forwards is easy. The later one forwards as 233 // long as they both have a dependence distance of one to the load. 234 if (Cand.Store->getParent() == OtherCand->Store->getParent() && 235 Cand.isDependenceDistanceOfOne(PSE, L) && 236 OtherCand->isDependenceDistanceOfOne(PSE, L)) { 237 // They are in the same block, the later one will forward to the load. 238 if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store)) 239 OtherCand = &Cand; 240 } else 241 OtherCand = nullptr; 242 } 243 } 244 245 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) { 246 if (LoadToSingleCand[Cand.Load] != &Cand) { 247 DEBUG(dbgs() << "Removing from candidates: \n" << Cand 248 << " The load may have multiple stores forwarding to " 249 << "it\n"); 250 return true; 251 } 252 return false; 253 }); 254 } 255 256 /// \brief Given two pointers operations by their RuntimePointerChecking 257 /// indices, return true if they require an alias check. 258 /// 259 /// We need a check if one is a pointer for a candidate load and the other is 260 /// a pointer for a possibly intervening store. 261 bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2, 262 const SmallSet<Value *, 4> &PtrsWrittenOnFwdingPath, 263 const std::set<Value *> &CandLoadPtrs) { 264 Value *Ptr1 = 265 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue; 266 Value *Ptr2 = 267 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue; 268 return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) || 269 (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1))); 270 } 271 272 /// \brief Return pointers that are possibly written to on the path from a 273 /// forwarding store to a load. 274 /// 275 /// These pointers need to be alias-checked against the forwarding candidates. 276 SmallSet<Value *, 4> findPointersWrittenOnForwardingPath( 277 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) { 278 // From FirstStore to LastLoad neither of the elimination candidate loads 279 // should overlap with any of the stores. 280 // 281 // E.g.: 282 // 283 // st1 C[i] 284 // ld1 B[i] <-------, 285 // ld0 A[i] <----, | * LastLoad 286 // ... | | 287 // st2 E[i] | | 288 // st3 B[i+1] -- | -' * FirstStore 289 // st0 A[i+1] ---' 290 // st4 D[i] 291 // 292 // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with 293 // ld0. 294 295 LoadInst *LastLoad = 296 std::max_element(Candidates.begin(), Candidates.end(), 297 [&](const StoreToLoadForwardingCandidate &A, 298 const StoreToLoadForwardingCandidate &B) { 299 return getInstrIndex(A.Load) < getInstrIndex(B.Load); 300 }) 301 ->Load; 302 StoreInst *FirstStore = 303 std::min_element(Candidates.begin(), Candidates.end(), 304 [&](const StoreToLoadForwardingCandidate &A, 305 const StoreToLoadForwardingCandidate &B) { 306 return getInstrIndex(A.Store) < 307 getInstrIndex(B.Store); 308 }) 309 ->Store; 310 311 // We're looking for stores after the first forwarding store until the end 312 // of the loop, then from the beginning of the loop until the last 313 // forwarded-to load. Collect the pointer for the stores. 314 SmallSet<Value *, 4> PtrsWrittenOnFwdingPath; 315 316 auto InsertStorePtr = [&](Instruction *I) { 317 if (auto *S = dyn_cast<StoreInst>(I)) 318 PtrsWrittenOnFwdingPath.insert(S->getPointerOperand()); 319 }; 320 const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions(); 321 std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1, 322 MemInstrs.end(), InsertStorePtr); 323 std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)], 324 InsertStorePtr); 325 326 return PtrsWrittenOnFwdingPath; 327 } 328 329 /// \brief Determine the pointer alias checks to prove that there are no 330 /// intervening stores. 331 SmallVector<RuntimePointerChecking::PointerCheck, 4> collectMemchecks( 332 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) { 333 334 SmallSet<Value *, 4> PtrsWrittenOnFwdingPath = 335 findPointersWrittenOnForwardingPath(Candidates); 336 337 // Collect the pointers of the candidate loads. 338 // FIXME: SmallSet does not work with std::inserter. 339 std::set<Value *> CandLoadPtrs; 340 std::transform(Candidates.begin(), Candidates.end(), 341 std::inserter(CandLoadPtrs, CandLoadPtrs.begin()), 342 std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr)); 343 344 const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks(); 345 SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks; 346 347 std::copy_if(AllChecks.begin(), AllChecks.end(), std::back_inserter(Checks), 348 [&](const RuntimePointerChecking::PointerCheck &Check) { 349 for (auto PtrIdx1 : Check.first->Members) 350 for (auto PtrIdx2 : Check.second->Members) 351 if (needsChecking(PtrIdx1, PtrIdx2, 352 PtrsWrittenOnFwdingPath, CandLoadPtrs)) 353 return true; 354 return false; 355 }); 356 357 DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size() << "):\n"); 358 DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks)); 359 360 return Checks; 361 } 362 363 /// \brief Perform the transformation for a candidate. 364 void 365 propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand, 366 SCEVExpander &SEE) { 367 // 368 // loop: 369 // %x = load %gep_i 370 // = ... %x 371 // store %y, %gep_i_plus_1 372 // 373 // => 374 // 375 // ph: 376 // %x.initial = load %gep_0 377 // loop: 378 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop] 379 // %x = load %gep_i <---- now dead 380 // = ... %x.storeforward 381 // store %y, %gep_i_plus_1 382 383 Value *Ptr = Cand.Load->getPointerOperand(); 384 auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr)); 385 auto *PH = L->getLoopPreheader(); 386 Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(), 387 PH->getTerminator()); 388 Value *Initial = 389 new LoadInst(InitialPtr, "load_initial", PH->getTerminator()); 390 PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded", 391 &L->getHeader()->front()); 392 PHI->addIncoming(Initial, PH); 393 PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch()); 394 395 Cand.Load->replaceAllUsesWith(PHI); 396 } 397 398 /// \brief Top-level driver for each loop: find store->load forwarding 399 /// candidates, add run-time checks and perform transformation. 400 bool processLoop() { 401 DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName() 402 << "\" checking " << *L << "\n"); 403 // Look for store-to-load forwarding cases across the 404 // backedge. E.g.: 405 // 406 // loop: 407 // %x = load %gep_i 408 // = ... %x 409 // store %y, %gep_i_plus_1 410 // 411 // => 412 // 413 // ph: 414 // %x.initial = load %gep_0 415 // loop: 416 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop] 417 // %x = load %gep_i <---- now dead 418 // = ... %x.storeforward 419 // store %y, %gep_i_plus_1 420 421 // First start with store->load dependences. 422 auto StoreToLoadDependences = findStoreToLoadDependences(LAI); 423 if (StoreToLoadDependences.empty()) 424 return false; 425 426 // Generate an index for each load and store according to the original 427 // program order. This will be used later. 428 InstOrder = LAI.getDepChecker().generateInstructionOrderMap(); 429 430 // To keep things simple for now, remove those where the load is potentially 431 // fed by multiple stores. 432 removeDependencesFromMultipleStores(StoreToLoadDependences); 433 if (StoreToLoadDependences.empty()) 434 return false; 435 436 // Filter the candidates further. 437 SmallVector<StoreToLoadForwardingCandidate, 4> Candidates; 438 unsigned NumForwarding = 0; 439 for (const StoreToLoadForwardingCandidate Cand : StoreToLoadDependences) { 440 DEBUG(dbgs() << "Candidate " << Cand); 441 // Only progagate value if they are of the same type. 442 if (Cand.Store->getPointerOperand()->getType() != 443 Cand.Load->getPointerOperand()->getType()) 444 continue; 445 446 // Make sure that the stored values is available everywhere in the loop in 447 // the next iteration. 448 if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT)) 449 continue; 450 451 // Check whether the SCEV difference is the same as the induction step, 452 // thus we load the value in the next iteration. 453 if (!Cand.isDependenceDistanceOfOne(PSE, L)) 454 continue; 455 456 ++NumForwarding; 457 DEBUG(dbgs() 458 << NumForwarding 459 << ". Valid store-to-load forwarding across the loop backedge\n"); 460 Candidates.push_back(Cand); 461 } 462 if (Candidates.empty()) 463 return false; 464 465 // Check intervening may-alias stores. These need runtime checks for alias 466 // disambiguation. 467 SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks = 468 collectMemchecks(Candidates); 469 470 // Too many checks are likely to outweigh the benefits of forwarding. 471 if (Checks.size() > Candidates.size() * CheckPerElim) { 472 DEBUG(dbgs() << "Too many run-time checks needed.\n"); 473 return false; 474 } 475 476 if (LAI.PSE.getUnionPredicate().getComplexity() > 477 LoadElimSCEVCheckThreshold) { 478 DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n"); 479 return false; 480 } 481 482 if (!Checks.empty() || !LAI.PSE.getUnionPredicate().isAlwaysTrue()) { 483 if (L->getHeader()->getParent()->optForSize()) { 484 DEBUG(dbgs() << "Versioning is needed but not allowed when optimizing " 485 "for size.\n"); 486 return false; 487 } 488 489 // Point of no-return, start the transformation. First, version the loop 490 // if necessary. 491 492 LoopVersioning LV(LAI, L, LI, DT, PSE.getSE(), false); 493 LV.setAliasChecks(std::move(Checks)); 494 LV.setSCEVChecks(LAI.PSE.getUnionPredicate()); 495 LV.versionLoop(); 496 } 497 498 // Next, propagate the value stored by the store to the users of the load. 499 // Also for the first iteration, generate the initial value of the load. 500 SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(), 501 "storeforward"); 502 for (const auto &Cand : Candidates) 503 propagateStoredValueToLoadUsers(Cand, SEE); 504 NumLoopLoadEliminted += NumForwarding; 505 506 return true; 507 } 508 509 private: 510 Loop *L; 511 512 /// \brief Maps the load/store instructions to their index according to 513 /// program order. 514 DenseMap<Instruction *, unsigned> InstOrder; 515 516 // Analyses used. 517 LoopInfo *LI; 518 const LoopAccessInfo &LAI; 519 DominatorTree *DT; 520 PredicatedScalarEvolution PSE; 521 }; 522 523 /// \brief The pass. Most of the work is delegated to the per-loop 524 /// LoadEliminationForLoop class. 525 class LoopLoadElimination : public FunctionPass { 526 public: 527 LoopLoadElimination() : FunctionPass(ID) { 528 initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry()); 529 } 530 531 bool runOnFunction(Function &F) override { 532 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 533 auto *LAA = &getAnalysis<LoopAccessAnalysis>(); 534 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 535 536 // Build up a worklist of inner-loops to vectorize. This is necessary as the 537 // act of distributing a loop creates new loops and can invalidate iterators 538 // across the loops. 539 SmallVector<Loop *, 8> Worklist; 540 541 for (Loop *TopLevelLoop : *LI) 542 for (Loop *L : depth_first(TopLevelLoop)) 543 // We only handle inner-most loops. 544 if (L->empty()) 545 Worklist.push_back(L); 546 547 // Now walk the identified inner loops. 548 bool Changed = false; 549 for (Loop *L : Worklist) { 550 const LoopAccessInfo &LAI = LAA->getInfo(L, ValueToValueMap()); 551 // The actual work is performed by LoadEliminationForLoop. 552 LoadEliminationForLoop LEL(L, LI, LAI, DT); 553 Changed |= LEL.processLoop(); 554 } 555 556 // Process each loop nest in the function. 557 return Changed; 558 } 559 560 void getAnalysisUsage(AnalysisUsage &AU) const override { 561 AU.addRequiredID(LoopSimplifyID); 562 AU.addRequired<LoopInfoWrapperPass>(); 563 AU.addPreserved<LoopInfoWrapperPass>(); 564 AU.addRequired<LoopAccessAnalysis>(); 565 AU.addRequired<ScalarEvolutionWrapperPass>(); 566 AU.addRequired<DominatorTreeWrapperPass>(); 567 AU.addPreserved<DominatorTreeWrapperPass>(); 568 } 569 570 static char ID; 571 }; 572 } 573 574 char LoopLoadElimination::ID; 575 static const char LLE_name[] = "Loop Load Elimination"; 576 577 INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false) 578 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 579 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis) 580 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 581 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 582 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 583 INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false) 584 585 namespace llvm { 586 FunctionPass *createLoopLoadEliminationPass() { 587 return new LoopLoadElimination(); 588 } 589 } 590