xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopLoadElimination.cpp (revision ecde1c7f3de37f009723645935afc1badacf79a7)
1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implement a loop-aware load elimination pass.
11 //
12 // It uses LoopAccessAnalysis to identify loop-carried dependences with a
13 // distance of one between stores and loads.  These form the candidates for the
14 // transformation.  The source value of each store then propagated to the user
15 // of the corresponding load.  This makes the load dead.
16 //
17 // The pass can also version the loop and add memchecks in order to prove that
18 // may-aliasing stores can't change the value in memory before it's read by the
19 // load.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/LoopAccessAnalysis.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/ScalarEvolutionExpander.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Transforms/Scalar.h"
32 #include "llvm/Transforms/Utils/LoopVersioning.h"
33 #include <forward_list>
34 
35 #define LLE_OPTION "loop-load-elim"
36 #define DEBUG_TYPE LLE_OPTION
37 
38 using namespace llvm;
39 
40 static cl::opt<unsigned> CheckPerElim(
41     "runtime-check-per-loop-load-elim", cl::Hidden,
42     cl::desc("Max number of memchecks allowed per eliminated load on average"),
43     cl::init(1));
44 
45 static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
46     "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
47     cl::desc("The maximum number of SCEV checks allowed for Loop "
48              "Load Elimination"));
49 
50 
51 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
52 
53 namespace {
54 
55 /// \brief Represent a store-to-forwarding candidate.
56 struct StoreToLoadForwardingCandidate {
57   LoadInst *Load;
58   StoreInst *Store;
59 
60   StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
61       : Load(Load), Store(Store) {}
62 
63   /// \brief Return true if the dependence from the store to the load has a
64   /// distance of one.  E.g. A[i+1] = A[i]
65   bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE,
66                                  Loop *L) const {
67     Value *LoadPtr = Load->getPointerOperand();
68     Value *StorePtr = Store->getPointerOperand();
69     Type *LoadPtrType = LoadPtr->getType();
70     Type *LoadType = LoadPtrType->getPointerElementType();
71 
72     assert(LoadPtrType->getPointerAddressSpace() ==
73                StorePtr->getType()->getPointerAddressSpace() &&
74            LoadType == StorePtr->getType()->getPointerElementType() &&
75            "Should be a known dependence");
76 
77     // Currently we only support accesses with unit stride.  FIXME: we should be
78     // able to handle non unit stirde as well as long as the stride is equal to
79     // the dependence distance.
80     if (getPtrStride(PSE, LoadPtr, L) != 1 ||
81         getPtrStride(PSE, StorePtr, L) != 1)
82       return false;
83 
84     auto &DL = Load->getParent()->getModule()->getDataLayout();
85     unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
86 
87     auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
88     auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
89 
90     // We don't need to check non-wrapping here because forward/backward
91     // dependence wouldn't be valid if these weren't monotonic accesses.
92     auto *Dist = cast<SCEVConstant>(
93         PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
94     const APInt &Val = Dist->getAPInt();
95     return Val == TypeByteSize;
96   }
97 
98   Value *getLoadPtr() const { return Load->getPointerOperand(); }
99 
100 #ifndef NDEBUG
101   friend raw_ostream &operator<<(raw_ostream &OS,
102                                  const StoreToLoadForwardingCandidate &Cand) {
103     OS << *Cand.Store << " -->\n";
104     OS.indent(2) << *Cand.Load << "\n";
105     return OS;
106   }
107 #endif
108 };
109 
110 /// \brief Check if the store dominates all latches, so as long as there is no
111 /// intervening store this value will be loaded in the next iteration.
112 bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
113                                   DominatorTree *DT) {
114   SmallVector<BasicBlock *, 8> Latches;
115   L->getLoopLatches(Latches);
116   return std::all_of(Latches.begin(), Latches.end(),
117                      [&](const BasicBlock *Latch) {
118                        return DT->dominates(StoreBlock, Latch);
119                      });
120 }
121 
122 /// \brief The per-loop class that does most of the work.
123 class LoadEliminationForLoop {
124 public:
125   LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
126                          DominatorTree *DT)
127       : L(L), LI(LI), LAI(LAI), DT(DT), PSE(LAI.PSE) {}
128 
129   /// \brief Look through the loop-carried and loop-independent dependences in
130   /// this loop and find store->load dependences.
131   ///
132   /// Note that no candidate is returned if LAA has failed to analyze the loop
133   /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
134   std::forward_list<StoreToLoadForwardingCandidate>
135   findStoreToLoadDependences(const LoopAccessInfo &LAI) {
136     std::forward_list<StoreToLoadForwardingCandidate> Candidates;
137 
138     const auto *Deps = LAI.getDepChecker().getDependences();
139     if (!Deps)
140       return Candidates;
141 
142     // Find store->load dependences (consequently true dep).  Both lexically
143     // forward and backward dependences qualify.  Disqualify loads that have
144     // other unknown dependences.
145 
146     SmallSet<Instruction *, 4> LoadsWithUnknownDepedence;
147 
148     for (const auto &Dep : *Deps) {
149       Instruction *Source = Dep.getSource(LAI);
150       Instruction *Destination = Dep.getDestination(LAI);
151 
152       if (Dep.Type == MemoryDepChecker::Dependence::Unknown) {
153         if (isa<LoadInst>(Source))
154           LoadsWithUnknownDepedence.insert(Source);
155         if (isa<LoadInst>(Destination))
156           LoadsWithUnknownDepedence.insert(Destination);
157         continue;
158       }
159 
160       if (Dep.isBackward())
161         // Note that the designations source and destination follow the program
162         // order, i.e. source is always first.  (The direction is given by the
163         // DepType.)
164         std::swap(Source, Destination);
165       else
166         assert(Dep.isForward() && "Needs to be a forward dependence");
167 
168       auto *Store = dyn_cast<StoreInst>(Source);
169       if (!Store)
170         continue;
171       auto *Load = dyn_cast<LoadInst>(Destination);
172       if (!Load)
173         continue;
174 
175       // Only progagate the value if they are of the same type.
176       if (Store->getPointerOperand()->getType() !=
177           Load->getPointerOperand()->getType())
178         continue;
179 
180       Candidates.emplace_front(Load, Store);
181     }
182 
183     if (!LoadsWithUnknownDepedence.empty())
184       Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
185         return LoadsWithUnknownDepedence.count(C.Load);
186       });
187 
188     return Candidates;
189   }
190 
191   /// \brief Return the index of the instruction according to program order.
192   unsigned getInstrIndex(Instruction *Inst) {
193     auto I = InstOrder.find(Inst);
194     assert(I != InstOrder.end() && "No index for instruction");
195     return I->second;
196   }
197 
198   /// \brief If a load has multiple candidates associated (i.e. different
199   /// stores), it means that it could be forwarding from multiple stores
200   /// depending on control flow.  Remove these candidates.
201   ///
202   /// Here, we rely on LAA to include the relevant loop-independent dependences.
203   /// LAA is known to omit these in the very simple case when the read and the
204   /// write within an alias set always takes place using the *same* pointer.
205   ///
206   /// However, we know that this is not the case here, i.e. we can rely on LAA
207   /// to provide us with loop-independent dependences for the cases we're
208   /// interested.  Consider the case for example where a loop-independent
209   /// dependece S1->S2 invalidates the forwarding S3->S2.
210   ///
211   ///         A[i]   = ...   (S1)
212   ///         ...    = A[i]  (S2)
213   ///         A[i+1] = ...   (S3)
214   ///
215   /// LAA will perform dependence analysis here because there are two
216   /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
217   void removeDependencesFromMultipleStores(
218       std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
219     // If Store is nullptr it means that we have multiple stores forwarding to
220     // this store.
221     typedef DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>
222         LoadToSingleCandT;
223     LoadToSingleCandT LoadToSingleCand;
224 
225     for (const auto &Cand : Candidates) {
226       bool NewElt;
227       LoadToSingleCandT::iterator Iter;
228 
229       std::tie(Iter, NewElt) =
230           LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
231       if (!NewElt) {
232         const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
233         // Already multiple stores forward to this load.
234         if (OtherCand == nullptr)
235           continue;
236 
237         // Handle the very basic case when the two stores are in the same block
238         // so deciding which one forwards is easy.  The later one forwards as
239         // long as they both have a dependence distance of one to the load.
240         if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
241             Cand.isDependenceDistanceOfOne(PSE, L) &&
242             OtherCand->isDependenceDistanceOfOne(PSE, L)) {
243           // They are in the same block, the later one will forward to the load.
244           if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
245             OtherCand = &Cand;
246         } else
247           OtherCand = nullptr;
248       }
249     }
250 
251     Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
252       if (LoadToSingleCand[Cand.Load] != &Cand) {
253         DEBUG(dbgs() << "Removing from candidates: \n" << Cand
254                      << "  The load may have multiple stores forwarding to "
255                      << "it\n");
256         return true;
257       }
258       return false;
259     });
260   }
261 
262   /// \brief Given two pointers operations by their RuntimePointerChecking
263   /// indices, return true if they require an alias check.
264   ///
265   /// We need a check if one is a pointer for a candidate load and the other is
266   /// a pointer for a possibly intervening store.
267   bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
268                      const SmallSet<Value *, 4> &PtrsWrittenOnFwdingPath,
269                      const std::set<Value *> &CandLoadPtrs) {
270     Value *Ptr1 =
271         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
272     Value *Ptr2 =
273         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
274     return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
275             (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
276   }
277 
278   /// \brief Return pointers that are possibly written to on the path from a
279   /// forwarding store to a load.
280   ///
281   /// These pointers need to be alias-checked against the forwarding candidates.
282   SmallSet<Value *, 4> findPointersWrittenOnForwardingPath(
283       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
284     // From FirstStore to LastLoad neither of the elimination candidate loads
285     // should overlap with any of the stores.
286     //
287     // E.g.:
288     //
289     // st1 C[i]
290     // ld1 B[i] <-------,
291     // ld0 A[i] <----,  |              * LastLoad
292     // ...           |  |
293     // st2 E[i]      |  |
294     // st3 B[i+1] -- | -'              * FirstStore
295     // st0 A[i+1] ---'
296     // st4 D[i]
297     //
298     // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
299     // ld0.
300 
301     LoadInst *LastLoad =
302         std::max_element(Candidates.begin(), Candidates.end(),
303                          [&](const StoreToLoadForwardingCandidate &A,
304                              const StoreToLoadForwardingCandidate &B) {
305                            return getInstrIndex(A.Load) < getInstrIndex(B.Load);
306                          })
307             ->Load;
308     StoreInst *FirstStore =
309         std::min_element(Candidates.begin(), Candidates.end(),
310                          [&](const StoreToLoadForwardingCandidate &A,
311                              const StoreToLoadForwardingCandidate &B) {
312                            return getInstrIndex(A.Store) <
313                                   getInstrIndex(B.Store);
314                          })
315             ->Store;
316 
317     // We're looking for stores after the first forwarding store until the end
318     // of the loop, then from the beginning of the loop until the last
319     // forwarded-to load.  Collect the pointer for the stores.
320     SmallSet<Value *, 4> PtrsWrittenOnFwdingPath;
321 
322     auto InsertStorePtr = [&](Instruction *I) {
323       if (auto *S = dyn_cast<StoreInst>(I))
324         PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
325     };
326     const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
327     std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
328                   MemInstrs.end(), InsertStorePtr);
329     std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
330                   InsertStorePtr);
331 
332     return PtrsWrittenOnFwdingPath;
333   }
334 
335   /// \brief Determine the pointer alias checks to prove that there are no
336   /// intervening stores.
337   SmallVector<RuntimePointerChecking::PointerCheck, 4> collectMemchecks(
338       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
339 
340     SmallSet<Value *, 4> PtrsWrittenOnFwdingPath =
341         findPointersWrittenOnForwardingPath(Candidates);
342 
343     // Collect the pointers of the candidate loads.
344     // FIXME: SmallSet does not work with std::inserter.
345     std::set<Value *> CandLoadPtrs;
346     std::transform(Candidates.begin(), Candidates.end(),
347                    std::inserter(CandLoadPtrs, CandLoadPtrs.begin()),
348                    std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr));
349 
350     const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
351     SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;
352 
353     std::copy_if(AllChecks.begin(), AllChecks.end(), std::back_inserter(Checks),
354                  [&](const RuntimePointerChecking::PointerCheck &Check) {
355                    for (auto PtrIdx1 : Check.first->Members)
356                      for (auto PtrIdx2 : Check.second->Members)
357                        if (needsChecking(PtrIdx1, PtrIdx2,
358                                          PtrsWrittenOnFwdingPath, CandLoadPtrs))
359                          return true;
360                    return false;
361                  });
362 
363     DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size() << "):\n");
364     DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
365 
366     return Checks;
367   }
368 
369   /// \brief Perform the transformation for a candidate.
370   void
371   propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
372                                   SCEVExpander &SEE) {
373     //
374     // loop:
375     //      %x = load %gep_i
376     //         = ... %x
377     //      store %y, %gep_i_plus_1
378     //
379     // =>
380     //
381     // ph:
382     //      %x.initial = load %gep_0
383     // loop:
384     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
385     //      %x = load %gep_i            <---- now dead
386     //         = ... %x.storeforward
387     //      store %y, %gep_i_plus_1
388 
389     Value *Ptr = Cand.Load->getPointerOperand();
390     auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
391     auto *PH = L->getLoopPreheader();
392     Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
393                                           PH->getTerminator());
394     Value *Initial =
395         new LoadInst(InitialPtr, "load_initial", PH->getTerminator());
396     PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded",
397                                    &L->getHeader()->front());
398     PHI->addIncoming(Initial, PH);
399     PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch());
400 
401     Cand.Load->replaceAllUsesWith(PHI);
402   }
403 
404   /// \brief Top-level driver for each loop: find store->load forwarding
405   /// candidates, add run-time checks and perform transformation.
406   bool processLoop() {
407     DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
408                  << "\" checking " << *L << "\n");
409     // Look for store-to-load forwarding cases across the
410     // backedge. E.g.:
411     //
412     // loop:
413     //      %x = load %gep_i
414     //         = ... %x
415     //      store %y, %gep_i_plus_1
416     //
417     // =>
418     //
419     // ph:
420     //      %x.initial = load %gep_0
421     // loop:
422     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
423     //      %x = load %gep_i            <---- now dead
424     //         = ... %x.storeforward
425     //      store %y, %gep_i_plus_1
426 
427     // First start with store->load dependences.
428     auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
429     if (StoreToLoadDependences.empty())
430       return false;
431 
432     // Generate an index for each load and store according to the original
433     // program order.  This will be used later.
434     InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
435 
436     // To keep things simple for now, remove those where the load is potentially
437     // fed by multiple stores.
438     removeDependencesFromMultipleStores(StoreToLoadDependences);
439     if (StoreToLoadDependences.empty())
440       return false;
441 
442     // Filter the candidates further.
443     SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
444     unsigned NumForwarding = 0;
445     for (const StoreToLoadForwardingCandidate Cand : StoreToLoadDependences) {
446       DEBUG(dbgs() << "Candidate " << Cand);
447 
448       // Make sure that the stored values is available everywhere in the loop in
449       // the next iteration.
450       if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
451         continue;
452 
453       // Check whether the SCEV difference is the same as the induction step,
454       // thus we load the value in the next iteration.
455       if (!Cand.isDependenceDistanceOfOne(PSE, L))
456         continue;
457 
458       ++NumForwarding;
459       DEBUG(dbgs()
460             << NumForwarding
461             << ". Valid store-to-load forwarding across the loop backedge\n");
462       Candidates.push_back(Cand);
463     }
464     if (Candidates.empty())
465       return false;
466 
467     // Check intervening may-alias stores.  These need runtime checks for alias
468     // disambiguation.
469     SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks =
470         collectMemchecks(Candidates);
471 
472     // Too many checks are likely to outweigh the benefits of forwarding.
473     if (Checks.size() > Candidates.size() * CheckPerElim) {
474       DEBUG(dbgs() << "Too many run-time checks needed.\n");
475       return false;
476     }
477 
478     if (LAI.PSE.getUnionPredicate().getComplexity() >
479         LoadElimSCEVCheckThreshold) {
480       DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
481       return false;
482     }
483 
484     if (!Checks.empty() || !LAI.PSE.getUnionPredicate().isAlwaysTrue()) {
485       if (L->getHeader()->getParent()->optForSize()) {
486         DEBUG(dbgs() << "Versioning is needed but not allowed when optimizing "
487                         "for size.\n");
488         return false;
489       }
490 
491       // Point of no-return, start the transformation.  First, version the loop
492       // if necessary.
493 
494       LoopVersioning LV(LAI, L, LI, DT, PSE.getSE(), false);
495       LV.setAliasChecks(std::move(Checks));
496       LV.setSCEVChecks(LAI.PSE.getUnionPredicate());
497       LV.versionLoop();
498     }
499 
500     // Next, propagate the value stored by the store to the users of the load.
501     // Also for the first iteration, generate the initial value of the load.
502     SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
503                      "storeforward");
504     for (const auto &Cand : Candidates)
505       propagateStoredValueToLoadUsers(Cand, SEE);
506     NumLoopLoadEliminted += NumForwarding;
507 
508     return true;
509   }
510 
511 private:
512   Loop *L;
513 
514   /// \brief Maps the load/store instructions to their index according to
515   /// program order.
516   DenseMap<Instruction *, unsigned> InstOrder;
517 
518   // Analyses used.
519   LoopInfo *LI;
520   const LoopAccessInfo &LAI;
521   DominatorTree *DT;
522   PredicatedScalarEvolution PSE;
523 };
524 
525 /// \brief The pass.  Most of the work is delegated to the per-loop
526 /// LoadEliminationForLoop class.
527 class LoopLoadElimination : public FunctionPass {
528 public:
529   LoopLoadElimination() : FunctionPass(ID) {
530     initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
531   }
532 
533   bool runOnFunction(Function &F) override {
534     if (skipFunction(F))
535       return false;
536 
537     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
538     auto *LAA = &getAnalysis<LoopAccessAnalysis>();
539     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
540 
541     // Build up a worklist of inner-loops to vectorize. This is necessary as the
542     // act of distributing a loop creates new loops and can invalidate iterators
543     // across the loops.
544     SmallVector<Loop *, 8> Worklist;
545 
546     for (Loop *TopLevelLoop : *LI)
547       for (Loop *L : depth_first(TopLevelLoop))
548         // We only handle inner-most loops.
549         if (L->empty())
550           Worklist.push_back(L);
551 
552     // Now walk the identified inner loops.
553     bool Changed = false;
554     for (Loop *L : Worklist) {
555       const LoopAccessInfo &LAI = LAA->getInfo(L, ValueToValueMap());
556       // The actual work is performed by LoadEliminationForLoop.
557       LoadEliminationForLoop LEL(L, LI, LAI, DT);
558       Changed |= LEL.processLoop();
559     }
560 
561     // Process each loop nest in the function.
562     return Changed;
563   }
564 
565   void getAnalysisUsage(AnalysisUsage &AU) const override {
566     AU.addRequiredID(LoopSimplifyID);
567     AU.addRequired<LoopInfoWrapperPass>();
568     AU.addPreserved<LoopInfoWrapperPass>();
569     AU.addRequired<LoopAccessAnalysis>();
570     AU.addRequired<ScalarEvolutionWrapperPass>();
571     AU.addRequired<DominatorTreeWrapperPass>();
572     AU.addPreserved<DominatorTreeWrapperPass>();
573   }
574 
575   static char ID;
576 };
577 }
578 
579 char LoopLoadElimination::ID;
580 static const char LLE_name[] = "Loop Load Elimination";
581 
582 INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
583 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
584 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis)
585 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
586 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
587 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
588 INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
589 
590 namespace llvm {
591 FunctionPass *createLoopLoadEliminationPass() {
592   return new LoopLoadElimination();
593 }
594 }
595