1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implement a loop-aware load elimination pass. 11 // 12 // It uses LoopAccessAnalysis to identify loop-carried dependences with a 13 // distance of one between stores and loads. These form the candidates for the 14 // transformation. The source value of each store then propagated to the user 15 // of the corresponding load. This makes the load dead. 16 // 17 // The pass can also version the loop and add memchecks in order to prove that 18 // may-aliasing stores can't change the value in memory before it's read by the 19 // load. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/LoopAccessAnalysis.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/ScalarEvolutionExpander.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Transforms/Scalar.h" 32 #include "llvm/Transforms/Utils/LoopVersioning.h" 33 #include <forward_list> 34 35 #define LLE_OPTION "loop-load-elim" 36 #define DEBUG_TYPE LLE_OPTION 37 38 using namespace llvm; 39 40 static cl::opt<unsigned> CheckPerElim( 41 "runtime-check-per-loop-load-elim", cl::Hidden, 42 cl::desc("Max number of memchecks allowed per eliminated load on average"), 43 cl::init(1)); 44 45 static cl::opt<unsigned> LoadElimSCEVCheckThreshold( 46 "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden, 47 cl::desc("The maximum number of SCEV checks allowed for Loop " 48 "Load Elimination")); 49 50 51 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE"); 52 53 namespace { 54 55 /// \brief Represent a store-to-forwarding candidate. 56 struct StoreToLoadForwardingCandidate { 57 LoadInst *Load; 58 StoreInst *Store; 59 60 StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store) 61 : Load(Load), Store(Store) {} 62 63 /// \brief Return true if the dependence from the store to the load has a 64 /// distance of one. E.g. A[i+1] = A[i] 65 bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE, 66 Loop *L) const { 67 Value *LoadPtr = Load->getPointerOperand(); 68 Value *StorePtr = Store->getPointerOperand(); 69 Type *LoadPtrType = LoadPtr->getType(); 70 Type *LoadType = LoadPtrType->getPointerElementType(); 71 72 assert(LoadPtrType->getPointerAddressSpace() == 73 StorePtr->getType()->getPointerAddressSpace() && 74 LoadType == StorePtr->getType()->getPointerElementType() && 75 "Should be a known dependence"); 76 77 // Currently we only support accesses with unit stride. FIXME: we should be 78 // able to handle non unit stirde as well as long as the stride is equal to 79 // the dependence distance. 80 if (getPtrStride(PSE, LoadPtr, L) != 1 || 81 getPtrStride(PSE, StorePtr, L) != 1) 82 return false; 83 84 auto &DL = Load->getParent()->getModule()->getDataLayout(); 85 unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType)); 86 87 auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr)); 88 auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr)); 89 90 // We don't need to check non-wrapping here because forward/backward 91 // dependence wouldn't be valid if these weren't monotonic accesses. 92 auto *Dist = cast<SCEVConstant>( 93 PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV)); 94 const APInt &Val = Dist->getAPInt(); 95 return Val == TypeByteSize; 96 } 97 98 Value *getLoadPtr() const { return Load->getPointerOperand(); } 99 100 #ifndef NDEBUG 101 friend raw_ostream &operator<<(raw_ostream &OS, 102 const StoreToLoadForwardingCandidate &Cand) { 103 OS << *Cand.Store << " -->\n"; 104 OS.indent(2) << *Cand.Load << "\n"; 105 return OS; 106 } 107 #endif 108 }; 109 110 /// \brief Check if the store dominates all latches, so as long as there is no 111 /// intervening store this value will be loaded in the next iteration. 112 bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L, 113 DominatorTree *DT) { 114 SmallVector<BasicBlock *, 8> Latches; 115 L->getLoopLatches(Latches); 116 return std::all_of(Latches.begin(), Latches.end(), 117 [&](const BasicBlock *Latch) { 118 return DT->dominates(StoreBlock, Latch); 119 }); 120 } 121 122 /// \brief The per-loop class that does most of the work. 123 class LoadEliminationForLoop { 124 public: 125 LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI, 126 DominatorTree *DT) 127 : L(L), LI(LI), LAI(LAI), DT(DT), PSE(LAI.PSE) {} 128 129 /// \brief Look through the loop-carried and loop-independent dependences in 130 /// this loop and find store->load dependences. 131 /// 132 /// Note that no candidate is returned if LAA has failed to analyze the loop 133 /// (e.g. if it's not bottom-tested, contains volatile memops, etc.) 134 std::forward_list<StoreToLoadForwardingCandidate> 135 findStoreToLoadDependences(const LoopAccessInfo &LAI) { 136 std::forward_list<StoreToLoadForwardingCandidate> Candidates; 137 138 const auto *Deps = LAI.getDepChecker().getDependences(); 139 if (!Deps) 140 return Candidates; 141 142 // Find store->load dependences (consequently true dep). Both lexically 143 // forward and backward dependences qualify. Disqualify loads that have 144 // other unknown dependences. 145 146 SmallSet<Instruction *, 4> LoadsWithUnknownDepedence; 147 148 for (const auto &Dep : *Deps) { 149 Instruction *Source = Dep.getSource(LAI); 150 Instruction *Destination = Dep.getDestination(LAI); 151 152 if (Dep.Type == MemoryDepChecker::Dependence::Unknown) { 153 if (isa<LoadInst>(Source)) 154 LoadsWithUnknownDepedence.insert(Source); 155 if (isa<LoadInst>(Destination)) 156 LoadsWithUnknownDepedence.insert(Destination); 157 continue; 158 } 159 160 if (Dep.isBackward()) 161 // Note that the designations source and destination follow the program 162 // order, i.e. source is always first. (The direction is given by the 163 // DepType.) 164 std::swap(Source, Destination); 165 else 166 assert(Dep.isForward() && "Needs to be a forward dependence"); 167 168 auto *Store = dyn_cast<StoreInst>(Source); 169 if (!Store) 170 continue; 171 auto *Load = dyn_cast<LoadInst>(Destination); 172 if (!Load) 173 continue; 174 175 // Only progagate the value if they are of the same type. 176 if (Store->getPointerOperand()->getType() != 177 Load->getPointerOperand()->getType()) 178 continue; 179 180 Candidates.emplace_front(Load, Store); 181 } 182 183 if (!LoadsWithUnknownDepedence.empty()) 184 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) { 185 return LoadsWithUnknownDepedence.count(C.Load); 186 }); 187 188 return Candidates; 189 } 190 191 /// \brief Return the index of the instruction according to program order. 192 unsigned getInstrIndex(Instruction *Inst) { 193 auto I = InstOrder.find(Inst); 194 assert(I != InstOrder.end() && "No index for instruction"); 195 return I->second; 196 } 197 198 /// \brief If a load has multiple candidates associated (i.e. different 199 /// stores), it means that it could be forwarding from multiple stores 200 /// depending on control flow. Remove these candidates. 201 /// 202 /// Here, we rely on LAA to include the relevant loop-independent dependences. 203 /// LAA is known to omit these in the very simple case when the read and the 204 /// write within an alias set always takes place using the *same* pointer. 205 /// 206 /// However, we know that this is not the case here, i.e. we can rely on LAA 207 /// to provide us with loop-independent dependences for the cases we're 208 /// interested. Consider the case for example where a loop-independent 209 /// dependece S1->S2 invalidates the forwarding S3->S2. 210 /// 211 /// A[i] = ... (S1) 212 /// ... = A[i] (S2) 213 /// A[i+1] = ... (S3) 214 /// 215 /// LAA will perform dependence analysis here because there are two 216 /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]). 217 void removeDependencesFromMultipleStores( 218 std::forward_list<StoreToLoadForwardingCandidate> &Candidates) { 219 // If Store is nullptr it means that we have multiple stores forwarding to 220 // this store. 221 typedef DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *> 222 LoadToSingleCandT; 223 LoadToSingleCandT LoadToSingleCand; 224 225 for (const auto &Cand : Candidates) { 226 bool NewElt; 227 LoadToSingleCandT::iterator Iter; 228 229 std::tie(Iter, NewElt) = 230 LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand)); 231 if (!NewElt) { 232 const StoreToLoadForwardingCandidate *&OtherCand = Iter->second; 233 // Already multiple stores forward to this load. 234 if (OtherCand == nullptr) 235 continue; 236 237 // Handle the very basic case when the two stores are in the same block 238 // so deciding which one forwards is easy. The later one forwards as 239 // long as they both have a dependence distance of one to the load. 240 if (Cand.Store->getParent() == OtherCand->Store->getParent() && 241 Cand.isDependenceDistanceOfOne(PSE, L) && 242 OtherCand->isDependenceDistanceOfOne(PSE, L)) { 243 // They are in the same block, the later one will forward to the load. 244 if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store)) 245 OtherCand = &Cand; 246 } else 247 OtherCand = nullptr; 248 } 249 } 250 251 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) { 252 if (LoadToSingleCand[Cand.Load] != &Cand) { 253 DEBUG(dbgs() << "Removing from candidates: \n" << Cand 254 << " The load may have multiple stores forwarding to " 255 << "it\n"); 256 return true; 257 } 258 return false; 259 }); 260 } 261 262 /// \brief Given two pointers operations by their RuntimePointerChecking 263 /// indices, return true if they require an alias check. 264 /// 265 /// We need a check if one is a pointer for a candidate load and the other is 266 /// a pointer for a possibly intervening store. 267 bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2, 268 const SmallSet<Value *, 4> &PtrsWrittenOnFwdingPath, 269 const std::set<Value *> &CandLoadPtrs) { 270 Value *Ptr1 = 271 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue; 272 Value *Ptr2 = 273 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue; 274 return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) || 275 (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1))); 276 } 277 278 /// \brief Return pointers that are possibly written to on the path from a 279 /// forwarding store to a load. 280 /// 281 /// These pointers need to be alias-checked against the forwarding candidates. 282 SmallSet<Value *, 4> findPointersWrittenOnForwardingPath( 283 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) { 284 // From FirstStore to LastLoad neither of the elimination candidate loads 285 // should overlap with any of the stores. 286 // 287 // E.g.: 288 // 289 // st1 C[i] 290 // ld1 B[i] <-------, 291 // ld0 A[i] <----, | * LastLoad 292 // ... | | 293 // st2 E[i] | | 294 // st3 B[i+1] -- | -' * FirstStore 295 // st0 A[i+1] ---' 296 // st4 D[i] 297 // 298 // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with 299 // ld0. 300 301 LoadInst *LastLoad = 302 std::max_element(Candidates.begin(), Candidates.end(), 303 [&](const StoreToLoadForwardingCandidate &A, 304 const StoreToLoadForwardingCandidate &B) { 305 return getInstrIndex(A.Load) < getInstrIndex(B.Load); 306 }) 307 ->Load; 308 StoreInst *FirstStore = 309 std::min_element(Candidates.begin(), Candidates.end(), 310 [&](const StoreToLoadForwardingCandidate &A, 311 const StoreToLoadForwardingCandidate &B) { 312 return getInstrIndex(A.Store) < 313 getInstrIndex(B.Store); 314 }) 315 ->Store; 316 317 // We're looking for stores after the first forwarding store until the end 318 // of the loop, then from the beginning of the loop until the last 319 // forwarded-to load. Collect the pointer for the stores. 320 SmallSet<Value *, 4> PtrsWrittenOnFwdingPath; 321 322 auto InsertStorePtr = [&](Instruction *I) { 323 if (auto *S = dyn_cast<StoreInst>(I)) 324 PtrsWrittenOnFwdingPath.insert(S->getPointerOperand()); 325 }; 326 const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions(); 327 std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1, 328 MemInstrs.end(), InsertStorePtr); 329 std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)], 330 InsertStorePtr); 331 332 return PtrsWrittenOnFwdingPath; 333 } 334 335 /// \brief Determine the pointer alias checks to prove that there are no 336 /// intervening stores. 337 SmallVector<RuntimePointerChecking::PointerCheck, 4> collectMemchecks( 338 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) { 339 340 SmallSet<Value *, 4> PtrsWrittenOnFwdingPath = 341 findPointersWrittenOnForwardingPath(Candidates); 342 343 // Collect the pointers of the candidate loads. 344 // FIXME: SmallSet does not work with std::inserter. 345 std::set<Value *> CandLoadPtrs; 346 std::transform(Candidates.begin(), Candidates.end(), 347 std::inserter(CandLoadPtrs, CandLoadPtrs.begin()), 348 std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr)); 349 350 const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks(); 351 SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks; 352 353 std::copy_if(AllChecks.begin(), AllChecks.end(), std::back_inserter(Checks), 354 [&](const RuntimePointerChecking::PointerCheck &Check) { 355 for (auto PtrIdx1 : Check.first->Members) 356 for (auto PtrIdx2 : Check.second->Members) 357 if (needsChecking(PtrIdx1, PtrIdx2, 358 PtrsWrittenOnFwdingPath, CandLoadPtrs)) 359 return true; 360 return false; 361 }); 362 363 DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size() << "):\n"); 364 DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks)); 365 366 return Checks; 367 } 368 369 /// \brief Perform the transformation for a candidate. 370 void 371 propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand, 372 SCEVExpander &SEE) { 373 // 374 // loop: 375 // %x = load %gep_i 376 // = ... %x 377 // store %y, %gep_i_plus_1 378 // 379 // => 380 // 381 // ph: 382 // %x.initial = load %gep_0 383 // loop: 384 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop] 385 // %x = load %gep_i <---- now dead 386 // = ... %x.storeforward 387 // store %y, %gep_i_plus_1 388 389 Value *Ptr = Cand.Load->getPointerOperand(); 390 auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr)); 391 auto *PH = L->getLoopPreheader(); 392 Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(), 393 PH->getTerminator()); 394 Value *Initial = 395 new LoadInst(InitialPtr, "load_initial", PH->getTerminator()); 396 PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded", 397 &L->getHeader()->front()); 398 PHI->addIncoming(Initial, PH); 399 PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch()); 400 401 Cand.Load->replaceAllUsesWith(PHI); 402 } 403 404 /// \brief Top-level driver for each loop: find store->load forwarding 405 /// candidates, add run-time checks and perform transformation. 406 bool processLoop() { 407 DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName() 408 << "\" checking " << *L << "\n"); 409 // Look for store-to-load forwarding cases across the 410 // backedge. E.g.: 411 // 412 // loop: 413 // %x = load %gep_i 414 // = ... %x 415 // store %y, %gep_i_plus_1 416 // 417 // => 418 // 419 // ph: 420 // %x.initial = load %gep_0 421 // loop: 422 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop] 423 // %x = load %gep_i <---- now dead 424 // = ... %x.storeforward 425 // store %y, %gep_i_plus_1 426 427 // First start with store->load dependences. 428 auto StoreToLoadDependences = findStoreToLoadDependences(LAI); 429 if (StoreToLoadDependences.empty()) 430 return false; 431 432 // Generate an index for each load and store according to the original 433 // program order. This will be used later. 434 InstOrder = LAI.getDepChecker().generateInstructionOrderMap(); 435 436 // To keep things simple for now, remove those where the load is potentially 437 // fed by multiple stores. 438 removeDependencesFromMultipleStores(StoreToLoadDependences); 439 if (StoreToLoadDependences.empty()) 440 return false; 441 442 // Filter the candidates further. 443 SmallVector<StoreToLoadForwardingCandidate, 4> Candidates; 444 unsigned NumForwarding = 0; 445 for (const StoreToLoadForwardingCandidate Cand : StoreToLoadDependences) { 446 DEBUG(dbgs() << "Candidate " << Cand); 447 448 // Make sure that the stored values is available everywhere in the loop in 449 // the next iteration. 450 if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT)) 451 continue; 452 453 // Check whether the SCEV difference is the same as the induction step, 454 // thus we load the value in the next iteration. 455 if (!Cand.isDependenceDistanceOfOne(PSE, L)) 456 continue; 457 458 ++NumForwarding; 459 DEBUG(dbgs() 460 << NumForwarding 461 << ". Valid store-to-load forwarding across the loop backedge\n"); 462 Candidates.push_back(Cand); 463 } 464 if (Candidates.empty()) 465 return false; 466 467 // Check intervening may-alias stores. These need runtime checks for alias 468 // disambiguation. 469 SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks = 470 collectMemchecks(Candidates); 471 472 // Too many checks are likely to outweigh the benefits of forwarding. 473 if (Checks.size() > Candidates.size() * CheckPerElim) { 474 DEBUG(dbgs() << "Too many run-time checks needed.\n"); 475 return false; 476 } 477 478 if (LAI.PSE.getUnionPredicate().getComplexity() > 479 LoadElimSCEVCheckThreshold) { 480 DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n"); 481 return false; 482 } 483 484 if (!Checks.empty() || !LAI.PSE.getUnionPredicate().isAlwaysTrue()) { 485 if (L->getHeader()->getParent()->optForSize()) { 486 DEBUG(dbgs() << "Versioning is needed but not allowed when optimizing " 487 "for size.\n"); 488 return false; 489 } 490 491 // Point of no-return, start the transformation. First, version the loop 492 // if necessary. 493 494 LoopVersioning LV(LAI, L, LI, DT, PSE.getSE(), false); 495 LV.setAliasChecks(std::move(Checks)); 496 LV.setSCEVChecks(LAI.PSE.getUnionPredicate()); 497 LV.versionLoop(); 498 } 499 500 // Next, propagate the value stored by the store to the users of the load. 501 // Also for the first iteration, generate the initial value of the load. 502 SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(), 503 "storeforward"); 504 for (const auto &Cand : Candidates) 505 propagateStoredValueToLoadUsers(Cand, SEE); 506 NumLoopLoadEliminted += NumForwarding; 507 508 return true; 509 } 510 511 private: 512 Loop *L; 513 514 /// \brief Maps the load/store instructions to their index according to 515 /// program order. 516 DenseMap<Instruction *, unsigned> InstOrder; 517 518 // Analyses used. 519 LoopInfo *LI; 520 const LoopAccessInfo &LAI; 521 DominatorTree *DT; 522 PredicatedScalarEvolution PSE; 523 }; 524 525 /// \brief The pass. Most of the work is delegated to the per-loop 526 /// LoadEliminationForLoop class. 527 class LoopLoadElimination : public FunctionPass { 528 public: 529 LoopLoadElimination() : FunctionPass(ID) { 530 initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry()); 531 } 532 533 bool runOnFunction(Function &F) override { 534 if (skipFunction(F)) 535 return false; 536 537 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 538 auto *LAA = &getAnalysis<LoopAccessAnalysis>(); 539 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 540 541 // Build up a worklist of inner-loops to vectorize. This is necessary as the 542 // act of distributing a loop creates new loops and can invalidate iterators 543 // across the loops. 544 SmallVector<Loop *, 8> Worklist; 545 546 for (Loop *TopLevelLoop : *LI) 547 for (Loop *L : depth_first(TopLevelLoop)) 548 // We only handle inner-most loops. 549 if (L->empty()) 550 Worklist.push_back(L); 551 552 // Now walk the identified inner loops. 553 bool Changed = false; 554 for (Loop *L : Worklist) { 555 const LoopAccessInfo &LAI = LAA->getInfo(L, ValueToValueMap()); 556 // The actual work is performed by LoadEliminationForLoop. 557 LoadEliminationForLoop LEL(L, LI, LAI, DT); 558 Changed |= LEL.processLoop(); 559 } 560 561 // Process each loop nest in the function. 562 return Changed; 563 } 564 565 void getAnalysisUsage(AnalysisUsage &AU) const override { 566 AU.addRequiredID(LoopSimplifyID); 567 AU.addRequired<LoopInfoWrapperPass>(); 568 AU.addPreserved<LoopInfoWrapperPass>(); 569 AU.addRequired<LoopAccessAnalysis>(); 570 AU.addRequired<ScalarEvolutionWrapperPass>(); 571 AU.addRequired<DominatorTreeWrapperPass>(); 572 AU.addPreserved<DominatorTreeWrapperPass>(); 573 } 574 575 static char ID; 576 }; 577 } 578 579 char LoopLoadElimination::ID; 580 static const char LLE_name[] = "Loop Load Elimination"; 581 582 INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false) 583 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 584 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis) 585 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 586 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 587 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 588 INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false) 589 590 namespace llvm { 591 FunctionPass *createLoopLoadEliminationPass() { 592 return new LoopLoadElimination(); 593 } 594 } 595