1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implement a loop-aware load elimination pass. 11 // 12 // It uses LoopAccessAnalysis to identify loop-carried dependences with a 13 // distance of one between stores and loads. These form the candidates for the 14 // transformation. The source value of each store then propagated to the user 15 // of the corresponding load. This makes the load dead. 16 // 17 // The pass can also version the loop and add memchecks in order to prove that 18 // may-aliasing stores can't change the value in memory before it's read by the 19 // load. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/Transforms/Scalar/LoopLoadElimination.h" 24 #include "llvm/ADT/APInt.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/DepthFirstIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/AliasAnalysis.h" 32 #include "llvm/Analysis/AssumptionCache.h" 33 #include "llvm/Analysis/GlobalsModRef.h" 34 #include "llvm/Analysis/LoopAccessAnalysis.h" 35 #include "llvm/Analysis/LoopAnalysisManager.h" 36 #include "llvm/Analysis/LoopInfo.h" 37 #include "llvm/Analysis/ScalarEvolution.h" 38 #include "llvm/Analysis/ScalarEvolutionExpander.h" 39 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 40 #include "llvm/Analysis/TargetLibraryInfo.h" 41 #include "llvm/Analysis/TargetTransformInfo.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/IR/PassManager.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/IR/Value.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Transforms/Scalar.h" 55 #include "llvm/Transforms/Utils.h" 56 #include "llvm/Transforms/Utils/LoopVersioning.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <forward_list> 60 #include <set> 61 #include <tuple> 62 #include <utility> 63 64 using namespace llvm; 65 66 #define LLE_OPTION "loop-load-elim" 67 #define DEBUG_TYPE LLE_OPTION 68 69 static cl::opt<unsigned> CheckPerElim( 70 "runtime-check-per-loop-load-elim", cl::Hidden, 71 cl::desc("Max number of memchecks allowed per eliminated load on average"), 72 cl::init(1)); 73 74 static cl::opt<unsigned> LoadElimSCEVCheckThreshold( 75 "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden, 76 cl::desc("The maximum number of SCEV checks allowed for Loop " 77 "Load Elimination")); 78 79 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE"); 80 81 namespace { 82 83 /// Represent a store-to-forwarding candidate. 84 struct StoreToLoadForwardingCandidate { 85 LoadInst *Load; 86 StoreInst *Store; 87 88 StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store) 89 : Load(Load), Store(Store) {} 90 91 /// Return true if the dependence from the store to the load has a 92 /// distance of one. E.g. A[i+1] = A[i] 93 bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE, 94 Loop *L) const { 95 Value *LoadPtr = Load->getPointerOperand(); 96 Value *StorePtr = Store->getPointerOperand(); 97 Type *LoadPtrType = LoadPtr->getType(); 98 Type *LoadType = LoadPtrType->getPointerElementType(); 99 100 assert(LoadPtrType->getPointerAddressSpace() == 101 StorePtr->getType()->getPointerAddressSpace() && 102 LoadType == StorePtr->getType()->getPointerElementType() && 103 "Should be a known dependence"); 104 105 // Currently we only support accesses with unit stride. FIXME: we should be 106 // able to handle non unit stirde as well as long as the stride is equal to 107 // the dependence distance. 108 if (getPtrStride(PSE, LoadPtr, L) != 1 || 109 getPtrStride(PSE, StorePtr, L) != 1) 110 return false; 111 112 auto &DL = Load->getParent()->getModule()->getDataLayout(); 113 unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType)); 114 115 auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr)); 116 auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr)); 117 118 // We don't need to check non-wrapping here because forward/backward 119 // dependence wouldn't be valid if these weren't monotonic accesses. 120 auto *Dist = cast<SCEVConstant>( 121 PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV)); 122 const APInt &Val = Dist->getAPInt(); 123 return Val == TypeByteSize; 124 } 125 126 Value *getLoadPtr() const { return Load->getPointerOperand(); } 127 128 #ifndef NDEBUG 129 friend raw_ostream &operator<<(raw_ostream &OS, 130 const StoreToLoadForwardingCandidate &Cand) { 131 OS << *Cand.Store << " -->\n"; 132 OS.indent(2) << *Cand.Load << "\n"; 133 return OS; 134 } 135 #endif 136 }; 137 138 } // end anonymous namespace 139 140 /// Check if the store dominates all latches, so as long as there is no 141 /// intervening store this value will be loaded in the next iteration. 142 static bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L, 143 DominatorTree *DT) { 144 SmallVector<BasicBlock *, 8> Latches; 145 L->getLoopLatches(Latches); 146 return llvm::all_of(Latches, [&](const BasicBlock *Latch) { 147 return DT->dominates(StoreBlock, Latch); 148 }); 149 } 150 151 /// Return true if the load is not executed on all paths in the loop. 152 static bool isLoadConditional(LoadInst *Load, Loop *L) { 153 return Load->getParent() != L->getHeader(); 154 } 155 156 namespace { 157 158 /// The per-loop class that does most of the work. 159 class LoadEliminationForLoop { 160 public: 161 LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI, 162 DominatorTree *DT) 163 : L(L), LI(LI), LAI(LAI), DT(DT), PSE(LAI.getPSE()) {} 164 165 /// Look through the loop-carried and loop-independent dependences in 166 /// this loop and find store->load dependences. 167 /// 168 /// Note that no candidate is returned if LAA has failed to analyze the loop 169 /// (e.g. if it's not bottom-tested, contains volatile memops, etc.) 170 std::forward_list<StoreToLoadForwardingCandidate> 171 findStoreToLoadDependences(const LoopAccessInfo &LAI) { 172 std::forward_list<StoreToLoadForwardingCandidate> Candidates; 173 174 const auto *Deps = LAI.getDepChecker().getDependences(); 175 if (!Deps) 176 return Candidates; 177 178 // Find store->load dependences (consequently true dep). Both lexically 179 // forward and backward dependences qualify. Disqualify loads that have 180 // other unknown dependences. 181 182 SmallSet<Instruction *, 4> LoadsWithUnknownDepedence; 183 184 for (const auto &Dep : *Deps) { 185 Instruction *Source = Dep.getSource(LAI); 186 Instruction *Destination = Dep.getDestination(LAI); 187 188 if (Dep.Type == MemoryDepChecker::Dependence::Unknown) { 189 if (isa<LoadInst>(Source)) 190 LoadsWithUnknownDepedence.insert(Source); 191 if (isa<LoadInst>(Destination)) 192 LoadsWithUnknownDepedence.insert(Destination); 193 continue; 194 } 195 196 if (Dep.isBackward()) 197 // Note that the designations source and destination follow the program 198 // order, i.e. source is always first. (The direction is given by the 199 // DepType.) 200 std::swap(Source, Destination); 201 else 202 assert(Dep.isForward() && "Needs to be a forward dependence"); 203 204 auto *Store = dyn_cast<StoreInst>(Source); 205 if (!Store) 206 continue; 207 auto *Load = dyn_cast<LoadInst>(Destination); 208 if (!Load) 209 continue; 210 211 // Only progagate the value if they are of the same type. 212 if (Store->getPointerOperandType() != Load->getPointerOperandType()) 213 continue; 214 215 Candidates.emplace_front(Load, Store); 216 } 217 218 if (!LoadsWithUnknownDepedence.empty()) 219 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) { 220 return LoadsWithUnknownDepedence.count(C.Load); 221 }); 222 223 return Candidates; 224 } 225 226 /// Return the index of the instruction according to program order. 227 unsigned getInstrIndex(Instruction *Inst) { 228 auto I = InstOrder.find(Inst); 229 assert(I != InstOrder.end() && "No index for instruction"); 230 return I->second; 231 } 232 233 /// If a load has multiple candidates associated (i.e. different 234 /// stores), it means that it could be forwarding from multiple stores 235 /// depending on control flow. Remove these candidates. 236 /// 237 /// Here, we rely on LAA to include the relevant loop-independent dependences. 238 /// LAA is known to omit these in the very simple case when the read and the 239 /// write within an alias set always takes place using the *same* pointer. 240 /// 241 /// However, we know that this is not the case here, i.e. we can rely on LAA 242 /// to provide us with loop-independent dependences for the cases we're 243 /// interested. Consider the case for example where a loop-independent 244 /// dependece S1->S2 invalidates the forwarding S3->S2. 245 /// 246 /// A[i] = ... (S1) 247 /// ... = A[i] (S2) 248 /// A[i+1] = ... (S3) 249 /// 250 /// LAA will perform dependence analysis here because there are two 251 /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]). 252 void removeDependencesFromMultipleStores( 253 std::forward_list<StoreToLoadForwardingCandidate> &Candidates) { 254 // If Store is nullptr it means that we have multiple stores forwarding to 255 // this store. 256 using LoadToSingleCandT = 257 DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>; 258 LoadToSingleCandT LoadToSingleCand; 259 260 for (const auto &Cand : Candidates) { 261 bool NewElt; 262 LoadToSingleCandT::iterator Iter; 263 264 std::tie(Iter, NewElt) = 265 LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand)); 266 if (!NewElt) { 267 const StoreToLoadForwardingCandidate *&OtherCand = Iter->second; 268 // Already multiple stores forward to this load. 269 if (OtherCand == nullptr) 270 continue; 271 272 // Handle the very basic case when the two stores are in the same block 273 // so deciding which one forwards is easy. The later one forwards as 274 // long as they both have a dependence distance of one to the load. 275 if (Cand.Store->getParent() == OtherCand->Store->getParent() && 276 Cand.isDependenceDistanceOfOne(PSE, L) && 277 OtherCand->isDependenceDistanceOfOne(PSE, L)) { 278 // They are in the same block, the later one will forward to the load. 279 if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store)) 280 OtherCand = &Cand; 281 } else 282 OtherCand = nullptr; 283 } 284 } 285 286 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) { 287 if (LoadToSingleCand[Cand.Load] != &Cand) { 288 LLVM_DEBUG( 289 dbgs() << "Removing from candidates: \n" 290 << Cand 291 << " The load may have multiple stores forwarding to " 292 << "it\n"); 293 return true; 294 } 295 return false; 296 }); 297 } 298 299 /// Given two pointers operations by their RuntimePointerChecking 300 /// indices, return true if they require an alias check. 301 /// 302 /// We need a check if one is a pointer for a candidate load and the other is 303 /// a pointer for a possibly intervening store. 304 bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2, 305 const SmallSet<Value *, 4> &PtrsWrittenOnFwdingPath, 306 const std::set<Value *> &CandLoadPtrs) { 307 Value *Ptr1 = 308 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue; 309 Value *Ptr2 = 310 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue; 311 return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) || 312 (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1))); 313 } 314 315 /// Return pointers that are possibly written to on the path from a 316 /// forwarding store to a load. 317 /// 318 /// These pointers need to be alias-checked against the forwarding candidates. 319 SmallSet<Value *, 4> findPointersWrittenOnForwardingPath( 320 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) { 321 // From FirstStore to LastLoad neither of the elimination candidate loads 322 // should overlap with any of the stores. 323 // 324 // E.g.: 325 // 326 // st1 C[i] 327 // ld1 B[i] <-------, 328 // ld0 A[i] <----, | * LastLoad 329 // ... | | 330 // st2 E[i] | | 331 // st3 B[i+1] -- | -' * FirstStore 332 // st0 A[i+1] ---' 333 // st4 D[i] 334 // 335 // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with 336 // ld0. 337 338 LoadInst *LastLoad = 339 std::max_element(Candidates.begin(), Candidates.end(), 340 [&](const StoreToLoadForwardingCandidate &A, 341 const StoreToLoadForwardingCandidate &B) { 342 return getInstrIndex(A.Load) < getInstrIndex(B.Load); 343 }) 344 ->Load; 345 StoreInst *FirstStore = 346 std::min_element(Candidates.begin(), Candidates.end(), 347 [&](const StoreToLoadForwardingCandidate &A, 348 const StoreToLoadForwardingCandidate &B) { 349 return getInstrIndex(A.Store) < 350 getInstrIndex(B.Store); 351 }) 352 ->Store; 353 354 // We're looking for stores after the first forwarding store until the end 355 // of the loop, then from the beginning of the loop until the last 356 // forwarded-to load. Collect the pointer for the stores. 357 SmallSet<Value *, 4> PtrsWrittenOnFwdingPath; 358 359 auto InsertStorePtr = [&](Instruction *I) { 360 if (auto *S = dyn_cast<StoreInst>(I)) 361 PtrsWrittenOnFwdingPath.insert(S->getPointerOperand()); 362 }; 363 const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions(); 364 std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1, 365 MemInstrs.end(), InsertStorePtr); 366 std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)], 367 InsertStorePtr); 368 369 return PtrsWrittenOnFwdingPath; 370 } 371 372 /// Determine the pointer alias checks to prove that there are no 373 /// intervening stores. 374 SmallVector<RuntimePointerChecking::PointerCheck, 4> collectMemchecks( 375 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) { 376 377 SmallSet<Value *, 4> PtrsWrittenOnFwdingPath = 378 findPointersWrittenOnForwardingPath(Candidates); 379 380 // Collect the pointers of the candidate loads. 381 // FIXME: SmallSet does not work with std::inserter. 382 std::set<Value *> CandLoadPtrs; 383 transform(Candidates, 384 std::inserter(CandLoadPtrs, CandLoadPtrs.begin()), 385 std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr)); 386 387 const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks(); 388 SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks; 389 390 copy_if(AllChecks, std::back_inserter(Checks), 391 [&](const RuntimePointerChecking::PointerCheck &Check) { 392 for (auto PtrIdx1 : Check.first->Members) 393 for (auto PtrIdx2 : Check.second->Members) 394 if (needsChecking(PtrIdx1, PtrIdx2, PtrsWrittenOnFwdingPath, 395 CandLoadPtrs)) 396 return true; 397 return false; 398 }); 399 400 LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size() 401 << "):\n"); 402 LLVM_DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks)); 403 404 return Checks; 405 } 406 407 /// Perform the transformation for a candidate. 408 void 409 propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand, 410 SCEVExpander &SEE) { 411 // loop: 412 // %x = load %gep_i 413 // = ... %x 414 // store %y, %gep_i_plus_1 415 // 416 // => 417 // 418 // ph: 419 // %x.initial = load %gep_0 420 // loop: 421 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop] 422 // %x = load %gep_i <---- now dead 423 // = ... %x.storeforward 424 // store %y, %gep_i_plus_1 425 426 Value *Ptr = Cand.Load->getPointerOperand(); 427 auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr)); 428 auto *PH = L->getLoopPreheader(); 429 Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(), 430 PH->getTerminator()); 431 Value *Initial = 432 new LoadInst(InitialPtr, "load_initial", /* isVolatile */ false, 433 Cand.Load->getAlignment(), PH->getTerminator()); 434 435 PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded", 436 &L->getHeader()->front()); 437 PHI->addIncoming(Initial, PH); 438 PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch()); 439 440 Cand.Load->replaceAllUsesWith(PHI); 441 } 442 443 /// Top-level driver for each loop: find store->load forwarding 444 /// candidates, add run-time checks and perform transformation. 445 bool processLoop() { 446 LLVM_DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName() 447 << "\" checking " << *L << "\n"); 448 449 // Look for store-to-load forwarding cases across the 450 // backedge. E.g.: 451 // 452 // loop: 453 // %x = load %gep_i 454 // = ... %x 455 // store %y, %gep_i_plus_1 456 // 457 // => 458 // 459 // ph: 460 // %x.initial = load %gep_0 461 // loop: 462 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop] 463 // %x = load %gep_i <---- now dead 464 // = ... %x.storeforward 465 // store %y, %gep_i_plus_1 466 467 // First start with store->load dependences. 468 auto StoreToLoadDependences = findStoreToLoadDependences(LAI); 469 if (StoreToLoadDependences.empty()) 470 return false; 471 472 // Generate an index for each load and store according to the original 473 // program order. This will be used later. 474 InstOrder = LAI.getDepChecker().generateInstructionOrderMap(); 475 476 // To keep things simple for now, remove those where the load is potentially 477 // fed by multiple stores. 478 removeDependencesFromMultipleStores(StoreToLoadDependences); 479 if (StoreToLoadDependences.empty()) 480 return false; 481 482 // Filter the candidates further. 483 SmallVector<StoreToLoadForwardingCandidate, 4> Candidates; 484 unsigned NumForwarding = 0; 485 for (const StoreToLoadForwardingCandidate Cand : StoreToLoadDependences) { 486 LLVM_DEBUG(dbgs() << "Candidate " << Cand); 487 488 // Make sure that the stored values is available everywhere in the loop in 489 // the next iteration. 490 if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT)) 491 continue; 492 493 // If the load is conditional we can't hoist its 0-iteration instance to 494 // the preheader because that would make it unconditional. Thus we would 495 // access a memory location that the original loop did not access. 496 if (isLoadConditional(Cand.Load, L)) 497 continue; 498 499 // Check whether the SCEV difference is the same as the induction step, 500 // thus we load the value in the next iteration. 501 if (!Cand.isDependenceDistanceOfOne(PSE, L)) 502 continue; 503 504 ++NumForwarding; 505 LLVM_DEBUG( 506 dbgs() 507 << NumForwarding 508 << ". Valid store-to-load forwarding across the loop backedge\n"); 509 Candidates.push_back(Cand); 510 } 511 if (Candidates.empty()) 512 return false; 513 514 // Check intervening may-alias stores. These need runtime checks for alias 515 // disambiguation. 516 SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks = 517 collectMemchecks(Candidates); 518 519 // Too many checks are likely to outweigh the benefits of forwarding. 520 if (Checks.size() > Candidates.size() * CheckPerElim) { 521 LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n"); 522 return false; 523 } 524 525 if (LAI.getPSE().getUnionPredicate().getComplexity() > 526 LoadElimSCEVCheckThreshold) { 527 LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n"); 528 return false; 529 } 530 531 if (!Checks.empty() || !LAI.getPSE().getUnionPredicate().isAlwaysTrue()) { 532 if (L->getHeader()->getParent()->optForSize()) { 533 LLVM_DEBUG( 534 dbgs() << "Versioning is needed but not allowed when optimizing " 535 "for size.\n"); 536 return false; 537 } 538 539 if (!L->isLoopSimplifyForm()) { 540 LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form"); 541 return false; 542 } 543 544 // Point of no-return, start the transformation. First, version the loop 545 // if necessary. 546 547 LoopVersioning LV(LAI, L, LI, DT, PSE.getSE(), false); 548 LV.setAliasChecks(std::move(Checks)); 549 LV.setSCEVChecks(LAI.getPSE().getUnionPredicate()); 550 LV.versionLoop(); 551 } 552 553 // Next, propagate the value stored by the store to the users of the load. 554 // Also for the first iteration, generate the initial value of the load. 555 SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(), 556 "storeforward"); 557 for (const auto &Cand : Candidates) 558 propagateStoredValueToLoadUsers(Cand, SEE); 559 NumLoopLoadEliminted += NumForwarding; 560 561 return true; 562 } 563 564 private: 565 Loop *L; 566 567 /// Maps the load/store instructions to their index according to 568 /// program order. 569 DenseMap<Instruction *, unsigned> InstOrder; 570 571 // Analyses used. 572 LoopInfo *LI; 573 const LoopAccessInfo &LAI; 574 DominatorTree *DT; 575 PredicatedScalarEvolution PSE; 576 }; 577 578 } // end anonymous namespace 579 580 static bool 581 eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI, DominatorTree &DT, 582 function_ref<const LoopAccessInfo &(Loop &)> GetLAI) { 583 // Build up a worklist of inner-loops to transform to avoid iterator 584 // invalidation. 585 // FIXME: This logic comes from other passes that actually change the loop 586 // nest structure. It isn't clear this is necessary (or useful) for a pass 587 // which merely optimizes the use of loads in a loop. 588 SmallVector<Loop *, 8> Worklist; 589 590 for (Loop *TopLevelLoop : LI) 591 for (Loop *L : depth_first(TopLevelLoop)) 592 // We only handle inner-most loops. 593 if (L->empty()) 594 Worklist.push_back(L); 595 596 // Now walk the identified inner loops. 597 bool Changed = false; 598 for (Loop *L : Worklist) { 599 // The actual work is performed by LoadEliminationForLoop. 600 LoadEliminationForLoop LEL(L, &LI, GetLAI(*L), &DT); 601 Changed |= LEL.processLoop(); 602 } 603 return Changed; 604 } 605 606 namespace { 607 608 /// The pass. Most of the work is delegated to the per-loop 609 /// LoadEliminationForLoop class. 610 class LoopLoadElimination : public FunctionPass { 611 public: 612 static char ID; 613 614 LoopLoadElimination() : FunctionPass(ID) { 615 initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry()); 616 } 617 618 bool runOnFunction(Function &F) override { 619 if (skipFunction(F)) 620 return false; 621 622 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 623 auto &LAA = getAnalysis<LoopAccessLegacyAnalysis>(); 624 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 625 626 // Process each loop nest in the function. 627 return eliminateLoadsAcrossLoops( 628 F, LI, DT, 629 [&LAA](Loop &L) -> const LoopAccessInfo & { return LAA.getInfo(&L); }); 630 } 631 632 void getAnalysisUsage(AnalysisUsage &AU) const override { 633 AU.addRequiredID(LoopSimplifyID); 634 AU.addRequired<LoopInfoWrapperPass>(); 635 AU.addPreserved<LoopInfoWrapperPass>(); 636 AU.addRequired<LoopAccessLegacyAnalysis>(); 637 AU.addRequired<ScalarEvolutionWrapperPass>(); 638 AU.addRequired<DominatorTreeWrapperPass>(); 639 AU.addPreserved<DominatorTreeWrapperPass>(); 640 AU.addPreserved<GlobalsAAWrapperPass>(); 641 } 642 }; 643 644 } // end anonymous namespace 645 646 char LoopLoadElimination::ID; 647 648 static const char LLE_name[] = "Loop Load Elimination"; 649 650 INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false) 651 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 652 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 653 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 654 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 655 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 656 INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false) 657 658 FunctionPass *llvm::createLoopLoadEliminationPass() { 659 return new LoopLoadElimination(); 660 } 661 662 PreservedAnalyses LoopLoadEliminationPass::run(Function &F, 663 FunctionAnalysisManager &AM) { 664 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 665 auto &LI = AM.getResult<LoopAnalysis>(F); 666 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 667 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 668 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 669 auto &AA = AM.getResult<AAManager>(F); 670 auto &AC = AM.getResult<AssumptionAnalysis>(F); 671 672 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 673 bool Changed = eliminateLoadsAcrossLoops( 674 F, LI, DT, [&](Loop &L) -> const LoopAccessInfo & { 675 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, 676 SE, TLI, TTI, nullptr}; 677 return LAM.getResult<LoopAccessAnalysis>(L, AR); 678 }); 679 680 if (!Changed) 681 return PreservedAnalyses::all(); 682 683 PreservedAnalyses PA; 684 return PA; 685 } 686