xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopLoadElimination.cpp (revision baabda9317d4a0f51805d41455da36d8c04de342)
1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implement a loop-aware load elimination pass.
11 //
12 // It uses LoopAccessAnalysis to identify loop-carried dependences with a
13 // distance of one between stores and loads.  These form the candidates for the
14 // transformation.  The source value of each store then propagated to the user
15 // of the corresponding load.  This makes the load dead.
16 //
17 // The pass can also version the loop and add memchecks in order to prove that
18 // may-aliasing stores can't change the value in memory before it's read by the
19 // load.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/Transforms/Scalar/LoopLoadElimination.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/GlobalsModRef.h"
32 #include "llvm/Analysis/LoopAccessAnalysis.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/ScalarEvolution.h"
35 #include "llvm/Analysis/ScalarEvolutionExpander.h"
36 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Module.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Transforms/Scalar.h"
48 #include "llvm/Transforms/Utils/LoopVersioning.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <forward_list>
52 #include <set>
53 #include <tuple>
54 #include <utility>
55 
56 #define LLE_OPTION "loop-load-elim"
57 #define DEBUG_TYPE LLE_OPTION
58 
59 using namespace llvm;
60 
61 static cl::opt<unsigned> CheckPerElim(
62     "runtime-check-per-loop-load-elim", cl::Hidden,
63     cl::desc("Max number of memchecks allowed per eliminated load on average"),
64     cl::init(1));
65 
66 static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
67     "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
68     cl::desc("The maximum number of SCEV checks allowed for Loop "
69              "Load Elimination"));
70 
71 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
72 
73 namespace {
74 
75 /// \brief Represent a store-to-forwarding candidate.
76 struct StoreToLoadForwardingCandidate {
77   LoadInst *Load;
78   StoreInst *Store;
79 
80   StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
81       : Load(Load), Store(Store) {}
82 
83   /// \brief Return true if the dependence from the store to the load has a
84   /// distance of one.  E.g. A[i+1] = A[i]
85   bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE,
86                                  Loop *L) const {
87     Value *LoadPtr = Load->getPointerOperand();
88     Value *StorePtr = Store->getPointerOperand();
89     Type *LoadPtrType = LoadPtr->getType();
90     Type *LoadType = LoadPtrType->getPointerElementType();
91 
92     assert(LoadPtrType->getPointerAddressSpace() ==
93                StorePtr->getType()->getPointerAddressSpace() &&
94            LoadType == StorePtr->getType()->getPointerElementType() &&
95            "Should be a known dependence");
96 
97     // Currently we only support accesses with unit stride.  FIXME: we should be
98     // able to handle non unit stirde as well as long as the stride is equal to
99     // the dependence distance.
100     if (getPtrStride(PSE, LoadPtr, L) != 1 ||
101         getPtrStride(PSE, StorePtr, L) != 1)
102       return false;
103 
104     auto &DL = Load->getParent()->getModule()->getDataLayout();
105     unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
106 
107     auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
108     auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
109 
110     // We don't need to check non-wrapping here because forward/backward
111     // dependence wouldn't be valid if these weren't monotonic accesses.
112     auto *Dist = cast<SCEVConstant>(
113         PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
114     const APInt &Val = Dist->getAPInt();
115     return Val == TypeByteSize;
116   }
117 
118   Value *getLoadPtr() const { return Load->getPointerOperand(); }
119 
120 #ifndef NDEBUG
121   friend raw_ostream &operator<<(raw_ostream &OS,
122                                  const StoreToLoadForwardingCandidate &Cand) {
123     OS << *Cand.Store << " -->\n";
124     OS.indent(2) << *Cand.Load << "\n";
125     return OS;
126   }
127 #endif
128 };
129 
130 /// \brief Check if the store dominates all latches, so as long as there is no
131 /// intervening store this value will be loaded in the next iteration.
132 bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
133                                   DominatorTree *DT) {
134   SmallVector<BasicBlock *, 8> Latches;
135   L->getLoopLatches(Latches);
136   return llvm::all_of(Latches, [&](const BasicBlock *Latch) {
137     return DT->dominates(StoreBlock, Latch);
138   });
139 }
140 
141 /// \brief Return true if the load is not executed on all paths in the loop.
142 static bool isLoadConditional(LoadInst *Load, Loop *L) {
143   return Load->getParent() != L->getHeader();
144 }
145 
146 /// \brief The per-loop class that does most of the work.
147 class LoadEliminationForLoop {
148 public:
149   LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
150                          DominatorTree *DT)
151       : L(L), LI(LI), LAI(LAI), DT(DT), PSE(LAI.getPSE()) {}
152 
153   /// \brief Look through the loop-carried and loop-independent dependences in
154   /// this loop and find store->load dependences.
155   ///
156   /// Note that no candidate is returned if LAA has failed to analyze the loop
157   /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
158   std::forward_list<StoreToLoadForwardingCandidate>
159   findStoreToLoadDependences(const LoopAccessInfo &LAI) {
160     std::forward_list<StoreToLoadForwardingCandidate> Candidates;
161 
162     const auto *Deps = LAI.getDepChecker().getDependences();
163     if (!Deps)
164       return Candidates;
165 
166     // Find store->load dependences (consequently true dep).  Both lexically
167     // forward and backward dependences qualify.  Disqualify loads that have
168     // other unknown dependences.
169 
170     SmallSet<Instruction *, 4> LoadsWithUnknownDepedence;
171 
172     for (const auto &Dep : *Deps) {
173       Instruction *Source = Dep.getSource(LAI);
174       Instruction *Destination = Dep.getDestination(LAI);
175 
176       if (Dep.Type == MemoryDepChecker::Dependence::Unknown) {
177         if (isa<LoadInst>(Source))
178           LoadsWithUnknownDepedence.insert(Source);
179         if (isa<LoadInst>(Destination))
180           LoadsWithUnknownDepedence.insert(Destination);
181         continue;
182       }
183 
184       if (Dep.isBackward())
185         // Note that the designations source and destination follow the program
186         // order, i.e. source is always first.  (The direction is given by the
187         // DepType.)
188         std::swap(Source, Destination);
189       else
190         assert(Dep.isForward() && "Needs to be a forward dependence");
191 
192       auto *Store = dyn_cast<StoreInst>(Source);
193       if (!Store)
194         continue;
195       auto *Load = dyn_cast<LoadInst>(Destination);
196       if (!Load)
197         continue;
198 
199       // Only progagate the value if they are of the same type.
200       if (Store->getPointerOperand()->getType() !=
201           Load->getPointerOperand()->getType())
202         continue;
203 
204       Candidates.emplace_front(Load, Store);
205     }
206 
207     if (!LoadsWithUnknownDepedence.empty())
208       Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
209         return LoadsWithUnknownDepedence.count(C.Load);
210       });
211 
212     return Candidates;
213   }
214 
215   /// \brief Return the index of the instruction according to program order.
216   unsigned getInstrIndex(Instruction *Inst) {
217     auto I = InstOrder.find(Inst);
218     assert(I != InstOrder.end() && "No index for instruction");
219     return I->second;
220   }
221 
222   /// \brief If a load has multiple candidates associated (i.e. different
223   /// stores), it means that it could be forwarding from multiple stores
224   /// depending on control flow.  Remove these candidates.
225   ///
226   /// Here, we rely on LAA to include the relevant loop-independent dependences.
227   /// LAA is known to omit these in the very simple case when the read and the
228   /// write within an alias set always takes place using the *same* pointer.
229   ///
230   /// However, we know that this is not the case here, i.e. we can rely on LAA
231   /// to provide us with loop-independent dependences for the cases we're
232   /// interested.  Consider the case for example where a loop-independent
233   /// dependece S1->S2 invalidates the forwarding S3->S2.
234   ///
235   ///         A[i]   = ...   (S1)
236   ///         ...    = A[i]  (S2)
237   ///         A[i+1] = ...   (S3)
238   ///
239   /// LAA will perform dependence analysis here because there are two
240   /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
241   void removeDependencesFromMultipleStores(
242       std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
243     // If Store is nullptr it means that we have multiple stores forwarding to
244     // this store.
245     typedef DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>
246         LoadToSingleCandT;
247     LoadToSingleCandT LoadToSingleCand;
248 
249     for (const auto &Cand : Candidates) {
250       bool NewElt;
251       LoadToSingleCandT::iterator Iter;
252 
253       std::tie(Iter, NewElt) =
254           LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
255       if (!NewElt) {
256         const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
257         // Already multiple stores forward to this load.
258         if (OtherCand == nullptr)
259           continue;
260 
261         // Handle the very basic case when the two stores are in the same block
262         // so deciding which one forwards is easy.  The later one forwards as
263         // long as they both have a dependence distance of one to the load.
264         if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
265             Cand.isDependenceDistanceOfOne(PSE, L) &&
266             OtherCand->isDependenceDistanceOfOne(PSE, L)) {
267           // They are in the same block, the later one will forward to the load.
268           if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
269             OtherCand = &Cand;
270         } else
271           OtherCand = nullptr;
272       }
273     }
274 
275     Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
276       if (LoadToSingleCand[Cand.Load] != &Cand) {
277         DEBUG(dbgs() << "Removing from candidates: \n" << Cand
278                      << "  The load may have multiple stores forwarding to "
279                      << "it\n");
280         return true;
281       }
282       return false;
283     });
284   }
285 
286   /// \brief Given two pointers operations by their RuntimePointerChecking
287   /// indices, return true if they require an alias check.
288   ///
289   /// We need a check if one is a pointer for a candidate load and the other is
290   /// a pointer for a possibly intervening store.
291   bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
292                      const SmallSet<Value *, 4> &PtrsWrittenOnFwdingPath,
293                      const std::set<Value *> &CandLoadPtrs) {
294     Value *Ptr1 =
295         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
296     Value *Ptr2 =
297         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
298     return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
299             (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
300   }
301 
302   /// \brief Return pointers that are possibly written to on the path from a
303   /// forwarding store to a load.
304   ///
305   /// These pointers need to be alias-checked against the forwarding candidates.
306   SmallSet<Value *, 4> findPointersWrittenOnForwardingPath(
307       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
308     // From FirstStore to LastLoad neither of the elimination candidate loads
309     // should overlap with any of the stores.
310     //
311     // E.g.:
312     //
313     // st1 C[i]
314     // ld1 B[i] <-------,
315     // ld0 A[i] <----,  |              * LastLoad
316     // ...           |  |
317     // st2 E[i]      |  |
318     // st3 B[i+1] -- | -'              * FirstStore
319     // st0 A[i+1] ---'
320     // st4 D[i]
321     //
322     // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
323     // ld0.
324 
325     LoadInst *LastLoad =
326         std::max_element(Candidates.begin(), Candidates.end(),
327                          [&](const StoreToLoadForwardingCandidate &A,
328                              const StoreToLoadForwardingCandidate &B) {
329                            return getInstrIndex(A.Load) < getInstrIndex(B.Load);
330                          })
331             ->Load;
332     StoreInst *FirstStore =
333         std::min_element(Candidates.begin(), Candidates.end(),
334                          [&](const StoreToLoadForwardingCandidate &A,
335                              const StoreToLoadForwardingCandidate &B) {
336                            return getInstrIndex(A.Store) <
337                                   getInstrIndex(B.Store);
338                          })
339             ->Store;
340 
341     // We're looking for stores after the first forwarding store until the end
342     // of the loop, then from the beginning of the loop until the last
343     // forwarded-to load.  Collect the pointer for the stores.
344     SmallSet<Value *, 4> PtrsWrittenOnFwdingPath;
345 
346     auto InsertStorePtr = [&](Instruction *I) {
347       if (auto *S = dyn_cast<StoreInst>(I))
348         PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
349     };
350     const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
351     std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
352                   MemInstrs.end(), InsertStorePtr);
353     std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
354                   InsertStorePtr);
355 
356     return PtrsWrittenOnFwdingPath;
357   }
358 
359   /// \brief Determine the pointer alias checks to prove that there are no
360   /// intervening stores.
361   SmallVector<RuntimePointerChecking::PointerCheck, 4> collectMemchecks(
362       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
363 
364     SmallSet<Value *, 4> PtrsWrittenOnFwdingPath =
365         findPointersWrittenOnForwardingPath(Candidates);
366 
367     // Collect the pointers of the candidate loads.
368     // FIXME: SmallSet does not work with std::inserter.
369     std::set<Value *> CandLoadPtrs;
370     transform(Candidates,
371                    std::inserter(CandLoadPtrs, CandLoadPtrs.begin()),
372                    std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr));
373 
374     const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
375     SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;
376 
377     std::copy_if(AllChecks.begin(), AllChecks.end(), std::back_inserter(Checks),
378                  [&](const RuntimePointerChecking::PointerCheck &Check) {
379                    for (auto PtrIdx1 : Check.first->Members)
380                      for (auto PtrIdx2 : Check.second->Members)
381                        if (needsChecking(PtrIdx1, PtrIdx2,
382                                          PtrsWrittenOnFwdingPath, CandLoadPtrs))
383                          return true;
384                    return false;
385                  });
386 
387     DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size() << "):\n");
388     DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
389 
390     return Checks;
391   }
392 
393   /// \brief Perform the transformation for a candidate.
394   void
395   propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
396                                   SCEVExpander &SEE) {
397     //
398     // loop:
399     //      %x = load %gep_i
400     //         = ... %x
401     //      store %y, %gep_i_plus_1
402     //
403     // =>
404     //
405     // ph:
406     //      %x.initial = load %gep_0
407     // loop:
408     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
409     //      %x = load %gep_i            <---- now dead
410     //         = ... %x.storeforward
411     //      store %y, %gep_i_plus_1
412 
413     Value *Ptr = Cand.Load->getPointerOperand();
414     auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
415     auto *PH = L->getLoopPreheader();
416     Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
417                                           PH->getTerminator());
418     Value *Initial =
419         new LoadInst(InitialPtr, "load_initial", /* isVolatile */ false,
420                      Cand.Load->getAlignment(), PH->getTerminator());
421 
422     PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded",
423                                    &L->getHeader()->front());
424     PHI->addIncoming(Initial, PH);
425     PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch());
426 
427     Cand.Load->replaceAllUsesWith(PHI);
428   }
429 
430   /// \brief Top-level driver for each loop: find store->load forwarding
431   /// candidates, add run-time checks and perform transformation.
432   bool processLoop() {
433     DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
434                  << "\" checking " << *L << "\n");
435     // Look for store-to-load forwarding cases across the
436     // backedge. E.g.:
437     //
438     // loop:
439     //      %x = load %gep_i
440     //         = ... %x
441     //      store %y, %gep_i_plus_1
442     //
443     // =>
444     //
445     // ph:
446     //      %x.initial = load %gep_0
447     // loop:
448     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
449     //      %x = load %gep_i            <---- now dead
450     //         = ... %x.storeforward
451     //      store %y, %gep_i_plus_1
452 
453     // First start with store->load dependences.
454     auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
455     if (StoreToLoadDependences.empty())
456       return false;
457 
458     // Generate an index for each load and store according to the original
459     // program order.  This will be used later.
460     InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
461 
462     // To keep things simple for now, remove those where the load is potentially
463     // fed by multiple stores.
464     removeDependencesFromMultipleStores(StoreToLoadDependences);
465     if (StoreToLoadDependences.empty())
466       return false;
467 
468     // Filter the candidates further.
469     SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
470     unsigned NumForwarding = 0;
471     for (const StoreToLoadForwardingCandidate Cand : StoreToLoadDependences) {
472       DEBUG(dbgs() << "Candidate " << Cand);
473 
474       // Make sure that the stored values is available everywhere in the loop in
475       // the next iteration.
476       if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
477         continue;
478 
479       // If the load is conditional we can't hoist its 0-iteration instance to
480       // the preheader because that would make it unconditional.  Thus we would
481       // access a memory location that the original loop did not access.
482       if (isLoadConditional(Cand.Load, L))
483         continue;
484 
485       // Check whether the SCEV difference is the same as the induction step,
486       // thus we load the value in the next iteration.
487       if (!Cand.isDependenceDistanceOfOne(PSE, L))
488         continue;
489 
490       ++NumForwarding;
491       DEBUG(dbgs()
492             << NumForwarding
493             << ". Valid store-to-load forwarding across the loop backedge\n");
494       Candidates.push_back(Cand);
495     }
496     if (Candidates.empty())
497       return false;
498 
499     // Check intervening may-alias stores.  These need runtime checks for alias
500     // disambiguation.
501     SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks =
502         collectMemchecks(Candidates);
503 
504     // Too many checks are likely to outweigh the benefits of forwarding.
505     if (Checks.size() > Candidates.size() * CheckPerElim) {
506       DEBUG(dbgs() << "Too many run-time checks needed.\n");
507       return false;
508     }
509 
510     if (LAI.getPSE().getUnionPredicate().getComplexity() >
511         LoadElimSCEVCheckThreshold) {
512       DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
513       return false;
514     }
515 
516     if (!Checks.empty() || !LAI.getPSE().getUnionPredicate().isAlwaysTrue()) {
517       if (L->getHeader()->getParent()->optForSize()) {
518         DEBUG(dbgs() << "Versioning is needed but not allowed when optimizing "
519                         "for size.\n");
520         return false;
521       }
522 
523       if (!L->isLoopSimplifyForm()) {
524         DEBUG(dbgs() << "Loop is not is loop-simplify form");
525         return false;
526       }
527 
528       // Point of no-return, start the transformation.  First, version the loop
529       // if necessary.
530 
531       LoopVersioning LV(LAI, L, LI, DT, PSE.getSE(), false);
532       LV.setAliasChecks(std::move(Checks));
533       LV.setSCEVChecks(LAI.getPSE().getUnionPredicate());
534       LV.versionLoop();
535     }
536 
537     // Next, propagate the value stored by the store to the users of the load.
538     // Also for the first iteration, generate the initial value of the load.
539     SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
540                      "storeforward");
541     for (const auto &Cand : Candidates)
542       propagateStoredValueToLoadUsers(Cand, SEE);
543     NumLoopLoadEliminted += NumForwarding;
544 
545     return true;
546   }
547 
548 private:
549   Loop *L;
550 
551   /// \brief Maps the load/store instructions to their index according to
552   /// program order.
553   DenseMap<Instruction *, unsigned> InstOrder;
554 
555   // Analyses used.
556   LoopInfo *LI;
557   const LoopAccessInfo &LAI;
558   DominatorTree *DT;
559   PredicatedScalarEvolution PSE;
560 };
561 
562 static bool
563 eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI, DominatorTree &DT,
564                           function_ref<const LoopAccessInfo &(Loop &)> GetLAI) {
565   // Build up a worklist of inner-loops to transform to avoid iterator
566   // invalidation.
567   // FIXME: This logic comes from other passes that actually change the loop
568   // nest structure. It isn't clear this is necessary (or useful) for a pass
569   // which merely optimizes the use of loads in a loop.
570   SmallVector<Loop *, 8> Worklist;
571 
572   for (Loop *TopLevelLoop : LI)
573     for (Loop *L : depth_first(TopLevelLoop))
574       // We only handle inner-most loops.
575       if (L->empty())
576         Worklist.push_back(L);
577 
578   // Now walk the identified inner loops.
579   bool Changed = false;
580   for (Loop *L : Worklist) {
581     // The actual work is performed by LoadEliminationForLoop.
582     LoadEliminationForLoop LEL(L, &LI, GetLAI(*L), &DT);
583     Changed |= LEL.processLoop();
584   }
585   return Changed;
586 }
587 
588 /// \brief The pass.  Most of the work is delegated to the per-loop
589 /// LoadEliminationForLoop class.
590 class LoopLoadElimination : public FunctionPass {
591 public:
592   LoopLoadElimination() : FunctionPass(ID) {
593     initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
594   }
595 
596   bool runOnFunction(Function &F) override {
597     if (skipFunction(F))
598       return false;
599 
600     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
601     auto &LAA = getAnalysis<LoopAccessLegacyAnalysis>();
602     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
603 
604     // Process each loop nest in the function.
605     return eliminateLoadsAcrossLoops(
606         F, LI, DT,
607         [&LAA](Loop &L) -> const LoopAccessInfo & { return LAA.getInfo(&L); });
608   }
609 
610   void getAnalysisUsage(AnalysisUsage &AU) const override {
611     AU.addRequiredID(LoopSimplifyID);
612     AU.addRequired<LoopInfoWrapperPass>();
613     AU.addPreserved<LoopInfoWrapperPass>();
614     AU.addRequired<LoopAccessLegacyAnalysis>();
615     AU.addRequired<ScalarEvolutionWrapperPass>();
616     AU.addRequired<DominatorTreeWrapperPass>();
617     AU.addPreserved<DominatorTreeWrapperPass>();
618     AU.addPreserved<GlobalsAAWrapperPass>();
619   }
620 
621   static char ID;
622 };
623 
624 } // end anonymous namespace
625 
626 char LoopLoadElimination::ID;
627 static const char LLE_name[] = "Loop Load Elimination";
628 
629 INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
630 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
631 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
632 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
633 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
634 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
635 INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
636 
637 namespace llvm {
638 
639 FunctionPass *createLoopLoadEliminationPass() {
640   return new LoopLoadElimination();
641 }
642 
643 PreservedAnalyses LoopLoadEliminationPass::run(Function &F,
644                                                FunctionAnalysisManager &AM) {
645   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
646   auto &LI = AM.getResult<LoopAnalysis>(F);
647   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
648   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
649   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
650   auto &AA = AM.getResult<AAManager>(F);
651   auto &AC = AM.getResult<AssumptionAnalysis>(F);
652 
653   auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
654   bool Changed = eliminateLoadsAcrossLoops(
655       F, LI, DT, [&](Loop &L) -> const LoopAccessInfo & {
656         LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI};
657         return LAM.getResult<LoopAccessAnalysis>(L, AR);
658       });
659 
660   if (!Changed)
661     return PreservedAnalyses::all();
662 
663   PreservedAnalyses PA;
664   return PA;
665 }
666 
667 } // end namespace llvm
668