1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implement a loop-aware load elimination pass. 11 // 12 // It uses LoopAccessAnalysis to identify loop-carried dependences with a 13 // distance of one between stores and loads. These form the candidates for the 14 // transformation. The source value of each store then propagated to the user 15 // of the corresponding load. This makes the load dead. 16 // 17 // The pass can also version the loop and add memchecks in order to prove that 18 // may-aliasing stores can't change the value in memory before it's read by the 19 // load. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/APInt.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/DepthFirstIterator.h" 26 #include "llvm/ADT/SmallSet.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/Analysis/GlobalsModRef.h" 31 #include "llvm/Analysis/LoopAccessAnalysis.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/ScalarEvolution.h" 34 #include "llvm/Analysis/ScalarEvolutionExpander.h" 35 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Utils/LoopVersioning.h" 48 #include <forward_list> 49 #include <cassert> 50 #include <algorithm> 51 #include <set> 52 #include <tuple> 53 #include <utility> 54 55 #define LLE_OPTION "loop-load-elim" 56 #define DEBUG_TYPE LLE_OPTION 57 58 using namespace llvm; 59 60 static cl::opt<unsigned> CheckPerElim( 61 "runtime-check-per-loop-load-elim", cl::Hidden, 62 cl::desc("Max number of memchecks allowed per eliminated load on average"), 63 cl::init(1)); 64 65 static cl::opt<unsigned> LoadElimSCEVCheckThreshold( 66 "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden, 67 cl::desc("The maximum number of SCEV checks allowed for Loop " 68 "Load Elimination")); 69 70 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE"); 71 72 namespace { 73 74 /// \brief Represent a store-to-forwarding candidate. 75 struct StoreToLoadForwardingCandidate { 76 LoadInst *Load; 77 StoreInst *Store; 78 79 StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store) 80 : Load(Load), Store(Store) {} 81 82 /// \brief Return true if the dependence from the store to the load has a 83 /// distance of one. E.g. A[i+1] = A[i] 84 bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE, 85 Loop *L) const { 86 Value *LoadPtr = Load->getPointerOperand(); 87 Value *StorePtr = Store->getPointerOperand(); 88 Type *LoadPtrType = LoadPtr->getType(); 89 Type *LoadType = LoadPtrType->getPointerElementType(); 90 91 assert(LoadPtrType->getPointerAddressSpace() == 92 StorePtr->getType()->getPointerAddressSpace() && 93 LoadType == StorePtr->getType()->getPointerElementType() && 94 "Should be a known dependence"); 95 96 // Currently we only support accesses with unit stride. FIXME: we should be 97 // able to handle non unit stirde as well as long as the stride is equal to 98 // the dependence distance. 99 if (getPtrStride(PSE, LoadPtr, L) != 1 || 100 getPtrStride(PSE, StorePtr, L) != 1) 101 return false; 102 103 auto &DL = Load->getParent()->getModule()->getDataLayout(); 104 unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType)); 105 106 auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr)); 107 auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr)); 108 109 // We don't need to check non-wrapping here because forward/backward 110 // dependence wouldn't be valid if these weren't monotonic accesses. 111 auto *Dist = cast<SCEVConstant>( 112 PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV)); 113 const APInt &Val = Dist->getAPInt(); 114 return Val == TypeByteSize; 115 } 116 117 Value *getLoadPtr() const { return Load->getPointerOperand(); } 118 119 #ifndef NDEBUG 120 friend raw_ostream &operator<<(raw_ostream &OS, 121 const StoreToLoadForwardingCandidate &Cand) { 122 OS << *Cand.Store << " -->\n"; 123 OS.indent(2) << *Cand.Load << "\n"; 124 return OS; 125 } 126 #endif 127 }; 128 129 /// \brief Check if the store dominates all latches, so as long as there is no 130 /// intervening store this value will be loaded in the next iteration. 131 bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L, 132 DominatorTree *DT) { 133 SmallVector<BasicBlock *, 8> Latches; 134 L->getLoopLatches(Latches); 135 return llvm::all_of(Latches, [&](const BasicBlock *Latch) { 136 return DT->dominates(StoreBlock, Latch); 137 }); 138 } 139 140 /// \brief Return true if the load is not executed on all paths in the loop. 141 static bool isLoadConditional(LoadInst *Load, Loop *L) { 142 return Load->getParent() != L->getHeader(); 143 } 144 145 /// \brief The per-loop class that does most of the work. 146 class LoadEliminationForLoop { 147 public: 148 LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI, 149 DominatorTree *DT) 150 : L(L), LI(LI), LAI(LAI), DT(DT), PSE(LAI.getPSE()) {} 151 152 /// \brief Look through the loop-carried and loop-independent dependences in 153 /// this loop and find store->load dependences. 154 /// 155 /// Note that no candidate is returned if LAA has failed to analyze the loop 156 /// (e.g. if it's not bottom-tested, contains volatile memops, etc.) 157 std::forward_list<StoreToLoadForwardingCandidate> 158 findStoreToLoadDependences(const LoopAccessInfo &LAI) { 159 std::forward_list<StoreToLoadForwardingCandidate> Candidates; 160 161 const auto *Deps = LAI.getDepChecker().getDependences(); 162 if (!Deps) 163 return Candidates; 164 165 // Find store->load dependences (consequently true dep). Both lexically 166 // forward and backward dependences qualify. Disqualify loads that have 167 // other unknown dependences. 168 169 SmallSet<Instruction *, 4> LoadsWithUnknownDepedence; 170 171 for (const auto &Dep : *Deps) { 172 Instruction *Source = Dep.getSource(LAI); 173 Instruction *Destination = Dep.getDestination(LAI); 174 175 if (Dep.Type == MemoryDepChecker::Dependence::Unknown) { 176 if (isa<LoadInst>(Source)) 177 LoadsWithUnknownDepedence.insert(Source); 178 if (isa<LoadInst>(Destination)) 179 LoadsWithUnknownDepedence.insert(Destination); 180 continue; 181 } 182 183 if (Dep.isBackward()) 184 // Note that the designations source and destination follow the program 185 // order, i.e. source is always first. (The direction is given by the 186 // DepType.) 187 std::swap(Source, Destination); 188 else 189 assert(Dep.isForward() && "Needs to be a forward dependence"); 190 191 auto *Store = dyn_cast<StoreInst>(Source); 192 if (!Store) 193 continue; 194 auto *Load = dyn_cast<LoadInst>(Destination); 195 if (!Load) 196 continue; 197 198 // Only progagate the value if they are of the same type. 199 if (Store->getPointerOperand()->getType() != 200 Load->getPointerOperand()->getType()) 201 continue; 202 203 Candidates.emplace_front(Load, Store); 204 } 205 206 if (!LoadsWithUnknownDepedence.empty()) 207 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) { 208 return LoadsWithUnknownDepedence.count(C.Load); 209 }); 210 211 return Candidates; 212 } 213 214 /// \brief Return the index of the instruction according to program order. 215 unsigned getInstrIndex(Instruction *Inst) { 216 auto I = InstOrder.find(Inst); 217 assert(I != InstOrder.end() && "No index for instruction"); 218 return I->second; 219 } 220 221 /// \brief If a load has multiple candidates associated (i.e. different 222 /// stores), it means that it could be forwarding from multiple stores 223 /// depending on control flow. Remove these candidates. 224 /// 225 /// Here, we rely on LAA to include the relevant loop-independent dependences. 226 /// LAA is known to omit these in the very simple case when the read and the 227 /// write within an alias set always takes place using the *same* pointer. 228 /// 229 /// However, we know that this is not the case here, i.e. we can rely on LAA 230 /// to provide us with loop-independent dependences for the cases we're 231 /// interested. Consider the case for example where a loop-independent 232 /// dependece S1->S2 invalidates the forwarding S3->S2. 233 /// 234 /// A[i] = ... (S1) 235 /// ... = A[i] (S2) 236 /// A[i+1] = ... (S3) 237 /// 238 /// LAA will perform dependence analysis here because there are two 239 /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]). 240 void removeDependencesFromMultipleStores( 241 std::forward_list<StoreToLoadForwardingCandidate> &Candidates) { 242 // If Store is nullptr it means that we have multiple stores forwarding to 243 // this store. 244 typedef DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *> 245 LoadToSingleCandT; 246 LoadToSingleCandT LoadToSingleCand; 247 248 for (const auto &Cand : Candidates) { 249 bool NewElt; 250 LoadToSingleCandT::iterator Iter; 251 252 std::tie(Iter, NewElt) = 253 LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand)); 254 if (!NewElt) { 255 const StoreToLoadForwardingCandidate *&OtherCand = Iter->second; 256 // Already multiple stores forward to this load. 257 if (OtherCand == nullptr) 258 continue; 259 260 // Handle the very basic case when the two stores are in the same block 261 // so deciding which one forwards is easy. The later one forwards as 262 // long as they both have a dependence distance of one to the load. 263 if (Cand.Store->getParent() == OtherCand->Store->getParent() && 264 Cand.isDependenceDistanceOfOne(PSE, L) && 265 OtherCand->isDependenceDistanceOfOne(PSE, L)) { 266 // They are in the same block, the later one will forward to the load. 267 if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store)) 268 OtherCand = &Cand; 269 } else 270 OtherCand = nullptr; 271 } 272 } 273 274 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) { 275 if (LoadToSingleCand[Cand.Load] != &Cand) { 276 DEBUG(dbgs() << "Removing from candidates: \n" << Cand 277 << " The load may have multiple stores forwarding to " 278 << "it\n"); 279 return true; 280 } 281 return false; 282 }); 283 } 284 285 /// \brief Given two pointers operations by their RuntimePointerChecking 286 /// indices, return true if they require an alias check. 287 /// 288 /// We need a check if one is a pointer for a candidate load and the other is 289 /// a pointer for a possibly intervening store. 290 bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2, 291 const SmallSet<Value *, 4> &PtrsWrittenOnFwdingPath, 292 const std::set<Value *> &CandLoadPtrs) { 293 Value *Ptr1 = 294 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue; 295 Value *Ptr2 = 296 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue; 297 return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) || 298 (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1))); 299 } 300 301 /// \brief Return pointers that are possibly written to on the path from a 302 /// forwarding store to a load. 303 /// 304 /// These pointers need to be alias-checked against the forwarding candidates. 305 SmallSet<Value *, 4> findPointersWrittenOnForwardingPath( 306 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) { 307 // From FirstStore to LastLoad neither of the elimination candidate loads 308 // should overlap with any of the stores. 309 // 310 // E.g.: 311 // 312 // st1 C[i] 313 // ld1 B[i] <-------, 314 // ld0 A[i] <----, | * LastLoad 315 // ... | | 316 // st2 E[i] | | 317 // st3 B[i+1] -- | -' * FirstStore 318 // st0 A[i+1] ---' 319 // st4 D[i] 320 // 321 // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with 322 // ld0. 323 324 LoadInst *LastLoad = 325 std::max_element(Candidates.begin(), Candidates.end(), 326 [&](const StoreToLoadForwardingCandidate &A, 327 const StoreToLoadForwardingCandidate &B) { 328 return getInstrIndex(A.Load) < getInstrIndex(B.Load); 329 }) 330 ->Load; 331 StoreInst *FirstStore = 332 std::min_element(Candidates.begin(), Candidates.end(), 333 [&](const StoreToLoadForwardingCandidate &A, 334 const StoreToLoadForwardingCandidate &B) { 335 return getInstrIndex(A.Store) < 336 getInstrIndex(B.Store); 337 }) 338 ->Store; 339 340 // We're looking for stores after the first forwarding store until the end 341 // of the loop, then from the beginning of the loop until the last 342 // forwarded-to load. Collect the pointer for the stores. 343 SmallSet<Value *, 4> PtrsWrittenOnFwdingPath; 344 345 auto InsertStorePtr = [&](Instruction *I) { 346 if (auto *S = dyn_cast<StoreInst>(I)) 347 PtrsWrittenOnFwdingPath.insert(S->getPointerOperand()); 348 }; 349 const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions(); 350 std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1, 351 MemInstrs.end(), InsertStorePtr); 352 std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)], 353 InsertStorePtr); 354 355 return PtrsWrittenOnFwdingPath; 356 } 357 358 /// \brief Determine the pointer alias checks to prove that there are no 359 /// intervening stores. 360 SmallVector<RuntimePointerChecking::PointerCheck, 4> collectMemchecks( 361 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) { 362 363 SmallSet<Value *, 4> PtrsWrittenOnFwdingPath = 364 findPointersWrittenOnForwardingPath(Candidates); 365 366 // Collect the pointers of the candidate loads. 367 // FIXME: SmallSet does not work with std::inserter. 368 std::set<Value *> CandLoadPtrs; 369 transform(Candidates, 370 std::inserter(CandLoadPtrs, CandLoadPtrs.begin()), 371 std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr)); 372 373 const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks(); 374 SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks; 375 376 std::copy_if(AllChecks.begin(), AllChecks.end(), std::back_inserter(Checks), 377 [&](const RuntimePointerChecking::PointerCheck &Check) { 378 for (auto PtrIdx1 : Check.first->Members) 379 for (auto PtrIdx2 : Check.second->Members) 380 if (needsChecking(PtrIdx1, PtrIdx2, 381 PtrsWrittenOnFwdingPath, CandLoadPtrs)) 382 return true; 383 return false; 384 }); 385 386 DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size() << "):\n"); 387 DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks)); 388 389 return Checks; 390 } 391 392 /// \brief Perform the transformation for a candidate. 393 void 394 propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand, 395 SCEVExpander &SEE) { 396 // 397 // loop: 398 // %x = load %gep_i 399 // = ... %x 400 // store %y, %gep_i_plus_1 401 // 402 // => 403 // 404 // ph: 405 // %x.initial = load %gep_0 406 // loop: 407 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop] 408 // %x = load %gep_i <---- now dead 409 // = ... %x.storeforward 410 // store %y, %gep_i_plus_1 411 412 Value *Ptr = Cand.Load->getPointerOperand(); 413 auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr)); 414 auto *PH = L->getLoopPreheader(); 415 Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(), 416 PH->getTerminator()); 417 Value *Initial = 418 new LoadInst(InitialPtr, "load_initial", PH->getTerminator()); 419 PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded", 420 &L->getHeader()->front()); 421 PHI->addIncoming(Initial, PH); 422 PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch()); 423 424 Cand.Load->replaceAllUsesWith(PHI); 425 } 426 427 /// \brief Top-level driver for each loop: find store->load forwarding 428 /// candidates, add run-time checks and perform transformation. 429 bool processLoop() { 430 DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName() 431 << "\" checking " << *L << "\n"); 432 // Look for store-to-load forwarding cases across the 433 // backedge. E.g.: 434 // 435 // loop: 436 // %x = load %gep_i 437 // = ... %x 438 // store %y, %gep_i_plus_1 439 // 440 // => 441 // 442 // ph: 443 // %x.initial = load %gep_0 444 // loop: 445 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop] 446 // %x = load %gep_i <---- now dead 447 // = ... %x.storeforward 448 // store %y, %gep_i_plus_1 449 450 // First start with store->load dependences. 451 auto StoreToLoadDependences = findStoreToLoadDependences(LAI); 452 if (StoreToLoadDependences.empty()) 453 return false; 454 455 // Generate an index for each load and store according to the original 456 // program order. This will be used later. 457 InstOrder = LAI.getDepChecker().generateInstructionOrderMap(); 458 459 // To keep things simple for now, remove those where the load is potentially 460 // fed by multiple stores. 461 removeDependencesFromMultipleStores(StoreToLoadDependences); 462 if (StoreToLoadDependences.empty()) 463 return false; 464 465 // Filter the candidates further. 466 SmallVector<StoreToLoadForwardingCandidate, 4> Candidates; 467 unsigned NumForwarding = 0; 468 for (const StoreToLoadForwardingCandidate Cand : StoreToLoadDependences) { 469 DEBUG(dbgs() << "Candidate " << Cand); 470 471 // Make sure that the stored values is available everywhere in the loop in 472 // the next iteration. 473 if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT)) 474 continue; 475 476 // If the load is conditional we can't hoist its 0-iteration instance to 477 // the preheader because that would make it unconditional. Thus we would 478 // access a memory location that the original loop did not access. 479 if (isLoadConditional(Cand.Load, L)) 480 continue; 481 482 // Check whether the SCEV difference is the same as the induction step, 483 // thus we load the value in the next iteration. 484 if (!Cand.isDependenceDistanceOfOne(PSE, L)) 485 continue; 486 487 ++NumForwarding; 488 DEBUG(dbgs() 489 << NumForwarding 490 << ". Valid store-to-load forwarding across the loop backedge\n"); 491 Candidates.push_back(Cand); 492 } 493 if (Candidates.empty()) 494 return false; 495 496 // Check intervening may-alias stores. These need runtime checks for alias 497 // disambiguation. 498 SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks = 499 collectMemchecks(Candidates); 500 501 // Too many checks are likely to outweigh the benefits of forwarding. 502 if (Checks.size() > Candidates.size() * CheckPerElim) { 503 DEBUG(dbgs() << "Too many run-time checks needed.\n"); 504 return false; 505 } 506 507 if (LAI.getPSE().getUnionPredicate().getComplexity() > 508 LoadElimSCEVCheckThreshold) { 509 DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n"); 510 return false; 511 } 512 513 if (!Checks.empty() || !LAI.getPSE().getUnionPredicate().isAlwaysTrue()) { 514 if (L->getHeader()->getParent()->optForSize()) { 515 DEBUG(dbgs() << "Versioning is needed but not allowed when optimizing " 516 "for size.\n"); 517 return false; 518 } 519 520 // Point of no-return, start the transformation. First, version the loop 521 // if necessary. 522 523 LoopVersioning LV(LAI, L, LI, DT, PSE.getSE(), false); 524 LV.setAliasChecks(std::move(Checks)); 525 LV.setSCEVChecks(LAI.getPSE().getUnionPredicate()); 526 LV.versionLoop(); 527 } 528 529 // Next, propagate the value stored by the store to the users of the load. 530 // Also for the first iteration, generate the initial value of the load. 531 SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(), 532 "storeforward"); 533 for (const auto &Cand : Candidates) 534 propagateStoredValueToLoadUsers(Cand, SEE); 535 NumLoopLoadEliminted += NumForwarding; 536 537 return true; 538 } 539 540 private: 541 Loop *L; 542 543 /// \brief Maps the load/store instructions to their index according to 544 /// program order. 545 DenseMap<Instruction *, unsigned> InstOrder; 546 547 // Analyses used. 548 LoopInfo *LI; 549 const LoopAccessInfo &LAI; 550 DominatorTree *DT; 551 PredicatedScalarEvolution PSE; 552 }; 553 554 /// \brief The pass. Most of the work is delegated to the per-loop 555 /// LoadEliminationForLoop class. 556 class LoopLoadElimination : public FunctionPass { 557 public: 558 LoopLoadElimination() : FunctionPass(ID) { 559 initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry()); 560 } 561 562 bool runOnFunction(Function &F) override { 563 if (skipFunction(F)) 564 return false; 565 566 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 567 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 568 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 569 570 // Build up a worklist of inner-loops to vectorize. This is necessary as the 571 // act of distributing a loop creates new loops and can invalidate iterators 572 // across the loops. 573 SmallVector<Loop *, 8> Worklist; 574 575 for (Loop *TopLevelLoop : *LI) 576 for (Loop *L : depth_first(TopLevelLoop)) 577 // We only handle inner-most loops. 578 if (L->empty()) 579 Worklist.push_back(L); 580 581 // Now walk the identified inner loops. 582 bool Changed = false; 583 for (Loop *L : Worklist) { 584 const LoopAccessInfo &LAI = LAA->getInfo(L); 585 // The actual work is performed by LoadEliminationForLoop. 586 LoadEliminationForLoop LEL(L, LI, LAI, DT); 587 Changed |= LEL.processLoop(); 588 } 589 590 // Process each loop nest in the function. 591 return Changed; 592 } 593 594 void getAnalysisUsage(AnalysisUsage &AU) const override { 595 AU.addRequiredID(LoopSimplifyID); 596 AU.addRequired<LoopInfoWrapperPass>(); 597 AU.addPreserved<LoopInfoWrapperPass>(); 598 AU.addRequired<LoopAccessLegacyAnalysis>(); 599 AU.addRequired<ScalarEvolutionWrapperPass>(); 600 AU.addRequired<DominatorTreeWrapperPass>(); 601 AU.addPreserved<DominatorTreeWrapperPass>(); 602 AU.addPreserved<GlobalsAAWrapperPass>(); 603 } 604 605 static char ID; 606 }; 607 608 } // end anonymous namespace 609 610 char LoopLoadElimination::ID; 611 static const char LLE_name[] = "Loop Load Elimination"; 612 613 INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false) 614 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 615 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 616 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 617 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 618 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 619 INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false) 620 621 namespace llvm { 622 623 FunctionPass *createLoopLoadEliminationPass() { 624 return new LoopLoadElimination(); 625 } 626 627 } // end namespace llvm 628