xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopLoadElimination.cpp (revision 660748ca8c70e3afd8414ff45ef99feeca3f3d3c)
1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implement a loop-aware load elimination pass.
11 //
12 // It uses LoopAccessAnalysis to identify loop-carried dependences with a
13 // distance of one between stores and loads.  These form the candidates for the
14 // transformation.  The source value of each store then propagated to the user
15 // of the corresponding load.  This makes the load dead.
16 //
17 // The pass can also version the loop and add memchecks in order to prove that
18 // may-aliasing stores can't change the value in memory before it's read by the
19 // load.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/LoopAccessAnalysis.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/ScalarEvolutionExpander.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Transforms/Utils/LoopVersioning.h"
32 #include <forward_list>
33 
34 #define LLE_OPTION "loop-load-elim"
35 #define DEBUG_TYPE LLE_OPTION
36 
37 using namespace llvm;
38 
39 static cl::opt<unsigned> CheckPerElim(
40     "runtime-check-per-loop-load-elim", cl::Hidden,
41     cl::desc("Max number of memchecks allowed per eliminated load on average"),
42     cl::init(1));
43 
44 static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
45     "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
46     cl::desc("The maximum number of SCEV checks allowed for Loop "
47              "Load Elimination"));
48 
49 
50 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
51 
52 namespace {
53 
54 /// \brief Represent a store-to-forwarding candidate.
55 struct StoreToLoadForwardingCandidate {
56   LoadInst *Load;
57   StoreInst *Store;
58 
59   StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
60       : Load(Load), Store(Store) {}
61 
62   /// \brief Return true if the dependence from the store to the load has a
63   /// distance of one.  E.g. A[i+1] = A[i]
64   bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE,
65                                  Loop *L) const {
66     Value *LoadPtr = Load->getPointerOperand();
67     Value *StorePtr = Store->getPointerOperand();
68     Type *LoadPtrType = LoadPtr->getType();
69     Type *LoadType = LoadPtrType->getPointerElementType();
70 
71     assert(LoadPtrType->getPointerAddressSpace() ==
72                StorePtr->getType()->getPointerAddressSpace() &&
73            LoadType == StorePtr->getType()->getPointerElementType() &&
74            "Should be a known dependence");
75 
76     // Currently we only support accesses with unit stride.  FIXME: we should be
77     // able to handle non unit stirde as well as long as the stride is equal to
78     // the dependence distance.
79     if (isStridedPtr(PSE, LoadPtr, L) != 1 ||
80         isStridedPtr(PSE, LoadPtr, L) != 1)
81       return false;
82 
83     auto &DL = Load->getParent()->getModule()->getDataLayout();
84     unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
85 
86     auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
87     auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
88 
89     // We don't need to check non-wrapping here because forward/backward
90     // dependence wouldn't be valid if these weren't monotonic accesses.
91     auto *Dist = cast<SCEVConstant>(
92         PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
93     const APInt &Val = Dist->getAPInt();
94     return Val == TypeByteSize;
95   }
96 
97   Value *getLoadPtr() const { return Load->getPointerOperand(); }
98 
99 #ifndef NDEBUG
100   friend raw_ostream &operator<<(raw_ostream &OS,
101                                  const StoreToLoadForwardingCandidate &Cand) {
102     OS << *Cand.Store << " -->\n";
103     OS.indent(2) << *Cand.Load << "\n";
104     return OS;
105   }
106 #endif
107 };
108 
109 /// \brief Check if the store dominates all latches, so as long as there is no
110 /// intervening store this value will be loaded in the next iteration.
111 bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
112                                   DominatorTree *DT) {
113   SmallVector<BasicBlock *, 8> Latches;
114   L->getLoopLatches(Latches);
115   return std::all_of(Latches.begin(), Latches.end(),
116                      [&](const BasicBlock *Latch) {
117                        return DT->dominates(StoreBlock, Latch);
118                      });
119 }
120 
121 /// \brief The per-loop class that does most of the work.
122 class LoadEliminationForLoop {
123 public:
124   LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
125                          DominatorTree *DT)
126       : L(L), LI(LI), LAI(LAI), DT(DT), PSE(LAI.PSE) {}
127 
128   /// \brief Look through the loop-carried and loop-independent dependences in
129   /// this loop and find store->load dependences.
130   ///
131   /// Note that no candidate is returned if LAA has failed to analyze the loop
132   /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
133   std::forward_list<StoreToLoadForwardingCandidate>
134   findStoreToLoadDependences(const LoopAccessInfo &LAI) {
135     std::forward_list<StoreToLoadForwardingCandidate> Candidates;
136 
137     const auto *Deps = LAI.getDepChecker().getDependences();
138     if (!Deps)
139       return Candidates;
140 
141     // Find store->load dependences (consequently true dep).  Both lexically
142     // forward and backward dependences qualify.  Disqualify loads that have
143     // other unknown dependences.
144 
145     SmallSet<Instruction *, 4> LoadsWithUnknownDepedence;
146 
147     for (const auto &Dep : *Deps) {
148       Instruction *Source = Dep.getSource(LAI);
149       Instruction *Destination = Dep.getDestination(LAI);
150 
151       if (Dep.Type == MemoryDepChecker::Dependence::Unknown) {
152         if (isa<LoadInst>(Source))
153           LoadsWithUnknownDepedence.insert(Source);
154         if (isa<LoadInst>(Destination))
155           LoadsWithUnknownDepedence.insert(Destination);
156         continue;
157       }
158 
159       if (Dep.isBackward())
160         // Note that the designations source and destination follow the program
161         // order, i.e. source is always first.  (The direction is given by the
162         // DepType.)
163         std::swap(Source, Destination);
164       else
165         assert(Dep.isForward() && "Needs to be a forward dependence");
166 
167       auto *Store = dyn_cast<StoreInst>(Source);
168       if (!Store)
169         continue;
170       auto *Load = dyn_cast<LoadInst>(Destination);
171       if (!Load)
172         continue;
173       Candidates.emplace_front(Load, Store);
174     }
175 
176     if (!LoadsWithUnknownDepedence.empty())
177       Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
178         return LoadsWithUnknownDepedence.count(C.Load);
179       });
180 
181     return Candidates;
182   }
183 
184   /// \brief Return the index of the instruction according to program order.
185   unsigned getInstrIndex(Instruction *Inst) {
186     auto I = InstOrder.find(Inst);
187     assert(I != InstOrder.end() && "No index for instruction");
188     return I->second;
189   }
190 
191   /// \brief If a load has multiple candidates associated (i.e. different
192   /// stores), it means that it could be forwarding from multiple stores
193   /// depending on control flow.  Remove these candidates.
194   ///
195   /// Here, we rely on LAA to include the relevant loop-independent dependences.
196   /// LAA is known to omit these in the very simple case when the read and the
197   /// write within an alias set always takes place using the *same* pointer.
198   ///
199   /// However, we know that this is not the case here, i.e. we can rely on LAA
200   /// to provide us with loop-independent dependences for the cases we're
201   /// interested.  Consider the case for example where a loop-independent
202   /// dependece S1->S2 invalidates the forwarding S3->S2.
203   ///
204   ///         A[i]   = ...   (S1)
205   ///         ...    = A[i]  (S2)
206   ///         A[i+1] = ...   (S3)
207   ///
208   /// LAA will perform dependence analysis here because there are two
209   /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
210   void removeDependencesFromMultipleStores(
211       std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
212     // If Store is nullptr it means that we have multiple stores forwarding to
213     // this store.
214     typedef DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>
215         LoadToSingleCandT;
216     LoadToSingleCandT LoadToSingleCand;
217 
218     for (const auto &Cand : Candidates) {
219       bool NewElt;
220       LoadToSingleCandT::iterator Iter;
221 
222       std::tie(Iter, NewElt) =
223           LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
224       if (!NewElt) {
225         const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
226         // Already multiple stores forward to this load.
227         if (OtherCand == nullptr)
228           continue;
229 
230         // Handle the very basic case when the two stores are in the same block
231         // so deciding which one forwards is easy.  The later one forwards as
232         // long as they both have a dependence distance of one to the load.
233         if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
234             Cand.isDependenceDistanceOfOne(PSE, L) &&
235             OtherCand->isDependenceDistanceOfOne(PSE, L)) {
236           // They are in the same block, the later one will forward to the load.
237           if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
238             OtherCand = &Cand;
239         } else
240           OtherCand = nullptr;
241       }
242     }
243 
244     Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
245       if (LoadToSingleCand[Cand.Load] != &Cand) {
246         DEBUG(dbgs() << "Removing from candidates: \n" << Cand
247                      << "  The load may have multiple stores forwarding to "
248                      << "it\n");
249         return true;
250       }
251       return false;
252     });
253   }
254 
255   /// \brief Given two pointers operations by their RuntimePointerChecking
256   /// indices, return true if they require an alias check.
257   ///
258   /// We need a check if one is a pointer for a candidate load and the other is
259   /// a pointer for a possibly intervening store.
260   bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
261                      const SmallSet<Value *, 4> &PtrsWrittenOnFwdingPath,
262                      const std::set<Value *> &CandLoadPtrs) {
263     Value *Ptr1 =
264         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
265     Value *Ptr2 =
266         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
267     return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
268             (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
269   }
270 
271   /// \brief Return pointers that are possibly written to on the path from a
272   /// forwarding store to a load.
273   ///
274   /// These pointers need to be alias-checked against the forwarding candidates.
275   SmallSet<Value *, 4> findPointersWrittenOnForwardingPath(
276       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
277     // From FirstStore to LastLoad neither of the elimination candidate loads
278     // should overlap with any of the stores.
279     //
280     // E.g.:
281     //
282     // st1 C[i]
283     // ld1 B[i] <-------,
284     // ld0 A[i] <----,  |              * LastLoad
285     // ...           |  |
286     // st2 E[i]      |  |
287     // st3 B[i+1] -- | -'              * FirstStore
288     // st0 A[i+1] ---'
289     // st4 D[i]
290     //
291     // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
292     // ld0.
293 
294     LoadInst *LastLoad =
295         std::max_element(Candidates.begin(), Candidates.end(),
296                          [&](const StoreToLoadForwardingCandidate &A,
297                              const StoreToLoadForwardingCandidate &B) {
298                            return getInstrIndex(A.Load) < getInstrIndex(B.Load);
299                          })
300             ->Load;
301     StoreInst *FirstStore =
302         std::min_element(Candidates.begin(), Candidates.end(),
303                          [&](const StoreToLoadForwardingCandidate &A,
304                              const StoreToLoadForwardingCandidate &B) {
305                            return getInstrIndex(A.Store) <
306                                   getInstrIndex(B.Store);
307                          })
308             ->Store;
309 
310     // We're looking for stores after the first forwarding store until the end
311     // of the loop, then from the beginning of the loop until the last
312     // forwarded-to load.  Collect the pointer for the stores.
313     SmallSet<Value *, 4> PtrsWrittenOnFwdingPath;
314 
315     auto InsertStorePtr = [&](Instruction *I) {
316       if (auto *S = dyn_cast<StoreInst>(I))
317         PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
318     };
319     const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
320     std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
321                   MemInstrs.end(), InsertStorePtr);
322     std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
323                   InsertStorePtr);
324 
325     return PtrsWrittenOnFwdingPath;
326   }
327 
328   /// \brief Determine the pointer alias checks to prove that there are no
329   /// intervening stores.
330   SmallVector<RuntimePointerChecking::PointerCheck, 4> collectMemchecks(
331       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
332 
333     SmallSet<Value *, 4> PtrsWrittenOnFwdingPath =
334         findPointersWrittenOnForwardingPath(Candidates);
335 
336     // Collect the pointers of the candidate loads.
337     // FIXME: SmallSet does not work with std::inserter.
338     std::set<Value *> CandLoadPtrs;
339     std::transform(Candidates.begin(), Candidates.end(),
340                    std::inserter(CandLoadPtrs, CandLoadPtrs.begin()),
341                    std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr));
342 
343     const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
344     SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;
345 
346     std::copy_if(AllChecks.begin(), AllChecks.end(), std::back_inserter(Checks),
347                  [&](const RuntimePointerChecking::PointerCheck &Check) {
348                    for (auto PtrIdx1 : Check.first->Members)
349                      for (auto PtrIdx2 : Check.second->Members)
350                        if (needsChecking(PtrIdx1, PtrIdx2,
351                                          PtrsWrittenOnFwdingPath, CandLoadPtrs))
352                          return true;
353                    return false;
354                  });
355 
356     DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size() << "):\n");
357     DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
358 
359     return Checks;
360   }
361 
362   /// \brief Perform the transformation for a candidate.
363   void
364   propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
365                                   SCEVExpander &SEE) {
366     //
367     // loop:
368     //      %x = load %gep_i
369     //         = ... %x
370     //      store %y, %gep_i_plus_1
371     //
372     // =>
373     //
374     // ph:
375     //      %x.initial = load %gep_0
376     // loop:
377     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
378     //      %x = load %gep_i            <---- now dead
379     //         = ... %x.storeforward
380     //      store %y, %gep_i_plus_1
381 
382     Value *Ptr = Cand.Load->getPointerOperand();
383     auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
384     auto *PH = L->getLoopPreheader();
385     Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
386                                           PH->getTerminator());
387     Value *Initial =
388         new LoadInst(InitialPtr, "load_initial", PH->getTerminator());
389     PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded",
390                                    &L->getHeader()->front());
391     PHI->addIncoming(Initial, PH);
392     PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch());
393 
394     Cand.Load->replaceAllUsesWith(PHI);
395   }
396 
397   /// \brief Top-level driver for each loop: find store->load forwarding
398   /// candidates, add run-time checks and perform transformation.
399   bool processLoop() {
400     DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
401                  << "\" checking " << *L << "\n");
402     // Look for store-to-load forwarding cases across the
403     // backedge. E.g.:
404     //
405     // loop:
406     //      %x = load %gep_i
407     //         = ... %x
408     //      store %y, %gep_i_plus_1
409     //
410     // =>
411     //
412     // ph:
413     //      %x.initial = load %gep_0
414     // loop:
415     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
416     //      %x = load %gep_i            <---- now dead
417     //         = ... %x.storeforward
418     //      store %y, %gep_i_plus_1
419 
420     // First start with store->load dependences.
421     auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
422     if (StoreToLoadDependences.empty())
423       return false;
424 
425     // Generate an index for each load and store according to the original
426     // program order.  This will be used later.
427     InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
428 
429     // To keep things simple for now, remove those where the load is potentially
430     // fed by multiple stores.
431     removeDependencesFromMultipleStores(StoreToLoadDependences);
432     if (StoreToLoadDependences.empty())
433       return false;
434 
435     // Filter the candidates further.
436     SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
437     unsigned NumForwarding = 0;
438     for (const StoreToLoadForwardingCandidate Cand : StoreToLoadDependences) {
439       DEBUG(dbgs() << "Candidate " << Cand);
440       // Only progagate value if they are of the same type.
441       if (Cand.Store->getPointerOperand()->getType() !=
442           Cand.Load->getPointerOperand()->getType())
443         continue;
444 
445       // Make sure that the stored values is available everywhere in the loop in
446       // the next iteration.
447       if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
448         continue;
449 
450       // Check whether the SCEV difference is the same as the induction step,
451       // thus we load the value in the next iteration.
452       if (!Cand.isDependenceDistanceOfOne(PSE, L))
453         continue;
454 
455       ++NumForwarding;
456       DEBUG(dbgs()
457             << NumForwarding
458             << ". Valid store-to-load forwarding across the loop backedge\n");
459       Candidates.push_back(Cand);
460     }
461     if (Candidates.empty())
462       return false;
463 
464     // Check intervening may-alias stores.  These need runtime checks for alias
465     // disambiguation.
466     SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks =
467         collectMemchecks(Candidates);
468 
469     // Too many checks are likely to outweigh the benefits of forwarding.
470     if (Checks.size() > Candidates.size() * CheckPerElim) {
471       DEBUG(dbgs() << "Too many run-time checks needed.\n");
472       return false;
473     }
474 
475     if (LAI.PSE.getUnionPredicate().getComplexity() >
476         LoadElimSCEVCheckThreshold) {
477       DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
478       return false;
479     }
480 
481     if (!Checks.empty() || !LAI.PSE.getUnionPredicate().isAlwaysTrue()) {
482       if (L->getHeader()->getParent()->optForSize()) {
483         DEBUG(dbgs() << "Versioning is needed but not allowed when optimizing "
484                         "for size.\n");
485         return false;
486       }
487 
488       // Point of no-return, start the transformation.  First, version the loop
489       // if necessary.
490 
491       LoopVersioning LV(LAI, L, LI, DT, PSE.getSE(), false);
492       LV.setAliasChecks(std::move(Checks));
493       LV.setSCEVChecks(LAI.PSE.getUnionPredicate());
494       LV.versionLoop();
495     }
496 
497     // Next, propagate the value stored by the store to the users of the load.
498     // Also for the first iteration, generate the initial value of the load.
499     SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
500                      "storeforward");
501     for (const auto &Cand : Candidates)
502       propagateStoredValueToLoadUsers(Cand, SEE);
503     NumLoopLoadEliminted += NumForwarding;
504 
505     return true;
506   }
507 
508 private:
509   Loop *L;
510 
511   /// \brief Maps the load/store instructions to their index according to
512   /// program order.
513   DenseMap<Instruction *, unsigned> InstOrder;
514 
515   // Analyses used.
516   LoopInfo *LI;
517   const LoopAccessInfo &LAI;
518   DominatorTree *DT;
519   PredicatedScalarEvolution PSE;
520 };
521 
522 /// \brief The pass.  Most of the work is delegated to the per-loop
523 /// LoadEliminationForLoop class.
524 class LoopLoadElimination : public FunctionPass {
525 public:
526   LoopLoadElimination() : FunctionPass(ID) {
527     initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
528   }
529 
530   bool runOnFunction(Function &F) override {
531     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
532     auto *LAA = &getAnalysis<LoopAccessAnalysis>();
533     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
534 
535     // Build up a worklist of inner-loops to vectorize. This is necessary as the
536     // act of distributing a loop creates new loops and can invalidate iterators
537     // across the loops.
538     SmallVector<Loop *, 8> Worklist;
539 
540     for (Loop *TopLevelLoop : *LI)
541       for (Loop *L : depth_first(TopLevelLoop))
542         // We only handle inner-most loops.
543         if (L->empty())
544           Worklist.push_back(L);
545 
546     // Now walk the identified inner loops.
547     bool Changed = false;
548     for (Loop *L : Worklist) {
549       const LoopAccessInfo &LAI = LAA->getInfo(L, ValueToValueMap());
550       // The actual work is performed by LoadEliminationForLoop.
551       LoadEliminationForLoop LEL(L, LI, LAI, DT);
552       Changed |= LEL.processLoop();
553     }
554 
555     // Process each loop nest in the function.
556     return Changed;
557   }
558 
559   void getAnalysisUsage(AnalysisUsage &AU) const override {
560     AU.addRequired<LoopInfoWrapperPass>();
561     AU.addPreserved<LoopInfoWrapperPass>();
562     AU.addRequired<LoopAccessAnalysis>();
563     AU.addRequired<ScalarEvolutionWrapperPass>();
564     AU.addRequired<DominatorTreeWrapperPass>();
565     AU.addPreserved<DominatorTreeWrapperPass>();
566   }
567 
568   static char ID;
569 };
570 }
571 
572 char LoopLoadElimination::ID;
573 static const char LLE_name[] = "Loop Load Elimination";
574 
575 INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
576 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
577 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis)
578 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
579 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
580 INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
581 
582 namespace llvm {
583 FunctionPass *createLoopLoadEliminationPass() {
584   return new LoopLoadElimination();
585 }
586 }
587