xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopLoadElimination.cpp (revision 5f8f34e459b60efb332337e7cfe902a7cabe4096)
1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implement a loop-aware load elimination pass.
11 //
12 // It uses LoopAccessAnalysis to identify loop-carried dependences with a
13 // distance of one between stores and loads.  These form the candidates for the
14 // transformation.  The source value of each store then propagated to the user
15 // of the corresponding load.  This makes the load dead.
16 //
17 // The pass can also version the loop and add memchecks in order to prove that
18 // may-aliasing stores can't change the value in memory before it's read by the
19 // load.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/Transforms/Scalar/LoopLoadElimination.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/AssumptionCache.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/LoopAccessAnalysis.h"
35 #include "llvm/Analysis/LoopAnalysisManager.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/ScalarEvolution.h"
38 #include "llvm/Analysis/ScalarEvolutionExpander.h"
39 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
40 #include "llvm/Analysis/TargetLibraryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Transforms/Scalar.h"
55 #include "llvm/Transforms/Utils.h"
56 #include "llvm/Transforms/Utils/LoopVersioning.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <forward_list>
60 #include <set>
61 #include <tuple>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 #define LLE_OPTION "loop-load-elim"
67 #define DEBUG_TYPE LLE_OPTION
68 
69 static cl::opt<unsigned> CheckPerElim(
70     "runtime-check-per-loop-load-elim", cl::Hidden,
71     cl::desc("Max number of memchecks allowed per eliminated load on average"),
72     cl::init(1));
73 
74 static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
75     "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
76     cl::desc("The maximum number of SCEV checks allowed for Loop "
77              "Load Elimination"));
78 
79 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
80 
81 namespace {
82 
83 /// Represent a store-to-forwarding candidate.
84 struct StoreToLoadForwardingCandidate {
85   LoadInst *Load;
86   StoreInst *Store;
87 
88   StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
89       : Load(Load), Store(Store) {}
90 
91   /// Return true if the dependence from the store to the load has a
92   /// distance of one.  E.g. A[i+1] = A[i]
93   bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE,
94                                  Loop *L) const {
95     Value *LoadPtr = Load->getPointerOperand();
96     Value *StorePtr = Store->getPointerOperand();
97     Type *LoadPtrType = LoadPtr->getType();
98     Type *LoadType = LoadPtrType->getPointerElementType();
99 
100     assert(LoadPtrType->getPointerAddressSpace() ==
101                StorePtr->getType()->getPointerAddressSpace() &&
102            LoadType == StorePtr->getType()->getPointerElementType() &&
103            "Should be a known dependence");
104 
105     // Currently we only support accesses with unit stride.  FIXME: we should be
106     // able to handle non unit stirde as well as long as the stride is equal to
107     // the dependence distance.
108     if (getPtrStride(PSE, LoadPtr, L) != 1 ||
109         getPtrStride(PSE, StorePtr, L) != 1)
110       return false;
111 
112     auto &DL = Load->getParent()->getModule()->getDataLayout();
113     unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
114 
115     auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
116     auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
117 
118     // We don't need to check non-wrapping here because forward/backward
119     // dependence wouldn't be valid if these weren't monotonic accesses.
120     auto *Dist = cast<SCEVConstant>(
121         PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
122     const APInt &Val = Dist->getAPInt();
123     return Val == TypeByteSize;
124   }
125 
126   Value *getLoadPtr() const { return Load->getPointerOperand(); }
127 
128 #ifndef NDEBUG
129   friend raw_ostream &operator<<(raw_ostream &OS,
130                                  const StoreToLoadForwardingCandidate &Cand) {
131     OS << *Cand.Store << " -->\n";
132     OS.indent(2) << *Cand.Load << "\n";
133     return OS;
134   }
135 #endif
136 };
137 
138 } // end anonymous namespace
139 
140 /// Check if the store dominates all latches, so as long as there is no
141 /// intervening store this value will be loaded in the next iteration.
142 static bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
143                                          DominatorTree *DT) {
144   SmallVector<BasicBlock *, 8> Latches;
145   L->getLoopLatches(Latches);
146   return llvm::all_of(Latches, [&](const BasicBlock *Latch) {
147     return DT->dominates(StoreBlock, Latch);
148   });
149 }
150 
151 /// Return true if the load is not executed on all paths in the loop.
152 static bool isLoadConditional(LoadInst *Load, Loop *L) {
153   return Load->getParent() != L->getHeader();
154 }
155 
156 namespace {
157 
158 /// The per-loop class that does most of the work.
159 class LoadEliminationForLoop {
160 public:
161   LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
162                          DominatorTree *DT)
163       : L(L), LI(LI), LAI(LAI), DT(DT), PSE(LAI.getPSE()) {}
164 
165   /// Look through the loop-carried and loop-independent dependences in
166   /// this loop and find store->load dependences.
167   ///
168   /// Note that no candidate is returned if LAA has failed to analyze the loop
169   /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
170   std::forward_list<StoreToLoadForwardingCandidate>
171   findStoreToLoadDependences(const LoopAccessInfo &LAI) {
172     std::forward_list<StoreToLoadForwardingCandidate> Candidates;
173 
174     const auto *Deps = LAI.getDepChecker().getDependences();
175     if (!Deps)
176       return Candidates;
177 
178     // Find store->load dependences (consequently true dep).  Both lexically
179     // forward and backward dependences qualify.  Disqualify loads that have
180     // other unknown dependences.
181 
182     SmallSet<Instruction *, 4> LoadsWithUnknownDepedence;
183 
184     for (const auto &Dep : *Deps) {
185       Instruction *Source = Dep.getSource(LAI);
186       Instruction *Destination = Dep.getDestination(LAI);
187 
188       if (Dep.Type == MemoryDepChecker::Dependence::Unknown) {
189         if (isa<LoadInst>(Source))
190           LoadsWithUnknownDepedence.insert(Source);
191         if (isa<LoadInst>(Destination))
192           LoadsWithUnknownDepedence.insert(Destination);
193         continue;
194       }
195 
196       if (Dep.isBackward())
197         // Note that the designations source and destination follow the program
198         // order, i.e. source is always first.  (The direction is given by the
199         // DepType.)
200         std::swap(Source, Destination);
201       else
202         assert(Dep.isForward() && "Needs to be a forward dependence");
203 
204       auto *Store = dyn_cast<StoreInst>(Source);
205       if (!Store)
206         continue;
207       auto *Load = dyn_cast<LoadInst>(Destination);
208       if (!Load)
209         continue;
210 
211       // Only progagate the value if they are of the same type.
212       if (Store->getPointerOperandType() != Load->getPointerOperandType())
213         continue;
214 
215       Candidates.emplace_front(Load, Store);
216     }
217 
218     if (!LoadsWithUnknownDepedence.empty())
219       Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
220         return LoadsWithUnknownDepedence.count(C.Load);
221       });
222 
223     return Candidates;
224   }
225 
226   /// Return the index of the instruction according to program order.
227   unsigned getInstrIndex(Instruction *Inst) {
228     auto I = InstOrder.find(Inst);
229     assert(I != InstOrder.end() && "No index for instruction");
230     return I->second;
231   }
232 
233   /// If a load has multiple candidates associated (i.e. different
234   /// stores), it means that it could be forwarding from multiple stores
235   /// depending on control flow.  Remove these candidates.
236   ///
237   /// Here, we rely on LAA to include the relevant loop-independent dependences.
238   /// LAA is known to omit these in the very simple case when the read and the
239   /// write within an alias set always takes place using the *same* pointer.
240   ///
241   /// However, we know that this is not the case here, i.e. we can rely on LAA
242   /// to provide us with loop-independent dependences for the cases we're
243   /// interested.  Consider the case for example where a loop-independent
244   /// dependece S1->S2 invalidates the forwarding S3->S2.
245   ///
246   ///         A[i]   = ...   (S1)
247   ///         ...    = A[i]  (S2)
248   ///         A[i+1] = ...   (S3)
249   ///
250   /// LAA will perform dependence analysis here because there are two
251   /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
252   void removeDependencesFromMultipleStores(
253       std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
254     // If Store is nullptr it means that we have multiple stores forwarding to
255     // this store.
256     using LoadToSingleCandT =
257         DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>;
258     LoadToSingleCandT LoadToSingleCand;
259 
260     for (const auto &Cand : Candidates) {
261       bool NewElt;
262       LoadToSingleCandT::iterator Iter;
263 
264       std::tie(Iter, NewElt) =
265           LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
266       if (!NewElt) {
267         const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
268         // Already multiple stores forward to this load.
269         if (OtherCand == nullptr)
270           continue;
271 
272         // Handle the very basic case when the two stores are in the same block
273         // so deciding which one forwards is easy.  The later one forwards as
274         // long as they both have a dependence distance of one to the load.
275         if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
276             Cand.isDependenceDistanceOfOne(PSE, L) &&
277             OtherCand->isDependenceDistanceOfOne(PSE, L)) {
278           // They are in the same block, the later one will forward to the load.
279           if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
280             OtherCand = &Cand;
281         } else
282           OtherCand = nullptr;
283       }
284     }
285 
286     Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
287       if (LoadToSingleCand[Cand.Load] != &Cand) {
288         DEBUG(dbgs() << "Removing from candidates: \n" << Cand
289                      << "  The load may have multiple stores forwarding to "
290                      << "it\n");
291         return true;
292       }
293       return false;
294     });
295   }
296 
297   /// Given two pointers operations by their RuntimePointerChecking
298   /// indices, return true if they require an alias check.
299   ///
300   /// We need a check if one is a pointer for a candidate load and the other is
301   /// a pointer for a possibly intervening store.
302   bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
303                      const SmallSet<Value *, 4> &PtrsWrittenOnFwdingPath,
304                      const std::set<Value *> &CandLoadPtrs) {
305     Value *Ptr1 =
306         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
307     Value *Ptr2 =
308         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
309     return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
310             (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
311   }
312 
313   /// Return pointers that are possibly written to on the path from a
314   /// forwarding store to a load.
315   ///
316   /// These pointers need to be alias-checked against the forwarding candidates.
317   SmallSet<Value *, 4> findPointersWrittenOnForwardingPath(
318       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
319     // From FirstStore to LastLoad neither of the elimination candidate loads
320     // should overlap with any of the stores.
321     //
322     // E.g.:
323     //
324     // st1 C[i]
325     // ld1 B[i] <-------,
326     // ld0 A[i] <----,  |              * LastLoad
327     // ...           |  |
328     // st2 E[i]      |  |
329     // st3 B[i+1] -- | -'              * FirstStore
330     // st0 A[i+1] ---'
331     // st4 D[i]
332     //
333     // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
334     // ld0.
335 
336     LoadInst *LastLoad =
337         std::max_element(Candidates.begin(), Candidates.end(),
338                          [&](const StoreToLoadForwardingCandidate &A,
339                              const StoreToLoadForwardingCandidate &B) {
340                            return getInstrIndex(A.Load) < getInstrIndex(B.Load);
341                          })
342             ->Load;
343     StoreInst *FirstStore =
344         std::min_element(Candidates.begin(), Candidates.end(),
345                          [&](const StoreToLoadForwardingCandidate &A,
346                              const StoreToLoadForwardingCandidate &B) {
347                            return getInstrIndex(A.Store) <
348                                   getInstrIndex(B.Store);
349                          })
350             ->Store;
351 
352     // We're looking for stores after the first forwarding store until the end
353     // of the loop, then from the beginning of the loop until the last
354     // forwarded-to load.  Collect the pointer for the stores.
355     SmallSet<Value *, 4> PtrsWrittenOnFwdingPath;
356 
357     auto InsertStorePtr = [&](Instruction *I) {
358       if (auto *S = dyn_cast<StoreInst>(I))
359         PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
360     };
361     const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
362     std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
363                   MemInstrs.end(), InsertStorePtr);
364     std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
365                   InsertStorePtr);
366 
367     return PtrsWrittenOnFwdingPath;
368   }
369 
370   /// Determine the pointer alias checks to prove that there are no
371   /// intervening stores.
372   SmallVector<RuntimePointerChecking::PointerCheck, 4> collectMemchecks(
373       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
374 
375     SmallSet<Value *, 4> PtrsWrittenOnFwdingPath =
376         findPointersWrittenOnForwardingPath(Candidates);
377 
378     // Collect the pointers of the candidate loads.
379     // FIXME: SmallSet does not work with std::inserter.
380     std::set<Value *> CandLoadPtrs;
381     transform(Candidates,
382                    std::inserter(CandLoadPtrs, CandLoadPtrs.begin()),
383                    std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr));
384 
385     const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
386     SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;
387 
388     copy_if(AllChecks, std::back_inserter(Checks),
389             [&](const RuntimePointerChecking::PointerCheck &Check) {
390               for (auto PtrIdx1 : Check.first->Members)
391                 for (auto PtrIdx2 : Check.second->Members)
392                   if (needsChecking(PtrIdx1, PtrIdx2, PtrsWrittenOnFwdingPath,
393                                     CandLoadPtrs))
394                     return true;
395               return false;
396             });
397 
398     DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size() << "):\n");
399     DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
400 
401     return Checks;
402   }
403 
404   /// Perform the transformation for a candidate.
405   void
406   propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
407                                   SCEVExpander &SEE) {
408     // loop:
409     //      %x = load %gep_i
410     //         = ... %x
411     //      store %y, %gep_i_plus_1
412     //
413     // =>
414     //
415     // ph:
416     //      %x.initial = load %gep_0
417     // loop:
418     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
419     //      %x = load %gep_i            <---- now dead
420     //         = ... %x.storeforward
421     //      store %y, %gep_i_plus_1
422 
423     Value *Ptr = Cand.Load->getPointerOperand();
424     auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
425     auto *PH = L->getLoopPreheader();
426     Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
427                                           PH->getTerminator());
428     Value *Initial =
429         new LoadInst(InitialPtr, "load_initial", /* isVolatile */ false,
430                      Cand.Load->getAlignment(), PH->getTerminator());
431 
432     PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded",
433                                    &L->getHeader()->front());
434     PHI->addIncoming(Initial, PH);
435     PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch());
436 
437     Cand.Load->replaceAllUsesWith(PHI);
438   }
439 
440   /// Top-level driver for each loop: find store->load forwarding
441   /// candidates, add run-time checks and perform transformation.
442   bool processLoop() {
443     DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
444                  << "\" checking " << *L << "\n");
445 
446     // Look for store-to-load forwarding cases across the
447     // backedge. E.g.:
448     //
449     // loop:
450     //      %x = load %gep_i
451     //         = ... %x
452     //      store %y, %gep_i_plus_1
453     //
454     // =>
455     //
456     // ph:
457     //      %x.initial = load %gep_0
458     // loop:
459     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
460     //      %x = load %gep_i            <---- now dead
461     //         = ... %x.storeforward
462     //      store %y, %gep_i_plus_1
463 
464     // First start with store->load dependences.
465     auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
466     if (StoreToLoadDependences.empty())
467       return false;
468 
469     // Generate an index for each load and store according to the original
470     // program order.  This will be used later.
471     InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
472 
473     // To keep things simple for now, remove those where the load is potentially
474     // fed by multiple stores.
475     removeDependencesFromMultipleStores(StoreToLoadDependences);
476     if (StoreToLoadDependences.empty())
477       return false;
478 
479     // Filter the candidates further.
480     SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
481     unsigned NumForwarding = 0;
482     for (const StoreToLoadForwardingCandidate Cand : StoreToLoadDependences) {
483       DEBUG(dbgs() << "Candidate " << Cand);
484 
485       // Make sure that the stored values is available everywhere in the loop in
486       // the next iteration.
487       if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
488         continue;
489 
490       // If the load is conditional we can't hoist its 0-iteration instance to
491       // the preheader because that would make it unconditional.  Thus we would
492       // access a memory location that the original loop did not access.
493       if (isLoadConditional(Cand.Load, L))
494         continue;
495 
496       // Check whether the SCEV difference is the same as the induction step,
497       // thus we load the value in the next iteration.
498       if (!Cand.isDependenceDistanceOfOne(PSE, L))
499         continue;
500 
501       ++NumForwarding;
502       DEBUG(dbgs()
503             << NumForwarding
504             << ". Valid store-to-load forwarding across the loop backedge\n");
505       Candidates.push_back(Cand);
506     }
507     if (Candidates.empty())
508       return false;
509 
510     // Check intervening may-alias stores.  These need runtime checks for alias
511     // disambiguation.
512     SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks =
513         collectMemchecks(Candidates);
514 
515     // Too many checks are likely to outweigh the benefits of forwarding.
516     if (Checks.size() > Candidates.size() * CheckPerElim) {
517       DEBUG(dbgs() << "Too many run-time checks needed.\n");
518       return false;
519     }
520 
521     if (LAI.getPSE().getUnionPredicate().getComplexity() >
522         LoadElimSCEVCheckThreshold) {
523       DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
524       return false;
525     }
526 
527     if (!Checks.empty() || !LAI.getPSE().getUnionPredicate().isAlwaysTrue()) {
528       if (L->getHeader()->getParent()->optForSize()) {
529         DEBUG(dbgs() << "Versioning is needed but not allowed when optimizing "
530                         "for size.\n");
531         return false;
532       }
533 
534       if (!L->isLoopSimplifyForm()) {
535         DEBUG(dbgs() << "Loop is not is loop-simplify form");
536         return false;
537       }
538 
539       // Point of no-return, start the transformation.  First, version the loop
540       // if necessary.
541 
542       LoopVersioning LV(LAI, L, LI, DT, PSE.getSE(), false);
543       LV.setAliasChecks(std::move(Checks));
544       LV.setSCEVChecks(LAI.getPSE().getUnionPredicate());
545       LV.versionLoop();
546     }
547 
548     // Next, propagate the value stored by the store to the users of the load.
549     // Also for the first iteration, generate the initial value of the load.
550     SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
551                      "storeforward");
552     for (const auto &Cand : Candidates)
553       propagateStoredValueToLoadUsers(Cand, SEE);
554     NumLoopLoadEliminted += NumForwarding;
555 
556     return true;
557   }
558 
559 private:
560   Loop *L;
561 
562   /// Maps the load/store instructions to their index according to
563   /// program order.
564   DenseMap<Instruction *, unsigned> InstOrder;
565 
566   // Analyses used.
567   LoopInfo *LI;
568   const LoopAccessInfo &LAI;
569   DominatorTree *DT;
570   PredicatedScalarEvolution PSE;
571 };
572 
573 } // end anonymous namespace
574 
575 static bool
576 eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI, DominatorTree &DT,
577                           function_ref<const LoopAccessInfo &(Loop &)> GetLAI) {
578   // Build up a worklist of inner-loops to transform to avoid iterator
579   // invalidation.
580   // FIXME: This logic comes from other passes that actually change the loop
581   // nest structure. It isn't clear this is necessary (or useful) for a pass
582   // which merely optimizes the use of loads in a loop.
583   SmallVector<Loop *, 8> Worklist;
584 
585   for (Loop *TopLevelLoop : LI)
586     for (Loop *L : depth_first(TopLevelLoop))
587       // We only handle inner-most loops.
588       if (L->empty())
589         Worklist.push_back(L);
590 
591   // Now walk the identified inner loops.
592   bool Changed = false;
593   for (Loop *L : Worklist) {
594     // The actual work is performed by LoadEliminationForLoop.
595     LoadEliminationForLoop LEL(L, &LI, GetLAI(*L), &DT);
596     Changed |= LEL.processLoop();
597   }
598   return Changed;
599 }
600 
601 namespace {
602 
603 /// The pass.  Most of the work is delegated to the per-loop
604 /// LoadEliminationForLoop class.
605 class LoopLoadElimination : public FunctionPass {
606 public:
607   static char ID;
608 
609   LoopLoadElimination() : FunctionPass(ID) {
610     initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
611   }
612 
613   bool runOnFunction(Function &F) override {
614     if (skipFunction(F))
615       return false;
616 
617     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
618     auto &LAA = getAnalysis<LoopAccessLegacyAnalysis>();
619     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
620 
621     // Process each loop nest in the function.
622     return eliminateLoadsAcrossLoops(
623         F, LI, DT,
624         [&LAA](Loop &L) -> const LoopAccessInfo & { return LAA.getInfo(&L); });
625   }
626 
627   void getAnalysisUsage(AnalysisUsage &AU) const override {
628     AU.addRequiredID(LoopSimplifyID);
629     AU.addRequired<LoopInfoWrapperPass>();
630     AU.addPreserved<LoopInfoWrapperPass>();
631     AU.addRequired<LoopAccessLegacyAnalysis>();
632     AU.addRequired<ScalarEvolutionWrapperPass>();
633     AU.addRequired<DominatorTreeWrapperPass>();
634     AU.addPreserved<DominatorTreeWrapperPass>();
635     AU.addPreserved<GlobalsAAWrapperPass>();
636   }
637 };
638 
639 } // end anonymous namespace
640 
641 char LoopLoadElimination::ID;
642 
643 static const char LLE_name[] = "Loop Load Elimination";
644 
645 INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
646 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
647 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
648 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
649 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
650 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
651 INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
652 
653 FunctionPass *llvm::createLoopLoadEliminationPass() {
654   return new LoopLoadElimination();
655 }
656 
657 PreservedAnalyses LoopLoadEliminationPass::run(Function &F,
658                                                FunctionAnalysisManager &AM) {
659   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
660   auto &LI = AM.getResult<LoopAnalysis>(F);
661   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
662   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
663   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
664   auto &AA = AM.getResult<AAManager>(F);
665   auto &AC = AM.getResult<AssumptionAnalysis>(F);
666 
667   auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
668   bool Changed = eliminateLoadsAcrossLoops(
669       F, LI, DT, [&](Loop &L) -> const LoopAccessInfo & {
670         LoopStandardAnalysisResults AR = {AA, AC,  DT,  LI,
671                                           SE, TLI, TTI, nullptr};
672         return LAM.getResult<LoopAccessAnalysis>(L, AR);
673       });
674 
675   if (!Changed)
676     return PreservedAnalyses::all();
677 
678   PreservedAnalyses PA;
679   return PA;
680 }
681