1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implement a loop-aware load elimination pass. 11 // 12 // It uses LoopAccessAnalysis to identify loop-carried dependences with a 13 // distance of one between stores and loads. These form the candidates for the 14 // transformation. The source value of each store then propagated to the user 15 // of the corresponding load. This makes the load dead. 16 // 17 // The pass can also version the loop and add memchecks in order to prove that 18 // may-aliasing stores can't change the value in memory before it's read by the 19 // load. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/Transforms/Scalar/LoopLoadElimination.h" 24 #include "llvm/ADT/APInt.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/DepthFirstIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/AliasAnalysis.h" 32 #include "llvm/Analysis/AssumptionCache.h" 33 #include "llvm/Analysis/GlobalsModRef.h" 34 #include "llvm/Analysis/LoopAccessAnalysis.h" 35 #include "llvm/Analysis/LoopAnalysisManager.h" 36 #include "llvm/Analysis/LoopInfo.h" 37 #include "llvm/Analysis/ScalarEvolution.h" 38 #include "llvm/Analysis/ScalarEvolutionExpander.h" 39 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 40 #include "llvm/Analysis/TargetLibraryInfo.h" 41 #include "llvm/Analysis/TargetTransformInfo.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/IR/PassManager.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/IR/Value.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Transforms/Scalar.h" 55 #include "llvm/Transforms/Utils.h" 56 #include "llvm/Transforms/Utils/LoopVersioning.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <forward_list> 60 #include <set> 61 #include <tuple> 62 #include <utility> 63 64 using namespace llvm; 65 66 #define LLE_OPTION "loop-load-elim" 67 #define DEBUG_TYPE LLE_OPTION 68 69 static cl::opt<unsigned> CheckPerElim( 70 "runtime-check-per-loop-load-elim", cl::Hidden, 71 cl::desc("Max number of memchecks allowed per eliminated load on average"), 72 cl::init(1)); 73 74 static cl::opt<unsigned> LoadElimSCEVCheckThreshold( 75 "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden, 76 cl::desc("The maximum number of SCEV checks allowed for Loop " 77 "Load Elimination")); 78 79 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE"); 80 81 namespace { 82 83 /// Represent a store-to-forwarding candidate. 84 struct StoreToLoadForwardingCandidate { 85 LoadInst *Load; 86 StoreInst *Store; 87 88 StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store) 89 : Load(Load), Store(Store) {} 90 91 /// Return true if the dependence from the store to the load has a 92 /// distance of one. E.g. A[i+1] = A[i] 93 bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE, 94 Loop *L) const { 95 Value *LoadPtr = Load->getPointerOperand(); 96 Value *StorePtr = Store->getPointerOperand(); 97 Type *LoadPtrType = LoadPtr->getType(); 98 Type *LoadType = LoadPtrType->getPointerElementType(); 99 100 assert(LoadPtrType->getPointerAddressSpace() == 101 StorePtr->getType()->getPointerAddressSpace() && 102 LoadType == StorePtr->getType()->getPointerElementType() && 103 "Should be a known dependence"); 104 105 // Currently we only support accesses with unit stride. FIXME: we should be 106 // able to handle non unit stirde as well as long as the stride is equal to 107 // the dependence distance. 108 if (getPtrStride(PSE, LoadPtr, L) != 1 || 109 getPtrStride(PSE, StorePtr, L) != 1) 110 return false; 111 112 auto &DL = Load->getParent()->getModule()->getDataLayout(); 113 unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType)); 114 115 auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr)); 116 auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr)); 117 118 // We don't need to check non-wrapping here because forward/backward 119 // dependence wouldn't be valid if these weren't monotonic accesses. 120 auto *Dist = cast<SCEVConstant>( 121 PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV)); 122 const APInt &Val = Dist->getAPInt(); 123 return Val == TypeByteSize; 124 } 125 126 Value *getLoadPtr() const { return Load->getPointerOperand(); } 127 128 #ifndef NDEBUG 129 friend raw_ostream &operator<<(raw_ostream &OS, 130 const StoreToLoadForwardingCandidate &Cand) { 131 OS << *Cand.Store << " -->\n"; 132 OS.indent(2) << *Cand.Load << "\n"; 133 return OS; 134 } 135 #endif 136 }; 137 138 } // end anonymous namespace 139 140 /// Check if the store dominates all latches, so as long as there is no 141 /// intervening store this value will be loaded in the next iteration. 142 static bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L, 143 DominatorTree *DT) { 144 SmallVector<BasicBlock *, 8> Latches; 145 L->getLoopLatches(Latches); 146 return llvm::all_of(Latches, [&](const BasicBlock *Latch) { 147 return DT->dominates(StoreBlock, Latch); 148 }); 149 } 150 151 /// Return true if the load is not executed on all paths in the loop. 152 static bool isLoadConditional(LoadInst *Load, Loop *L) { 153 return Load->getParent() != L->getHeader(); 154 } 155 156 namespace { 157 158 /// The per-loop class that does most of the work. 159 class LoadEliminationForLoop { 160 public: 161 LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI, 162 DominatorTree *DT) 163 : L(L), LI(LI), LAI(LAI), DT(DT), PSE(LAI.getPSE()) {} 164 165 /// Look through the loop-carried and loop-independent dependences in 166 /// this loop and find store->load dependences. 167 /// 168 /// Note that no candidate is returned if LAA has failed to analyze the loop 169 /// (e.g. if it's not bottom-tested, contains volatile memops, etc.) 170 std::forward_list<StoreToLoadForwardingCandidate> 171 findStoreToLoadDependences(const LoopAccessInfo &LAI) { 172 std::forward_list<StoreToLoadForwardingCandidate> Candidates; 173 174 const auto *Deps = LAI.getDepChecker().getDependences(); 175 if (!Deps) 176 return Candidates; 177 178 // Find store->load dependences (consequently true dep). Both lexically 179 // forward and backward dependences qualify. Disqualify loads that have 180 // other unknown dependences. 181 182 SmallSet<Instruction *, 4> LoadsWithUnknownDepedence; 183 184 for (const auto &Dep : *Deps) { 185 Instruction *Source = Dep.getSource(LAI); 186 Instruction *Destination = Dep.getDestination(LAI); 187 188 if (Dep.Type == MemoryDepChecker::Dependence::Unknown) { 189 if (isa<LoadInst>(Source)) 190 LoadsWithUnknownDepedence.insert(Source); 191 if (isa<LoadInst>(Destination)) 192 LoadsWithUnknownDepedence.insert(Destination); 193 continue; 194 } 195 196 if (Dep.isBackward()) 197 // Note that the designations source and destination follow the program 198 // order, i.e. source is always first. (The direction is given by the 199 // DepType.) 200 std::swap(Source, Destination); 201 else 202 assert(Dep.isForward() && "Needs to be a forward dependence"); 203 204 auto *Store = dyn_cast<StoreInst>(Source); 205 if (!Store) 206 continue; 207 auto *Load = dyn_cast<LoadInst>(Destination); 208 if (!Load) 209 continue; 210 211 // Only progagate the value if they are of the same type. 212 if (Store->getPointerOperandType() != Load->getPointerOperandType()) 213 continue; 214 215 Candidates.emplace_front(Load, Store); 216 } 217 218 if (!LoadsWithUnknownDepedence.empty()) 219 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) { 220 return LoadsWithUnknownDepedence.count(C.Load); 221 }); 222 223 return Candidates; 224 } 225 226 /// Return the index of the instruction according to program order. 227 unsigned getInstrIndex(Instruction *Inst) { 228 auto I = InstOrder.find(Inst); 229 assert(I != InstOrder.end() && "No index for instruction"); 230 return I->second; 231 } 232 233 /// If a load has multiple candidates associated (i.e. different 234 /// stores), it means that it could be forwarding from multiple stores 235 /// depending on control flow. Remove these candidates. 236 /// 237 /// Here, we rely on LAA to include the relevant loop-independent dependences. 238 /// LAA is known to omit these in the very simple case when the read and the 239 /// write within an alias set always takes place using the *same* pointer. 240 /// 241 /// However, we know that this is not the case here, i.e. we can rely on LAA 242 /// to provide us with loop-independent dependences for the cases we're 243 /// interested. Consider the case for example where a loop-independent 244 /// dependece S1->S2 invalidates the forwarding S3->S2. 245 /// 246 /// A[i] = ... (S1) 247 /// ... = A[i] (S2) 248 /// A[i+1] = ... (S3) 249 /// 250 /// LAA will perform dependence analysis here because there are two 251 /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]). 252 void removeDependencesFromMultipleStores( 253 std::forward_list<StoreToLoadForwardingCandidate> &Candidates) { 254 // If Store is nullptr it means that we have multiple stores forwarding to 255 // this store. 256 using LoadToSingleCandT = 257 DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>; 258 LoadToSingleCandT LoadToSingleCand; 259 260 for (const auto &Cand : Candidates) { 261 bool NewElt; 262 LoadToSingleCandT::iterator Iter; 263 264 std::tie(Iter, NewElt) = 265 LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand)); 266 if (!NewElt) { 267 const StoreToLoadForwardingCandidate *&OtherCand = Iter->second; 268 // Already multiple stores forward to this load. 269 if (OtherCand == nullptr) 270 continue; 271 272 // Handle the very basic case when the two stores are in the same block 273 // so deciding which one forwards is easy. The later one forwards as 274 // long as they both have a dependence distance of one to the load. 275 if (Cand.Store->getParent() == OtherCand->Store->getParent() && 276 Cand.isDependenceDistanceOfOne(PSE, L) && 277 OtherCand->isDependenceDistanceOfOne(PSE, L)) { 278 // They are in the same block, the later one will forward to the load. 279 if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store)) 280 OtherCand = &Cand; 281 } else 282 OtherCand = nullptr; 283 } 284 } 285 286 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) { 287 if (LoadToSingleCand[Cand.Load] != &Cand) { 288 DEBUG(dbgs() << "Removing from candidates: \n" << Cand 289 << " The load may have multiple stores forwarding to " 290 << "it\n"); 291 return true; 292 } 293 return false; 294 }); 295 } 296 297 /// Given two pointers operations by their RuntimePointerChecking 298 /// indices, return true if they require an alias check. 299 /// 300 /// We need a check if one is a pointer for a candidate load and the other is 301 /// a pointer for a possibly intervening store. 302 bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2, 303 const SmallSet<Value *, 4> &PtrsWrittenOnFwdingPath, 304 const std::set<Value *> &CandLoadPtrs) { 305 Value *Ptr1 = 306 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue; 307 Value *Ptr2 = 308 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue; 309 return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) || 310 (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1))); 311 } 312 313 /// Return pointers that are possibly written to on the path from a 314 /// forwarding store to a load. 315 /// 316 /// These pointers need to be alias-checked against the forwarding candidates. 317 SmallSet<Value *, 4> findPointersWrittenOnForwardingPath( 318 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) { 319 // From FirstStore to LastLoad neither of the elimination candidate loads 320 // should overlap with any of the stores. 321 // 322 // E.g.: 323 // 324 // st1 C[i] 325 // ld1 B[i] <-------, 326 // ld0 A[i] <----, | * LastLoad 327 // ... | | 328 // st2 E[i] | | 329 // st3 B[i+1] -- | -' * FirstStore 330 // st0 A[i+1] ---' 331 // st4 D[i] 332 // 333 // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with 334 // ld0. 335 336 LoadInst *LastLoad = 337 std::max_element(Candidates.begin(), Candidates.end(), 338 [&](const StoreToLoadForwardingCandidate &A, 339 const StoreToLoadForwardingCandidate &B) { 340 return getInstrIndex(A.Load) < getInstrIndex(B.Load); 341 }) 342 ->Load; 343 StoreInst *FirstStore = 344 std::min_element(Candidates.begin(), Candidates.end(), 345 [&](const StoreToLoadForwardingCandidate &A, 346 const StoreToLoadForwardingCandidate &B) { 347 return getInstrIndex(A.Store) < 348 getInstrIndex(B.Store); 349 }) 350 ->Store; 351 352 // We're looking for stores after the first forwarding store until the end 353 // of the loop, then from the beginning of the loop until the last 354 // forwarded-to load. Collect the pointer for the stores. 355 SmallSet<Value *, 4> PtrsWrittenOnFwdingPath; 356 357 auto InsertStorePtr = [&](Instruction *I) { 358 if (auto *S = dyn_cast<StoreInst>(I)) 359 PtrsWrittenOnFwdingPath.insert(S->getPointerOperand()); 360 }; 361 const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions(); 362 std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1, 363 MemInstrs.end(), InsertStorePtr); 364 std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)], 365 InsertStorePtr); 366 367 return PtrsWrittenOnFwdingPath; 368 } 369 370 /// Determine the pointer alias checks to prove that there are no 371 /// intervening stores. 372 SmallVector<RuntimePointerChecking::PointerCheck, 4> collectMemchecks( 373 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) { 374 375 SmallSet<Value *, 4> PtrsWrittenOnFwdingPath = 376 findPointersWrittenOnForwardingPath(Candidates); 377 378 // Collect the pointers of the candidate loads. 379 // FIXME: SmallSet does not work with std::inserter. 380 std::set<Value *> CandLoadPtrs; 381 transform(Candidates, 382 std::inserter(CandLoadPtrs, CandLoadPtrs.begin()), 383 std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr)); 384 385 const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks(); 386 SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks; 387 388 copy_if(AllChecks, std::back_inserter(Checks), 389 [&](const RuntimePointerChecking::PointerCheck &Check) { 390 for (auto PtrIdx1 : Check.first->Members) 391 for (auto PtrIdx2 : Check.second->Members) 392 if (needsChecking(PtrIdx1, PtrIdx2, PtrsWrittenOnFwdingPath, 393 CandLoadPtrs)) 394 return true; 395 return false; 396 }); 397 398 DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size() << "):\n"); 399 DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks)); 400 401 return Checks; 402 } 403 404 /// Perform the transformation for a candidate. 405 void 406 propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand, 407 SCEVExpander &SEE) { 408 // loop: 409 // %x = load %gep_i 410 // = ... %x 411 // store %y, %gep_i_plus_1 412 // 413 // => 414 // 415 // ph: 416 // %x.initial = load %gep_0 417 // loop: 418 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop] 419 // %x = load %gep_i <---- now dead 420 // = ... %x.storeforward 421 // store %y, %gep_i_plus_1 422 423 Value *Ptr = Cand.Load->getPointerOperand(); 424 auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr)); 425 auto *PH = L->getLoopPreheader(); 426 Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(), 427 PH->getTerminator()); 428 Value *Initial = 429 new LoadInst(InitialPtr, "load_initial", /* isVolatile */ false, 430 Cand.Load->getAlignment(), PH->getTerminator()); 431 432 PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded", 433 &L->getHeader()->front()); 434 PHI->addIncoming(Initial, PH); 435 PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch()); 436 437 Cand.Load->replaceAllUsesWith(PHI); 438 } 439 440 /// Top-level driver for each loop: find store->load forwarding 441 /// candidates, add run-time checks and perform transformation. 442 bool processLoop() { 443 DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName() 444 << "\" checking " << *L << "\n"); 445 446 // Look for store-to-load forwarding cases across the 447 // backedge. E.g.: 448 // 449 // loop: 450 // %x = load %gep_i 451 // = ... %x 452 // store %y, %gep_i_plus_1 453 // 454 // => 455 // 456 // ph: 457 // %x.initial = load %gep_0 458 // loop: 459 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop] 460 // %x = load %gep_i <---- now dead 461 // = ... %x.storeforward 462 // store %y, %gep_i_plus_1 463 464 // First start with store->load dependences. 465 auto StoreToLoadDependences = findStoreToLoadDependences(LAI); 466 if (StoreToLoadDependences.empty()) 467 return false; 468 469 // Generate an index for each load and store according to the original 470 // program order. This will be used later. 471 InstOrder = LAI.getDepChecker().generateInstructionOrderMap(); 472 473 // To keep things simple for now, remove those where the load is potentially 474 // fed by multiple stores. 475 removeDependencesFromMultipleStores(StoreToLoadDependences); 476 if (StoreToLoadDependences.empty()) 477 return false; 478 479 // Filter the candidates further. 480 SmallVector<StoreToLoadForwardingCandidate, 4> Candidates; 481 unsigned NumForwarding = 0; 482 for (const StoreToLoadForwardingCandidate Cand : StoreToLoadDependences) { 483 DEBUG(dbgs() << "Candidate " << Cand); 484 485 // Make sure that the stored values is available everywhere in the loop in 486 // the next iteration. 487 if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT)) 488 continue; 489 490 // If the load is conditional we can't hoist its 0-iteration instance to 491 // the preheader because that would make it unconditional. Thus we would 492 // access a memory location that the original loop did not access. 493 if (isLoadConditional(Cand.Load, L)) 494 continue; 495 496 // Check whether the SCEV difference is the same as the induction step, 497 // thus we load the value in the next iteration. 498 if (!Cand.isDependenceDistanceOfOne(PSE, L)) 499 continue; 500 501 ++NumForwarding; 502 DEBUG(dbgs() 503 << NumForwarding 504 << ". Valid store-to-load forwarding across the loop backedge\n"); 505 Candidates.push_back(Cand); 506 } 507 if (Candidates.empty()) 508 return false; 509 510 // Check intervening may-alias stores. These need runtime checks for alias 511 // disambiguation. 512 SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks = 513 collectMemchecks(Candidates); 514 515 // Too many checks are likely to outweigh the benefits of forwarding. 516 if (Checks.size() > Candidates.size() * CheckPerElim) { 517 DEBUG(dbgs() << "Too many run-time checks needed.\n"); 518 return false; 519 } 520 521 if (LAI.getPSE().getUnionPredicate().getComplexity() > 522 LoadElimSCEVCheckThreshold) { 523 DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n"); 524 return false; 525 } 526 527 if (!Checks.empty() || !LAI.getPSE().getUnionPredicate().isAlwaysTrue()) { 528 if (L->getHeader()->getParent()->optForSize()) { 529 DEBUG(dbgs() << "Versioning is needed but not allowed when optimizing " 530 "for size.\n"); 531 return false; 532 } 533 534 if (!L->isLoopSimplifyForm()) { 535 DEBUG(dbgs() << "Loop is not is loop-simplify form"); 536 return false; 537 } 538 539 // Point of no-return, start the transformation. First, version the loop 540 // if necessary. 541 542 LoopVersioning LV(LAI, L, LI, DT, PSE.getSE(), false); 543 LV.setAliasChecks(std::move(Checks)); 544 LV.setSCEVChecks(LAI.getPSE().getUnionPredicate()); 545 LV.versionLoop(); 546 } 547 548 // Next, propagate the value stored by the store to the users of the load. 549 // Also for the first iteration, generate the initial value of the load. 550 SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(), 551 "storeforward"); 552 for (const auto &Cand : Candidates) 553 propagateStoredValueToLoadUsers(Cand, SEE); 554 NumLoopLoadEliminted += NumForwarding; 555 556 return true; 557 } 558 559 private: 560 Loop *L; 561 562 /// Maps the load/store instructions to their index according to 563 /// program order. 564 DenseMap<Instruction *, unsigned> InstOrder; 565 566 // Analyses used. 567 LoopInfo *LI; 568 const LoopAccessInfo &LAI; 569 DominatorTree *DT; 570 PredicatedScalarEvolution PSE; 571 }; 572 573 } // end anonymous namespace 574 575 static bool 576 eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI, DominatorTree &DT, 577 function_ref<const LoopAccessInfo &(Loop &)> GetLAI) { 578 // Build up a worklist of inner-loops to transform to avoid iterator 579 // invalidation. 580 // FIXME: This logic comes from other passes that actually change the loop 581 // nest structure. It isn't clear this is necessary (or useful) for a pass 582 // which merely optimizes the use of loads in a loop. 583 SmallVector<Loop *, 8> Worklist; 584 585 for (Loop *TopLevelLoop : LI) 586 for (Loop *L : depth_first(TopLevelLoop)) 587 // We only handle inner-most loops. 588 if (L->empty()) 589 Worklist.push_back(L); 590 591 // Now walk the identified inner loops. 592 bool Changed = false; 593 for (Loop *L : Worklist) { 594 // The actual work is performed by LoadEliminationForLoop. 595 LoadEliminationForLoop LEL(L, &LI, GetLAI(*L), &DT); 596 Changed |= LEL.processLoop(); 597 } 598 return Changed; 599 } 600 601 namespace { 602 603 /// The pass. Most of the work is delegated to the per-loop 604 /// LoadEliminationForLoop class. 605 class LoopLoadElimination : public FunctionPass { 606 public: 607 static char ID; 608 609 LoopLoadElimination() : FunctionPass(ID) { 610 initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry()); 611 } 612 613 bool runOnFunction(Function &F) override { 614 if (skipFunction(F)) 615 return false; 616 617 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 618 auto &LAA = getAnalysis<LoopAccessLegacyAnalysis>(); 619 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 620 621 // Process each loop nest in the function. 622 return eliminateLoadsAcrossLoops( 623 F, LI, DT, 624 [&LAA](Loop &L) -> const LoopAccessInfo & { return LAA.getInfo(&L); }); 625 } 626 627 void getAnalysisUsage(AnalysisUsage &AU) const override { 628 AU.addRequiredID(LoopSimplifyID); 629 AU.addRequired<LoopInfoWrapperPass>(); 630 AU.addPreserved<LoopInfoWrapperPass>(); 631 AU.addRequired<LoopAccessLegacyAnalysis>(); 632 AU.addRequired<ScalarEvolutionWrapperPass>(); 633 AU.addRequired<DominatorTreeWrapperPass>(); 634 AU.addPreserved<DominatorTreeWrapperPass>(); 635 AU.addPreserved<GlobalsAAWrapperPass>(); 636 } 637 }; 638 639 } // end anonymous namespace 640 641 char LoopLoadElimination::ID; 642 643 static const char LLE_name[] = "Loop Load Elimination"; 644 645 INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false) 646 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 647 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 648 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 649 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 650 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 651 INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false) 652 653 FunctionPass *llvm::createLoopLoadEliminationPass() { 654 return new LoopLoadElimination(); 655 } 656 657 PreservedAnalyses LoopLoadEliminationPass::run(Function &F, 658 FunctionAnalysisManager &AM) { 659 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 660 auto &LI = AM.getResult<LoopAnalysis>(F); 661 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 662 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 663 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 664 auto &AA = AM.getResult<AAManager>(F); 665 auto &AC = AM.getResult<AssumptionAnalysis>(F); 666 667 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 668 bool Changed = eliminateLoadsAcrossLoops( 669 F, LI, DT, [&](Loop &L) -> const LoopAccessInfo & { 670 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, 671 SE, TLI, TTI, nullptr}; 672 return LAM.getResult<LoopAccessAnalysis>(L, AR); 673 }); 674 675 if (!Changed) 676 return PreservedAnalyses::all(); 677 678 PreservedAnalyses PA; 679 return PA; 680 } 681