xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopLoadElimination.cpp (revision 5ba115031dd773780cafc8ade0140883473b8cee)
1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implement a loop-aware load elimination pass.
10 //
11 // It uses LoopAccessAnalysis to identify loop-carried dependences with a
12 // distance of one between stores and loads.  These form the candidates for the
13 // transformation.  The source value of each store then propagated to the user
14 // of the corresponding load.  This makes the load dead.
15 //
16 // The pass can also version the loop and add memchecks in order to prove that
17 // may-aliasing stores can't change the value in memory before it's read by the
18 // load.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "llvm/Transforms/Scalar/LoopLoadElimination.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DepthFirstIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/BlockFrequencyInfo.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
34 #include "llvm/Analysis/LoopAccessAnalysis.h"
35 #include "llvm/Analysis/LoopAnalysisManager.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/ProfileSummaryInfo.h"
38 #include "llvm/Analysis/ScalarEvolution.h"
39 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
40 #include "llvm/Analysis/TargetLibraryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Transforms/Scalar.h"
56 #include "llvm/Transforms/Utils.h"
57 #include "llvm/Transforms/Utils/LoopSimplify.h"
58 #include "llvm/Transforms/Utils/LoopVersioning.h"
59 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
60 #include "llvm/Transforms/Utils/SizeOpts.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <forward_list>
64 #include <set>
65 #include <tuple>
66 #include <utility>
67 
68 using namespace llvm;
69 
70 #define LLE_OPTION "loop-load-elim"
71 #define DEBUG_TYPE LLE_OPTION
72 
73 static cl::opt<unsigned> CheckPerElim(
74     "runtime-check-per-loop-load-elim", cl::Hidden,
75     cl::desc("Max number of memchecks allowed per eliminated load on average"),
76     cl::init(1));
77 
78 static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
79     "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
80     cl::desc("The maximum number of SCEV checks allowed for Loop "
81              "Load Elimination"));
82 
83 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
84 
85 namespace {
86 
87 /// Represent a store-to-forwarding candidate.
88 struct StoreToLoadForwardingCandidate {
89   LoadInst *Load;
90   StoreInst *Store;
91 
92   StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
93       : Load(Load), Store(Store) {}
94 
95   /// Return true if the dependence from the store to the load has a
96   /// distance of one.  E.g. A[i+1] = A[i]
97   bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE,
98                                  Loop *L) const {
99     Value *LoadPtr = Load->getPointerOperand();
100     Value *StorePtr = Store->getPointerOperand();
101     Type *LoadType = getLoadStoreType(Load);
102 
103     assert(LoadPtr->getType()->getPointerAddressSpace() ==
104                StorePtr->getType()->getPointerAddressSpace() &&
105            LoadType == getLoadStoreType(Store) &&
106            "Should be a known dependence");
107 
108     // Currently we only support accesses with unit stride.  FIXME: we should be
109     // able to handle non unit stirde as well as long as the stride is equal to
110     // the dependence distance.
111     if (getPtrStride(PSE, LoadType, LoadPtr, L) != 1 ||
112         getPtrStride(PSE, LoadType, StorePtr, L) != 1)
113       return false;
114 
115     auto &DL = Load->getParent()->getModule()->getDataLayout();
116     unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
117 
118     auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
119     auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
120 
121     // We don't need to check non-wrapping here because forward/backward
122     // dependence wouldn't be valid if these weren't monotonic accesses.
123     auto *Dist = cast<SCEVConstant>(
124         PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
125     const APInt &Val = Dist->getAPInt();
126     return Val == TypeByteSize;
127   }
128 
129   Value *getLoadPtr() const { return Load->getPointerOperand(); }
130 
131 #ifndef NDEBUG
132   friend raw_ostream &operator<<(raw_ostream &OS,
133                                  const StoreToLoadForwardingCandidate &Cand) {
134     OS << *Cand.Store << " -->\n";
135     OS.indent(2) << *Cand.Load << "\n";
136     return OS;
137   }
138 #endif
139 };
140 
141 } // end anonymous namespace
142 
143 /// Check if the store dominates all latches, so as long as there is no
144 /// intervening store this value will be loaded in the next iteration.
145 static bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
146                                          DominatorTree *DT) {
147   SmallVector<BasicBlock *, 8> Latches;
148   L->getLoopLatches(Latches);
149   return llvm::all_of(Latches, [&](const BasicBlock *Latch) {
150     return DT->dominates(StoreBlock, Latch);
151   });
152 }
153 
154 /// Return true if the load is not executed on all paths in the loop.
155 static bool isLoadConditional(LoadInst *Load, Loop *L) {
156   return Load->getParent() != L->getHeader();
157 }
158 
159 namespace {
160 
161 /// The per-loop class that does most of the work.
162 class LoadEliminationForLoop {
163 public:
164   LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
165                          DominatorTree *DT, BlockFrequencyInfo *BFI,
166                          ProfileSummaryInfo* PSI)
167       : L(L), LI(LI), LAI(LAI), DT(DT), BFI(BFI), PSI(PSI), PSE(LAI.getPSE()) {}
168 
169   /// Look through the loop-carried and loop-independent dependences in
170   /// this loop and find store->load dependences.
171   ///
172   /// Note that no candidate is returned if LAA has failed to analyze the loop
173   /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
174   std::forward_list<StoreToLoadForwardingCandidate>
175   findStoreToLoadDependences(const LoopAccessInfo &LAI) {
176     std::forward_list<StoreToLoadForwardingCandidate> Candidates;
177 
178     const auto *Deps = LAI.getDepChecker().getDependences();
179     if (!Deps)
180       return Candidates;
181 
182     // Find store->load dependences (consequently true dep).  Both lexically
183     // forward and backward dependences qualify.  Disqualify loads that have
184     // other unknown dependences.
185 
186     SmallPtrSet<Instruction *, 4> LoadsWithUnknownDepedence;
187 
188     for (const auto &Dep : *Deps) {
189       Instruction *Source = Dep.getSource(LAI);
190       Instruction *Destination = Dep.getDestination(LAI);
191 
192       if (Dep.Type == MemoryDepChecker::Dependence::Unknown) {
193         if (isa<LoadInst>(Source))
194           LoadsWithUnknownDepedence.insert(Source);
195         if (isa<LoadInst>(Destination))
196           LoadsWithUnknownDepedence.insert(Destination);
197         continue;
198       }
199 
200       if (Dep.isBackward())
201         // Note that the designations source and destination follow the program
202         // order, i.e. source is always first.  (The direction is given by the
203         // DepType.)
204         std::swap(Source, Destination);
205       else
206         assert(Dep.isForward() && "Needs to be a forward dependence");
207 
208       auto *Store = dyn_cast<StoreInst>(Source);
209       if (!Store)
210         continue;
211       auto *Load = dyn_cast<LoadInst>(Destination);
212       if (!Load)
213         continue;
214 
215       // Only progagate the value if they are of the same type.
216       if (Store->getPointerOperandType() != Load->getPointerOperandType() ||
217           getLoadStoreType(Store) != getLoadStoreType(Load))
218         continue;
219 
220       Candidates.emplace_front(Load, Store);
221     }
222 
223     if (!LoadsWithUnknownDepedence.empty())
224       Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
225         return LoadsWithUnknownDepedence.count(C.Load);
226       });
227 
228     return Candidates;
229   }
230 
231   /// Return the index of the instruction according to program order.
232   unsigned getInstrIndex(Instruction *Inst) {
233     auto I = InstOrder.find(Inst);
234     assert(I != InstOrder.end() && "No index for instruction");
235     return I->second;
236   }
237 
238   /// If a load has multiple candidates associated (i.e. different
239   /// stores), it means that it could be forwarding from multiple stores
240   /// depending on control flow.  Remove these candidates.
241   ///
242   /// Here, we rely on LAA to include the relevant loop-independent dependences.
243   /// LAA is known to omit these in the very simple case when the read and the
244   /// write within an alias set always takes place using the *same* pointer.
245   ///
246   /// However, we know that this is not the case here, i.e. we can rely on LAA
247   /// to provide us with loop-independent dependences for the cases we're
248   /// interested.  Consider the case for example where a loop-independent
249   /// dependece S1->S2 invalidates the forwarding S3->S2.
250   ///
251   ///         A[i]   = ...   (S1)
252   ///         ...    = A[i]  (S2)
253   ///         A[i+1] = ...   (S3)
254   ///
255   /// LAA will perform dependence analysis here because there are two
256   /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
257   void removeDependencesFromMultipleStores(
258       std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
259     // If Store is nullptr it means that we have multiple stores forwarding to
260     // this store.
261     using LoadToSingleCandT =
262         DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>;
263     LoadToSingleCandT LoadToSingleCand;
264 
265     for (const auto &Cand : Candidates) {
266       bool NewElt;
267       LoadToSingleCandT::iterator Iter;
268 
269       std::tie(Iter, NewElt) =
270           LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
271       if (!NewElt) {
272         const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
273         // Already multiple stores forward to this load.
274         if (OtherCand == nullptr)
275           continue;
276 
277         // Handle the very basic case when the two stores are in the same block
278         // so deciding which one forwards is easy.  The later one forwards as
279         // long as they both have a dependence distance of one to the load.
280         if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
281             Cand.isDependenceDistanceOfOne(PSE, L) &&
282             OtherCand->isDependenceDistanceOfOne(PSE, L)) {
283           // They are in the same block, the later one will forward to the load.
284           if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
285             OtherCand = &Cand;
286         } else
287           OtherCand = nullptr;
288       }
289     }
290 
291     Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
292       if (LoadToSingleCand[Cand.Load] != &Cand) {
293         LLVM_DEBUG(
294             dbgs() << "Removing from candidates: \n"
295                    << Cand
296                    << "  The load may have multiple stores forwarding to "
297                    << "it\n");
298         return true;
299       }
300       return false;
301     });
302   }
303 
304   /// Given two pointers operations by their RuntimePointerChecking
305   /// indices, return true if they require an alias check.
306   ///
307   /// We need a check if one is a pointer for a candidate load and the other is
308   /// a pointer for a possibly intervening store.
309   bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
310                      const SmallPtrSetImpl<Value *> &PtrsWrittenOnFwdingPath,
311                      const SmallPtrSetImpl<Value *> &CandLoadPtrs) {
312     Value *Ptr1 =
313         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
314     Value *Ptr2 =
315         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
316     return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
317             (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
318   }
319 
320   /// Return pointers that are possibly written to on the path from a
321   /// forwarding store to a load.
322   ///
323   /// These pointers need to be alias-checked against the forwarding candidates.
324   SmallPtrSet<Value *, 4> findPointersWrittenOnForwardingPath(
325       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
326     // From FirstStore to LastLoad neither of the elimination candidate loads
327     // should overlap with any of the stores.
328     //
329     // E.g.:
330     //
331     // st1 C[i]
332     // ld1 B[i] <-------,
333     // ld0 A[i] <----,  |              * LastLoad
334     // ...           |  |
335     // st2 E[i]      |  |
336     // st3 B[i+1] -- | -'              * FirstStore
337     // st0 A[i+1] ---'
338     // st4 D[i]
339     //
340     // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
341     // ld0.
342 
343     LoadInst *LastLoad =
344         std::max_element(Candidates.begin(), Candidates.end(),
345                          [&](const StoreToLoadForwardingCandidate &A,
346                              const StoreToLoadForwardingCandidate &B) {
347                            return getInstrIndex(A.Load) < getInstrIndex(B.Load);
348                          })
349             ->Load;
350     StoreInst *FirstStore =
351         std::min_element(Candidates.begin(), Candidates.end(),
352                          [&](const StoreToLoadForwardingCandidate &A,
353                              const StoreToLoadForwardingCandidate &B) {
354                            return getInstrIndex(A.Store) <
355                                   getInstrIndex(B.Store);
356                          })
357             ->Store;
358 
359     // We're looking for stores after the first forwarding store until the end
360     // of the loop, then from the beginning of the loop until the last
361     // forwarded-to load.  Collect the pointer for the stores.
362     SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath;
363 
364     auto InsertStorePtr = [&](Instruction *I) {
365       if (auto *S = dyn_cast<StoreInst>(I))
366         PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
367     };
368     const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
369     std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
370                   MemInstrs.end(), InsertStorePtr);
371     std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
372                   InsertStorePtr);
373 
374     return PtrsWrittenOnFwdingPath;
375   }
376 
377   /// Determine the pointer alias checks to prove that there are no
378   /// intervening stores.
379   SmallVector<RuntimePointerCheck, 4> collectMemchecks(
380       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
381 
382     SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath =
383         findPointersWrittenOnForwardingPath(Candidates);
384 
385     // Collect the pointers of the candidate loads.
386     SmallPtrSet<Value *, 4> CandLoadPtrs;
387     for (const auto &Candidate : Candidates)
388       CandLoadPtrs.insert(Candidate.getLoadPtr());
389 
390     const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
391     SmallVector<RuntimePointerCheck, 4> Checks;
392 
393     copy_if(AllChecks, std::back_inserter(Checks),
394             [&](const RuntimePointerCheck &Check) {
395               for (auto PtrIdx1 : Check.first->Members)
396                 for (auto PtrIdx2 : Check.second->Members)
397                   if (needsChecking(PtrIdx1, PtrIdx2, PtrsWrittenOnFwdingPath,
398                                     CandLoadPtrs))
399                     return true;
400               return false;
401             });
402 
403     LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size()
404                       << "):\n");
405     LLVM_DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
406 
407     return Checks;
408   }
409 
410   /// Perform the transformation for a candidate.
411   void
412   propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
413                                   SCEVExpander &SEE) {
414     // loop:
415     //      %x = load %gep_i
416     //         = ... %x
417     //      store %y, %gep_i_plus_1
418     //
419     // =>
420     //
421     // ph:
422     //      %x.initial = load %gep_0
423     // loop:
424     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
425     //      %x = load %gep_i            <---- now dead
426     //         = ... %x.storeforward
427     //      store %y, %gep_i_plus_1
428 
429     Value *Ptr = Cand.Load->getPointerOperand();
430     auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
431     auto *PH = L->getLoopPreheader();
432     assert(PH && "Preheader should exist!");
433     Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
434                                           PH->getTerminator());
435     Value *Initial = new LoadInst(
436         Cand.Load->getType(), InitialPtr, "load_initial",
437         /* isVolatile */ false, Cand.Load->getAlign(), PH->getTerminator());
438 
439     PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded",
440                                    &L->getHeader()->front());
441     PHI->addIncoming(Initial, PH);
442     PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch());
443 
444     Cand.Load->replaceAllUsesWith(PHI);
445   }
446 
447   /// Top-level driver for each loop: find store->load forwarding
448   /// candidates, add run-time checks and perform transformation.
449   bool processLoop() {
450     LLVM_DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
451                       << "\" checking " << *L << "\n");
452 
453     // Look for store-to-load forwarding cases across the
454     // backedge. E.g.:
455     //
456     // loop:
457     //      %x = load %gep_i
458     //         = ... %x
459     //      store %y, %gep_i_plus_1
460     //
461     // =>
462     //
463     // ph:
464     //      %x.initial = load %gep_0
465     // loop:
466     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
467     //      %x = load %gep_i            <---- now dead
468     //         = ... %x.storeforward
469     //      store %y, %gep_i_plus_1
470 
471     // First start with store->load dependences.
472     auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
473     if (StoreToLoadDependences.empty())
474       return false;
475 
476     // Generate an index for each load and store according to the original
477     // program order.  This will be used later.
478     InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
479 
480     // To keep things simple for now, remove those where the load is potentially
481     // fed by multiple stores.
482     removeDependencesFromMultipleStores(StoreToLoadDependences);
483     if (StoreToLoadDependences.empty())
484       return false;
485 
486     // Filter the candidates further.
487     SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
488     for (const StoreToLoadForwardingCandidate &Cand : StoreToLoadDependences) {
489       LLVM_DEBUG(dbgs() << "Candidate " << Cand);
490 
491       // Make sure that the stored values is available everywhere in the loop in
492       // the next iteration.
493       if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
494         continue;
495 
496       // If the load is conditional we can't hoist its 0-iteration instance to
497       // the preheader because that would make it unconditional.  Thus we would
498       // access a memory location that the original loop did not access.
499       if (isLoadConditional(Cand.Load, L))
500         continue;
501 
502       // Check whether the SCEV difference is the same as the induction step,
503       // thus we load the value in the next iteration.
504       if (!Cand.isDependenceDistanceOfOne(PSE, L))
505         continue;
506 
507       assert(isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Load->getPointerOperand())) &&
508              "Loading from something other than indvar?");
509       assert(
510           isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Store->getPointerOperand())) &&
511           "Storing to something other than indvar?");
512 
513       Candidates.push_back(Cand);
514       LLVM_DEBUG(
515           dbgs()
516           << Candidates.size()
517           << ". Valid store-to-load forwarding across the loop backedge\n");
518     }
519     if (Candidates.empty())
520       return false;
521 
522     // Check intervening may-alias stores.  These need runtime checks for alias
523     // disambiguation.
524     SmallVector<RuntimePointerCheck, 4> Checks = collectMemchecks(Candidates);
525 
526     // Too many checks are likely to outweigh the benefits of forwarding.
527     if (Checks.size() > Candidates.size() * CheckPerElim) {
528       LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n");
529       return false;
530     }
531 
532     if (LAI.getPSE().getPredicate().getComplexity() >
533         LoadElimSCEVCheckThreshold) {
534       LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
535       return false;
536     }
537 
538     if (!L->isLoopSimplifyForm()) {
539       LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form");
540       return false;
541     }
542 
543     if (!Checks.empty() || !LAI.getPSE().getPredicate().isAlwaysTrue()) {
544       if (LAI.hasConvergentOp()) {
545         LLVM_DEBUG(dbgs() << "Versioning is needed but not allowed with "
546                              "convergent calls\n");
547         return false;
548       }
549 
550       auto *HeaderBB = L->getHeader();
551       auto *F = HeaderBB->getParent();
552       bool OptForSize = F->hasOptSize() ||
553                         llvm::shouldOptimizeForSize(HeaderBB, PSI, BFI,
554                                                     PGSOQueryType::IRPass);
555       if (OptForSize) {
556         LLVM_DEBUG(
557             dbgs() << "Versioning is needed but not allowed when optimizing "
558                       "for size.\n");
559         return false;
560       }
561 
562       // Point of no-return, start the transformation.  First, version the loop
563       // if necessary.
564 
565       LoopVersioning LV(LAI, Checks, L, LI, DT, PSE.getSE());
566       LV.versionLoop();
567 
568       // After versioning, some of the candidates' pointers could stop being
569       // SCEVAddRecs. We need to filter them out.
570       auto NoLongerGoodCandidate = [this](
571           const StoreToLoadForwardingCandidate &Cand) {
572         return !isa<SCEVAddRecExpr>(
573                     PSE.getSCEV(Cand.Load->getPointerOperand())) ||
574                !isa<SCEVAddRecExpr>(
575                     PSE.getSCEV(Cand.Store->getPointerOperand()));
576       };
577       llvm::erase_if(Candidates, NoLongerGoodCandidate);
578     }
579 
580     // Next, propagate the value stored by the store to the users of the load.
581     // Also for the first iteration, generate the initial value of the load.
582     SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
583                      "storeforward");
584     for (const auto &Cand : Candidates)
585       propagateStoredValueToLoadUsers(Cand, SEE);
586     NumLoopLoadEliminted += Candidates.size();
587 
588     return true;
589   }
590 
591 private:
592   Loop *L;
593 
594   /// Maps the load/store instructions to their index according to
595   /// program order.
596   DenseMap<Instruction *, unsigned> InstOrder;
597 
598   // Analyses used.
599   LoopInfo *LI;
600   const LoopAccessInfo &LAI;
601   DominatorTree *DT;
602   BlockFrequencyInfo *BFI;
603   ProfileSummaryInfo *PSI;
604   PredicatedScalarEvolution PSE;
605 };
606 
607 } // end anonymous namespace
608 
609 static bool
610 eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI, DominatorTree &DT,
611                           BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
612                           ScalarEvolution *SE, AssumptionCache *AC,
613                           function_ref<const LoopAccessInfo &(Loop &)> GetLAI) {
614   // Build up a worklist of inner-loops to transform to avoid iterator
615   // invalidation.
616   // FIXME: This logic comes from other passes that actually change the loop
617   // nest structure. It isn't clear this is necessary (or useful) for a pass
618   // which merely optimizes the use of loads in a loop.
619   SmallVector<Loop *, 8> Worklist;
620 
621   bool Changed = false;
622 
623   for (Loop *TopLevelLoop : LI)
624     for (Loop *L : depth_first(TopLevelLoop)) {
625       Changed |= simplifyLoop(L, &DT, &LI, SE, AC, /*MSSAU*/ nullptr, false);
626       // We only handle inner-most loops.
627       if (L->isInnermost())
628         Worklist.push_back(L);
629     }
630 
631   // Now walk the identified inner loops.
632   for (Loop *L : Worklist) {
633     // Match historical behavior
634     if (!L->isRotatedForm() || !L->getExitingBlock())
635       continue;
636     // The actual work is performed by LoadEliminationForLoop.
637     LoadEliminationForLoop LEL(L, &LI, GetLAI(*L), &DT, BFI, PSI);
638     Changed |= LEL.processLoop();
639   }
640   return Changed;
641 }
642 
643 namespace {
644 
645 /// The pass.  Most of the work is delegated to the per-loop
646 /// LoadEliminationForLoop class.
647 class LoopLoadElimination : public FunctionPass {
648 public:
649   static char ID;
650 
651   LoopLoadElimination() : FunctionPass(ID) {
652     initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
653   }
654 
655   bool runOnFunction(Function &F) override {
656     if (skipFunction(F))
657       return false;
658 
659     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
660     auto &LAA = getAnalysis<LoopAccessLegacyAnalysis>();
661     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
662     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
663     auto *BFI = (PSI && PSI->hasProfileSummary()) ?
664                 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
665                 nullptr;
666     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
667 
668     // Process each loop nest in the function.
669     return eliminateLoadsAcrossLoops(
670         F, LI, DT, BFI, PSI, SE, /*AC*/ nullptr,
671         [&LAA](Loop &L) -> const LoopAccessInfo & { return LAA.getInfo(&L); });
672   }
673 
674   void getAnalysisUsage(AnalysisUsage &AU) const override {
675     AU.addRequiredID(LoopSimplifyID);
676     AU.addRequired<LoopInfoWrapperPass>();
677     AU.addPreserved<LoopInfoWrapperPass>();
678     AU.addRequired<LoopAccessLegacyAnalysis>();
679     AU.addRequired<ScalarEvolutionWrapperPass>();
680     AU.addRequired<DominatorTreeWrapperPass>();
681     AU.addPreserved<DominatorTreeWrapperPass>();
682     AU.addPreserved<GlobalsAAWrapperPass>();
683     AU.addRequired<ProfileSummaryInfoWrapperPass>();
684     LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
685   }
686 };
687 
688 } // end anonymous namespace
689 
690 char LoopLoadElimination::ID;
691 
692 static const char LLE_name[] = "Loop Load Elimination";
693 
694 INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
695 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
696 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
697 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
698 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
699 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
700 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
701 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
702 INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
703 
704 FunctionPass *llvm::createLoopLoadEliminationPass() {
705   return new LoopLoadElimination();
706 }
707 
708 PreservedAnalyses LoopLoadEliminationPass::run(Function &F,
709                                                FunctionAnalysisManager &AM) {
710   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
711   auto &LI = AM.getResult<LoopAnalysis>(F);
712   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
713   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
714   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
715   auto &AA = AM.getResult<AAManager>(F);
716   auto &AC = AM.getResult<AssumptionAnalysis>(F);
717   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
718   auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
719   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
720       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
721 
722   auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
723   bool Changed = eliminateLoadsAcrossLoops(
724       F, LI, DT, BFI, PSI, &SE, &AC, [&](Loop &L) -> const LoopAccessInfo & {
725         LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
726                                           TLI, TTI, nullptr, nullptr, nullptr};
727         return LAM.getResult<LoopAccessAnalysis>(L, AR);
728       });
729 
730   if (!Changed)
731     return PreservedAnalyses::all();
732 
733   PreservedAnalyses PA;
734   return PA;
735 }
736