xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopLoadElimination.cpp (revision 14359ef1b6a0610ac91df5f5a91c88a0b51c187c)
1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implement a loop-aware load elimination pass.
10 //
11 // It uses LoopAccessAnalysis to identify loop-carried dependences with a
12 // distance of one between stores and loads.  These form the candidates for the
13 // transformation.  The source value of each store then propagated to the user
14 // of the corresponding load.  This makes the load dead.
15 //
16 // The pass can also version the loop and add memchecks in order to prove that
17 // may-aliasing stores can't change the value in memory before it's read by the
18 // load.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "llvm/Transforms/Scalar/LoopLoadElimination.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DepthFirstIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/Analysis/AssumptionCache.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Analysis/LoopAccessAnalysis.h"
34 #include "llvm/Analysis/LoopAnalysisManager.h"
35 #include "llvm/Analysis/LoopInfo.h"
36 #include "llvm/Analysis/ScalarEvolution.h"
37 #include "llvm/Analysis/ScalarEvolutionExpander.h"
38 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
39 #include "llvm/Analysis/TargetLibraryInfo.h"
40 #include "llvm/Analysis/TargetTransformInfo.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/PassManager.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Transforms/Scalar.h"
54 #include "llvm/Transforms/Utils.h"
55 #include "llvm/Transforms/Utils/LoopVersioning.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <forward_list>
59 #include <set>
60 #include <tuple>
61 #include <utility>
62 
63 using namespace llvm;
64 
65 #define LLE_OPTION "loop-load-elim"
66 #define DEBUG_TYPE LLE_OPTION
67 
68 static cl::opt<unsigned> CheckPerElim(
69     "runtime-check-per-loop-load-elim", cl::Hidden,
70     cl::desc("Max number of memchecks allowed per eliminated load on average"),
71     cl::init(1));
72 
73 static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
74     "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
75     cl::desc("The maximum number of SCEV checks allowed for Loop "
76              "Load Elimination"));
77 
78 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
79 
80 namespace {
81 
82 /// Represent a store-to-forwarding candidate.
83 struct StoreToLoadForwardingCandidate {
84   LoadInst *Load;
85   StoreInst *Store;
86 
87   StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
88       : Load(Load), Store(Store) {}
89 
90   /// Return true if the dependence from the store to the load has a
91   /// distance of one.  E.g. A[i+1] = A[i]
92   bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE,
93                                  Loop *L) const {
94     Value *LoadPtr = Load->getPointerOperand();
95     Value *StorePtr = Store->getPointerOperand();
96     Type *LoadPtrType = LoadPtr->getType();
97     Type *LoadType = LoadPtrType->getPointerElementType();
98 
99     assert(LoadPtrType->getPointerAddressSpace() ==
100                StorePtr->getType()->getPointerAddressSpace() &&
101            LoadType == StorePtr->getType()->getPointerElementType() &&
102            "Should be a known dependence");
103 
104     // Currently we only support accesses with unit stride.  FIXME: we should be
105     // able to handle non unit stirde as well as long as the stride is equal to
106     // the dependence distance.
107     if (getPtrStride(PSE, LoadPtr, L) != 1 ||
108         getPtrStride(PSE, StorePtr, L) != 1)
109       return false;
110 
111     auto &DL = Load->getParent()->getModule()->getDataLayout();
112     unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
113 
114     auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
115     auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
116 
117     // We don't need to check non-wrapping here because forward/backward
118     // dependence wouldn't be valid if these weren't monotonic accesses.
119     auto *Dist = cast<SCEVConstant>(
120         PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
121     const APInt &Val = Dist->getAPInt();
122     return Val == TypeByteSize;
123   }
124 
125   Value *getLoadPtr() const { return Load->getPointerOperand(); }
126 
127 #ifndef NDEBUG
128   friend raw_ostream &operator<<(raw_ostream &OS,
129                                  const StoreToLoadForwardingCandidate &Cand) {
130     OS << *Cand.Store << " -->\n";
131     OS.indent(2) << *Cand.Load << "\n";
132     return OS;
133   }
134 #endif
135 };
136 
137 } // end anonymous namespace
138 
139 /// Check if the store dominates all latches, so as long as there is no
140 /// intervening store this value will be loaded in the next iteration.
141 static bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
142                                          DominatorTree *DT) {
143   SmallVector<BasicBlock *, 8> Latches;
144   L->getLoopLatches(Latches);
145   return llvm::all_of(Latches, [&](const BasicBlock *Latch) {
146     return DT->dominates(StoreBlock, Latch);
147   });
148 }
149 
150 /// Return true if the load is not executed on all paths in the loop.
151 static bool isLoadConditional(LoadInst *Load, Loop *L) {
152   return Load->getParent() != L->getHeader();
153 }
154 
155 namespace {
156 
157 /// The per-loop class that does most of the work.
158 class LoadEliminationForLoop {
159 public:
160   LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
161                          DominatorTree *DT)
162       : L(L), LI(LI), LAI(LAI), DT(DT), PSE(LAI.getPSE()) {}
163 
164   /// Look through the loop-carried and loop-independent dependences in
165   /// this loop and find store->load dependences.
166   ///
167   /// Note that no candidate is returned if LAA has failed to analyze the loop
168   /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
169   std::forward_list<StoreToLoadForwardingCandidate>
170   findStoreToLoadDependences(const LoopAccessInfo &LAI) {
171     std::forward_list<StoreToLoadForwardingCandidate> Candidates;
172 
173     const auto *Deps = LAI.getDepChecker().getDependences();
174     if (!Deps)
175       return Candidates;
176 
177     // Find store->load dependences (consequently true dep).  Both lexically
178     // forward and backward dependences qualify.  Disqualify loads that have
179     // other unknown dependences.
180 
181     SmallPtrSet<Instruction *, 4> LoadsWithUnknownDepedence;
182 
183     for (const auto &Dep : *Deps) {
184       Instruction *Source = Dep.getSource(LAI);
185       Instruction *Destination = Dep.getDestination(LAI);
186 
187       if (Dep.Type == MemoryDepChecker::Dependence::Unknown) {
188         if (isa<LoadInst>(Source))
189           LoadsWithUnknownDepedence.insert(Source);
190         if (isa<LoadInst>(Destination))
191           LoadsWithUnknownDepedence.insert(Destination);
192         continue;
193       }
194 
195       if (Dep.isBackward())
196         // Note that the designations source and destination follow the program
197         // order, i.e. source is always first.  (The direction is given by the
198         // DepType.)
199         std::swap(Source, Destination);
200       else
201         assert(Dep.isForward() && "Needs to be a forward dependence");
202 
203       auto *Store = dyn_cast<StoreInst>(Source);
204       if (!Store)
205         continue;
206       auto *Load = dyn_cast<LoadInst>(Destination);
207       if (!Load)
208         continue;
209 
210       // Only progagate the value if they are of the same type.
211       if (Store->getPointerOperandType() != Load->getPointerOperandType())
212         continue;
213 
214       Candidates.emplace_front(Load, Store);
215     }
216 
217     if (!LoadsWithUnknownDepedence.empty())
218       Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
219         return LoadsWithUnknownDepedence.count(C.Load);
220       });
221 
222     return Candidates;
223   }
224 
225   /// Return the index of the instruction according to program order.
226   unsigned getInstrIndex(Instruction *Inst) {
227     auto I = InstOrder.find(Inst);
228     assert(I != InstOrder.end() && "No index for instruction");
229     return I->second;
230   }
231 
232   /// If a load has multiple candidates associated (i.e. different
233   /// stores), it means that it could be forwarding from multiple stores
234   /// depending on control flow.  Remove these candidates.
235   ///
236   /// Here, we rely on LAA to include the relevant loop-independent dependences.
237   /// LAA is known to omit these in the very simple case when the read and the
238   /// write within an alias set always takes place using the *same* pointer.
239   ///
240   /// However, we know that this is not the case here, i.e. we can rely on LAA
241   /// to provide us with loop-independent dependences for the cases we're
242   /// interested.  Consider the case for example where a loop-independent
243   /// dependece S1->S2 invalidates the forwarding S3->S2.
244   ///
245   ///         A[i]   = ...   (S1)
246   ///         ...    = A[i]  (S2)
247   ///         A[i+1] = ...   (S3)
248   ///
249   /// LAA will perform dependence analysis here because there are two
250   /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
251   void removeDependencesFromMultipleStores(
252       std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
253     // If Store is nullptr it means that we have multiple stores forwarding to
254     // this store.
255     using LoadToSingleCandT =
256         DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>;
257     LoadToSingleCandT LoadToSingleCand;
258 
259     for (const auto &Cand : Candidates) {
260       bool NewElt;
261       LoadToSingleCandT::iterator Iter;
262 
263       std::tie(Iter, NewElt) =
264           LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
265       if (!NewElt) {
266         const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
267         // Already multiple stores forward to this load.
268         if (OtherCand == nullptr)
269           continue;
270 
271         // Handle the very basic case when the two stores are in the same block
272         // so deciding which one forwards is easy.  The later one forwards as
273         // long as they both have a dependence distance of one to the load.
274         if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
275             Cand.isDependenceDistanceOfOne(PSE, L) &&
276             OtherCand->isDependenceDistanceOfOne(PSE, L)) {
277           // They are in the same block, the later one will forward to the load.
278           if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
279             OtherCand = &Cand;
280         } else
281           OtherCand = nullptr;
282       }
283     }
284 
285     Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
286       if (LoadToSingleCand[Cand.Load] != &Cand) {
287         LLVM_DEBUG(
288             dbgs() << "Removing from candidates: \n"
289                    << Cand
290                    << "  The load may have multiple stores forwarding to "
291                    << "it\n");
292         return true;
293       }
294       return false;
295     });
296   }
297 
298   /// Given two pointers operations by their RuntimePointerChecking
299   /// indices, return true if they require an alias check.
300   ///
301   /// We need a check if one is a pointer for a candidate load and the other is
302   /// a pointer for a possibly intervening store.
303   bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
304                      const SmallPtrSet<Value *, 4> &PtrsWrittenOnFwdingPath,
305                      const std::set<Value *> &CandLoadPtrs) {
306     Value *Ptr1 =
307         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
308     Value *Ptr2 =
309         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
310     return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
311             (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
312   }
313 
314   /// Return pointers that are possibly written to on the path from a
315   /// forwarding store to a load.
316   ///
317   /// These pointers need to be alias-checked against the forwarding candidates.
318   SmallPtrSet<Value *, 4> findPointersWrittenOnForwardingPath(
319       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
320     // From FirstStore to LastLoad neither of the elimination candidate loads
321     // should overlap with any of the stores.
322     //
323     // E.g.:
324     //
325     // st1 C[i]
326     // ld1 B[i] <-------,
327     // ld0 A[i] <----,  |              * LastLoad
328     // ...           |  |
329     // st2 E[i]      |  |
330     // st3 B[i+1] -- | -'              * FirstStore
331     // st0 A[i+1] ---'
332     // st4 D[i]
333     //
334     // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
335     // ld0.
336 
337     LoadInst *LastLoad =
338         std::max_element(Candidates.begin(), Candidates.end(),
339                          [&](const StoreToLoadForwardingCandidate &A,
340                              const StoreToLoadForwardingCandidate &B) {
341                            return getInstrIndex(A.Load) < getInstrIndex(B.Load);
342                          })
343             ->Load;
344     StoreInst *FirstStore =
345         std::min_element(Candidates.begin(), Candidates.end(),
346                          [&](const StoreToLoadForwardingCandidate &A,
347                              const StoreToLoadForwardingCandidate &B) {
348                            return getInstrIndex(A.Store) <
349                                   getInstrIndex(B.Store);
350                          })
351             ->Store;
352 
353     // We're looking for stores after the first forwarding store until the end
354     // of the loop, then from the beginning of the loop until the last
355     // forwarded-to load.  Collect the pointer for the stores.
356     SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath;
357 
358     auto InsertStorePtr = [&](Instruction *I) {
359       if (auto *S = dyn_cast<StoreInst>(I))
360         PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
361     };
362     const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
363     std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
364                   MemInstrs.end(), InsertStorePtr);
365     std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
366                   InsertStorePtr);
367 
368     return PtrsWrittenOnFwdingPath;
369   }
370 
371   /// Determine the pointer alias checks to prove that there are no
372   /// intervening stores.
373   SmallVector<RuntimePointerChecking::PointerCheck, 4> collectMemchecks(
374       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
375 
376     SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath =
377         findPointersWrittenOnForwardingPath(Candidates);
378 
379     // Collect the pointers of the candidate loads.
380     // FIXME: SmallPtrSet does not work with std::inserter.
381     std::set<Value *> CandLoadPtrs;
382     transform(Candidates,
383                    std::inserter(CandLoadPtrs, CandLoadPtrs.begin()),
384                    std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr));
385 
386     const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
387     SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;
388 
389     copy_if(AllChecks, std::back_inserter(Checks),
390             [&](const RuntimePointerChecking::PointerCheck &Check) {
391               for (auto PtrIdx1 : Check.first->Members)
392                 for (auto PtrIdx2 : Check.second->Members)
393                   if (needsChecking(PtrIdx1, PtrIdx2, PtrsWrittenOnFwdingPath,
394                                     CandLoadPtrs))
395                     return true;
396               return false;
397             });
398 
399     LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size()
400                       << "):\n");
401     LLVM_DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
402 
403     return Checks;
404   }
405 
406   /// Perform the transformation for a candidate.
407   void
408   propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
409                                   SCEVExpander &SEE) {
410     // loop:
411     //      %x = load %gep_i
412     //         = ... %x
413     //      store %y, %gep_i_plus_1
414     //
415     // =>
416     //
417     // ph:
418     //      %x.initial = load %gep_0
419     // loop:
420     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
421     //      %x = load %gep_i            <---- now dead
422     //         = ... %x.storeforward
423     //      store %y, %gep_i_plus_1
424 
425     Value *Ptr = Cand.Load->getPointerOperand();
426     auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
427     auto *PH = L->getLoopPreheader();
428     Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
429                                           PH->getTerminator());
430     Value *Initial = new LoadInst(
431         Cand.Load->getType(), InitialPtr, "load_initial",
432         /* isVolatile */ false, Cand.Load->getAlignment(), PH->getTerminator());
433 
434     PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded",
435                                    &L->getHeader()->front());
436     PHI->addIncoming(Initial, PH);
437     PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch());
438 
439     Cand.Load->replaceAllUsesWith(PHI);
440   }
441 
442   /// Top-level driver for each loop: find store->load forwarding
443   /// candidates, add run-time checks and perform transformation.
444   bool processLoop() {
445     LLVM_DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
446                       << "\" checking " << *L << "\n");
447 
448     // Look for store-to-load forwarding cases across the
449     // backedge. E.g.:
450     //
451     // loop:
452     //      %x = load %gep_i
453     //         = ... %x
454     //      store %y, %gep_i_plus_1
455     //
456     // =>
457     //
458     // ph:
459     //      %x.initial = load %gep_0
460     // loop:
461     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
462     //      %x = load %gep_i            <---- now dead
463     //         = ... %x.storeforward
464     //      store %y, %gep_i_plus_1
465 
466     // First start with store->load dependences.
467     auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
468     if (StoreToLoadDependences.empty())
469       return false;
470 
471     // Generate an index for each load and store according to the original
472     // program order.  This will be used later.
473     InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
474 
475     // To keep things simple for now, remove those where the load is potentially
476     // fed by multiple stores.
477     removeDependencesFromMultipleStores(StoreToLoadDependences);
478     if (StoreToLoadDependences.empty())
479       return false;
480 
481     // Filter the candidates further.
482     SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
483     unsigned NumForwarding = 0;
484     for (const StoreToLoadForwardingCandidate Cand : StoreToLoadDependences) {
485       LLVM_DEBUG(dbgs() << "Candidate " << Cand);
486 
487       // Make sure that the stored values is available everywhere in the loop in
488       // the next iteration.
489       if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
490         continue;
491 
492       // If the load is conditional we can't hoist its 0-iteration instance to
493       // the preheader because that would make it unconditional.  Thus we would
494       // access a memory location that the original loop did not access.
495       if (isLoadConditional(Cand.Load, L))
496         continue;
497 
498       // Check whether the SCEV difference is the same as the induction step,
499       // thus we load the value in the next iteration.
500       if (!Cand.isDependenceDistanceOfOne(PSE, L))
501         continue;
502 
503       ++NumForwarding;
504       LLVM_DEBUG(
505           dbgs()
506           << NumForwarding
507           << ". Valid store-to-load forwarding across the loop backedge\n");
508       Candidates.push_back(Cand);
509     }
510     if (Candidates.empty())
511       return false;
512 
513     // Check intervening may-alias stores.  These need runtime checks for alias
514     // disambiguation.
515     SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks =
516         collectMemchecks(Candidates);
517 
518     // Too many checks are likely to outweigh the benefits of forwarding.
519     if (Checks.size() > Candidates.size() * CheckPerElim) {
520       LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n");
521       return false;
522     }
523 
524     if (LAI.getPSE().getUnionPredicate().getComplexity() >
525         LoadElimSCEVCheckThreshold) {
526       LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
527       return false;
528     }
529 
530     if (!Checks.empty() || !LAI.getPSE().getUnionPredicate().isAlwaysTrue()) {
531       if (L->getHeader()->getParent()->optForSize()) {
532         LLVM_DEBUG(
533             dbgs() << "Versioning is needed but not allowed when optimizing "
534                       "for size.\n");
535         return false;
536       }
537 
538       if (!L->isLoopSimplifyForm()) {
539         LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form");
540         return false;
541       }
542 
543       // Point of no-return, start the transformation.  First, version the loop
544       // if necessary.
545 
546       LoopVersioning LV(LAI, L, LI, DT, PSE.getSE(), false);
547       LV.setAliasChecks(std::move(Checks));
548       LV.setSCEVChecks(LAI.getPSE().getUnionPredicate());
549       LV.versionLoop();
550     }
551 
552     // Next, propagate the value stored by the store to the users of the load.
553     // Also for the first iteration, generate the initial value of the load.
554     SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
555                      "storeforward");
556     for (const auto &Cand : Candidates)
557       propagateStoredValueToLoadUsers(Cand, SEE);
558     NumLoopLoadEliminted += NumForwarding;
559 
560     return true;
561   }
562 
563 private:
564   Loop *L;
565 
566   /// Maps the load/store instructions to their index according to
567   /// program order.
568   DenseMap<Instruction *, unsigned> InstOrder;
569 
570   // Analyses used.
571   LoopInfo *LI;
572   const LoopAccessInfo &LAI;
573   DominatorTree *DT;
574   PredicatedScalarEvolution PSE;
575 };
576 
577 } // end anonymous namespace
578 
579 static bool
580 eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI, DominatorTree &DT,
581                           function_ref<const LoopAccessInfo &(Loop &)> GetLAI) {
582   // Build up a worklist of inner-loops to transform to avoid iterator
583   // invalidation.
584   // FIXME: This logic comes from other passes that actually change the loop
585   // nest structure. It isn't clear this is necessary (or useful) for a pass
586   // which merely optimizes the use of loads in a loop.
587   SmallVector<Loop *, 8> Worklist;
588 
589   for (Loop *TopLevelLoop : LI)
590     for (Loop *L : depth_first(TopLevelLoop))
591       // We only handle inner-most loops.
592       if (L->empty())
593         Worklist.push_back(L);
594 
595   // Now walk the identified inner loops.
596   bool Changed = false;
597   for (Loop *L : Worklist) {
598     // The actual work is performed by LoadEliminationForLoop.
599     LoadEliminationForLoop LEL(L, &LI, GetLAI(*L), &DT);
600     Changed |= LEL.processLoop();
601   }
602   return Changed;
603 }
604 
605 namespace {
606 
607 /// The pass.  Most of the work is delegated to the per-loop
608 /// LoadEliminationForLoop class.
609 class LoopLoadElimination : public FunctionPass {
610 public:
611   static char ID;
612 
613   LoopLoadElimination() : FunctionPass(ID) {
614     initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
615   }
616 
617   bool runOnFunction(Function &F) override {
618     if (skipFunction(F))
619       return false;
620 
621     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
622     auto &LAA = getAnalysis<LoopAccessLegacyAnalysis>();
623     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
624 
625     // Process each loop nest in the function.
626     return eliminateLoadsAcrossLoops(
627         F, LI, DT,
628         [&LAA](Loop &L) -> const LoopAccessInfo & { return LAA.getInfo(&L); });
629   }
630 
631   void getAnalysisUsage(AnalysisUsage &AU) const override {
632     AU.addRequiredID(LoopSimplifyID);
633     AU.addRequired<LoopInfoWrapperPass>();
634     AU.addPreserved<LoopInfoWrapperPass>();
635     AU.addRequired<LoopAccessLegacyAnalysis>();
636     AU.addRequired<ScalarEvolutionWrapperPass>();
637     AU.addRequired<DominatorTreeWrapperPass>();
638     AU.addPreserved<DominatorTreeWrapperPass>();
639     AU.addPreserved<GlobalsAAWrapperPass>();
640   }
641 };
642 
643 } // end anonymous namespace
644 
645 char LoopLoadElimination::ID;
646 
647 static const char LLE_name[] = "Loop Load Elimination";
648 
649 INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
650 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
651 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
652 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
653 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
654 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
655 INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
656 
657 FunctionPass *llvm::createLoopLoadEliminationPass() {
658   return new LoopLoadElimination();
659 }
660 
661 PreservedAnalyses LoopLoadEliminationPass::run(Function &F,
662                                                FunctionAnalysisManager &AM) {
663   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
664   auto &LI = AM.getResult<LoopAnalysis>(F);
665   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
666   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
667   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
668   auto &AA = AM.getResult<AAManager>(F);
669   auto &AC = AM.getResult<AssumptionAnalysis>(F);
670 
671   auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
672   bool Changed = eliminateLoadsAcrossLoops(
673       F, LI, DT, [&](Loop &L) -> const LoopAccessInfo & {
674         LoopStandardAnalysisResults AR = {AA, AC,  DT,  LI,
675                                           SE, TLI, TTI, nullptr};
676         return LAM.getResult<LoopAccessAnalysis>(L, AR);
677       });
678 
679   if (!Changed)
680     return PreservedAnalyses::all();
681 
682   PreservedAnalyses PA;
683   return PA;
684 }
685