1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implement a loop-aware load elimination pass. 11 // 12 // It uses LoopAccessAnalysis to identify loop-carried dependences with a 13 // distance of one between stores and loads. These form the candidates for the 14 // transformation. The source value of each store then propagated to the user 15 // of the corresponding load. This makes the load dead. 16 // 17 // The pass can also version the loop and add memchecks in order to prove that 18 // may-aliasing stores can't change the value in memory before it's read by the 19 // load. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/LoopAccessAnalysis.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/ScalarEvolutionExpander.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Transforms/Scalar.h" 32 #include "llvm/Transforms/Utils/LoopVersioning.h" 33 #include <forward_list> 34 35 #define LLE_OPTION "loop-load-elim" 36 #define DEBUG_TYPE LLE_OPTION 37 38 using namespace llvm; 39 40 static cl::opt<unsigned> CheckPerElim( 41 "runtime-check-per-loop-load-elim", cl::Hidden, 42 cl::desc("Max number of memchecks allowed per eliminated load on average"), 43 cl::init(1)); 44 45 static cl::opt<unsigned> LoadElimSCEVCheckThreshold( 46 "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden, 47 cl::desc("The maximum number of SCEV checks allowed for Loop " 48 "Load Elimination")); 49 50 51 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE"); 52 53 namespace { 54 55 /// \brief Represent a store-to-forwarding candidate. 56 struct StoreToLoadForwardingCandidate { 57 LoadInst *Load; 58 StoreInst *Store; 59 60 StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store) 61 : Load(Load), Store(Store) {} 62 63 /// \brief Return true if the dependence from the store to the load has a 64 /// distance of one. E.g. A[i+1] = A[i] 65 bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE, 66 Loop *L) const { 67 Value *LoadPtr = Load->getPointerOperand(); 68 Value *StorePtr = Store->getPointerOperand(); 69 Type *LoadPtrType = LoadPtr->getType(); 70 Type *LoadType = LoadPtrType->getPointerElementType(); 71 72 assert(LoadPtrType->getPointerAddressSpace() == 73 StorePtr->getType()->getPointerAddressSpace() && 74 LoadType == StorePtr->getType()->getPointerElementType() && 75 "Should be a known dependence"); 76 77 // Currently we only support accesses with unit stride. FIXME: we should be 78 // able to handle non unit stirde as well as long as the stride is equal to 79 // the dependence distance. 80 if (getPtrStride(PSE, LoadPtr, L) != 1 || 81 getPtrStride(PSE, StorePtr, L) != 1) 82 return false; 83 84 auto &DL = Load->getParent()->getModule()->getDataLayout(); 85 unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType)); 86 87 auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr)); 88 auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr)); 89 90 // We don't need to check non-wrapping here because forward/backward 91 // dependence wouldn't be valid if these weren't monotonic accesses. 92 auto *Dist = cast<SCEVConstant>( 93 PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV)); 94 const APInt &Val = Dist->getAPInt(); 95 return Val == TypeByteSize; 96 } 97 98 Value *getLoadPtr() const { return Load->getPointerOperand(); } 99 100 #ifndef NDEBUG 101 friend raw_ostream &operator<<(raw_ostream &OS, 102 const StoreToLoadForwardingCandidate &Cand) { 103 OS << *Cand.Store << " -->\n"; 104 OS.indent(2) << *Cand.Load << "\n"; 105 return OS; 106 } 107 #endif 108 }; 109 110 /// \brief Check if the store dominates all latches, so as long as there is no 111 /// intervening store this value will be loaded in the next iteration. 112 bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L, 113 DominatorTree *DT) { 114 SmallVector<BasicBlock *, 8> Latches; 115 L->getLoopLatches(Latches); 116 return all_of(Latches, [&](const BasicBlock *Latch) { 117 return DT->dominates(StoreBlock, Latch); 118 }); 119 } 120 121 /// \brief Return true if the load is not executed on all paths in the loop. 122 static bool isLoadConditional(LoadInst *Load, Loop *L) { 123 return Load->getParent() != L->getHeader(); 124 } 125 126 /// \brief The per-loop class that does most of the work. 127 class LoadEliminationForLoop { 128 public: 129 LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI, 130 DominatorTree *DT) 131 : L(L), LI(LI), LAI(LAI), DT(DT), PSE(LAI.getPSE()) {} 132 133 /// \brief Look through the loop-carried and loop-independent dependences in 134 /// this loop and find store->load dependences. 135 /// 136 /// Note that no candidate is returned if LAA has failed to analyze the loop 137 /// (e.g. if it's not bottom-tested, contains volatile memops, etc.) 138 std::forward_list<StoreToLoadForwardingCandidate> 139 findStoreToLoadDependences(const LoopAccessInfo &LAI) { 140 std::forward_list<StoreToLoadForwardingCandidate> Candidates; 141 142 const auto *Deps = LAI.getDepChecker().getDependences(); 143 if (!Deps) 144 return Candidates; 145 146 // Find store->load dependences (consequently true dep). Both lexically 147 // forward and backward dependences qualify. Disqualify loads that have 148 // other unknown dependences. 149 150 SmallSet<Instruction *, 4> LoadsWithUnknownDepedence; 151 152 for (const auto &Dep : *Deps) { 153 Instruction *Source = Dep.getSource(LAI); 154 Instruction *Destination = Dep.getDestination(LAI); 155 156 if (Dep.Type == MemoryDepChecker::Dependence::Unknown) { 157 if (isa<LoadInst>(Source)) 158 LoadsWithUnknownDepedence.insert(Source); 159 if (isa<LoadInst>(Destination)) 160 LoadsWithUnknownDepedence.insert(Destination); 161 continue; 162 } 163 164 if (Dep.isBackward()) 165 // Note that the designations source and destination follow the program 166 // order, i.e. source is always first. (The direction is given by the 167 // DepType.) 168 std::swap(Source, Destination); 169 else 170 assert(Dep.isForward() && "Needs to be a forward dependence"); 171 172 auto *Store = dyn_cast<StoreInst>(Source); 173 if (!Store) 174 continue; 175 auto *Load = dyn_cast<LoadInst>(Destination); 176 if (!Load) 177 continue; 178 179 // Only progagate the value if they are of the same type. 180 if (Store->getPointerOperand()->getType() != 181 Load->getPointerOperand()->getType()) 182 continue; 183 184 Candidates.emplace_front(Load, Store); 185 } 186 187 if (!LoadsWithUnknownDepedence.empty()) 188 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) { 189 return LoadsWithUnknownDepedence.count(C.Load); 190 }); 191 192 return Candidates; 193 } 194 195 /// \brief Return the index of the instruction according to program order. 196 unsigned getInstrIndex(Instruction *Inst) { 197 auto I = InstOrder.find(Inst); 198 assert(I != InstOrder.end() && "No index for instruction"); 199 return I->second; 200 } 201 202 /// \brief If a load has multiple candidates associated (i.e. different 203 /// stores), it means that it could be forwarding from multiple stores 204 /// depending on control flow. Remove these candidates. 205 /// 206 /// Here, we rely on LAA to include the relevant loop-independent dependences. 207 /// LAA is known to omit these in the very simple case when the read and the 208 /// write within an alias set always takes place using the *same* pointer. 209 /// 210 /// However, we know that this is not the case here, i.e. we can rely on LAA 211 /// to provide us with loop-independent dependences for the cases we're 212 /// interested. Consider the case for example where a loop-independent 213 /// dependece S1->S2 invalidates the forwarding S3->S2. 214 /// 215 /// A[i] = ... (S1) 216 /// ... = A[i] (S2) 217 /// A[i+1] = ... (S3) 218 /// 219 /// LAA will perform dependence analysis here because there are two 220 /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]). 221 void removeDependencesFromMultipleStores( 222 std::forward_list<StoreToLoadForwardingCandidate> &Candidates) { 223 // If Store is nullptr it means that we have multiple stores forwarding to 224 // this store. 225 typedef DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *> 226 LoadToSingleCandT; 227 LoadToSingleCandT LoadToSingleCand; 228 229 for (const auto &Cand : Candidates) { 230 bool NewElt; 231 LoadToSingleCandT::iterator Iter; 232 233 std::tie(Iter, NewElt) = 234 LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand)); 235 if (!NewElt) { 236 const StoreToLoadForwardingCandidate *&OtherCand = Iter->second; 237 // Already multiple stores forward to this load. 238 if (OtherCand == nullptr) 239 continue; 240 241 // Handle the very basic case when the two stores are in the same block 242 // so deciding which one forwards is easy. The later one forwards as 243 // long as they both have a dependence distance of one to the load. 244 if (Cand.Store->getParent() == OtherCand->Store->getParent() && 245 Cand.isDependenceDistanceOfOne(PSE, L) && 246 OtherCand->isDependenceDistanceOfOne(PSE, L)) { 247 // They are in the same block, the later one will forward to the load. 248 if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store)) 249 OtherCand = &Cand; 250 } else 251 OtherCand = nullptr; 252 } 253 } 254 255 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) { 256 if (LoadToSingleCand[Cand.Load] != &Cand) { 257 DEBUG(dbgs() << "Removing from candidates: \n" << Cand 258 << " The load may have multiple stores forwarding to " 259 << "it\n"); 260 return true; 261 } 262 return false; 263 }); 264 } 265 266 /// \brief Given two pointers operations by their RuntimePointerChecking 267 /// indices, return true if they require an alias check. 268 /// 269 /// We need a check if one is a pointer for a candidate load and the other is 270 /// a pointer for a possibly intervening store. 271 bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2, 272 const SmallSet<Value *, 4> &PtrsWrittenOnFwdingPath, 273 const std::set<Value *> &CandLoadPtrs) { 274 Value *Ptr1 = 275 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue; 276 Value *Ptr2 = 277 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue; 278 return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) || 279 (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1))); 280 } 281 282 /// \brief Return pointers that are possibly written to on the path from a 283 /// forwarding store to a load. 284 /// 285 /// These pointers need to be alias-checked against the forwarding candidates. 286 SmallSet<Value *, 4> findPointersWrittenOnForwardingPath( 287 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) { 288 // From FirstStore to LastLoad neither of the elimination candidate loads 289 // should overlap with any of the stores. 290 // 291 // E.g.: 292 // 293 // st1 C[i] 294 // ld1 B[i] <-------, 295 // ld0 A[i] <----, | * LastLoad 296 // ... | | 297 // st2 E[i] | | 298 // st3 B[i+1] -- | -' * FirstStore 299 // st0 A[i+1] ---' 300 // st4 D[i] 301 // 302 // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with 303 // ld0. 304 305 LoadInst *LastLoad = 306 std::max_element(Candidates.begin(), Candidates.end(), 307 [&](const StoreToLoadForwardingCandidate &A, 308 const StoreToLoadForwardingCandidate &B) { 309 return getInstrIndex(A.Load) < getInstrIndex(B.Load); 310 }) 311 ->Load; 312 StoreInst *FirstStore = 313 std::min_element(Candidates.begin(), Candidates.end(), 314 [&](const StoreToLoadForwardingCandidate &A, 315 const StoreToLoadForwardingCandidate &B) { 316 return getInstrIndex(A.Store) < 317 getInstrIndex(B.Store); 318 }) 319 ->Store; 320 321 // We're looking for stores after the first forwarding store until the end 322 // of the loop, then from the beginning of the loop until the last 323 // forwarded-to load. Collect the pointer for the stores. 324 SmallSet<Value *, 4> PtrsWrittenOnFwdingPath; 325 326 auto InsertStorePtr = [&](Instruction *I) { 327 if (auto *S = dyn_cast<StoreInst>(I)) 328 PtrsWrittenOnFwdingPath.insert(S->getPointerOperand()); 329 }; 330 const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions(); 331 std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1, 332 MemInstrs.end(), InsertStorePtr); 333 std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)], 334 InsertStorePtr); 335 336 return PtrsWrittenOnFwdingPath; 337 } 338 339 /// \brief Determine the pointer alias checks to prove that there are no 340 /// intervening stores. 341 SmallVector<RuntimePointerChecking::PointerCheck, 4> collectMemchecks( 342 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) { 343 344 SmallSet<Value *, 4> PtrsWrittenOnFwdingPath = 345 findPointersWrittenOnForwardingPath(Candidates); 346 347 // Collect the pointers of the candidate loads. 348 // FIXME: SmallSet does not work with std::inserter. 349 std::set<Value *> CandLoadPtrs; 350 std::transform(Candidates.begin(), Candidates.end(), 351 std::inserter(CandLoadPtrs, CandLoadPtrs.begin()), 352 std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr)); 353 354 const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks(); 355 SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks; 356 357 std::copy_if(AllChecks.begin(), AllChecks.end(), std::back_inserter(Checks), 358 [&](const RuntimePointerChecking::PointerCheck &Check) { 359 for (auto PtrIdx1 : Check.first->Members) 360 for (auto PtrIdx2 : Check.second->Members) 361 if (needsChecking(PtrIdx1, PtrIdx2, 362 PtrsWrittenOnFwdingPath, CandLoadPtrs)) 363 return true; 364 return false; 365 }); 366 367 DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size() << "):\n"); 368 DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks)); 369 370 return Checks; 371 } 372 373 /// \brief Perform the transformation for a candidate. 374 void 375 propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand, 376 SCEVExpander &SEE) { 377 // 378 // loop: 379 // %x = load %gep_i 380 // = ... %x 381 // store %y, %gep_i_plus_1 382 // 383 // => 384 // 385 // ph: 386 // %x.initial = load %gep_0 387 // loop: 388 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop] 389 // %x = load %gep_i <---- now dead 390 // = ... %x.storeforward 391 // store %y, %gep_i_plus_1 392 393 Value *Ptr = Cand.Load->getPointerOperand(); 394 auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr)); 395 auto *PH = L->getLoopPreheader(); 396 Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(), 397 PH->getTerminator()); 398 Value *Initial = 399 new LoadInst(InitialPtr, "load_initial", PH->getTerminator()); 400 PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded", 401 &L->getHeader()->front()); 402 PHI->addIncoming(Initial, PH); 403 PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch()); 404 405 Cand.Load->replaceAllUsesWith(PHI); 406 } 407 408 /// \brief Top-level driver for each loop: find store->load forwarding 409 /// candidates, add run-time checks and perform transformation. 410 bool processLoop() { 411 DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName() 412 << "\" checking " << *L << "\n"); 413 // Look for store-to-load forwarding cases across the 414 // backedge. E.g.: 415 // 416 // loop: 417 // %x = load %gep_i 418 // = ... %x 419 // store %y, %gep_i_plus_1 420 // 421 // => 422 // 423 // ph: 424 // %x.initial = load %gep_0 425 // loop: 426 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop] 427 // %x = load %gep_i <---- now dead 428 // = ... %x.storeforward 429 // store %y, %gep_i_plus_1 430 431 // First start with store->load dependences. 432 auto StoreToLoadDependences = findStoreToLoadDependences(LAI); 433 if (StoreToLoadDependences.empty()) 434 return false; 435 436 // Generate an index for each load and store according to the original 437 // program order. This will be used later. 438 InstOrder = LAI.getDepChecker().generateInstructionOrderMap(); 439 440 // To keep things simple for now, remove those where the load is potentially 441 // fed by multiple stores. 442 removeDependencesFromMultipleStores(StoreToLoadDependences); 443 if (StoreToLoadDependences.empty()) 444 return false; 445 446 // Filter the candidates further. 447 SmallVector<StoreToLoadForwardingCandidate, 4> Candidates; 448 unsigned NumForwarding = 0; 449 for (const StoreToLoadForwardingCandidate Cand : StoreToLoadDependences) { 450 DEBUG(dbgs() << "Candidate " << Cand); 451 452 // Make sure that the stored values is available everywhere in the loop in 453 // the next iteration. 454 if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT)) 455 continue; 456 457 // If the load is conditional we can't hoist its 0-iteration instance to 458 // the preheader because that would make it unconditional. Thus we would 459 // access a memory location that the original loop did not access. 460 if (isLoadConditional(Cand.Load, L)) 461 continue; 462 463 // Check whether the SCEV difference is the same as the induction step, 464 // thus we load the value in the next iteration. 465 if (!Cand.isDependenceDistanceOfOne(PSE, L)) 466 continue; 467 468 ++NumForwarding; 469 DEBUG(dbgs() 470 << NumForwarding 471 << ". Valid store-to-load forwarding across the loop backedge\n"); 472 Candidates.push_back(Cand); 473 } 474 if (Candidates.empty()) 475 return false; 476 477 // Check intervening may-alias stores. These need runtime checks for alias 478 // disambiguation. 479 SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks = 480 collectMemchecks(Candidates); 481 482 // Too many checks are likely to outweigh the benefits of forwarding. 483 if (Checks.size() > Candidates.size() * CheckPerElim) { 484 DEBUG(dbgs() << "Too many run-time checks needed.\n"); 485 return false; 486 } 487 488 if (LAI.getPSE().getUnionPredicate().getComplexity() > 489 LoadElimSCEVCheckThreshold) { 490 DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n"); 491 return false; 492 } 493 494 if (!Checks.empty() || !LAI.getPSE().getUnionPredicate().isAlwaysTrue()) { 495 if (L->getHeader()->getParent()->optForSize()) { 496 DEBUG(dbgs() << "Versioning is needed but not allowed when optimizing " 497 "for size.\n"); 498 return false; 499 } 500 501 // Point of no-return, start the transformation. First, version the loop 502 // if necessary. 503 504 LoopVersioning LV(LAI, L, LI, DT, PSE.getSE(), false); 505 LV.setAliasChecks(std::move(Checks)); 506 LV.setSCEVChecks(LAI.getPSE().getUnionPredicate()); 507 LV.versionLoop(); 508 } 509 510 // Next, propagate the value stored by the store to the users of the load. 511 // Also for the first iteration, generate the initial value of the load. 512 SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(), 513 "storeforward"); 514 for (const auto &Cand : Candidates) 515 propagateStoredValueToLoadUsers(Cand, SEE); 516 NumLoopLoadEliminted += NumForwarding; 517 518 return true; 519 } 520 521 private: 522 Loop *L; 523 524 /// \brief Maps the load/store instructions to their index according to 525 /// program order. 526 DenseMap<Instruction *, unsigned> InstOrder; 527 528 // Analyses used. 529 LoopInfo *LI; 530 const LoopAccessInfo &LAI; 531 DominatorTree *DT; 532 PredicatedScalarEvolution PSE; 533 }; 534 535 /// \brief The pass. Most of the work is delegated to the per-loop 536 /// LoadEliminationForLoop class. 537 class LoopLoadElimination : public FunctionPass { 538 public: 539 LoopLoadElimination() : FunctionPass(ID) { 540 initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry()); 541 } 542 543 bool runOnFunction(Function &F) override { 544 if (skipFunction(F)) 545 return false; 546 547 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 548 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 549 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 550 551 // Build up a worklist of inner-loops to vectorize. This is necessary as the 552 // act of distributing a loop creates new loops and can invalidate iterators 553 // across the loops. 554 SmallVector<Loop *, 8> Worklist; 555 556 for (Loop *TopLevelLoop : *LI) 557 for (Loop *L : depth_first(TopLevelLoop)) 558 // We only handle inner-most loops. 559 if (L->empty()) 560 Worklist.push_back(L); 561 562 // Now walk the identified inner loops. 563 bool Changed = false; 564 for (Loop *L : Worklist) { 565 const LoopAccessInfo &LAI = LAA->getInfo(L); 566 // The actual work is performed by LoadEliminationForLoop. 567 LoadEliminationForLoop LEL(L, LI, LAI, DT); 568 Changed |= LEL.processLoop(); 569 } 570 571 // Process each loop nest in the function. 572 return Changed; 573 } 574 575 void getAnalysisUsage(AnalysisUsage &AU) const override { 576 AU.addRequiredID(LoopSimplifyID); 577 AU.addRequired<LoopInfoWrapperPass>(); 578 AU.addPreserved<LoopInfoWrapperPass>(); 579 AU.addRequired<LoopAccessLegacyAnalysis>(); 580 AU.addRequired<ScalarEvolutionWrapperPass>(); 581 AU.addRequired<DominatorTreeWrapperPass>(); 582 AU.addPreserved<DominatorTreeWrapperPass>(); 583 } 584 585 static char ID; 586 }; 587 } 588 589 char LoopLoadElimination::ID; 590 static const char LLE_name[] = "Loop Load Elimination"; 591 592 INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false) 593 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 594 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 595 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 596 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 597 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 598 INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false) 599 600 namespace llvm { 601 FunctionPass *createLoopLoadEliminationPass() { 602 return new LoopLoadElimination(); 603 } 604 } 605