xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopLoadElimination.cpp (revision 0a16c228463ca58c7828b5fd9bdd10b3ba612bbf)
1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implement a loop-aware load elimination pass.
11 //
12 // It uses LoopAccessAnalysis to identify loop-carried dependences with a
13 // distance of one between stores and loads.  These form the candidates for the
14 // transformation.  The source value of each store then propagated to the user
15 // of the corresponding load.  This makes the load dead.
16 //
17 // The pass can also version the loop and add memchecks in order to prove that
18 // may-aliasing stores can't change the value in memory before it's read by the
19 // load.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/LoopAccessAnalysis.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/ScalarEvolutionExpander.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Transforms/Scalar.h"
32 #include "llvm/Transforms/Utils/LoopVersioning.h"
33 #include <forward_list>
34 
35 #define LLE_OPTION "loop-load-elim"
36 #define DEBUG_TYPE LLE_OPTION
37 
38 using namespace llvm;
39 
40 static cl::opt<unsigned> CheckPerElim(
41     "runtime-check-per-loop-load-elim", cl::Hidden,
42     cl::desc("Max number of memchecks allowed per eliminated load on average"),
43     cl::init(1));
44 
45 static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
46     "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
47     cl::desc("The maximum number of SCEV checks allowed for Loop "
48              "Load Elimination"));
49 
50 
51 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
52 
53 namespace {
54 
55 /// \brief Represent a store-to-forwarding candidate.
56 struct StoreToLoadForwardingCandidate {
57   LoadInst *Load;
58   StoreInst *Store;
59 
60   StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
61       : Load(Load), Store(Store) {}
62 
63   /// \brief Return true if the dependence from the store to the load has a
64   /// distance of one.  E.g. A[i+1] = A[i]
65   bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE,
66                                  Loop *L) const {
67     Value *LoadPtr = Load->getPointerOperand();
68     Value *StorePtr = Store->getPointerOperand();
69     Type *LoadPtrType = LoadPtr->getType();
70     Type *LoadType = LoadPtrType->getPointerElementType();
71 
72     assert(LoadPtrType->getPointerAddressSpace() ==
73                StorePtr->getType()->getPointerAddressSpace() &&
74            LoadType == StorePtr->getType()->getPointerElementType() &&
75            "Should be a known dependence");
76 
77     // Currently we only support accesses with unit stride.  FIXME: we should be
78     // able to handle non unit stirde as well as long as the stride is equal to
79     // the dependence distance.
80     if (getPtrStride(PSE, LoadPtr, L) != 1 ||
81         getPtrStride(PSE, StorePtr, L) != 1)
82       return false;
83 
84     auto &DL = Load->getParent()->getModule()->getDataLayout();
85     unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
86 
87     auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
88     auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
89 
90     // We don't need to check non-wrapping here because forward/backward
91     // dependence wouldn't be valid if these weren't monotonic accesses.
92     auto *Dist = cast<SCEVConstant>(
93         PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
94     const APInt &Val = Dist->getAPInt();
95     return Val == TypeByteSize;
96   }
97 
98   Value *getLoadPtr() const { return Load->getPointerOperand(); }
99 
100 #ifndef NDEBUG
101   friend raw_ostream &operator<<(raw_ostream &OS,
102                                  const StoreToLoadForwardingCandidate &Cand) {
103     OS << *Cand.Store << " -->\n";
104     OS.indent(2) << *Cand.Load << "\n";
105     return OS;
106   }
107 #endif
108 };
109 
110 /// \brief Check if the store dominates all latches, so as long as there is no
111 /// intervening store this value will be loaded in the next iteration.
112 bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
113                                   DominatorTree *DT) {
114   SmallVector<BasicBlock *, 8> Latches;
115   L->getLoopLatches(Latches);
116   return all_of(Latches, [&](const BasicBlock *Latch) {
117     return DT->dominates(StoreBlock, Latch);
118   });
119 }
120 
121 /// \brief Return true if the load is not executed on all paths in the loop.
122 static bool isLoadConditional(LoadInst *Load, Loop *L) {
123   return Load->getParent() != L->getHeader();
124 }
125 
126 /// \brief The per-loop class that does most of the work.
127 class LoadEliminationForLoop {
128 public:
129   LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
130                          DominatorTree *DT)
131       : L(L), LI(LI), LAI(LAI), DT(DT), PSE(LAI.getPSE()) {}
132 
133   /// \brief Look through the loop-carried and loop-independent dependences in
134   /// this loop and find store->load dependences.
135   ///
136   /// Note that no candidate is returned if LAA has failed to analyze the loop
137   /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
138   std::forward_list<StoreToLoadForwardingCandidate>
139   findStoreToLoadDependences(const LoopAccessInfo &LAI) {
140     std::forward_list<StoreToLoadForwardingCandidate> Candidates;
141 
142     const auto *Deps = LAI.getDepChecker().getDependences();
143     if (!Deps)
144       return Candidates;
145 
146     // Find store->load dependences (consequently true dep).  Both lexically
147     // forward and backward dependences qualify.  Disqualify loads that have
148     // other unknown dependences.
149 
150     SmallSet<Instruction *, 4> LoadsWithUnknownDepedence;
151 
152     for (const auto &Dep : *Deps) {
153       Instruction *Source = Dep.getSource(LAI);
154       Instruction *Destination = Dep.getDestination(LAI);
155 
156       if (Dep.Type == MemoryDepChecker::Dependence::Unknown) {
157         if (isa<LoadInst>(Source))
158           LoadsWithUnknownDepedence.insert(Source);
159         if (isa<LoadInst>(Destination))
160           LoadsWithUnknownDepedence.insert(Destination);
161         continue;
162       }
163 
164       if (Dep.isBackward())
165         // Note that the designations source and destination follow the program
166         // order, i.e. source is always first.  (The direction is given by the
167         // DepType.)
168         std::swap(Source, Destination);
169       else
170         assert(Dep.isForward() && "Needs to be a forward dependence");
171 
172       auto *Store = dyn_cast<StoreInst>(Source);
173       if (!Store)
174         continue;
175       auto *Load = dyn_cast<LoadInst>(Destination);
176       if (!Load)
177         continue;
178 
179       // Only progagate the value if they are of the same type.
180       if (Store->getPointerOperand()->getType() !=
181           Load->getPointerOperand()->getType())
182         continue;
183 
184       Candidates.emplace_front(Load, Store);
185     }
186 
187     if (!LoadsWithUnknownDepedence.empty())
188       Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
189         return LoadsWithUnknownDepedence.count(C.Load);
190       });
191 
192     return Candidates;
193   }
194 
195   /// \brief Return the index of the instruction according to program order.
196   unsigned getInstrIndex(Instruction *Inst) {
197     auto I = InstOrder.find(Inst);
198     assert(I != InstOrder.end() && "No index for instruction");
199     return I->second;
200   }
201 
202   /// \brief If a load has multiple candidates associated (i.e. different
203   /// stores), it means that it could be forwarding from multiple stores
204   /// depending on control flow.  Remove these candidates.
205   ///
206   /// Here, we rely on LAA to include the relevant loop-independent dependences.
207   /// LAA is known to omit these in the very simple case when the read and the
208   /// write within an alias set always takes place using the *same* pointer.
209   ///
210   /// However, we know that this is not the case here, i.e. we can rely on LAA
211   /// to provide us with loop-independent dependences for the cases we're
212   /// interested.  Consider the case for example where a loop-independent
213   /// dependece S1->S2 invalidates the forwarding S3->S2.
214   ///
215   ///         A[i]   = ...   (S1)
216   ///         ...    = A[i]  (S2)
217   ///         A[i+1] = ...   (S3)
218   ///
219   /// LAA will perform dependence analysis here because there are two
220   /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
221   void removeDependencesFromMultipleStores(
222       std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
223     // If Store is nullptr it means that we have multiple stores forwarding to
224     // this store.
225     typedef DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>
226         LoadToSingleCandT;
227     LoadToSingleCandT LoadToSingleCand;
228 
229     for (const auto &Cand : Candidates) {
230       bool NewElt;
231       LoadToSingleCandT::iterator Iter;
232 
233       std::tie(Iter, NewElt) =
234           LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
235       if (!NewElt) {
236         const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
237         // Already multiple stores forward to this load.
238         if (OtherCand == nullptr)
239           continue;
240 
241         // Handle the very basic case when the two stores are in the same block
242         // so deciding which one forwards is easy.  The later one forwards as
243         // long as they both have a dependence distance of one to the load.
244         if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
245             Cand.isDependenceDistanceOfOne(PSE, L) &&
246             OtherCand->isDependenceDistanceOfOne(PSE, L)) {
247           // They are in the same block, the later one will forward to the load.
248           if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
249             OtherCand = &Cand;
250         } else
251           OtherCand = nullptr;
252       }
253     }
254 
255     Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
256       if (LoadToSingleCand[Cand.Load] != &Cand) {
257         DEBUG(dbgs() << "Removing from candidates: \n" << Cand
258                      << "  The load may have multiple stores forwarding to "
259                      << "it\n");
260         return true;
261       }
262       return false;
263     });
264   }
265 
266   /// \brief Given two pointers operations by their RuntimePointerChecking
267   /// indices, return true if they require an alias check.
268   ///
269   /// We need a check if one is a pointer for a candidate load and the other is
270   /// a pointer for a possibly intervening store.
271   bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
272                      const SmallSet<Value *, 4> &PtrsWrittenOnFwdingPath,
273                      const std::set<Value *> &CandLoadPtrs) {
274     Value *Ptr1 =
275         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
276     Value *Ptr2 =
277         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
278     return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
279             (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
280   }
281 
282   /// \brief Return pointers that are possibly written to on the path from a
283   /// forwarding store to a load.
284   ///
285   /// These pointers need to be alias-checked against the forwarding candidates.
286   SmallSet<Value *, 4> findPointersWrittenOnForwardingPath(
287       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
288     // From FirstStore to LastLoad neither of the elimination candidate loads
289     // should overlap with any of the stores.
290     //
291     // E.g.:
292     //
293     // st1 C[i]
294     // ld1 B[i] <-------,
295     // ld0 A[i] <----,  |              * LastLoad
296     // ...           |  |
297     // st2 E[i]      |  |
298     // st3 B[i+1] -- | -'              * FirstStore
299     // st0 A[i+1] ---'
300     // st4 D[i]
301     //
302     // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
303     // ld0.
304 
305     LoadInst *LastLoad =
306         std::max_element(Candidates.begin(), Candidates.end(),
307                          [&](const StoreToLoadForwardingCandidate &A,
308                              const StoreToLoadForwardingCandidate &B) {
309                            return getInstrIndex(A.Load) < getInstrIndex(B.Load);
310                          })
311             ->Load;
312     StoreInst *FirstStore =
313         std::min_element(Candidates.begin(), Candidates.end(),
314                          [&](const StoreToLoadForwardingCandidate &A,
315                              const StoreToLoadForwardingCandidate &B) {
316                            return getInstrIndex(A.Store) <
317                                   getInstrIndex(B.Store);
318                          })
319             ->Store;
320 
321     // We're looking for stores after the first forwarding store until the end
322     // of the loop, then from the beginning of the loop until the last
323     // forwarded-to load.  Collect the pointer for the stores.
324     SmallSet<Value *, 4> PtrsWrittenOnFwdingPath;
325 
326     auto InsertStorePtr = [&](Instruction *I) {
327       if (auto *S = dyn_cast<StoreInst>(I))
328         PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
329     };
330     const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
331     std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
332                   MemInstrs.end(), InsertStorePtr);
333     std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
334                   InsertStorePtr);
335 
336     return PtrsWrittenOnFwdingPath;
337   }
338 
339   /// \brief Determine the pointer alias checks to prove that there are no
340   /// intervening stores.
341   SmallVector<RuntimePointerChecking::PointerCheck, 4> collectMemchecks(
342       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
343 
344     SmallSet<Value *, 4> PtrsWrittenOnFwdingPath =
345         findPointersWrittenOnForwardingPath(Candidates);
346 
347     // Collect the pointers of the candidate loads.
348     // FIXME: SmallSet does not work with std::inserter.
349     std::set<Value *> CandLoadPtrs;
350     std::transform(Candidates.begin(), Candidates.end(),
351                    std::inserter(CandLoadPtrs, CandLoadPtrs.begin()),
352                    std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr));
353 
354     const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
355     SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;
356 
357     std::copy_if(AllChecks.begin(), AllChecks.end(), std::back_inserter(Checks),
358                  [&](const RuntimePointerChecking::PointerCheck &Check) {
359                    for (auto PtrIdx1 : Check.first->Members)
360                      for (auto PtrIdx2 : Check.second->Members)
361                        if (needsChecking(PtrIdx1, PtrIdx2,
362                                          PtrsWrittenOnFwdingPath, CandLoadPtrs))
363                          return true;
364                    return false;
365                  });
366 
367     DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size() << "):\n");
368     DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
369 
370     return Checks;
371   }
372 
373   /// \brief Perform the transformation for a candidate.
374   void
375   propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
376                                   SCEVExpander &SEE) {
377     //
378     // loop:
379     //      %x = load %gep_i
380     //         = ... %x
381     //      store %y, %gep_i_plus_1
382     //
383     // =>
384     //
385     // ph:
386     //      %x.initial = load %gep_0
387     // loop:
388     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
389     //      %x = load %gep_i            <---- now dead
390     //         = ... %x.storeforward
391     //      store %y, %gep_i_plus_1
392 
393     Value *Ptr = Cand.Load->getPointerOperand();
394     auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
395     auto *PH = L->getLoopPreheader();
396     Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
397                                           PH->getTerminator());
398     Value *Initial =
399         new LoadInst(InitialPtr, "load_initial", PH->getTerminator());
400     PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded",
401                                    &L->getHeader()->front());
402     PHI->addIncoming(Initial, PH);
403     PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch());
404 
405     Cand.Load->replaceAllUsesWith(PHI);
406   }
407 
408   /// \brief Top-level driver for each loop: find store->load forwarding
409   /// candidates, add run-time checks and perform transformation.
410   bool processLoop() {
411     DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
412                  << "\" checking " << *L << "\n");
413     // Look for store-to-load forwarding cases across the
414     // backedge. E.g.:
415     //
416     // loop:
417     //      %x = load %gep_i
418     //         = ... %x
419     //      store %y, %gep_i_plus_1
420     //
421     // =>
422     //
423     // ph:
424     //      %x.initial = load %gep_0
425     // loop:
426     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
427     //      %x = load %gep_i            <---- now dead
428     //         = ... %x.storeforward
429     //      store %y, %gep_i_plus_1
430 
431     // First start with store->load dependences.
432     auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
433     if (StoreToLoadDependences.empty())
434       return false;
435 
436     // Generate an index for each load and store according to the original
437     // program order.  This will be used later.
438     InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
439 
440     // To keep things simple for now, remove those where the load is potentially
441     // fed by multiple stores.
442     removeDependencesFromMultipleStores(StoreToLoadDependences);
443     if (StoreToLoadDependences.empty())
444       return false;
445 
446     // Filter the candidates further.
447     SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
448     unsigned NumForwarding = 0;
449     for (const StoreToLoadForwardingCandidate Cand : StoreToLoadDependences) {
450       DEBUG(dbgs() << "Candidate " << Cand);
451 
452       // Make sure that the stored values is available everywhere in the loop in
453       // the next iteration.
454       if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
455         continue;
456 
457       // If the load is conditional we can't hoist its 0-iteration instance to
458       // the preheader because that would make it unconditional.  Thus we would
459       // access a memory location that the original loop did not access.
460       if (isLoadConditional(Cand.Load, L))
461         continue;
462 
463       // Check whether the SCEV difference is the same as the induction step,
464       // thus we load the value in the next iteration.
465       if (!Cand.isDependenceDistanceOfOne(PSE, L))
466         continue;
467 
468       ++NumForwarding;
469       DEBUG(dbgs()
470             << NumForwarding
471             << ". Valid store-to-load forwarding across the loop backedge\n");
472       Candidates.push_back(Cand);
473     }
474     if (Candidates.empty())
475       return false;
476 
477     // Check intervening may-alias stores.  These need runtime checks for alias
478     // disambiguation.
479     SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks =
480         collectMemchecks(Candidates);
481 
482     // Too many checks are likely to outweigh the benefits of forwarding.
483     if (Checks.size() > Candidates.size() * CheckPerElim) {
484       DEBUG(dbgs() << "Too many run-time checks needed.\n");
485       return false;
486     }
487 
488     if (LAI.getPSE().getUnionPredicate().getComplexity() >
489         LoadElimSCEVCheckThreshold) {
490       DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
491       return false;
492     }
493 
494     if (!Checks.empty() || !LAI.getPSE().getUnionPredicate().isAlwaysTrue()) {
495       if (L->getHeader()->getParent()->optForSize()) {
496         DEBUG(dbgs() << "Versioning is needed but not allowed when optimizing "
497                         "for size.\n");
498         return false;
499       }
500 
501       // Point of no-return, start the transformation.  First, version the loop
502       // if necessary.
503 
504       LoopVersioning LV(LAI, L, LI, DT, PSE.getSE(), false);
505       LV.setAliasChecks(std::move(Checks));
506       LV.setSCEVChecks(LAI.getPSE().getUnionPredicate());
507       LV.versionLoop();
508     }
509 
510     // Next, propagate the value stored by the store to the users of the load.
511     // Also for the first iteration, generate the initial value of the load.
512     SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
513                      "storeforward");
514     for (const auto &Cand : Candidates)
515       propagateStoredValueToLoadUsers(Cand, SEE);
516     NumLoopLoadEliminted += NumForwarding;
517 
518     return true;
519   }
520 
521 private:
522   Loop *L;
523 
524   /// \brief Maps the load/store instructions to their index according to
525   /// program order.
526   DenseMap<Instruction *, unsigned> InstOrder;
527 
528   // Analyses used.
529   LoopInfo *LI;
530   const LoopAccessInfo &LAI;
531   DominatorTree *DT;
532   PredicatedScalarEvolution PSE;
533 };
534 
535 /// \brief The pass.  Most of the work is delegated to the per-loop
536 /// LoadEliminationForLoop class.
537 class LoopLoadElimination : public FunctionPass {
538 public:
539   LoopLoadElimination() : FunctionPass(ID) {
540     initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
541   }
542 
543   bool runOnFunction(Function &F) override {
544     if (skipFunction(F))
545       return false;
546 
547     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
548     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
549     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
550 
551     // Build up a worklist of inner-loops to vectorize. This is necessary as the
552     // act of distributing a loop creates new loops and can invalidate iterators
553     // across the loops.
554     SmallVector<Loop *, 8> Worklist;
555 
556     for (Loop *TopLevelLoop : *LI)
557       for (Loop *L : depth_first(TopLevelLoop))
558         // We only handle inner-most loops.
559         if (L->empty())
560           Worklist.push_back(L);
561 
562     // Now walk the identified inner loops.
563     bool Changed = false;
564     for (Loop *L : Worklist) {
565       const LoopAccessInfo &LAI = LAA->getInfo(L);
566       // The actual work is performed by LoadEliminationForLoop.
567       LoadEliminationForLoop LEL(L, LI, LAI, DT);
568       Changed |= LEL.processLoop();
569     }
570 
571     // Process each loop nest in the function.
572     return Changed;
573   }
574 
575   void getAnalysisUsage(AnalysisUsage &AU) const override {
576     AU.addRequiredID(LoopSimplifyID);
577     AU.addRequired<LoopInfoWrapperPass>();
578     AU.addPreserved<LoopInfoWrapperPass>();
579     AU.addRequired<LoopAccessLegacyAnalysis>();
580     AU.addRequired<ScalarEvolutionWrapperPass>();
581     AU.addRequired<DominatorTreeWrapperPass>();
582     AU.addPreserved<DominatorTreeWrapperPass>();
583   }
584 
585   static char ID;
586 };
587 }
588 
589 char LoopLoadElimination::ID;
590 static const char LLE_name[] = "Loop Load Elimination";
591 
592 INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
593 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
594 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
595 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
596 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
597 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
598 INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
599 
600 namespace llvm {
601 FunctionPass *createLoopLoadEliminationPass() {
602   return new LoopLoadElimination();
603 }
604 }
605