1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This Pass handles loop interchange transform. 10 // This pass interchanges loops to provide a more cache-friendly memory access 11 // patterns. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopInterchange.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Analysis/DependenceAnalysis.h" 21 #include "llvm/Analysis/LoopCacheAnalysis.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/LoopNestAnalysis.h" 24 #include "llvm/Analysis/LoopPass.h" 25 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 26 #include "llvm/Analysis/ScalarEvolution.h" 27 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/InstrTypes.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/User.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/InitializePasses.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Scalar/LoopPassManager.h" 48 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 49 #include "llvm/Transforms/Utils/LoopUtils.h" 50 #include <cassert> 51 #include <utility> 52 #include <vector> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "loop-interchange" 57 58 STATISTIC(LoopsInterchanged, "Number of loops interchanged"); 59 60 static cl::opt<int> LoopInterchangeCostThreshold( 61 "loop-interchange-threshold", cl::init(0), cl::Hidden, 62 cl::desc("Interchange if you gain more than this number")); 63 64 namespace { 65 66 using LoopVector = SmallVector<Loop *, 8>; 67 68 // TODO: Check if we can use a sparse matrix here. 69 using CharMatrix = std::vector<std::vector<char>>; 70 71 } // end anonymous namespace 72 73 // Maximum number of dependencies that can be handled in the dependency matrix. 74 static const unsigned MaxMemInstrCount = 100; 75 76 // Maximum loop depth supported. 77 static const unsigned MaxLoopNestDepth = 10; 78 79 #ifdef DUMP_DEP_MATRICIES 80 static void printDepMatrix(CharMatrix &DepMatrix) { 81 for (auto &Row : DepMatrix) { 82 for (auto D : Row) 83 LLVM_DEBUG(dbgs() << D << " "); 84 LLVM_DEBUG(dbgs() << "\n"); 85 } 86 } 87 #endif 88 89 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, 90 Loop *L, DependenceInfo *DI, 91 ScalarEvolution *SE) { 92 using ValueVector = SmallVector<Value *, 16>; 93 94 ValueVector MemInstr; 95 96 // For each block. 97 for (BasicBlock *BB : L->blocks()) { 98 // Scan the BB and collect legal loads and stores. 99 for (Instruction &I : *BB) { 100 if (!isa<Instruction>(I)) 101 return false; 102 if (auto *Ld = dyn_cast<LoadInst>(&I)) { 103 if (!Ld->isSimple()) 104 return false; 105 MemInstr.push_back(&I); 106 } else if (auto *St = dyn_cast<StoreInst>(&I)) { 107 if (!St->isSimple()) 108 return false; 109 MemInstr.push_back(&I); 110 } 111 } 112 } 113 114 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size() 115 << " Loads and Stores to analyze\n"); 116 117 ValueVector::iterator I, IE, J, JE; 118 119 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) { 120 for (J = I, JE = MemInstr.end(); J != JE; ++J) { 121 std::vector<char> Dep; 122 Instruction *Src = cast<Instruction>(*I); 123 Instruction *Dst = cast<Instruction>(*J); 124 // Ignore Input dependencies. 125 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) 126 continue; 127 // Track Output, Flow, and Anti dependencies. 128 if (auto D = DI->depends(Src, Dst, true)) { 129 assert(D->isOrdered() && "Expected an output, flow or anti dep."); 130 // If the direction vector is negative, normalize it to 131 // make it non-negative. 132 if (D->normalize(SE)) 133 LLVM_DEBUG(dbgs() << "Negative dependence vector normalized.\n"); 134 LLVM_DEBUG(StringRef DepType = 135 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output"; 136 dbgs() << "Found " << DepType 137 << " dependency between Src and Dst\n" 138 << " Src:" << *Src << "\n Dst:" << *Dst << '\n'); 139 unsigned Levels = D->getLevels(); 140 char Direction; 141 for (unsigned II = 1; II <= Levels; ++II) { 142 if (D->isScalar(II)) { 143 Direction = 'S'; 144 Dep.push_back(Direction); 145 } else { 146 unsigned Dir = D->getDirection(II); 147 if (Dir == Dependence::DVEntry::LT || 148 Dir == Dependence::DVEntry::LE) 149 Direction = '<'; 150 else if (Dir == Dependence::DVEntry::GT || 151 Dir == Dependence::DVEntry::GE) 152 Direction = '>'; 153 else if (Dir == Dependence::DVEntry::EQ) 154 Direction = '='; 155 else 156 Direction = '*'; 157 Dep.push_back(Direction); 158 } 159 } 160 while (Dep.size() != Level) { 161 Dep.push_back('I'); 162 } 163 164 DepMatrix.push_back(Dep); 165 if (DepMatrix.size() > MaxMemInstrCount) { 166 LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount 167 << " dependencies inside loop\n"); 168 return false; 169 } 170 } 171 } 172 } 173 174 return true; 175 } 176 177 // A loop is moved from index 'from' to an index 'to'. Update the Dependence 178 // matrix by exchanging the two columns. 179 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx, 180 unsigned ToIndx) { 181 for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I) 182 std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]); 183 } 184 185 // After interchanging, check if the direction vector is valid. 186 // [Theorem] A permutation of the loops in a perfect nest is legal if and only 187 // if the direction matrix, after the same permutation is applied to its 188 // columns, has no ">" direction as the leftmost non-"=" direction in any row. 189 static bool isLexicographicallyPositive(std::vector<char> &DV) { 190 for (unsigned Level = 0; Level < DV.size(); ++Level) { 191 unsigned char Direction = DV[Level]; 192 if (Direction == '<') 193 return true; 194 if (Direction == '>' || Direction == '*') 195 return false; 196 } 197 return true; 198 } 199 200 // Checks if it is legal to interchange 2 loops. 201 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, 202 unsigned InnerLoopId, 203 unsigned OuterLoopId) { 204 unsigned NumRows = DepMatrix.size(); 205 std::vector<char> Cur; 206 // For each row check if it is valid to interchange. 207 for (unsigned Row = 0; Row < NumRows; ++Row) { 208 // Create temporary DepVector check its lexicographical order 209 // before and after swapping OuterLoop vs InnerLoop 210 Cur = DepMatrix[Row]; 211 if (!isLexicographicallyPositive(Cur)) 212 return false; 213 std::swap(Cur[InnerLoopId], Cur[OuterLoopId]); 214 if (!isLexicographicallyPositive(Cur)) 215 return false; 216 } 217 return true; 218 } 219 220 static void populateWorklist(Loop &L, LoopVector &LoopList) { 221 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: " 222 << L.getHeader()->getParent()->getName() << " Loop: %" 223 << L.getHeader()->getName() << '\n'); 224 assert(LoopList.empty() && "LoopList should initially be empty!"); 225 Loop *CurrentLoop = &L; 226 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops(); 227 while (!Vec->empty()) { 228 // The current loop has multiple subloops in it hence it is not tightly 229 // nested. 230 // Discard all loops above it added into Worklist. 231 if (Vec->size() != 1) { 232 LoopList = {}; 233 return; 234 } 235 236 LoopList.push_back(CurrentLoop); 237 CurrentLoop = Vec->front(); 238 Vec = &CurrentLoop->getSubLoops(); 239 } 240 LoopList.push_back(CurrentLoop); 241 } 242 243 namespace { 244 245 /// LoopInterchangeLegality checks if it is legal to interchange the loop. 246 class LoopInterchangeLegality { 247 public: 248 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 249 OptimizationRemarkEmitter *ORE) 250 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 251 252 /// Check if the loops can be interchanged. 253 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, 254 CharMatrix &DepMatrix); 255 256 /// Discover induction PHIs in the header of \p L. Induction 257 /// PHIs are added to \p Inductions. 258 bool findInductions(Loop *L, SmallVectorImpl<PHINode *> &Inductions); 259 260 /// Check if the loop structure is understood. We do not handle triangular 261 /// loops for now. 262 bool isLoopStructureUnderstood(); 263 264 bool currentLimitations(); 265 266 const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const { 267 return OuterInnerReductions; 268 } 269 270 const SmallVectorImpl<PHINode *> &getInnerLoopInductions() const { 271 return InnerLoopInductions; 272 } 273 274 private: 275 bool tightlyNested(Loop *Outer, Loop *Inner); 276 bool containsUnsafeInstructions(BasicBlock *BB); 277 278 /// Discover induction and reduction PHIs in the header of \p L. Induction 279 /// PHIs are added to \p Inductions, reductions are added to 280 /// OuterInnerReductions. When the outer loop is passed, the inner loop needs 281 /// to be passed as \p InnerLoop. 282 bool findInductionAndReductions(Loop *L, 283 SmallVector<PHINode *, 8> &Inductions, 284 Loop *InnerLoop); 285 286 Loop *OuterLoop; 287 Loop *InnerLoop; 288 289 ScalarEvolution *SE; 290 291 /// Interface to emit optimization remarks. 292 OptimizationRemarkEmitter *ORE; 293 294 /// Set of reduction PHIs taking part of a reduction across the inner and 295 /// outer loop. 296 SmallPtrSet<PHINode *, 4> OuterInnerReductions; 297 298 /// Set of inner loop induction PHIs 299 SmallVector<PHINode *, 8> InnerLoopInductions; 300 }; 301 302 /// LoopInterchangeProfitability checks if it is profitable to interchange the 303 /// loop. 304 class LoopInterchangeProfitability { 305 public: 306 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 307 OptimizationRemarkEmitter *ORE) 308 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 309 310 /// Check if the loop interchange is profitable. 311 bool isProfitable(const Loop *InnerLoop, const Loop *OuterLoop, 312 unsigned InnerLoopId, unsigned OuterLoopId, 313 CharMatrix &DepMatrix, 314 const DenseMap<const Loop *, unsigned> &CostMap, 315 std::unique_ptr<CacheCost> &CC); 316 317 private: 318 int getInstrOrderCost(); 319 std::optional<bool> isProfitablePerLoopCacheAnalysis( 320 const DenseMap<const Loop *, unsigned> &CostMap, 321 std::unique_ptr<CacheCost> &CC); 322 std::optional<bool> isProfitablePerInstrOrderCost(); 323 std::optional<bool> isProfitableForVectorization(unsigned InnerLoopId, 324 unsigned OuterLoopId, 325 CharMatrix &DepMatrix); 326 Loop *OuterLoop; 327 Loop *InnerLoop; 328 329 /// Scev analysis. 330 ScalarEvolution *SE; 331 332 /// Interface to emit optimization remarks. 333 OptimizationRemarkEmitter *ORE; 334 }; 335 336 /// LoopInterchangeTransform interchanges the loop. 337 class LoopInterchangeTransform { 338 public: 339 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 340 LoopInfo *LI, DominatorTree *DT, 341 const LoopInterchangeLegality &LIL) 342 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LIL(LIL) {} 343 344 /// Interchange OuterLoop and InnerLoop. 345 bool transform(); 346 void restructureLoops(Loop *NewInner, Loop *NewOuter, 347 BasicBlock *OrigInnerPreHeader, 348 BasicBlock *OrigOuterPreHeader); 349 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop); 350 351 private: 352 bool adjustLoopLinks(); 353 bool adjustLoopBranches(); 354 355 Loop *OuterLoop; 356 Loop *InnerLoop; 357 358 /// Scev analysis. 359 ScalarEvolution *SE; 360 361 LoopInfo *LI; 362 DominatorTree *DT; 363 364 const LoopInterchangeLegality &LIL; 365 }; 366 367 struct LoopInterchange { 368 ScalarEvolution *SE = nullptr; 369 LoopInfo *LI = nullptr; 370 DependenceInfo *DI = nullptr; 371 DominatorTree *DT = nullptr; 372 std::unique_ptr<CacheCost> CC = nullptr; 373 374 /// Interface to emit optimization remarks. 375 OptimizationRemarkEmitter *ORE; 376 377 LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI, 378 DominatorTree *DT, std::unique_ptr<CacheCost> &CC, 379 OptimizationRemarkEmitter *ORE) 380 : SE(SE), LI(LI), DI(DI), DT(DT), CC(std::move(CC)), ORE(ORE) {} 381 382 bool run(Loop *L) { 383 if (L->getParentLoop()) 384 return false; 385 SmallVector<Loop *, 8> LoopList; 386 populateWorklist(*L, LoopList); 387 return processLoopList(LoopList); 388 } 389 390 bool run(LoopNest &LN) { 391 SmallVector<Loop *, 8> LoopList(LN.getLoops().begin(), LN.getLoops().end()); 392 for (unsigned I = 1; I < LoopList.size(); ++I) 393 if (LoopList[I]->getParentLoop() != LoopList[I - 1]) 394 return false; 395 return processLoopList(LoopList); 396 } 397 398 bool isComputableLoopNest(ArrayRef<Loop *> LoopList) { 399 for (Loop *L : LoopList) { 400 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L); 401 if (isa<SCEVCouldNotCompute>(ExitCountOuter)) { 402 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n"); 403 return false; 404 } 405 if (L->getNumBackEdges() != 1) { 406 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n"); 407 return false; 408 } 409 if (!L->getExitingBlock()) { 410 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n"); 411 return false; 412 } 413 } 414 return true; 415 } 416 417 unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) { 418 // TODO: Add a better heuristic to select the loop to be interchanged based 419 // on the dependence matrix. Currently we select the innermost loop. 420 return LoopList.size() - 1; 421 } 422 423 bool processLoopList(SmallVectorImpl<Loop *> &LoopList) { 424 bool Changed = false; 425 unsigned LoopNestDepth = LoopList.size(); 426 if (LoopNestDepth < 2) { 427 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n"); 428 return false; 429 } 430 if (LoopNestDepth > MaxLoopNestDepth) { 431 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than " 432 << MaxLoopNestDepth << "\n"); 433 return false; 434 } 435 if (!isComputableLoopNest(LoopList)) { 436 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n"); 437 return false; 438 } 439 440 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth 441 << "\n"); 442 443 CharMatrix DependencyMatrix; 444 Loop *OuterMostLoop = *(LoopList.begin()); 445 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth, 446 OuterMostLoop, DI, SE)) { 447 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n"); 448 return false; 449 } 450 #ifdef DUMP_DEP_MATRICIES 451 LLVM_DEBUG(dbgs() << "Dependence before interchange\n"); 452 printDepMatrix(DependencyMatrix); 453 #endif 454 455 // Get the Outermost loop exit. 456 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock(); 457 if (!LoopNestExit) { 458 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block"); 459 return false; 460 } 461 462 unsigned SelecLoopId = selectLoopForInterchange(LoopList); 463 // Obtain the loop vector returned from loop cache analysis beforehand, 464 // and put each <Loop, index> pair into a map for constant time query 465 // later. Indices in loop vector reprsent the optimal order of the 466 // corresponding loop, e.g., given a loopnest with depth N, index 0 467 // indicates the loop should be placed as the outermost loop and index N 468 // indicates the loop should be placed as the innermost loop. 469 // 470 // For the old pass manager CacheCost would be null. 471 DenseMap<const Loop *, unsigned> CostMap; 472 if (CC != nullptr) { 473 const auto &LoopCosts = CC->getLoopCosts(); 474 for (unsigned i = 0; i < LoopCosts.size(); i++) { 475 CostMap[LoopCosts[i].first] = i; 476 } 477 } 478 // We try to achieve the globally optimal memory access for the loopnest, 479 // and do interchange based on a bubble-sort fasion. We start from 480 // the innermost loop, move it outwards to the best possible position 481 // and repeat this process. 482 for (unsigned j = SelecLoopId; j > 0; j--) { 483 bool ChangedPerIter = false; 484 for (unsigned i = SelecLoopId; i > SelecLoopId - j; i--) { 485 bool Interchanged = processLoop(LoopList[i], LoopList[i - 1], i, i - 1, 486 DependencyMatrix, CostMap); 487 if (!Interchanged) 488 continue; 489 // Loops interchanged, update LoopList accordingly. 490 std::swap(LoopList[i - 1], LoopList[i]); 491 // Update the DependencyMatrix 492 interChangeDependencies(DependencyMatrix, i, i - 1); 493 #ifdef DUMP_DEP_MATRICIES 494 LLVM_DEBUG(dbgs() << "Dependence after interchange\n"); 495 printDepMatrix(DependencyMatrix); 496 #endif 497 ChangedPerIter |= Interchanged; 498 Changed |= Interchanged; 499 } 500 // Early abort if there was no interchange during an entire round of 501 // moving loops outwards. 502 if (!ChangedPerIter) 503 break; 504 } 505 return Changed; 506 } 507 508 bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId, 509 unsigned OuterLoopId, 510 std::vector<std::vector<char>> &DependencyMatrix, 511 const DenseMap<const Loop *, unsigned> &CostMap) { 512 LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId 513 << " and OuterLoopId = " << OuterLoopId << "\n"); 514 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE); 515 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) { 516 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n"); 517 return false; 518 } 519 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n"); 520 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE); 521 if (!LIP.isProfitable(InnerLoop, OuterLoop, InnerLoopId, OuterLoopId, 522 DependencyMatrix, CostMap, CC)) { 523 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n"); 524 return false; 525 } 526 527 ORE->emit([&]() { 528 return OptimizationRemark(DEBUG_TYPE, "Interchanged", 529 InnerLoop->getStartLoc(), 530 InnerLoop->getHeader()) 531 << "Loop interchanged with enclosing loop."; 532 }); 533 534 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LIL); 535 LIT.transform(); 536 LLVM_DEBUG(dbgs() << "Loops interchanged.\n"); 537 LoopsInterchanged++; 538 539 llvm::formLCSSARecursively(*OuterLoop, *DT, LI, SE); 540 return true; 541 } 542 }; 543 544 } // end anonymous namespace 545 546 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) { 547 return any_of(*BB, [](const Instruction &I) { 548 return I.mayHaveSideEffects() || I.mayReadFromMemory(); 549 }); 550 } 551 552 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) { 553 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 554 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 555 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 556 557 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n"); 558 559 // A perfectly nested loop will not have any branch in between the outer and 560 // inner block i.e. outer header will branch to either inner preheader and 561 // outerloop latch. 562 BranchInst *OuterLoopHeaderBI = 563 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 564 if (!OuterLoopHeaderBI) 565 return false; 566 567 for (BasicBlock *Succ : successors(OuterLoopHeaderBI)) 568 if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() && 569 Succ != OuterLoopLatch) 570 return false; 571 572 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n"); 573 // We do not have any basic block in between now make sure the outer header 574 // and outer loop latch doesn't contain any unsafe instructions. 575 if (containsUnsafeInstructions(OuterLoopHeader) || 576 containsUnsafeInstructions(OuterLoopLatch)) 577 return false; 578 579 // Also make sure the inner loop preheader does not contain any unsafe 580 // instructions. Note that all instructions in the preheader will be moved to 581 // the outer loop header when interchanging. 582 if (InnerLoopPreHeader != OuterLoopHeader && 583 containsUnsafeInstructions(InnerLoopPreHeader)) 584 return false; 585 586 BasicBlock *InnerLoopExit = InnerLoop->getExitBlock(); 587 // Ensure the inner loop exit block flows to the outer loop latch possibly 588 // through empty blocks. 589 const BasicBlock &SuccInner = 590 LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch); 591 if (&SuccInner != OuterLoopLatch) { 592 LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit 593 << " does not lead to the outer loop latch.\n";); 594 return false; 595 } 596 // The inner loop exit block does flow to the outer loop latch and not some 597 // other BBs, now make sure it contains safe instructions, since it will be 598 // moved into the (new) inner loop after interchange. 599 if (containsUnsafeInstructions(InnerLoopExit)) 600 return false; 601 602 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n"); 603 // We have a perfect loop nest. 604 return true; 605 } 606 607 bool LoopInterchangeLegality::isLoopStructureUnderstood() { 608 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); 609 for (PHINode *InnerInduction : InnerLoopInductions) { 610 unsigned Num = InnerInduction->getNumOperands(); 611 for (unsigned i = 0; i < Num; ++i) { 612 Value *Val = InnerInduction->getOperand(i); 613 if (isa<Constant>(Val)) 614 continue; 615 Instruction *I = dyn_cast<Instruction>(Val); 616 if (!I) 617 return false; 618 // TODO: Handle triangular loops. 619 // e.g. for(int i=0;i<N;i++) 620 // for(int j=i;j<N;j++) 621 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i); 622 if (InnerInduction->getIncomingBlock(IncomBlockIndx) == 623 InnerLoopPreheader && 624 !OuterLoop->isLoopInvariant(I)) { 625 return false; 626 } 627 } 628 } 629 630 // TODO: Handle triangular loops of another form. 631 // e.g. for(int i=0;i<N;i++) 632 // for(int j=0;j<i;j++) 633 // or, 634 // for(int i=0;i<N;i++) 635 // for(int j=0;j*i<N;j++) 636 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 637 BranchInst *InnerLoopLatchBI = 638 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 639 if (!InnerLoopLatchBI->isConditional()) 640 return false; 641 if (CmpInst *InnerLoopCmp = 642 dyn_cast<CmpInst>(InnerLoopLatchBI->getCondition())) { 643 Value *Op0 = InnerLoopCmp->getOperand(0); 644 Value *Op1 = InnerLoopCmp->getOperand(1); 645 646 // LHS and RHS of the inner loop exit condition, e.g., 647 // in "for(int j=0;j<i;j++)", LHS is j and RHS is i. 648 Value *Left = nullptr; 649 Value *Right = nullptr; 650 651 // Check if V only involves inner loop induction variable. 652 // Return true if V is InnerInduction, or a cast from 653 // InnerInduction, or a binary operator that involves 654 // InnerInduction and a constant. 655 std::function<bool(Value *)> IsPathToInnerIndVar; 656 IsPathToInnerIndVar = [this, &IsPathToInnerIndVar](const Value *V) -> bool { 657 if (llvm::is_contained(InnerLoopInductions, V)) 658 return true; 659 if (isa<Constant>(V)) 660 return true; 661 const Instruction *I = dyn_cast<Instruction>(V); 662 if (!I) 663 return false; 664 if (isa<CastInst>(I)) 665 return IsPathToInnerIndVar(I->getOperand(0)); 666 if (isa<BinaryOperator>(I)) 667 return IsPathToInnerIndVar(I->getOperand(0)) && 668 IsPathToInnerIndVar(I->getOperand(1)); 669 return false; 670 }; 671 672 // In case of multiple inner loop indvars, it is okay if LHS and RHS 673 // are both inner indvar related variables. 674 if (IsPathToInnerIndVar(Op0) && IsPathToInnerIndVar(Op1)) 675 return true; 676 677 // Otherwise we check if the cmp instruction compares an inner indvar 678 // related variable (Left) with a outer loop invariant (Right). 679 if (IsPathToInnerIndVar(Op0) && !isa<Constant>(Op0)) { 680 Left = Op0; 681 Right = Op1; 682 } else if (IsPathToInnerIndVar(Op1) && !isa<Constant>(Op1)) { 683 Left = Op1; 684 Right = Op0; 685 } 686 687 if (Left == nullptr) 688 return false; 689 690 const SCEV *S = SE->getSCEV(Right); 691 if (!SE->isLoopInvariant(S, OuterLoop)) 692 return false; 693 } 694 695 return true; 696 } 697 698 // If SV is a LCSSA PHI node with a single incoming value, return the incoming 699 // value. 700 static Value *followLCSSA(Value *SV) { 701 PHINode *PHI = dyn_cast<PHINode>(SV); 702 if (!PHI) 703 return SV; 704 705 if (PHI->getNumIncomingValues() != 1) 706 return SV; 707 return followLCSSA(PHI->getIncomingValue(0)); 708 } 709 710 // Check V's users to see if it is involved in a reduction in L. 711 static PHINode *findInnerReductionPhi(Loop *L, Value *V) { 712 // Reduction variables cannot be constants. 713 if (isa<Constant>(V)) 714 return nullptr; 715 716 for (Value *User : V->users()) { 717 if (PHINode *PHI = dyn_cast<PHINode>(User)) { 718 if (PHI->getNumIncomingValues() == 1) 719 continue; 720 RecurrenceDescriptor RD; 721 if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) { 722 // Detect floating point reduction only when it can be reordered. 723 if (RD.getExactFPMathInst() != nullptr) 724 return nullptr; 725 return PHI; 726 } 727 return nullptr; 728 } 729 } 730 731 return nullptr; 732 } 733 734 bool LoopInterchangeLegality::findInductionAndReductions( 735 Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) { 736 if (!L->getLoopLatch() || !L->getLoopPredecessor()) 737 return false; 738 for (PHINode &PHI : L->getHeader()->phis()) { 739 InductionDescriptor ID; 740 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 741 Inductions.push_back(&PHI); 742 else { 743 // PHIs in inner loops need to be part of a reduction in the outer loop, 744 // discovered when checking the PHIs of the outer loop earlier. 745 if (!InnerLoop) { 746 if (!OuterInnerReductions.count(&PHI)) { 747 LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions " 748 "across the outer loop.\n"); 749 return false; 750 } 751 } else { 752 assert(PHI.getNumIncomingValues() == 2 && 753 "Phis in loop header should have exactly 2 incoming values"); 754 // Check if we have a PHI node in the outer loop that has a reduction 755 // result from the inner loop as an incoming value. 756 Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch())); 757 PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V); 758 if (!InnerRedPhi || 759 !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) { 760 LLVM_DEBUG( 761 dbgs() 762 << "Failed to recognize PHI as an induction or reduction.\n"); 763 return false; 764 } 765 OuterInnerReductions.insert(&PHI); 766 OuterInnerReductions.insert(InnerRedPhi); 767 } 768 } 769 } 770 return true; 771 } 772 773 // This function indicates the current limitations in the transform as a result 774 // of which we do not proceed. 775 bool LoopInterchangeLegality::currentLimitations() { 776 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 777 778 // transform currently expects the loop latches to also be the exiting 779 // blocks. 780 if (InnerLoop->getExitingBlock() != InnerLoopLatch || 781 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() || 782 !isa<BranchInst>(InnerLoopLatch->getTerminator()) || 783 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) { 784 LLVM_DEBUG( 785 dbgs() << "Loops where the latch is not the exiting block are not" 786 << " supported currently.\n"); 787 ORE->emit([&]() { 788 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch", 789 OuterLoop->getStartLoc(), 790 OuterLoop->getHeader()) 791 << "Loops where the latch is not the exiting block cannot be" 792 " interchange currently."; 793 }); 794 return true; 795 } 796 797 SmallVector<PHINode *, 8> Inductions; 798 if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) { 799 LLVM_DEBUG( 800 dbgs() << "Only outer loops with induction or reduction PHI nodes " 801 << "are supported currently.\n"); 802 ORE->emit([&]() { 803 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter", 804 OuterLoop->getStartLoc(), 805 OuterLoop->getHeader()) 806 << "Only outer loops with induction or reduction PHI nodes can be" 807 " interchanged currently."; 808 }); 809 return true; 810 } 811 812 Inductions.clear(); 813 // For multi-level loop nests, make sure that all phi nodes for inner loops 814 // at all levels can be recognized as a induction or reduction phi. Bail out 815 // if a phi node at a certain nesting level cannot be properly recognized. 816 Loop *CurLevelLoop = OuterLoop; 817 while (!CurLevelLoop->getSubLoops().empty()) { 818 // We already made sure that the loop nest is tightly nested. 819 CurLevelLoop = CurLevelLoop->getSubLoops().front(); 820 if (!findInductionAndReductions(CurLevelLoop, Inductions, nullptr)) { 821 LLVM_DEBUG( 822 dbgs() << "Only inner loops with induction or reduction PHI nodes " 823 << "are supported currently.\n"); 824 ORE->emit([&]() { 825 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner", 826 CurLevelLoop->getStartLoc(), 827 CurLevelLoop->getHeader()) 828 << "Only inner loops with induction or reduction PHI nodes can be" 829 " interchange currently."; 830 }); 831 return true; 832 } 833 } 834 835 // TODO: Triangular loops are not handled for now. 836 if (!isLoopStructureUnderstood()) { 837 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n"); 838 ORE->emit([&]() { 839 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner", 840 InnerLoop->getStartLoc(), 841 InnerLoop->getHeader()) 842 << "Inner loop structure not understood currently."; 843 }); 844 return true; 845 } 846 847 return false; 848 } 849 850 bool LoopInterchangeLegality::findInductions( 851 Loop *L, SmallVectorImpl<PHINode *> &Inductions) { 852 for (PHINode &PHI : L->getHeader()->phis()) { 853 InductionDescriptor ID; 854 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 855 Inductions.push_back(&PHI); 856 } 857 return !Inductions.empty(); 858 } 859 860 // We currently only support LCSSA PHI nodes in the inner loop exit, if their 861 // users are either reduction PHIs or PHIs outside the outer loop (which means 862 // the we are only interested in the final value after the loop). 863 static bool 864 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL, 865 SmallPtrSetImpl<PHINode *> &Reductions) { 866 BasicBlock *InnerExit = OuterL->getUniqueExitBlock(); 867 for (PHINode &PHI : InnerExit->phis()) { 868 // Reduction lcssa phi will have only 1 incoming block that from loop latch. 869 if (PHI.getNumIncomingValues() > 1) 870 return false; 871 if (any_of(PHI.users(), [&Reductions, OuterL](User *U) { 872 PHINode *PN = dyn_cast<PHINode>(U); 873 return !PN || 874 (!Reductions.count(PN) && OuterL->contains(PN->getParent())); 875 })) { 876 return false; 877 } 878 } 879 return true; 880 } 881 882 // We currently support LCSSA PHI nodes in the outer loop exit, if their 883 // incoming values do not come from the outer loop latch or if the 884 // outer loop latch has a single predecessor. In that case, the value will 885 // be available if both the inner and outer loop conditions are true, which 886 // will still be true after interchanging. If we have multiple predecessor, 887 // that may not be the case, e.g. because the outer loop latch may be executed 888 // if the inner loop is not executed. 889 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 890 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock(); 891 for (PHINode &PHI : LoopNestExit->phis()) { 892 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) { 893 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i)); 894 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch()) 895 continue; 896 897 // The incoming value is defined in the outer loop latch. Currently we 898 // only support that in case the outer loop latch has a single predecessor. 899 // This guarantees that the outer loop latch is executed if and only if 900 // the inner loop is executed (because tightlyNested() guarantees that the 901 // outer loop header only branches to the inner loop or the outer loop 902 // latch). 903 // FIXME: We could weaken this logic and allow multiple predecessors, 904 // if the values are produced outside the loop latch. We would need 905 // additional logic to update the PHI nodes in the exit block as 906 // well. 907 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr) 908 return false; 909 } 910 } 911 return true; 912 } 913 914 // In case of multi-level nested loops, it may occur that lcssa phis exist in 915 // the latch of InnerLoop, i.e., when defs of the incoming values are further 916 // inside the loopnest. Sometimes those incoming values are not available 917 // after interchange, since the original inner latch will become the new outer 918 // latch which may have predecessor paths that do not include those incoming 919 // values. 920 // TODO: Handle transformation of lcssa phis in the InnerLoop latch in case of 921 // multi-level loop nests. 922 static bool areInnerLoopLatchPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 923 if (InnerLoop->getSubLoops().empty()) 924 return true; 925 // If the original outer latch has only one predecessor, then values defined 926 // further inside the looploop, e.g., in the innermost loop, will be available 927 // at the new outer latch after interchange. 928 if (OuterLoop->getLoopLatch()->getUniquePredecessor() != nullptr) 929 return true; 930 931 // The outer latch has more than one predecessors, i.e., the inner 932 // exit and the inner header. 933 // PHI nodes in the inner latch are lcssa phis where the incoming values 934 // are defined further inside the loopnest. Check if those phis are used 935 // in the original inner latch. If that is the case then bail out since 936 // those incoming values may not be available at the new outer latch. 937 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 938 for (PHINode &PHI : InnerLoopLatch->phis()) { 939 for (auto *U : PHI.users()) { 940 Instruction *UI = cast<Instruction>(U); 941 if (InnerLoopLatch == UI->getParent()) 942 return false; 943 } 944 } 945 return true; 946 } 947 948 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId, 949 unsigned OuterLoopId, 950 CharMatrix &DepMatrix) { 951 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) { 952 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId 953 << " and OuterLoopId = " << OuterLoopId 954 << " due to dependence\n"); 955 ORE->emit([&]() { 956 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence", 957 InnerLoop->getStartLoc(), 958 InnerLoop->getHeader()) 959 << "Cannot interchange loops due to dependences."; 960 }); 961 return false; 962 } 963 // Check if outer and inner loop contain legal instructions only. 964 for (auto *BB : OuterLoop->blocks()) 965 for (Instruction &I : BB->instructionsWithoutDebug()) 966 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 967 // readnone functions do not prevent interchanging. 968 if (CI->onlyWritesMemory()) 969 continue; 970 LLVM_DEBUG( 971 dbgs() << "Loops with call instructions cannot be interchanged " 972 << "safely."); 973 ORE->emit([&]() { 974 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst", 975 CI->getDebugLoc(), 976 CI->getParent()) 977 << "Cannot interchange loops due to call instruction."; 978 }); 979 980 return false; 981 } 982 983 if (!findInductions(InnerLoop, InnerLoopInductions)) { 984 LLVM_DEBUG(dbgs() << "Cound not find inner loop induction variables.\n"); 985 return false; 986 } 987 988 if (!areInnerLoopLatchPHIsSupported(OuterLoop, InnerLoop)) { 989 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop latch.\n"); 990 ORE->emit([&]() { 991 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedInnerLatchPHI", 992 InnerLoop->getStartLoc(), 993 InnerLoop->getHeader()) 994 << "Cannot interchange loops because unsupported PHI nodes found " 995 "in inner loop latch."; 996 }); 997 return false; 998 } 999 1000 // TODO: The loops could not be interchanged due to current limitations in the 1001 // transform module. 1002 if (currentLimitations()) { 1003 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n"); 1004 return false; 1005 } 1006 1007 // Check if the loops are tightly nested. 1008 if (!tightlyNested(OuterLoop, InnerLoop)) { 1009 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n"); 1010 ORE->emit([&]() { 1011 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested", 1012 InnerLoop->getStartLoc(), 1013 InnerLoop->getHeader()) 1014 << "Cannot interchange loops because they are not tightly " 1015 "nested."; 1016 }); 1017 return false; 1018 } 1019 1020 if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop, 1021 OuterInnerReductions)) { 1022 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n"); 1023 ORE->emit([&]() { 1024 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1025 InnerLoop->getStartLoc(), 1026 InnerLoop->getHeader()) 1027 << "Found unsupported PHI node in loop exit."; 1028 }); 1029 return false; 1030 } 1031 1032 if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) { 1033 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n"); 1034 ORE->emit([&]() { 1035 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1036 OuterLoop->getStartLoc(), 1037 OuterLoop->getHeader()) 1038 << "Found unsupported PHI node in loop exit."; 1039 }); 1040 return false; 1041 } 1042 1043 return true; 1044 } 1045 1046 int LoopInterchangeProfitability::getInstrOrderCost() { 1047 unsigned GoodOrder, BadOrder; 1048 BadOrder = GoodOrder = 0; 1049 for (BasicBlock *BB : InnerLoop->blocks()) { 1050 for (Instruction &Ins : *BB) { 1051 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) { 1052 unsigned NumOp = GEP->getNumOperands(); 1053 bool FoundInnerInduction = false; 1054 bool FoundOuterInduction = false; 1055 for (unsigned i = 0; i < NumOp; ++i) { 1056 // Skip operands that are not SCEV-able. 1057 if (!SE->isSCEVable(GEP->getOperand(i)->getType())) 1058 continue; 1059 1060 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i)); 1061 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal); 1062 if (!AR) 1063 continue; 1064 1065 // If we find the inner induction after an outer induction e.g. 1066 // for(int i=0;i<N;i++) 1067 // for(int j=0;j<N;j++) 1068 // A[i][j] = A[i-1][j-1]+k; 1069 // then it is a good order. 1070 if (AR->getLoop() == InnerLoop) { 1071 // We found an InnerLoop induction after OuterLoop induction. It is 1072 // a good order. 1073 FoundInnerInduction = true; 1074 if (FoundOuterInduction) { 1075 GoodOrder++; 1076 break; 1077 } 1078 } 1079 // If we find the outer induction after an inner induction e.g. 1080 // for(int i=0;i<N;i++) 1081 // for(int j=0;j<N;j++) 1082 // A[j][i] = A[j-1][i-1]+k; 1083 // then it is a bad order. 1084 if (AR->getLoop() == OuterLoop) { 1085 // We found an OuterLoop induction after InnerLoop induction. It is 1086 // a bad order. 1087 FoundOuterInduction = true; 1088 if (FoundInnerInduction) { 1089 BadOrder++; 1090 break; 1091 } 1092 } 1093 } 1094 } 1095 } 1096 } 1097 return GoodOrder - BadOrder; 1098 } 1099 1100 std::optional<bool> 1101 LoopInterchangeProfitability::isProfitablePerLoopCacheAnalysis( 1102 const DenseMap<const Loop *, unsigned> &CostMap, 1103 std::unique_ptr<CacheCost> &CC) { 1104 // This is the new cost model returned from loop cache analysis. 1105 // A smaller index means the loop should be placed an outer loop, and vice 1106 // versa. 1107 if (CostMap.find(InnerLoop) != CostMap.end() && 1108 CostMap.find(OuterLoop) != CostMap.end()) { 1109 unsigned InnerIndex = 0, OuterIndex = 0; 1110 InnerIndex = CostMap.find(InnerLoop)->second; 1111 OuterIndex = CostMap.find(OuterLoop)->second; 1112 LLVM_DEBUG(dbgs() << "InnerIndex = " << InnerIndex 1113 << ", OuterIndex = " << OuterIndex << "\n"); 1114 if (InnerIndex < OuterIndex) 1115 return std::optional<bool>(true); 1116 assert(InnerIndex != OuterIndex && "CostMap should assign unique " 1117 "numbers to each loop"); 1118 if (CC->getLoopCost(*OuterLoop) == CC->getLoopCost(*InnerLoop)) 1119 return std::nullopt; 1120 return std::optional<bool>(false); 1121 } 1122 return std::nullopt; 1123 } 1124 1125 std::optional<bool> 1126 LoopInterchangeProfitability::isProfitablePerInstrOrderCost() { 1127 // Legacy cost model: this is rough cost estimation algorithm. It counts the 1128 // good and bad order of induction variables in the instruction and allows 1129 // reordering if number of bad orders is more than good. 1130 int Cost = getInstrOrderCost(); 1131 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n"); 1132 if (Cost < 0 && Cost < LoopInterchangeCostThreshold) 1133 return std::optional<bool>(true); 1134 1135 return std::nullopt; 1136 } 1137 1138 std::optional<bool> LoopInterchangeProfitability::isProfitableForVectorization( 1139 unsigned InnerLoopId, unsigned OuterLoopId, CharMatrix &DepMatrix) { 1140 for (auto &Row : DepMatrix) { 1141 // If the inner loop is loop independent or doesn't carry any dependency 1142 // it is not profitable to move this to outer position, since we are 1143 // likely able to do inner loop vectorization already. 1144 if (Row[InnerLoopId] == 'I' || Row[InnerLoopId] == '=') 1145 return std::optional<bool>(false); 1146 1147 // If the outer loop is not loop independent it is not profitable to move 1148 // this to inner position, since doing so would not enable inner loop 1149 // parallelism. 1150 if (Row[OuterLoopId] != 'I' && Row[OuterLoopId] != '=') 1151 return std::optional<bool>(false); 1152 } 1153 // If inner loop has dependence and outer loop is loop independent then it 1154 // is/ profitable to interchange to enable inner loop parallelism. 1155 // If there are no dependences, interchanging will not improve anything. 1156 return std::optional<bool>(!DepMatrix.empty()); 1157 } 1158 1159 bool LoopInterchangeProfitability::isProfitable( 1160 const Loop *InnerLoop, const Loop *OuterLoop, unsigned InnerLoopId, 1161 unsigned OuterLoopId, CharMatrix &DepMatrix, 1162 const DenseMap<const Loop *, unsigned> &CostMap, 1163 std::unique_ptr<CacheCost> &CC) { 1164 // isProfitable() is structured to avoid endless loop interchange. 1165 // If loop cache analysis could decide the profitability then, 1166 // profitability check will stop and return the analysis result. 1167 // If cache analysis failed to analyze the loopnest (e.g., 1168 // due to delinearization issues) then only check whether it is 1169 // profitable for InstrOrderCost. Likewise, if InstrOrderCost failed to 1170 // analysis the profitability then only, isProfitableForVectorization 1171 // will decide. 1172 std::optional<bool> shouldInterchange = 1173 isProfitablePerLoopCacheAnalysis(CostMap, CC); 1174 if (!shouldInterchange.has_value()) { 1175 shouldInterchange = isProfitablePerInstrOrderCost(); 1176 if (!shouldInterchange.has_value()) 1177 shouldInterchange = 1178 isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix); 1179 } 1180 if (!shouldInterchange.has_value()) { 1181 ORE->emit([&]() { 1182 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", 1183 InnerLoop->getStartLoc(), 1184 InnerLoop->getHeader()) 1185 << "Insufficient information to calculate the cost of loop for " 1186 "interchange."; 1187 }); 1188 return false; 1189 } else if (!shouldInterchange.value()) { 1190 ORE->emit([&]() { 1191 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", 1192 InnerLoop->getStartLoc(), 1193 InnerLoop->getHeader()) 1194 << "Interchanging loops is not considered to improve cache " 1195 "locality nor vectorization."; 1196 }); 1197 return false; 1198 } 1199 return true; 1200 } 1201 1202 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop, 1203 Loop *InnerLoop) { 1204 for (Loop *L : *OuterLoop) 1205 if (L == InnerLoop) { 1206 OuterLoop->removeChildLoop(L); 1207 return; 1208 } 1209 llvm_unreachable("Couldn't find loop"); 1210 } 1211 1212 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the 1213 /// new inner and outer loop after interchanging: NewInner is the original 1214 /// outer loop and NewOuter is the original inner loop. 1215 /// 1216 /// Before interchanging, we have the following structure 1217 /// Outer preheader 1218 // Outer header 1219 // Inner preheader 1220 // Inner header 1221 // Inner body 1222 // Inner latch 1223 // outer bbs 1224 // Outer latch 1225 // 1226 // After interchanging: 1227 // Inner preheader 1228 // Inner header 1229 // Outer preheader 1230 // Outer header 1231 // Inner body 1232 // outer bbs 1233 // Outer latch 1234 // Inner latch 1235 void LoopInterchangeTransform::restructureLoops( 1236 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader, 1237 BasicBlock *OrigOuterPreHeader) { 1238 Loop *OuterLoopParent = OuterLoop->getParentLoop(); 1239 // The original inner loop preheader moves from the new inner loop to 1240 // the parent loop, if there is one. 1241 NewInner->removeBlockFromLoop(OrigInnerPreHeader); 1242 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent); 1243 1244 // Switch the loop levels. 1245 if (OuterLoopParent) { 1246 // Remove the loop from its parent loop. 1247 removeChildLoop(OuterLoopParent, NewInner); 1248 removeChildLoop(NewInner, NewOuter); 1249 OuterLoopParent->addChildLoop(NewOuter); 1250 } else { 1251 removeChildLoop(NewInner, NewOuter); 1252 LI->changeTopLevelLoop(NewInner, NewOuter); 1253 } 1254 while (!NewOuter->isInnermost()) 1255 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin())); 1256 NewOuter->addChildLoop(NewInner); 1257 1258 // BBs from the original inner loop. 1259 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks()); 1260 1261 // Add BBs from the original outer loop to the original inner loop (excluding 1262 // BBs already in inner loop) 1263 for (BasicBlock *BB : NewInner->blocks()) 1264 if (LI->getLoopFor(BB) == NewInner) 1265 NewOuter->addBlockEntry(BB); 1266 1267 // Now remove inner loop header and latch from the new inner loop and move 1268 // other BBs (the loop body) to the new inner loop. 1269 BasicBlock *OuterHeader = NewOuter->getHeader(); 1270 BasicBlock *OuterLatch = NewOuter->getLoopLatch(); 1271 for (BasicBlock *BB : OrigInnerBBs) { 1272 // Nothing will change for BBs in child loops. 1273 if (LI->getLoopFor(BB) != NewOuter) 1274 continue; 1275 // Remove the new outer loop header and latch from the new inner loop. 1276 if (BB == OuterHeader || BB == OuterLatch) 1277 NewInner->removeBlockFromLoop(BB); 1278 else 1279 LI->changeLoopFor(BB, NewInner); 1280 } 1281 1282 // The preheader of the original outer loop becomes part of the new 1283 // outer loop. 1284 NewOuter->addBlockEntry(OrigOuterPreHeader); 1285 LI->changeLoopFor(OrigOuterPreHeader, NewOuter); 1286 1287 // Tell SE that we move the loops around. 1288 SE->forgetLoop(NewOuter); 1289 } 1290 1291 bool LoopInterchangeTransform::transform() { 1292 bool Transformed = false; 1293 1294 if (InnerLoop->getSubLoops().empty()) { 1295 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1296 LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n"); 1297 auto &InductionPHIs = LIL.getInnerLoopInductions(); 1298 if (InductionPHIs.empty()) { 1299 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n"); 1300 return false; 1301 } 1302 1303 SmallVector<Instruction *, 8> InnerIndexVarList; 1304 for (PHINode *CurInductionPHI : InductionPHIs) { 1305 if (CurInductionPHI->getIncomingBlock(0) == InnerLoopPreHeader) 1306 InnerIndexVarList.push_back( 1307 dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(1))); 1308 else 1309 InnerIndexVarList.push_back( 1310 dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(0))); 1311 } 1312 1313 // Create a new latch block for the inner loop. We split at the 1314 // current latch's terminator and then move the condition and all 1315 // operands that are not either loop-invariant or the induction PHI into the 1316 // new latch block. 1317 BasicBlock *NewLatch = 1318 SplitBlock(InnerLoop->getLoopLatch(), 1319 InnerLoop->getLoopLatch()->getTerminator(), DT, LI); 1320 1321 SmallSetVector<Instruction *, 4> WorkList; 1322 unsigned i = 0; 1323 auto MoveInstructions = [&i, &WorkList, this, &InductionPHIs, NewLatch]() { 1324 for (; i < WorkList.size(); i++) { 1325 // Duplicate instruction and move it the new latch. Update uses that 1326 // have been moved. 1327 Instruction *NewI = WorkList[i]->clone(); 1328 NewI->insertBefore(NewLatch->getFirstNonPHI()); 1329 assert(!NewI->mayHaveSideEffects() && 1330 "Moving instructions with side-effects may change behavior of " 1331 "the loop nest!"); 1332 for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) { 1333 Instruction *UserI = cast<Instruction>(U.getUser()); 1334 if (!InnerLoop->contains(UserI->getParent()) || 1335 UserI->getParent() == NewLatch || 1336 llvm::is_contained(InductionPHIs, UserI)) 1337 U.set(NewI); 1338 } 1339 // Add operands of moved instruction to the worklist, except if they are 1340 // outside the inner loop or are the induction PHI. 1341 for (Value *Op : WorkList[i]->operands()) { 1342 Instruction *OpI = dyn_cast<Instruction>(Op); 1343 if (!OpI || 1344 this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop || 1345 llvm::is_contained(InductionPHIs, OpI)) 1346 continue; 1347 WorkList.insert(OpI); 1348 } 1349 } 1350 }; 1351 1352 // FIXME: Should we interchange when we have a constant condition? 1353 Instruction *CondI = dyn_cast<Instruction>( 1354 cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator()) 1355 ->getCondition()); 1356 if (CondI) 1357 WorkList.insert(CondI); 1358 MoveInstructions(); 1359 for (Instruction *InnerIndexVar : InnerIndexVarList) 1360 WorkList.insert(cast<Instruction>(InnerIndexVar)); 1361 MoveInstructions(); 1362 } 1363 1364 // Ensure the inner loop phi nodes have a separate basic block. 1365 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1366 if (InnerLoopHeader->getFirstNonPHI() != InnerLoopHeader->getTerminator()) { 1367 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI); 1368 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n"); 1369 } 1370 1371 // Instructions in the original inner loop preheader may depend on values 1372 // defined in the outer loop header. Move them there, because the original 1373 // inner loop preheader will become the entry into the interchanged loop nest. 1374 // Currently we move all instructions and rely on LICM to move invariant 1375 // instructions outside the loop nest. 1376 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1377 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1378 if (InnerLoopPreHeader != OuterLoopHeader) { 1379 SmallPtrSet<Instruction *, 4> NeedsMoving; 1380 for (Instruction &I : 1381 make_early_inc_range(make_range(InnerLoopPreHeader->begin(), 1382 std::prev(InnerLoopPreHeader->end())))) 1383 I.moveBefore(OuterLoopHeader->getTerminator()); 1384 } 1385 1386 Transformed |= adjustLoopLinks(); 1387 if (!Transformed) { 1388 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n"); 1389 return false; 1390 } 1391 1392 return true; 1393 } 1394 1395 /// \brief Move all instructions except the terminator from FromBB right before 1396 /// InsertBefore 1397 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) { 1398 BasicBlock *ToBB = InsertBefore->getParent(); 1399 1400 ToBB->splice(InsertBefore->getIterator(), FromBB, FromBB->begin(), 1401 FromBB->getTerminator()->getIterator()); 1402 } 1403 1404 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact. 1405 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) { 1406 // Save all non-terminator instructions of BB1 into TempInstrs and unlink them 1407 // from BB1 afterwards. 1408 auto Iter = map_range(*BB1, [](Instruction &I) { return &I; }); 1409 SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end())); 1410 for (Instruction *I : TempInstrs) 1411 I->removeFromParent(); 1412 1413 // Move instructions from BB2 to BB1. 1414 moveBBContents(BB2, BB1->getTerminator()); 1415 1416 // Move instructions from TempInstrs to BB2. 1417 for (Instruction *I : TempInstrs) 1418 I->insertBefore(BB2->getTerminator()); 1419 } 1420 1421 // Update BI to jump to NewBB instead of OldBB. Records updates to the 1422 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that 1423 // \p OldBB is exactly once in BI's successor list. 1424 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB, 1425 BasicBlock *NewBB, 1426 std::vector<DominatorTree::UpdateType> &DTUpdates, 1427 bool MustUpdateOnce = true) { 1428 assert((!MustUpdateOnce || 1429 llvm::count_if(successors(BI), 1430 [OldBB](BasicBlock *BB) { 1431 return BB == OldBB; 1432 }) == 1) && "BI must jump to OldBB exactly once."); 1433 bool Changed = false; 1434 for (Use &Op : BI->operands()) 1435 if (Op == OldBB) { 1436 Op.set(NewBB); 1437 Changed = true; 1438 } 1439 1440 if (Changed) { 1441 DTUpdates.push_back( 1442 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB}); 1443 DTUpdates.push_back( 1444 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB}); 1445 } 1446 assert(Changed && "Expected a successor to be updated"); 1447 } 1448 1449 // Move Lcssa PHIs to the right place. 1450 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader, 1451 BasicBlock *InnerLatch, BasicBlock *OuterHeader, 1452 BasicBlock *OuterLatch, BasicBlock *OuterExit, 1453 Loop *InnerLoop, LoopInfo *LI) { 1454 1455 // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are 1456 // defined either in the header or latch. Those blocks will become header and 1457 // latch of the new outer loop, and the only possible users can PHI nodes 1458 // in the exit block of the loop nest or the outer loop header (reduction 1459 // PHIs, in that case, the incoming value must be defined in the inner loop 1460 // header). We can just substitute the user with the incoming value and remove 1461 // the PHI. 1462 for (PHINode &P : make_early_inc_range(InnerExit->phis())) { 1463 assert(P.getNumIncomingValues() == 1 && 1464 "Only loops with a single exit are supported!"); 1465 1466 // Incoming values are guaranteed be instructions currently. 1467 auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch)); 1468 // In case of multi-level nested loops, follow LCSSA to find the incoming 1469 // value defined from the innermost loop. 1470 auto IncIInnerMost = cast<Instruction>(followLCSSA(IncI)); 1471 // Skip phis with incoming values from the inner loop body, excluding the 1472 // header and latch. 1473 if (IncIInnerMost->getParent() != InnerLatch && 1474 IncIInnerMost->getParent() != InnerHeader) 1475 continue; 1476 1477 assert(all_of(P.users(), 1478 [OuterHeader, OuterExit, IncI, InnerHeader](User *U) { 1479 return (cast<PHINode>(U)->getParent() == OuterHeader && 1480 IncI->getParent() == InnerHeader) || 1481 cast<PHINode>(U)->getParent() == OuterExit; 1482 }) && 1483 "Can only replace phis iff the uses are in the loop nest exit or " 1484 "the incoming value is defined in the inner header (it will " 1485 "dominate all loop blocks after interchanging)"); 1486 P.replaceAllUsesWith(IncI); 1487 P.eraseFromParent(); 1488 } 1489 1490 SmallVector<PHINode *, 8> LcssaInnerExit; 1491 for (PHINode &P : InnerExit->phis()) 1492 LcssaInnerExit.push_back(&P); 1493 1494 SmallVector<PHINode *, 8> LcssaInnerLatch; 1495 for (PHINode &P : InnerLatch->phis()) 1496 LcssaInnerLatch.push_back(&P); 1497 1498 // Lcssa PHIs for values used outside the inner loop are in InnerExit. 1499 // If a PHI node has users outside of InnerExit, it has a use outside the 1500 // interchanged loop and we have to preserve it. We move these to 1501 // InnerLatch, which will become the new exit block for the innermost 1502 // loop after interchanging. 1503 for (PHINode *P : LcssaInnerExit) 1504 P->moveBefore(InnerLatch->getFirstNonPHI()); 1505 1506 // If the inner loop latch contains LCSSA PHIs, those come from a child loop 1507 // and we have to move them to the new inner latch. 1508 for (PHINode *P : LcssaInnerLatch) 1509 P->moveBefore(InnerExit->getFirstNonPHI()); 1510 1511 // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have 1512 // incoming values defined in the outer loop, we have to add a new PHI 1513 // in the inner loop latch, which became the exit block of the outer loop, 1514 // after interchanging. 1515 if (OuterExit) { 1516 for (PHINode &P : OuterExit->phis()) { 1517 if (P.getNumIncomingValues() != 1) 1518 continue; 1519 // Skip Phis with incoming values defined in the inner loop. Those should 1520 // already have been updated. 1521 auto I = dyn_cast<Instruction>(P.getIncomingValue(0)); 1522 if (!I || LI->getLoopFor(I->getParent()) == InnerLoop) 1523 continue; 1524 1525 PHINode *NewPhi = dyn_cast<PHINode>(P.clone()); 1526 NewPhi->setIncomingValue(0, P.getIncomingValue(0)); 1527 NewPhi->setIncomingBlock(0, OuterLatch); 1528 // We might have incoming edges from other BBs, i.e., the original outer 1529 // header. 1530 for (auto *Pred : predecessors(InnerLatch)) { 1531 if (Pred == OuterLatch) 1532 continue; 1533 NewPhi->addIncoming(P.getIncomingValue(0), Pred); 1534 } 1535 NewPhi->insertBefore(InnerLatch->getFirstNonPHI()); 1536 P.setIncomingValue(0, NewPhi); 1537 } 1538 } 1539 1540 // Now adjust the incoming blocks for the LCSSA PHIs. 1541 // For PHIs moved from Inner's exit block, we need to replace Inner's latch 1542 // with the new latch. 1543 InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch); 1544 } 1545 1546 bool LoopInterchangeTransform::adjustLoopBranches() { 1547 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n"); 1548 std::vector<DominatorTree::UpdateType> DTUpdates; 1549 1550 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1551 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1552 1553 assert(OuterLoopPreHeader != OuterLoop->getHeader() && 1554 InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader && 1555 InnerLoopPreHeader && "Guaranteed by loop-simplify form"); 1556 // Ensure that both preheaders do not contain PHI nodes and have single 1557 // predecessors. This allows us to move them easily. We use 1558 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing 1559 // preheaders do not satisfy those conditions. 1560 if (isa<PHINode>(OuterLoopPreHeader->begin()) || 1561 !OuterLoopPreHeader->getUniquePredecessor()) 1562 OuterLoopPreHeader = 1563 InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true); 1564 if (InnerLoopPreHeader == OuterLoop->getHeader()) 1565 InnerLoopPreHeader = 1566 InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true); 1567 1568 // Adjust the loop preheader 1569 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1570 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1571 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 1572 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 1573 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor(); 1574 BasicBlock *InnerLoopLatchPredecessor = 1575 InnerLoopLatch->getUniquePredecessor(); 1576 BasicBlock *InnerLoopLatchSuccessor; 1577 BasicBlock *OuterLoopLatchSuccessor; 1578 1579 BranchInst *OuterLoopLatchBI = 1580 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator()); 1581 BranchInst *InnerLoopLatchBI = 1582 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 1583 BranchInst *OuterLoopHeaderBI = 1584 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 1585 BranchInst *InnerLoopHeaderBI = 1586 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator()); 1587 1588 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor || 1589 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI || 1590 !InnerLoopHeaderBI) 1591 return false; 1592 1593 BranchInst *InnerLoopLatchPredecessorBI = 1594 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator()); 1595 BranchInst *OuterLoopPredecessorBI = 1596 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator()); 1597 1598 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI) 1599 return false; 1600 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor(); 1601 if (!InnerLoopHeaderSuccessor) 1602 return false; 1603 1604 // Adjust Loop Preheader and headers. 1605 // The branches in the outer loop predecessor and the outer loop header can 1606 // be unconditional branches or conditional branches with duplicates. Consider 1607 // this when updating the successors. 1608 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader, 1609 InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false); 1610 // The outer loop header might or might not branch to the outer latch. 1611 // We are guaranteed to branch to the inner loop preheader. 1612 if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) { 1613 // In this case the outerLoopHeader should branch to the InnerLoopLatch. 1614 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, InnerLoopLatch, 1615 DTUpdates, 1616 /*MustUpdateOnce=*/false); 1617 } 1618 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader, 1619 InnerLoopHeaderSuccessor, DTUpdates, 1620 /*MustUpdateOnce=*/false); 1621 1622 // Adjust reduction PHI's now that the incoming block has changed. 1623 InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader, 1624 OuterLoopHeader); 1625 1626 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor, 1627 OuterLoopPreHeader, DTUpdates); 1628 1629 // -------------Adjust loop latches----------- 1630 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader) 1631 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1); 1632 else 1633 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0); 1634 1635 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch, 1636 InnerLoopLatchSuccessor, DTUpdates); 1637 1638 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader) 1639 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1); 1640 else 1641 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0); 1642 1643 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor, 1644 OuterLoopLatchSuccessor, DTUpdates); 1645 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch, 1646 DTUpdates); 1647 1648 DT->applyUpdates(DTUpdates); 1649 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader, 1650 OuterLoopPreHeader); 1651 1652 moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch, 1653 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(), 1654 InnerLoop, LI); 1655 // For PHIs in the exit block of the outer loop, outer's latch has been 1656 // replaced by Inners'. 1657 OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1658 1659 auto &OuterInnerReductions = LIL.getOuterInnerReductions(); 1660 // Now update the reduction PHIs in the inner and outer loop headers. 1661 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs; 1662 for (PHINode &PHI : InnerLoopHeader->phis()) 1663 if (OuterInnerReductions.contains(&PHI)) 1664 InnerLoopPHIs.push_back(&PHI); 1665 1666 for (PHINode &PHI : OuterLoopHeader->phis()) 1667 if (OuterInnerReductions.contains(&PHI)) 1668 OuterLoopPHIs.push_back(&PHI); 1669 1670 // Now move the remaining reduction PHIs from outer to inner loop header and 1671 // vice versa. The PHI nodes must be part of a reduction across the inner and 1672 // outer loop and all the remains to do is and updating the incoming blocks. 1673 for (PHINode *PHI : OuterLoopPHIs) { 1674 LLVM_DEBUG(dbgs() << "Outer loop reduction PHIs:\n"; PHI->dump();); 1675 PHI->moveBefore(InnerLoopHeader->getFirstNonPHI()); 1676 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1677 } 1678 for (PHINode *PHI : InnerLoopPHIs) { 1679 LLVM_DEBUG(dbgs() << "Inner loop reduction PHIs:\n"; PHI->dump();); 1680 PHI->moveBefore(OuterLoopHeader->getFirstNonPHI()); 1681 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1682 } 1683 1684 // Update the incoming blocks for moved PHI nodes. 1685 OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader); 1686 OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch); 1687 InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader); 1688 InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1689 1690 // Values defined in the outer loop header could be used in the inner loop 1691 // latch. In that case, we need to create LCSSA phis for them, because after 1692 // interchanging they will be defined in the new inner loop and used in the 1693 // new outer loop. 1694 IRBuilder<> Builder(OuterLoopHeader->getContext()); 1695 SmallVector<Instruction *, 4> MayNeedLCSSAPhis; 1696 for (Instruction &I : 1697 make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end()))) 1698 MayNeedLCSSAPhis.push_back(&I); 1699 formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder); 1700 1701 return true; 1702 } 1703 1704 bool LoopInterchangeTransform::adjustLoopLinks() { 1705 // Adjust all branches in the inner and outer loop. 1706 bool Changed = adjustLoopBranches(); 1707 if (Changed) { 1708 // We have interchanged the preheaders so we need to interchange the data in 1709 // the preheaders as well. This is because the content of the inner 1710 // preheader was previously executed inside the outer loop. 1711 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1712 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1713 swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader); 1714 } 1715 return Changed; 1716 } 1717 1718 PreservedAnalyses LoopInterchangePass::run(LoopNest &LN, 1719 LoopAnalysisManager &AM, 1720 LoopStandardAnalysisResults &AR, 1721 LPMUpdater &U) { 1722 Function &F = *LN.getParent(); 1723 1724 DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI); 1725 std::unique_ptr<CacheCost> CC = 1726 CacheCost::getCacheCost(LN.getOutermostLoop(), AR, DI); 1727 OptimizationRemarkEmitter ORE(&F); 1728 if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, CC, &ORE).run(LN)) 1729 return PreservedAnalyses::all(); 1730 U.markLoopNestChanged(true); 1731 return getLoopPassPreservedAnalyses(); 1732 } 1733