xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopInterchange.cpp (revision d15f3e828d3d3335aa9b92b9013a590b71e56b92)
1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This Pass handles loop interchange transform.
10 // This pass interchanges loops to provide a more cache-friendly memory access
11 // patterns.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/LoopInterchange.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/StringSet.h"
21 #include "llvm/Analysis/DependenceAnalysis.h"
22 #include "llvm/Analysis/LoopCacheAnalysis.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/LoopNestAnalysis.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Scalar/LoopPassManager.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/LoopUtils.h"
46 #include <cassert>
47 #include <utility>
48 #include <vector>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "loop-interchange"
53 
54 STATISTIC(LoopsInterchanged, "Number of loops interchanged");
55 
56 static cl::opt<int> LoopInterchangeCostThreshold(
57     "loop-interchange-threshold", cl::init(0), cl::Hidden,
58     cl::desc("Interchange if you gain more than this number"));
59 
60 // Maximum number of load-stores that can be handled in the dependency matrix.
61 static cl::opt<unsigned int> MaxMemInstrCount(
62     "loop-interchange-max-meminstr-count", cl::init(64), cl::Hidden,
63     cl::desc(
64         "Maximum number of load-store instructions that should be handled "
65         "in the dependency matrix. Higher value may lead to more interchanges "
66         "at the cost of compile-time"));
67 
68 namespace {
69 
70 using LoopVector = SmallVector<Loop *, 8>;
71 
72 // TODO: Check if we can use a sparse matrix here.
73 using CharMatrix = std::vector<std::vector<char>>;
74 
75 } // end anonymous namespace
76 
77 // Minimum loop depth supported.
78 static cl::opt<unsigned int> MinLoopNestDepth(
79     "loop-interchange-min-loop-nest-depth", cl::init(2), cl::Hidden,
80     cl::desc("Minimum depth of loop nest considered for the transform"));
81 
82 // Maximum loop depth supported.
83 static cl::opt<unsigned int> MaxLoopNestDepth(
84     "loop-interchange-max-loop-nest-depth", cl::init(10), cl::Hidden,
85     cl::desc("Maximum depth of loop nest considered for the transform"));
86 
87 #ifndef NDEBUG
88 static void printDepMatrix(CharMatrix &DepMatrix) {
89   for (auto &Row : DepMatrix) {
90     for (auto D : Row)
91       LLVM_DEBUG(dbgs() << D << " ");
92     LLVM_DEBUG(dbgs() << "\n");
93   }
94 }
95 #endif
96 
97 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
98                                      Loop *L, DependenceInfo *DI,
99                                      ScalarEvolution *SE,
100                                      OptimizationRemarkEmitter *ORE) {
101   using ValueVector = SmallVector<Value *, 16>;
102 
103   ValueVector MemInstr;
104 
105   // For each block.
106   for (BasicBlock *BB : L->blocks()) {
107     // Scan the BB and collect legal loads and stores.
108     for (Instruction &I : *BB) {
109       if (!isa<Instruction>(I))
110         return false;
111       if (auto *Ld = dyn_cast<LoadInst>(&I)) {
112         if (!Ld->isSimple())
113           return false;
114         MemInstr.push_back(&I);
115       } else if (auto *St = dyn_cast<StoreInst>(&I)) {
116         if (!St->isSimple())
117           return false;
118         MemInstr.push_back(&I);
119       }
120     }
121   }
122 
123   LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
124                     << " Loads and Stores to analyze\n");
125   if (MemInstr.size() > MaxMemInstrCount) {
126     LLVM_DEBUG(dbgs() << "The transform doesn't support more than "
127                       << MaxMemInstrCount << " load/stores in a loop\n");
128     ORE->emit([&]() {
129       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedLoop",
130                                       L->getStartLoc(), L->getHeader())
131              << "Number of loads/stores exceeded, the supported maximum "
132                 "can be increased with option "
133                 "-loop-interchange-maxmeminstr-count.";
134     });
135     return false;
136   }
137   ValueVector::iterator I, IE, J, JE;
138   StringSet<> Seen;
139 
140   for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
141     for (J = I, JE = MemInstr.end(); J != JE; ++J) {
142       std::vector<char> Dep;
143       Instruction *Src = cast<Instruction>(*I);
144       Instruction *Dst = cast<Instruction>(*J);
145       // Ignore Input dependencies.
146       if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
147         continue;
148       // Track Output, Flow, and Anti dependencies.
149       if (auto D = DI->depends(Src, Dst, true)) {
150         assert(D->isOrdered() && "Expected an output, flow or anti dep.");
151         // If the direction vector is negative, normalize it to
152         // make it non-negative.
153         if (D->normalize(SE))
154           LLVM_DEBUG(dbgs() << "Negative dependence vector normalized.\n");
155         LLVM_DEBUG(StringRef DepType =
156                        D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
157                    dbgs() << "Found " << DepType
158                           << " dependency between Src and Dst\n"
159                           << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
160         unsigned Levels = D->getLevels();
161         char Direction;
162         for (unsigned II = 1; II <= Levels; ++II) {
163           unsigned Dir = D->getDirection(II);
164           if (Dir == Dependence::DVEntry::LT || Dir == Dependence::DVEntry::LE)
165             Direction = '<';
166           else if (Dir == Dependence::DVEntry::GT ||
167                    Dir == Dependence::DVEntry::GE)
168             Direction = '>';
169           else if (Dir == Dependence::DVEntry::EQ)
170             Direction = '=';
171           else
172             Direction = '*';
173           Dep.push_back(Direction);
174         }
175         while (Dep.size() != Level) {
176           Dep.push_back('I');
177         }
178 
179         // Make sure we only add unique entries to the dependency matrix.
180         if (Seen.insert(StringRef(Dep.data(), Dep.size())).second)
181           DepMatrix.push_back(Dep);
182       }
183     }
184   }
185 
186   return true;
187 }
188 
189 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
190 // matrix by exchanging the two columns.
191 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
192                                     unsigned ToIndx) {
193   for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I)
194     std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]);
195 }
196 
197 // After interchanging, check if the direction vector is valid.
198 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
199 // if the direction matrix, after the same permutation is applied to its
200 // columns, has no ">" direction as the leftmost non-"=" direction in any row.
201 static bool isLexicographicallyPositive(std::vector<char> &DV) {
202   for (unsigned char Direction : DV) {
203     if (Direction == '<')
204       return true;
205     if (Direction == '>' || Direction == '*')
206       return false;
207   }
208   return true;
209 }
210 
211 // Checks if it is legal to interchange 2 loops.
212 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
213                                       unsigned InnerLoopId,
214                                       unsigned OuterLoopId) {
215   unsigned NumRows = DepMatrix.size();
216   std::vector<char> Cur;
217   // For each row check if it is valid to interchange.
218   for (unsigned Row = 0; Row < NumRows; ++Row) {
219     // Create temporary DepVector check its lexicographical order
220     // before and after swapping OuterLoop vs InnerLoop
221     Cur = DepMatrix[Row];
222     if (!isLexicographicallyPositive(Cur))
223       return false;
224     std::swap(Cur[InnerLoopId], Cur[OuterLoopId]);
225     if (!isLexicographicallyPositive(Cur))
226       return false;
227   }
228   return true;
229 }
230 
231 static void populateWorklist(Loop &L, LoopVector &LoopList) {
232   LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
233                     << L.getHeader()->getParent()->getName() << " Loop: %"
234                     << L.getHeader()->getName() << '\n');
235   assert(LoopList.empty() && "LoopList should initially be empty!");
236   Loop *CurrentLoop = &L;
237   const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
238   while (!Vec->empty()) {
239     // The current loop has multiple subloops in it hence it is not tightly
240     // nested.
241     // Discard all loops above it added into Worklist.
242     if (Vec->size() != 1) {
243       LoopList = {};
244       return;
245     }
246 
247     LoopList.push_back(CurrentLoop);
248     CurrentLoop = Vec->front();
249     Vec = &CurrentLoop->getSubLoops();
250   }
251   LoopList.push_back(CurrentLoop);
252 }
253 
254 static bool hasSupportedLoopDepth(SmallVectorImpl<Loop *> &LoopList,
255                                   OptimizationRemarkEmitter &ORE) {
256   unsigned LoopNestDepth = LoopList.size();
257   if (LoopNestDepth < MinLoopNestDepth || LoopNestDepth > MaxLoopNestDepth) {
258     LLVM_DEBUG(dbgs() << "Unsupported depth of loop nest " << LoopNestDepth
259                       << ", the supported range is [" << MinLoopNestDepth
260                       << ", " << MaxLoopNestDepth << "].\n");
261     Loop **OuterLoop = LoopList.begin();
262     ORE.emit([&]() {
263       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedLoopNestDepth",
264                                       (*OuterLoop)->getStartLoc(),
265                                       (*OuterLoop)->getHeader())
266              << "Unsupported depth of loop nest, the supported range is ["
267              << std::to_string(MinLoopNestDepth) << ", "
268              << std::to_string(MaxLoopNestDepth) << "].\n";
269     });
270     return false;
271   }
272   return true;
273 }
274 namespace {
275 
276 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
277 class LoopInterchangeLegality {
278 public:
279   LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
280                           OptimizationRemarkEmitter *ORE)
281       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
282 
283   /// Check if the loops can be interchanged.
284   bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
285                            CharMatrix &DepMatrix);
286 
287   /// Discover induction PHIs in the header of \p L. Induction
288   /// PHIs are added to \p Inductions.
289   bool findInductions(Loop *L, SmallVectorImpl<PHINode *> &Inductions);
290 
291   /// Check if the loop structure is understood. We do not handle triangular
292   /// loops for now.
293   bool isLoopStructureUnderstood();
294 
295   bool currentLimitations();
296 
297   const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const {
298     return OuterInnerReductions;
299   }
300 
301   const SmallVectorImpl<PHINode *> &getInnerLoopInductions() const {
302     return InnerLoopInductions;
303   }
304 
305 private:
306   bool tightlyNested(Loop *Outer, Loop *Inner);
307   bool containsUnsafeInstructions(BasicBlock *BB);
308 
309   /// Discover induction and reduction PHIs in the header of \p L. Induction
310   /// PHIs are added to \p Inductions, reductions are added to
311   /// OuterInnerReductions. When the outer loop is passed, the inner loop needs
312   /// to be passed as \p InnerLoop.
313   bool findInductionAndReductions(Loop *L,
314                                   SmallVector<PHINode *, 8> &Inductions,
315                                   Loop *InnerLoop);
316 
317   Loop *OuterLoop;
318   Loop *InnerLoop;
319 
320   ScalarEvolution *SE;
321 
322   /// Interface to emit optimization remarks.
323   OptimizationRemarkEmitter *ORE;
324 
325   /// Set of reduction PHIs taking part of a reduction across the inner and
326   /// outer loop.
327   SmallPtrSet<PHINode *, 4> OuterInnerReductions;
328 
329   /// Set of inner loop induction PHIs
330   SmallVector<PHINode *, 8> InnerLoopInductions;
331 };
332 
333 /// LoopInterchangeProfitability checks if it is profitable to interchange the
334 /// loop.
335 class LoopInterchangeProfitability {
336 public:
337   LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
338                                OptimizationRemarkEmitter *ORE)
339       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
340 
341   /// Check if the loop interchange is profitable.
342   bool isProfitable(const Loop *InnerLoop, const Loop *OuterLoop,
343                     unsigned InnerLoopId, unsigned OuterLoopId,
344                     CharMatrix &DepMatrix,
345                     const DenseMap<const Loop *, unsigned> &CostMap,
346                     std::unique_ptr<CacheCost> &CC);
347 
348 private:
349   int getInstrOrderCost();
350   std::optional<bool> isProfitablePerLoopCacheAnalysis(
351       const DenseMap<const Loop *, unsigned> &CostMap,
352       std::unique_ptr<CacheCost> &CC);
353   std::optional<bool> isProfitablePerInstrOrderCost();
354   std::optional<bool> isProfitableForVectorization(unsigned InnerLoopId,
355                                                    unsigned OuterLoopId,
356                                                    CharMatrix &DepMatrix);
357   Loop *OuterLoop;
358   Loop *InnerLoop;
359 
360   /// Scev analysis.
361   ScalarEvolution *SE;
362 
363   /// Interface to emit optimization remarks.
364   OptimizationRemarkEmitter *ORE;
365 };
366 
367 /// LoopInterchangeTransform interchanges the loop.
368 class LoopInterchangeTransform {
369 public:
370   LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
371                            LoopInfo *LI, DominatorTree *DT,
372                            const LoopInterchangeLegality &LIL)
373       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LIL(LIL) {}
374 
375   /// Interchange OuterLoop and InnerLoop.
376   bool transform();
377   void restructureLoops(Loop *NewInner, Loop *NewOuter,
378                         BasicBlock *OrigInnerPreHeader,
379                         BasicBlock *OrigOuterPreHeader);
380   void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
381 
382 private:
383   bool adjustLoopLinks();
384   bool adjustLoopBranches();
385 
386   Loop *OuterLoop;
387   Loop *InnerLoop;
388 
389   /// Scev analysis.
390   ScalarEvolution *SE;
391 
392   LoopInfo *LI;
393   DominatorTree *DT;
394 
395   const LoopInterchangeLegality &LIL;
396 };
397 
398 struct LoopInterchange {
399   ScalarEvolution *SE = nullptr;
400   LoopInfo *LI = nullptr;
401   DependenceInfo *DI = nullptr;
402   DominatorTree *DT = nullptr;
403   std::unique_ptr<CacheCost> CC = nullptr;
404 
405   /// Interface to emit optimization remarks.
406   OptimizationRemarkEmitter *ORE;
407 
408   LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI,
409                   DominatorTree *DT, std::unique_ptr<CacheCost> &CC,
410                   OptimizationRemarkEmitter *ORE)
411       : SE(SE), LI(LI), DI(DI), DT(DT), CC(std::move(CC)), ORE(ORE) {}
412 
413   bool run(Loop *L) {
414     if (L->getParentLoop())
415       return false;
416     SmallVector<Loop *, 8> LoopList;
417     populateWorklist(*L, LoopList);
418     return processLoopList(LoopList);
419   }
420 
421   bool run(LoopNest &LN) {
422     SmallVector<Loop *, 8> LoopList(LN.getLoops());
423     for (unsigned I = 1; I < LoopList.size(); ++I)
424       if (LoopList[I]->getParentLoop() != LoopList[I - 1])
425         return false;
426     return processLoopList(LoopList);
427   }
428 
429   bool isComputableLoopNest(ArrayRef<Loop *> LoopList) {
430     for (Loop *L : LoopList) {
431       const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
432       if (isa<SCEVCouldNotCompute>(ExitCountOuter)) {
433         LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
434         return false;
435       }
436       if (L->getNumBackEdges() != 1) {
437         LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
438         return false;
439       }
440       if (!L->getExitingBlock()) {
441         LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
442         return false;
443       }
444     }
445     return true;
446   }
447 
448   unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) {
449     // TODO: Add a better heuristic to select the loop to be interchanged based
450     // on the dependence matrix. Currently we select the innermost loop.
451     return LoopList.size() - 1;
452   }
453 
454   bool processLoopList(SmallVectorImpl<Loop *> &LoopList) {
455     bool Changed = false;
456 
457     // Ensure proper loop nest depth.
458     assert(hasSupportedLoopDepth(LoopList, *ORE) &&
459            "Unsupported depth of loop nest.");
460 
461     unsigned LoopNestDepth = LoopList.size();
462     if (!isComputableLoopNest(LoopList)) {
463       LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
464       return false;
465     }
466 
467     LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
468                       << "\n");
469 
470     CharMatrix DependencyMatrix;
471     Loop *OuterMostLoop = *(LoopList.begin());
472     if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
473                                   OuterMostLoop, DI, SE, ORE)) {
474       LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
475       return false;
476     }
477 
478     LLVM_DEBUG(dbgs() << "Dependency matrix before interchange:\n";
479                printDepMatrix(DependencyMatrix));
480 
481     // Get the Outermost loop exit.
482     BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
483     if (!LoopNestExit) {
484       LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
485       return false;
486     }
487 
488     unsigned SelecLoopId = selectLoopForInterchange(LoopList);
489     // Obtain the loop vector returned from loop cache analysis beforehand,
490     // and put each <Loop, index> pair into a map for constant time query
491     // later. Indices in loop vector reprsent the optimal order of the
492     // corresponding loop, e.g., given a loopnest with depth N, index 0
493     // indicates the loop should be placed as the outermost loop and index N
494     // indicates the loop should be placed as the innermost loop.
495     //
496     // For the old pass manager CacheCost would be null.
497     DenseMap<const Loop *, unsigned> CostMap;
498     if (CC != nullptr) {
499       const auto &LoopCosts = CC->getLoopCosts();
500       for (unsigned i = 0; i < LoopCosts.size(); i++) {
501         CostMap[LoopCosts[i].first] = i;
502       }
503     }
504     // We try to achieve the globally optimal memory access for the loopnest,
505     // and do interchange based on a bubble-sort fasion. We start from
506     // the innermost loop, move it outwards to the best possible position
507     // and repeat this process.
508     for (unsigned j = SelecLoopId; j > 0; j--) {
509       bool ChangedPerIter = false;
510       for (unsigned i = SelecLoopId; i > SelecLoopId - j; i--) {
511         bool Interchanged = processLoop(LoopList[i], LoopList[i - 1], i, i - 1,
512                                         DependencyMatrix, CostMap);
513         if (!Interchanged)
514           continue;
515         // Loops interchanged, update LoopList accordingly.
516         std::swap(LoopList[i - 1], LoopList[i]);
517         // Update the DependencyMatrix
518         interChangeDependencies(DependencyMatrix, i, i - 1);
519 
520         LLVM_DEBUG(dbgs() << "Dependency matrix after interchange:\n";
521                    printDepMatrix(DependencyMatrix));
522 
523         ChangedPerIter |= Interchanged;
524         Changed |= Interchanged;
525       }
526       // Early abort if there was no interchange during an entire round of
527       // moving loops outwards.
528       if (!ChangedPerIter)
529         break;
530     }
531     return Changed;
532   }
533 
534   bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId,
535                    unsigned OuterLoopId,
536                    std::vector<std::vector<char>> &DependencyMatrix,
537                    const DenseMap<const Loop *, unsigned> &CostMap) {
538     LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId
539                       << " and OuterLoopId = " << OuterLoopId << "\n");
540     LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
541     if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
542       LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
543       return false;
544     }
545     LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
546     LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
547     if (!LIP.isProfitable(InnerLoop, OuterLoop, InnerLoopId, OuterLoopId,
548                           DependencyMatrix, CostMap, CC)) {
549       LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
550       return false;
551     }
552 
553     ORE->emit([&]() {
554       return OptimizationRemark(DEBUG_TYPE, "Interchanged",
555                                 InnerLoop->getStartLoc(),
556                                 InnerLoop->getHeader())
557              << "Loop interchanged with enclosing loop.";
558     });
559 
560     LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LIL);
561     LIT.transform();
562     LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
563     LoopsInterchanged++;
564 
565     llvm::formLCSSARecursively(*OuterLoop, *DT, LI, SE);
566     return true;
567   }
568 };
569 
570 } // end anonymous namespace
571 
572 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) {
573   return any_of(*BB, [](const Instruction &I) {
574     return I.mayHaveSideEffects() || I.mayReadFromMemory();
575   });
576 }
577 
578 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
579   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
580   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
581   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
582 
583   LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
584 
585   // A perfectly nested loop will not have any branch in between the outer and
586   // inner block i.e. outer header will branch to either inner preheader and
587   // outerloop latch.
588   BranchInst *OuterLoopHeaderBI =
589       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
590   if (!OuterLoopHeaderBI)
591     return false;
592 
593   for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
594     if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
595         Succ != OuterLoopLatch)
596       return false;
597 
598   LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
599   // We do not have any basic block in between now make sure the outer header
600   // and outer loop latch doesn't contain any unsafe instructions.
601   if (containsUnsafeInstructions(OuterLoopHeader) ||
602       containsUnsafeInstructions(OuterLoopLatch))
603     return false;
604 
605   // Also make sure the inner loop preheader does not contain any unsafe
606   // instructions. Note that all instructions in the preheader will be moved to
607   // the outer loop header when interchanging.
608   if (InnerLoopPreHeader != OuterLoopHeader &&
609       containsUnsafeInstructions(InnerLoopPreHeader))
610     return false;
611 
612   BasicBlock *InnerLoopExit = InnerLoop->getExitBlock();
613   // Ensure the inner loop exit block flows to the outer loop latch possibly
614   // through empty blocks.
615   const BasicBlock &SuccInner =
616       LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch);
617   if (&SuccInner != OuterLoopLatch) {
618     LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit
619                       << " does not lead to the outer loop latch.\n";);
620     return false;
621   }
622   // The inner loop exit block does flow to the outer loop latch and not some
623   // other BBs, now make sure it contains safe instructions, since it will be
624   // moved into the (new) inner loop after interchange.
625   if (containsUnsafeInstructions(InnerLoopExit))
626     return false;
627 
628   LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
629   // We have a perfect loop nest.
630   return true;
631 }
632 
633 bool LoopInterchangeLegality::isLoopStructureUnderstood() {
634   BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
635   for (PHINode *InnerInduction : InnerLoopInductions) {
636     unsigned Num = InnerInduction->getNumOperands();
637     for (unsigned i = 0; i < Num; ++i) {
638       Value *Val = InnerInduction->getOperand(i);
639       if (isa<Constant>(Val))
640         continue;
641       Instruction *I = dyn_cast<Instruction>(Val);
642       if (!I)
643         return false;
644       // TODO: Handle triangular loops.
645       // e.g. for(int i=0;i<N;i++)
646       //        for(int j=i;j<N;j++)
647       unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
648       if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
649               InnerLoopPreheader &&
650           !OuterLoop->isLoopInvariant(I)) {
651         return false;
652       }
653     }
654   }
655 
656   // TODO: Handle triangular loops of another form.
657   // e.g. for(int i=0;i<N;i++)
658   //        for(int j=0;j<i;j++)
659   // or,
660   //      for(int i=0;i<N;i++)
661   //        for(int j=0;j*i<N;j++)
662   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
663   BranchInst *InnerLoopLatchBI =
664       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
665   if (!InnerLoopLatchBI->isConditional())
666     return false;
667   if (CmpInst *InnerLoopCmp =
668           dyn_cast<CmpInst>(InnerLoopLatchBI->getCondition())) {
669     Value *Op0 = InnerLoopCmp->getOperand(0);
670     Value *Op1 = InnerLoopCmp->getOperand(1);
671 
672     // LHS and RHS of the inner loop exit condition, e.g.,
673     // in "for(int j=0;j<i;j++)", LHS is j and RHS is i.
674     Value *Left = nullptr;
675     Value *Right = nullptr;
676 
677     // Check if V only involves inner loop induction variable.
678     // Return true if V is InnerInduction, or a cast from
679     // InnerInduction, or a binary operator that involves
680     // InnerInduction and a constant.
681     std::function<bool(Value *)> IsPathToInnerIndVar;
682     IsPathToInnerIndVar = [this, &IsPathToInnerIndVar](const Value *V) -> bool {
683       if (llvm::is_contained(InnerLoopInductions, V))
684         return true;
685       if (isa<Constant>(V))
686         return true;
687       const Instruction *I = dyn_cast<Instruction>(V);
688       if (!I)
689         return false;
690       if (isa<CastInst>(I))
691         return IsPathToInnerIndVar(I->getOperand(0));
692       if (isa<BinaryOperator>(I))
693         return IsPathToInnerIndVar(I->getOperand(0)) &&
694                IsPathToInnerIndVar(I->getOperand(1));
695       return false;
696     };
697 
698     // In case of multiple inner loop indvars, it is okay if LHS and RHS
699     // are both inner indvar related variables.
700     if (IsPathToInnerIndVar(Op0) && IsPathToInnerIndVar(Op1))
701       return true;
702 
703     // Otherwise we check if the cmp instruction compares an inner indvar
704     // related variable (Left) with a outer loop invariant (Right).
705     if (IsPathToInnerIndVar(Op0) && !isa<Constant>(Op0)) {
706       Left = Op0;
707       Right = Op1;
708     } else if (IsPathToInnerIndVar(Op1) && !isa<Constant>(Op1)) {
709       Left = Op1;
710       Right = Op0;
711     }
712 
713     if (Left == nullptr)
714       return false;
715 
716     const SCEV *S = SE->getSCEV(Right);
717     if (!SE->isLoopInvariant(S, OuterLoop))
718       return false;
719   }
720 
721   return true;
722 }
723 
724 // If SV is a LCSSA PHI node with a single incoming value, return the incoming
725 // value.
726 static Value *followLCSSA(Value *SV) {
727   PHINode *PHI = dyn_cast<PHINode>(SV);
728   if (!PHI)
729     return SV;
730 
731   if (PHI->getNumIncomingValues() != 1)
732     return SV;
733   return followLCSSA(PHI->getIncomingValue(0));
734 }
735 
736 // Check V's users to see if it is involved in a reduction in L.
737 static PHINode *findInnerReductionPhi(Loop *L, Value *V) {
738   // Reduction variables cannot be constants.
739   if (isa<Constant>(V))
740     return nullptr;
741 
742   for (Value *User : V->users()) {
743     if (PHINode *PHI = dyn_cast<PHINode>(User)) {
744       if (PHI->getNumIncomingValues() == 1)
745         continue;
746       RecurrenceDescriptor RD;
747       if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) {
748         // Detect floating point reduction only when it can be reordered.
749         if (RD.getExactFPMathInst() != nullptr)
750           return nullptr;
751         return PHI;
752       }
753       return nullptr;
754     }
755   }
756 
757   return nullptr;
758 }
759 
760 bool LoopInterchangeLegality::findInductionAndReductions(
761     Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) {
762   if (!L->getLoopLatch() || !L->getLoopPredecessor())
763     return false;
764   for (PHINode &PHI : L->getHeader()->phis()) {
765     InductionDescriptor ID;
766     if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
767       Inductions.push_back(&PHI);
768     else {
769       // PHIs in inner loops need to be part of a reduction in the outer loop,
770       // discovered when checking the PHIs of the outer loop earlier.
771       if (!InnerLoop) {
772         if (!OuterInnerReductions.count(&PHI)) {
773           LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
774                                "across the outer loop.\n");
775           return false;
776         }
777       } else {
778         assert(PHI.getNumIncomingValues() == 2 &&
779                "Phis in loop header should have exactly 2 incoming values");
780         // Check if we have a PHI node in the outer loop that has a reduction
781         // result from the inner loop as an incoming value.
782         Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch()));
783         PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V);
784         if (!InnerRedPhi ||
785             !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) {
786           LLVM_DEBUG(
787               dbgs()
788               << "Failed to recognize PHI as an induction or reduction.\n");
789           return false;
790         }
791         OuterInnerReductions.insert(&PHI);
792         OuterInnerReductions.insert(InnerRedPhi);
793       }
794     }
795   }
796   return true;
797 }
798 
799 // This function indicates the current limitations in the transform as a result
800 // of which we do not proceed.
801 bool LoopInterchangeLegality::currentLimitations() {
802   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
803 
804   // transform currently expects the loop latches to also be the exiting
805   // blocks.
806   if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
807       OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
808       !isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
809       !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
810     LLVM_DEBUG(
811         dbgs() << "Loops where the latch is not the exiting block are not"
812                << " supported currently.\n");
813     ORE->emit([&]() {
814       return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
815                                       OuterLoop->getStartLoc(),
816                                       OuterLoop->getHeader())
817              << "Loops where the latch is not the exiting block cannot be"
818                 " interchange currently.";
819     });
820     return true;
821   }
822 
823   SmallVector<PHINode *, 8> Inductions;
824   if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) {
825     LLVM_DEBUG(
826         dbgs() << "Only outer loops with induction or reduction PHI nodes "
827                << "are supported currently.\n");
828     ORE->emit([&]() {
829       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
830                                       OuterLoop->getStartLoc(),
831                                       OuterLoop->getHeader())
832              << "Only outer loops with induction or reduction PHI nodes can be"
833                 " interchanged currently.";
834     });
835     return true;
836   }
837 
838   Inductions.clear();
839   // For multi-level loop nests, make sure that all phi nodes for inner loops
840   // at all levels can be recognized as a induction or reduction phi. Bail out
841   // if a phi node at a certain nesting level cannot be properly recognized.
842   Loop *CurLevelLoop = OuterLoop;
843   while (!CurLevelLoop->getSubLoops().empty()) {
844     // We already made sure that the loop nest is tightly nested.
845     CurLevelLoop = CurLevelLoop->getSubLoops().front();
846     if (!findInductionAndReductions(CurLevelLoop, Inductions, nullptr)) {
847       LLVM_DEBUG(
848           dbgs() << "Only inner loops with induction or reduction PHI nodes "
849                 << "are supported currently.\n");
850       ORE->emit([&]() {
851         return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
852                                         CurLevelLoop->getStartLoc(),
853                                         CurLevelLoop->getHeader())
854               << "Only inner loops with induction or reduction PHI nodes can be"
855                   " interchange currently.";
856       });
857       return true;
858     }
859   }
860 
861   // TODO: Triangular loops are not handled for now.
862   if (!isLoopStructureUnderstood()) {
863     LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
864     ORE->emit([&]() {
865       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
866                                       InnerLoop->getStartLoc(),
867                                       InnerLoop->getHeader())
868              << "Inner loop structure not understood currently.";
869     });
870     return true;
871   }
872 
873   return false;
874 }
875 
876 bool LoopInterchangeLegality::findInductions(
877     Loop *L, SmallVectorImpl<PHINode *> &Inductions) {
878   for (PHINode &PHI : L->getHeader()->phis()) {
879     InductionDescriptor ID;
880     if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
881       Inductions.push_back(&PHI);
882   }
883   return !Inductions.empty();
884 }
885 
886 // We currently only support LCSSA PHI nodes in the inner loop exit, if their
887 // users are either reduction PHIs or PHIs outside the outer loop (which means
888 // the we are only interested in the final value after the loop).
889 static bool
890 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL,
891                               SmallPtrSetImpl<PHINode *> &Reductions) {
892   BasicBlock *InnerExit = OuterL->getUniqueExitBlock();
893   for (PHINode &PHI : InnerExit->phis()) {
894     // Reduction lcssa phi will have only 1 incoming block that from loop latch.
895     if (PHI.getNumIncomingValues() > 1)
896       return false;
897     if (any_of(PHI.users(), [&Reductions, OuterL](User *U) {
898           PHINode *PN = dyn_cast<PHINode>(U);
899           return !PN ||
900                  (!Reductions.count(PN) && OuterL->contains(PN->getParent()));
901         })) {
902       return false;
903     }
904   }
905   return true;
906 }
907 
908 // We currently support LCSSA PHI nodes in the outer loop exit, if their
909 // incoming values do not come from the outer loop latch or if the
910 // outer loop latch has a single predecessor. In that case, the value will
911 // be available if both the inner and outer loop conditions are true, which
912 // will still be true after interchanging. If we have multiple predecessor,
913 // that may not be the case, e.g. because the outer loop latch may be executed
914 // if the inner loop is not executed.
915 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
916   BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
917   for (PHINode &PHI : LoopNestExit->phis()) {
918     for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
919       Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
920       if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
921         continue;
922 
923       // The incoming value is defined in the outer loop latch. Currently we
924       // only support that in case the outer loop latch has a single predecessor.
925       // This guarantees that the outer loop latch is executed if and only if
926       // the inner loop is executed (because tightlyNested() guarantees that the
927       // outer loop header only branches to the inner loop or the outer loop
928       // latch).
929       // FIXME: We could weaken this logic and allow multiple predecessors,
930       //        if the values are produced outside the loop latch. We would need
931       //        additional logic to update the PHI nodes in the exit block as
932       //        well.
933       if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
934         return false;
935     }
936   }
937   return true;
938 }
939 
940 // In case of multi-level nested loops, it may occur that lcssa phis exist in
941 // the latch of InnerLoop, i.e., when defs of the incoming values are further
942 // inside the loopnest. Sometimes those incoming values are not available
943 // after interchange, since the original inner latch will become the new outer
944 // latch which may have predecessor paths that do not include those incoming
945 // values.
946 // TODO: Handle transformation of lcssa phis in the InnerLoop latch in case of
947 // multi-level loop nests.
948 static bool areInnerLoopLatchPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
949   if (InnerLoop->getSubLoops().empty())
950     return true;
951   // If the original outer latch has only one predecessor, then values defined
952   // further inside the looploop, e.g., in the innermost loop, will be available
953   // at the new outer latch after interchange.
954   if (OuterLoop->getLoopLatch()->getUniquePredecessor() != nullptr)
955     return true;
956 
957   // The outer latch has more than one predecessors, i.e., the inner
958   // exit and the inner header.
959   // PHI nodes in the inner latch are lcssa phis where the incoming values
960   // are defined further inside the loopnest. Check if those phis are used
961   // in the original inner latch. If that is the case then bail out since
962   // those incoming values may not be available at the new outer latch.
963   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
964   for (PHINode &PHI : InnerLoopLatch->phis()) {
965     for (auto *U : PHI.users()) {
966       Instruction *UI = cast<Instruction>(U);
967       if (InnerLoopLatch == UI->getParent())
968         return false;
969     }
970   }
971   return true;
972 }
973 
974 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
975                                                   unsigned OuterLoopId,
976                                                   CharMatrix &DepMatrix) {
977   if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
978     LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
979                       << " and OuterLoopId = " << OuterLoopId
980                       << " due to dependence\n");
981     ORE->emit([&]() {
982       return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
983                                       InnerLoop->getStartLoc(),
984                                       InnerLoop->getHeader())
985              << "Cannot interchange loops due to dependences.";
986     });
987     return false;
988   }
989   // Check if outer and inner loop contain legal instructions only.
990   for (auto *BB : OuterLoop->blocks())
991     for (Instruction &I : BB->instructionsWithoutDebug())
992       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
993         // readnone functions do not prevent interchanging.
994         if (CI->onlyWritesMemory())
995           continue;
996         LLVM_DEBUG(
997             dbgs() << "Loops with call instructions cannot be interchanged "
998                    << "safely.");
999         ORE->emit([&]() {
1000           return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
1001                                           CI->getDebugLoc(),
1002                                           CI->getParent())
1003                  << "Cannot interchange loops due to call instruction.";
1004         });
1005 
1006         return false;
1007       }
1008 
1009   if (!findInductions(InnerLoop, InnerLoopInductions)) {
1010     LLVM_DEBUG(dbgs() << "Could not find inner loop induction variables.\n");
1011     return false;
1012   }
1013 
1014   if (!areInnerLoopLatchPHIsSupported(OuterLoop, InnerLoop)) {
1015     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop latch.\n");
1016     ORE->emit([&]() {
1017       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedInnerLatchPHI",
1018                                       InnerLoop->getStartLoc(),
1019                                       InnerLoop->getHeader())
1020              << "Cannot interchange loops because unsupported PHI nodes found "
1021                 "in inner loop latch.";
1022     });
1023     return false;
1024   }
1025 
1026   // TODO: The loops could not be interchanged due to current limitations in the
1027   // transform module.
1028   if (currentLimitations()) {
1029     LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
1030     return false;
1031   }
1032 
1033   // Check if the loops are tightly nested.
1034   if (!tightlyNested(OuterLoop, InnerLoop)) {
1035     LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
1036     ORE->emit([&]() {
1037       return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
1038                                       InnerLoop->getStartLoc(),
1039                                       InnerLoop->getHeader())
1040              << "Cannot interchange loops because they are not tightly "
1041                 "nested.";
1042     });
1043     return false;
1044   }
1045 
1046   if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop,
1047                                      OuterInnerReductions)) {
1048     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n");
1049     ORE->emit([&]() {
1050       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1051                                       InnerLoop->getStartLoc(),
1052                                       InnerLoop->getHeader())
1053              << "Found unsupported PHI node in loop exit.";
1054     });
1055     return false;
1056   }
1057 
1058   if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
1059     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
1060     ORE->emit([&]() {
1061       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1062                                       OuterLoop->getStartLoc(),
1063                                       OuterLoop->getHeader())
1064              << "Found unsupported PHI node in loop exit.";
1065     });
1066     return false;
1067   }
1068 
1069   return true;
1070 }
1071 
1072 int LoopInterchangeProfitability::getInstrOrderCost() {
1073   unsigned GoodOrder, BadOrder;
1074   BadOrder = GoodOrder = 0;
1075   for (BasicBlock *BB : InnerLoop->blocks()) {
1076     for (Instruction &Ins : *BB) {
1077       if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
1078         unsigned NumOp = GEP->getNumOperands();
1079         bool FoundInnerInduction = false;
1080         bool FoundOuterInduction = false;
1081         for (unsigned i = 0; i < NumOp; ++i) {
1082           // Skip operands that are not SCEV-able.
1083           if (!SE->isSCEVable(GEP->getOperand(i)->getType()))
1084             continue;
1085 
1086           const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
1087           const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
1088           if (!AR)
1089             continue;
1090 
1091           // If we find the inner induction after an outer induction e.g.
1092           // for(int i=0;i<N;i++)
1093           //   for(int j=0;j<N;j++)
1094           //     A[i][j] = A[i-1][j-1]+k;
1095           // then it is a good order.
1096           if (AR->getLoop() == InnerLoop) {
1097             // We found an InnerLoop induction after OuterLoop induction. It is
1098             // a good order.
1099             FoundInnerInduction = true;
1100             if (FoundOuterInduction) {
1101               GoodOrder++;
1102               break;
1103             }
1104           }
1105           // If we find the outer induction after an inner induction e.g.
1106           // for(int i=0;i<N;i++)
1107           //   for(int j=0;j<N;j++)
1108           //     A[j][i] = A[j-1][i-1]+k;
1109           // then it is a bad order.
1110           if (AR->getLoop() == OuterLoop) {
1111             // We found an OuterLoop induction after InnerLoop induction. It is
1112             // a bad order.
1113             FoundOuterInduction = true;
1114             if (FoundInnerInduction) {
1115               BadOrder++;
1116               break;
1117             }
1118           }
1119         }
1120       }
1121     }
1122   }
1123   return GoodOrder - BadOrder;
1124 }
1125 
1126 std::optional<bool>
1127 LoopInterchangeProfitability::isProfitablePerLoopCacheAnalysis(
1128     const DenseMap<const Loop *, unsigned> &CostMap,
1129     std::unique_ptr<CacheCost> &CC) {
1130   // This is the new cost model returned from loop cache analysis.
1131   // A smaller index means the loop should be placed an outer loop, and vice
1132   // versa.
1133   if (CostMap.contains(InnerLoop) && CostMap.contains(OuterLoop)) {
1134     unsigned InnerIndex = 0, OuterIndex = 0;
1135     InnerIndex = CostMap.find(InnerLoop)->second;
1136     OuterIndex = CostMap.find(OuterLoop)->second;
1137     LLVM_DEBUG(dbgs() << "InnerIndex = " << InnerIndex
1138                       << ", OuterIndex = " << OuterIndex << "\n");
1139     if (InnerIndex < OuterIndex)
1140       return std::optional<bool>(true);
1141     assert(InnerIndex != OuterIndex && "CostMap should assign unique "
1142                                        "numbers to each loop");
1143     if (CC->getLoopCost(*OuterLoop) == CC->getLoopCost(*InnerLoop))
1144       return std::nullopt;
1145     return std::optional<bool>(false);
1146   }
1147   return std::nullopt;
1148 }
1149 
1150 std::optional<bool>
1151 LoopInterchangeProfitability::isProfitablePerInstrOrderCost() {
1152   // Legacy cost model: this is rough cost estimation algorithm. It counts the
1153   // good and bad order of induction variables in the instruction and allows
1154   // reordering if number of bad orders is more than good.
1155   int Cost = getInstrOrderCost();
1156   LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
1157   if (Cost < 0 && Cost < LoopInterchangeCostThreshold)
1158     return std::optional<bool>(true);
1159 
1160   return std::nullopt;
1161 }
1162 
1163 std::optional<bool> LoopInterchangeProfitability::isProfitableForVectorization(
1164     unsigned InnerLoopId, unsigned OuterLoopId, CharMatrix &DepMatrix) {
1165   for (auto &Row : DepMatrix) {
1166     // If the inner loop is loop independent or doesn't carry any dependency
1167     // it is not profitable to move this to outer position, since we are
1168     // likely able to do inner loop vectorization already.
1169     if (Row[InnerLoopId] == 'I' || Row[InnerLoopId] == '=')
1170       return std::optional<bool>(false);
1171 
1172     // If the outer loop is not loop independent it is not profitable to move
1173     // this to inner position, since doing so would not enable inner loop
1174     // parallelism.
1175     if (Row[OuterLoopId] != 'I' && Row[OuterLoopId] != '=')
1176       return std::optional<bool>(false);
1177   }
1178   // If inner loop has dependence and outer loop is loop independent then it
1179   // is/ profitable to interchange to enable inner loop parallelism.
1180   // If there are no dependences, interchanging will not improve anything.
1181   return std::optional<bool>(!DepMatrix.empty());
1182 }
1183 
1184 bool LoopInterchangeProfitability::isProfitable(
1185     const Loop *InnerLoop, const Loop *OuterLoop, unsigned InnerLoopId,
1186     unsigned OuterLoopId, CharMatrix &DepMatrix,
1187     const DenseMap<const Loop *, unsigned> &CostMap,
1188     std::unique_ptr<CacheCost> &CC) {
1189   // isProfitable() is structured to avoid endless loop interchange.
1190   // If loop cache analysis could decide the profitability then,
1191   // profitability check will stop and return the analysis result.
1192   // If cache analysis failed to analyze the loopnest (e.g.,
1193   // due to delinearization issues) then only check whether it is
1194   // profitable for InstrOrderCost. Likewise, if InstrOrderCost failed to
1195   // analysis the profitability then only, isProfitableForVectorization
1196   // will decide.
1197   std::optional<bool> shouldInterchange =
1198       isProfitablePerLoopCacheAnalysis(CostMap, CC);
1199   if (!shouldInterchange.has_value()) {
1200     shouldInterchange = isProfitablePerInstrOrderCost();
1201     if (!shouldInterchange.has_value())
1202       shouldInterchange =
1203           isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix);
1204   }
1205   if (!shouldInterchange.has_value()) {
1206     ORE->emit([&]() {
1207       return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1208                                       InnerLoop->getStartLoc(),
1209                                       InnerLoop->getHeader())
1210              << "Insufficient information to calculate the cost of loop for "
1211                 "interchange.";
1212     });
1213     return false;
1214   } else if (!shouldInterchange.value()) {
1215     ORE->emit([&]() {
1216       return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1217                                       InnerLoop->getStartLoc(),
1218                                       InnerLoop->getHeader())
1219              << "Interchanging loops is not considered to improve cache "
1220                 "locality nor vectorization.";
1221     });
1222     return false;
1223   }
1224   return true;
1225 }
1226 
1227 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
1228                                                Loop *InnerLoop) {
1229   for (Loop *L : *OuterLoop)
1230     if (L == InnerLoop) {
1231       OuterLoop->removeChildLoop(L);
1232       return;
1233     }
1234   llvm_unreachable("Couldn't find loop");
1235 }
1236 
1237 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
1238 /// new inner and outer loop after interchanging: NewInner is the original
1239 /// outer loop and NewOuter is the original inner loop.
1240 ///
1241 /// Before interchanging, we have the following structure
1242 /// Outer preheader
1243 //  Outer header
1244 //    Inner preheader
1245 //    Inner header
1246 //      Inner body
1247 //      Inner latch
1248 //   outer bbs
1249 //   Outer latch
1250 //
1251 // After interchanging:
1252 // Inner preheader
1253 // Inner header
1254 //   Outer preheader
1255 //   Outer header
1256 //     Inner body
1257 //     outer bbs
1258 //     Outer latch
1259 //   Inner latch
1260 void LoopInterchangeTransform::restructureLoops(
1261     Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
1262     BasicBlock *OrigOuterPreHeader) {
1263   Loop *OuterLoopParent = OuterLoop->getParentLoop();
1264   // The original inner loop preheader moves from the new inner loop to
1265   // the parent loop, if there is one.
1266   NewInner->removeBlockFromLoop(OrigInnerPreHeader);
1267   LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
1268 
1269   // Switch the loop levels.
1270   if (OuterLoopParent) {
1271     // Remove the loop from its parent loop.
1272     removeChildLoop(OuterLoopParent, NewInner);
1273     removeChildLoop(NewInner, NewOuter);
1274     OuterLoopParent->addChildLoop(NewOuter);
1275   } else {
1276     removeChildLoop(NewInner, NewOuter);
1277     LI->changeTopLevelLoop(NewInner, NewOuter);
1278   }
1279   while (!NewOuter->isInnermost())
1280     NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
1281   NewOuter->addChildLoop(NewInner);
1282 
1283   // BBs from the original inner loop.
1284   SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
1285 
1286   // Add BBs from the original outer loop to the original inner loop (excluding
1287   // BBs already in inner loop)
1288   for (BasicBlock *BB : NewInner->blocks())
1289     if (LI->getLoopFor(BB) == NewInner)
1290       NewOuter->addBlockEntry(BB);
1291 
1292   // Now remove inner loop header and latch from the new inner loop and move
1293   // other BBs (the loop body) to the new inner loop.
1294   BasicBlock *OuterHeader = NewOuter->getHeader();
1295   BasicBlock *OuterLatch = NewOuter->getLoopLatch();
1296   for (BasicBlock *BB : OrigInnerBBs) {
1297     // Nothing will change for BBs in child loops.
1298     if (LI->getLoopFor(BB) != NewOuter)
1299       continue;
1300     // Remove the new outer loop header and latch from the new inner loop.
1301     if (BB == OuterHeader || BB == OuterLatch)
1302       NewInner->removeBlockFromLoop(BB);
1303     else
1304       LI->changeLoopFor(BB, NewInner);
1305   }
1306 
1307   // The preheader of the original outer loop becomes part of the new
1308   // outer loop.
1309   NewOuter->addBlockEntry(OrigOuterPreHeader);
1310   LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
1311 
1312   // Tell SE that we move the loops around.
1313   SE->forgetLoop(NewOuter);
1314 }
1315 
1316 bool LoopInterchangeTransform::transform() {
1317   bool Transformed = false;
1318 
1319   if (InnerLoop->getSubLoops().empty()) {
1320     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1321     LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n");
1322     auto &InductionPHIs = LIL.getInnerLoopInductions();
1323     if (InductionPHIs.empty()) {
1324       LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1325       return false;
1326     }
1327 
1328     SmallVector<Instruction *, 8> InnerIndexVarList;
1329     for (PHINode *CurInductionPHI : InductionPHIs) {
1330       if (CurInductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1331         InnerIndexVarList.push_back(
1332             dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(1)));
1333       else
1334         InnerIndexVarList.push_back(
1335             dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(0)));
1336     }
1337 
1338     // Create a new latch block for the inner loop. We split at the
1339     // current latch's terminator and then move the condition and all
1340     // operands that are not either loop-invariant or the induction PHI into the
1341     // new latch block.
1342     BasicBlock *NewLatch =
1343         SplitBlock(InnerLoop->getLoopLatch(),
1344                    InnerLoop->getLoopLatch()->getTerminator(), DT, LI);
1345 
1346     SmallSetVector<Instruction *, 4> WorkList;
1347     unsigned i = 0;
1348     auto MoveInstructions = [&i, &WorkList, this, &InductionPHIs, NewLatch]() {
1349       for (; i < WorkList.size(); i++) {
1350         // Duplicate instruction and move it the new latch. Update uses that
1351         // have been moved.
1352         Instruction *NewI = WorkList[i]->clone();
1353         NewI->insertBefore(NewLatch->getFirstNonPHI());
1354         assert(!NewI->mayHaveSideEffects() &&
1355                "Moving instructions with side-effects may change behavior of "
1356                "the loop nest!");
1357         for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) {
1358           Instruction *UserI = cast<Instruction>(U.getUser());
1359           if (!InnerLoop->contains(UserI->getParent()) ||
1360               UserI->getParent() == NewLatch ||
1361               llvm::is_contained(InductionPHIs, UserI))
1362             U.set(NewI);
1363         }
1364         // Add operands of moved instruction to the worklist, except if they are
1365         // outside the inner loop or are the induction PHI.
1366         for (Value *Op : WorkList[i]->operands()) {
1367           Instruction *OpI = dyn_cast<Instruction>(Op);
1368           if (!OpI ||
1369               this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop ||
1370               llvm::is_contained(InductionPHIs, OpI))
1371             continue;
1372           WorkList.insert(OpI);
1373         }
1374       }
1375     };
1376 
1377     // FIXME: Should we interchange when we have a constant condition?
1378     Instruction *CondI = dyn_cast<Instruction>(
1379         cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator())
1380             ->getCondition());
1381     if (CondI)
1382       WorkList.insert(CondI);
1383     MoveInstructions();
1384     for (Instruction *InnerIndexVar : InnerIndexVarList)
1385       WorkList.insert(cast<Instruction>(InnerIndexVar));
1386     MoveInstructions();
1387   }
1388 
1389   // Ensure the inner loop phi nodes have a separate basic block.
1390   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1391   if (InnerLoopHeader->getFirstNonPHI() != InnerLoopHeader->getTerminator()) {
1392     SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1393     LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
1394   }
1395 
1396   // Instructions in the original inner loop preheader may depend on values
1397   // defined in the outer loop header. Move them there, because the original
1398   // inner loop preheader will become the entry into the interchanged loop nest.
1399   // Currently we move all instructions and rely on LICM to move invariant
1400   // instructions outside the loop nest.
1401   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1402   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1403   if (InnerLoopPreHeader != OuterLoopHeader) {
1404     SmallPtrSet<Instruction *, 4> NeedsMoving;
1405     for (Instruction &I :
1406          make_early_inc_range(make_range(InnerLoopPreHeader->begin(),
1407                                          std::prev(InnerLoopPreHeader->end()))))
1408       I.moveBeforePreserving(OuterLoopHeader->getTerminator());
1409   }
1410 
1411   Transformed |= adjustLoopLinks();
1412   if (!Transformed) {
1413     LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
1414     return false;
1415   }
1416 
1417   return true;
1418 }
1419 
1420 /// \brief Move all instructions except the terminator from FromBB right before
1421 /// InsertBefore
1422 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1423   BasicBlock *ToBB = InsertBefore->getParent();
1424 
1425   ToBB->splice(InsertBefore->getIterator(), FromBB, FromBB->begin(),
1426                FromBB->getTerminator()->getIterator());
1427 }
1428 
1429 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact.
1430 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) {
1431   // Save all non-terminator instructions of BB1 into TempInstrs and unlink them
1432   // from BB1 afterwards.
1433   auto Iter = map_range(*BB1, [](Instruction &I) { return &I; });
1434   SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end()));
1435   for (Instruction *I : TempInstrs)
1436     I->removeFromParent();
1437 
1438   // Move instructions from BB2 to BB1.
1439   moveBBContents(BB2, BB1->getTerminator());
1440 
1441   // Move instructions from TempInstrs to BB2.
1442   for (Instruction *I : TempInstrs)
1443     I->insertBefore(BB2->getTerminator());
1444 }
1445 
1446 // Update BI to jump to NewBB instead of OldBB. Records updates to the
1447 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that
1448 // \p OldBB  is exactly once in BI's successor list.
1449 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
1450                             BasicBlock *NewBB,
1451                             std::vector<DominatorTree::UpdateType> &DTUpdates,
1452                             bool MustUpdateOnce = true) {
1453   assert((!MustUpdateOnce ||
1454           llvm::count_if(successors(BI),
1455                          [OldBB](BasicBlock *BB) {
1456                            return BB == OldBB;
1457                          }) == 1) && "BI must jump to OldBB exactly once.");
1458   bool Changed = false;
1459   for (Use &Op : BI->operands())
1460     if (Op == OldBB) {
1461       Op.set(NewBB);
1462       Changed = true;
1463     }
1464 
1465   if (Changed) {
1466     DTUpdates.push_back(
1467         {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
1468     DTUpdates.push_back(
1469         {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
1470   }
1471   assert(Changed && "Expected a successor to be updated");
1472 }
1473 
1474 // Move Lcssa PHIs to the right place.
1475 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader,
1476                           BasicBlock *InnerLatch, BasicBlock *OuterHeader,
1477                           BasicBlock *OuterLatch, BasicBlock *OuterExit,
1478                           Loop *InnerLoop, LoopInfo *LI) {
1479 
1480   // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
1481   // defined either in the header or latch. Those blocks will become header and
1482   // latch of the new outer loop, and the only possible users can PHI nodes
1483   // in the exit block of the loop nest or the outer loop header (reduction
1484   // PHIs, in that case, the incoming value must be defined in the inner loop
1485   // header). We can just substitute the user with the incoming value and remove
1486   // the PHI.
1487   for (PHINode &P : make_early_inc_range(InnerExit->phis())) {
1488     assert(P.getNumIncomingValues() == 1 &&
1489            "Only loops with a single exit are supported!");
1490 
1491     // Incoming values are guaranteed be instructions currently.
1492     auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch));
1493     // In case of multi-level nested loops, follow LCSSA to find the incoming
1494     // value defined from the innermost loop.
1495     auto IncIInnerMost = cast<Instruction>(followLCSSA(IncI));
1496     // Skip phis with incoming values from the inner loop body, excluding the
1497     // header and latch.
1498     if (IncIInnerMost->getParent() != InnerLatch &&
1499         IncIInnerMost->getParent() != InnerHeader)
1500       continue;
1501 
1502     assert(all_of(P.users(),
1503                   [OuterHeader, OuterExit, IncI, InnerHeader](User *U) {
1504                     return (cast<PHINode>(U)->getParent() == OuterHeader &&
1505                             IncI->getParent() == InnerHeader) ||
1506                            cast<PHINode>(U)->getParent() == OuterExit;
1507                   }) &&
1508            "Can only replace phis iff the uses are in the loop nest exit or "
1509            "the incoming value is defined in the inner header (it will "
1510            "dominate all loop blocks after interchanging)");
1511     P.replaceAllUsesWith(IncI);
1512     P.eraseFromParent();
1513   }
1514 
1515   SmallVector<PHINode *, 8> LcssaInnerExit;
1516   for (PHINode &P : InnerExit->phis())
1517     LcssaInnerExit.push_back(&P);
1518 
1519   SmallVector<PHINode *, 8> LcssaInnerLatch;
1520   for (PHINode &P : InnerLatch->phis())
1521     LcssaInnerLatch.push_back(&P);
1522 
1523   // Lcssa PHIs for values used outside the inner loop are in InnerExit.
1524   // If a PHI node has users outside of InnerExit, it has a use outside the
1525   // interchanged loop and we have to preserve it. We move these to
1526   // InnerLatch, which will become the new exit block for the innermost
1527   // loop after interchanging.
1528   for (PHINode *P : LcssaInnerExit)
1529     P->moveBefore(InnerLatch->getFirstNonPHI());
1530 
1531   // If the inner loop latch contains LCSSA PHIs, those come from a child loop
1532   // and we have to move them to the new inner latch.
1533   for (PHINode *P : LcssaInnerLatch)
1534     P->moveBefore(InnerExit->getFirstNonPHI());
1535 
1536   // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
1537   // incoming values defined in the outer loop, we have to add a new PHI
1538   // in the inner loop latch, which became the exit block of the outer loop,
1539   // after interchanging.
1540   if (OuterExit) {
1541     for (PHINode &P : OuterExit->phis()) {
1542       if (P.getNumIncomingValues() != 1)
1543         continue;
1544       // Skip Phis with incoming values defined in the inner loop. Those should
1545       // already have been updated.
1546       auto I = dyn_cast<Instruction>(P.getIncomingValue(0));
1547       if (!I || LI->getLoopFor(I->getParent()) == InnerLoop)
1548         continue;
1549 
1550       PHINode *NewPhi = dyn_cast<PHINode>(P.clone());
1551       NewPhi->setIncomingValue(0, P.getIncomingValue(0));
1552       NewPhi->setIncomingBlock(0, OuterLatch);
1553       // We might have incoming edges from other BBs, i.e., the original outer
1554       // header.
1555       for (auto *Pred : predecessors(InnerLatch)) {
1556         if (Pred == OuterLatch)
1557           continue;
1558         NewPhi->addIncoming(P.getIncomingValue(0), Pred);
1559       }
1560       NewPhi->insertBefore(InnerLatch->getFirstNonPHI());
1561       P.setIncomingValue(0, NewPhi);
1562     }
1563   }
1564 
1565   // Now adjust the incoming blocks for the LCSSA PHIs.
1566   // For PHIs moved from Inner's exit block, we need to replace Inner's latch
1567   // with the new latch.
1568   InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch);
1569 }
1570 
1571 bool LoopInterchangeTransform::adjustLoopBranches() {
1572   LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
1573   std::vector<DominatorTree::UpdateType> DTUpdates;
1574 
1575   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1576   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1577 
1578   assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
1579          InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
1580          InnerLoopPreHeader && "Guaranteed by loop-simplify form");
1581   // Ensure that both preheaders do not contain PHI nodes and have single
1582   // predecessors. This allows us to move them easily. We use
1583   // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
1584   // preheaders do not satisfy those conditions.
1585   if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
1586       !OuterLoopPreHeader->getUniquePredecessor())
1587     OuterLoopPreHeader =
1588         InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true);
1589   if (InnerLoopPreHeader == OuterLoop->getHeader())
1590     InnerLoopPreHeader =
1591         InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true);
1592 
1593   // Adjust the loop preheader
1594   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1595   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1596   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1597   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1598   BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1599   BasicBlock *InnerLoopLatchPredecessor =
1600       InnerLoopLatch->getUniquePredecessor();
1601   BasicBlock *InnerLoopLatchSuccessor;
1602   BasicBlock *OuterLoopLatchSuccessor;
1603 
1604   BranchInst *OuterLoopLatchBI =
1605       dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1606   BranchInst *InnerLoopLatchBI =
1607       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1608   BranchInst *OuterLoopHeaderBI =
1609       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1610   BranchInst *InnerLoopHeaderBI =
1611       dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1612 
1613   if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1614       !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1615       !InnerLoopHeaderBI)
1616     return false;
1617 
1618   BranchInst *InnerLoopLatchPredecessorBI =
1619       dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1620   BranchInst *OuterLoopPredecessorBI =
1621       dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1622 
1623   if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1624     return false;
1625   BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1626   if (!InnerLoopHeaderSuccessor)
1627     return false;
1628 
1629   // Adjust Loop Preheader and headers.
1630   // The branches in the outer loop predecessor and the outer loop header can
1631   // be unconditional branches or conditional branches with duplicates. Consider
1632   // this when updating the successors.
1633   updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
1634                   InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false);
1635   // The outer loop header might or might not branch to the outer latch.
1636   // We are guaranteed to branch to the inner loop preheader.
1637   if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) {
1638     // In this case the outerLoopHeader should branch to the InnerLoopLatch.
1639     updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, InnerLoopLatch,
1640                     DTUpdates,
1641                     /*MustUpdateOnce=*/false);
1642   }
1643   updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
1644                   InnerLoopHeaderSuccessor, DTUpdates,
1645                   /*MustUpdateOnce=*/false);
1646 
1647   // Adjust reduction PHI's now that the incoming block has changed.
1648   InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader,
1649                                                OuterLoopHeader);
1650 
1651   updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
1652                   OuterLoopPreHeader, DTUpdates);
1653 
1654   // -------------Adjust loop latches-----------
1655   if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1656     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1657   else
1658     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1659 
1660   updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
1661                   InnerLoopLatchSuccessor, DTUpdates);
1662 
1663   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1664     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1665   else
1666     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1667 
1668   updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
1669                   OuterLoopLatchSuccessor, DTUpdates);
1670   updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
1671                   DTUpdates);
1672 
1673   DT->applyUpdates(DTUpdates);
1674   restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
1675                    OuterLoopPreHeader);
1676 
1677   moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch,
1678                 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(),
1679                 InnerLoop, LI);
1680   // For PHIs in the exit block of the outer loop, outer's latch has been
1681   // replaced by Inners'.
1682   OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1683 
1684   auto &OuterInnerReductions = LIL.getOuterInnerReductions();
1685   // Now update the reduction PHIs in the inner and outer loop headers.
1686   SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
1687   for (PHINode &PHI : InnerLoopHeader->phis())
1688     if (OuterInnerReductions.contains(&PHI))
1689       InnerLoopPHIs.push_back(&PHI);
1690 
1691   for (PHINode &PHI : OuterLoopHeader->phis())
1692     if (OuterInnerReductions.contains(&PHI))
1693       OuterLoopPHIs.push_back(&PHI);
1694 
1695   // Now move the remaining reduction PHIs from outer to inner loop header and
1696   // vice versa. The PHI nodes must be part of a reduction across the inner and
1697   // outer loop and all the remains to do is and updating the incoming blocks.
1698   for (PHINode *PHI : OuterLoopPHIs) {
1699     LLVM_DEBUG(dbgs() << "Outer loop reduction PHIs:\n"; PHI->dump(););
1700     PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
1701     assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1702   }
1703   for (PHINode *PHI : InnerLoopPHIs) {
1704     LLVM_DEBUG(dbgs() << "Inner loop reduction PHIs:\n"; PHI->dump(););
1705     PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
1706     assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1707   }
1708 
1709   // Update the incoming blocks for moved PHI nodes.
1710   OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader);
1711   OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch);
1712   InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader);
1713   InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1714 
1715   // Values defined in the outer loop header could be used in the inner loop
1716   // latch. In that case, we need to create LCSSA phis for them, because after
1717   // interchanging they will be defined in the new inner loop and used in the
1718   // new outer loop.
1719   SmallVector<Instruction *, 4> MayNeedLCSSAPhis;
1720   for (Instruction &I :
1721        make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end())))
1722     MayNeedLCSSAPhis.push_back(&I);
1723   formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE);
1724 
1725   return true;
1726 }
1727 
1728 bool LoopInterchangeTransform::adjustLoopLinks() {
1729   // Adjust all branches in the inner and outer loop.
1730   bool Changed = adjustLoopBranches();
1731   if (Changed) {
1732     // We have interchanged the preheaders so we need to interchange the data in
1733     // the preheaders as well. This is because the content of the inner
1734     // preheader was previously executed inside the outer loop.
1735     BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1736     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1737     swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader);
1738   }
1739   return Changed;
1740 }
1741 
1742 PreservedAnalyses LoopInterchangePass::run(LoopNest &LN,
1743                                            LoopAnalysisManager &AM,
1744                                            LoopStandardAnalysisResults &AR,
1745                                            LPMUpdater &U) {
1746   Function &F = *LN.getParent();
1747   SmallVector<Loop *, 8> LoopList(LN.getLoops());
1748 
1749   if (MaxMemInstrCount < 1) {
1750     LLVM_DEBUG(dbgs() << "MaxMemInstrCount should be at least 1");
1751     return PreservedAnalyses::all();
1752   }
1753   OptimizationRemarkEmitter ORE(&F);
1754 
1755   // Ensure minimum depth of the loop nest to do the interchange.
1756   if (!hasSupportedLoopDepth(LoopList, ORE))
1757     return PreservedAnalyses::all();
1758   DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI);
1759   std::unique_ptr<CacheCost> CC =
1760       CacheCost::getCacheCost(LN.getOutermostLoop(), AR, DI);
1761 
1762   if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, CC, &ORE).run(LN))
1763     return PreservedAnalyses::all();
1764   U.markLoopNestChanged(true);
1765   return getLoopPassPreservedAnalyses();
1766 }
1767