1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This Pass handles loop interchange transform. 10 // This pass interchanges loops to provide a more cache-friendly memory access 11 // patterns. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopInterchange.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/StringSet.h" 21 #include "llvm/Analysis/DependenceAnalysis.h" 22 #include "llvm/Analysis/LoopCacheAnalysis.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/LoopNestAnalysis.h" 25 #include "llvm/Analysis/LoopPass.h" 26 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/InstrTypes.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/User.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Scalar/LoopPassManager.h" 44 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 45 #include "llvm/Transforms/Utils/LoopUtils.h" 46 #include <cassert> 47 #include <utility> 48 #include <vector> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "loop-interchange" 53 54 STATISTIC(LoopsInterchanged, "Number of loops interchanged"); 55 56 static cl::opt<int> LoopInterchangeCostThreshold( 57 "loop-interchange-threshold", cl::init(0), cl::Hidden, 58 cl::desc("Interchange if you gain more than this number")); 59 60 // Maximum number of load-stores that can be handled in the dependency matrix. 61 static cl::opt<unsigned int> MaxMemInstrCount( 62 "loop-interchange-max-meminstr-count", cl::init(64), cl::Hidden, 63 cl::desc( 64 "Maximum number of load-store instructions that should be handled " 65 "in the dependency matrix. Higher value may lead to more interchanges " 66 "at the cost of compile-time")); 67 68 namespace { 69 70 using LoopVector = SmallVector<Loop *, 8>; 71 72 // TODO: Check if we can use a sparse matrix here. 73 using CharMatrix = std::vector<std::vector<char>>; 74 75 } // end anonymous namespace 76 77 // Minimum loop depth supported. 78 static cl::opt<unsigned int> MinLoopNestDepth( 79 "loop-interchange-min-loop-nest-depth", cl::init(2), cl::Hidden, 80 cl::desc("Minimum depth of loop nest considered for the transform")); 81 82 // Maximum loop depth supported. 83 static cl::opt<unsigned int> MaxLoopNestDepth( 84 "loop-interchange-max-loop-nest-depth", cl::init(10), cl::Hidden, 85 cl::desc("Maximum depth of loop nest considered for the transform")); 86 87 #ifndef NDEBUG 88 static void printDepMatrix(CharMatrix &DepMatrix) { 89 for (auto &Row : DepMatrix) { 90 for (auto D : Row) 91 LLVM_DEBUG(dbgs() << D << " "); 92 LLVM_DEBUG(dbgs() << "\n"); 93 } 94 } 95 #endif 96 97 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, 98 Loop *L, DependenceInfo *DI, 99 ScalarEvolution *SE, 100 OptimizationRemarkEmitter *ORE) { 101 using ValueVector = SmallVector<Value *, 16>; 102 103 ValueVector MemInstr; 104 105 // For each block. 106 for (BasicBlock *BB : L->blocks()) { 107 // Scan the BB and collect legal loads and stores. 108 for (Instruction &I : *BB) { 109 if (!isa<Instruction>(I)) 110 return false; 111 if (auto *Ld = dyn_cast<LoadInst>(&I)) { 112 if (!Ld->isSimple()) 113 return false; 114 MemInstr.push_back(&I); 115 } else if (auto *St = dyn_cast<StoreInst>(&I)) { 116 if (!St->isSimple()) 117 return false; 118 MemInstr.push_back(&I); 119 } 120 } 121 } 122 123 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size() 124 << " Loads and Stores to analyze\n"); 125 if (MemInstr.size() > MaxMemInstrCount) { 126 LLVM_DEBUG(dbgs() << "The transform doesn't support more than " 127 << MaxMemInstrCount << " load/stores in a loop\n"); 128 ORE->emit([&]() { 129 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedLoop", 130 L->getStartLoc(), L->getHeader()) 131 << "Number of loads/stores exceeded, the supported maximum " 132 "can be increased with option " 133 "-loop-interchange-maxmeminstr-count."; 134 }); 135 return false; 136 } 137 ValueVector::iterator I, IE, J, JE; 138 StringSet<> Seen; 139 140 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) { 141 for (J = I, JE = MemInstr.end(); J != JE; ++J) { 142 std::vector<char> Dep; 143 Instruction *Src = cast<Instruction>(*I); 144 Instruction *Dst = cast<Instruction>(*J); 145 // Ignore Input dependencies. 146 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) 147 continue; 148 // Track Output, Flow, and Anti dependencies. 149 if (auto D = DI->depends(Src, Dst, true)) { 150 assert(D->isOrdered() && "Expected an output, flow or anti dep."); 151 // If the direction vector is negative, normalize it to 152 // make it non-negative. 153 if (D->normalize(SE)) 154 LLVM_DEBUG(dbgs() << "Negative dependence vector normalized.\n"); 155 LLVM_DEBUG(StringRef DepType = 156 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output"; 157 dbgs() << "Found " << DepType 158 << " dependency between Src and Dst\n" 159 << " Src:" << *Src << "\n Dst:" << *Dst << '\n'); 160 unsigned Levels = D->getLevels(); 161 char Direction; 162 for (unsigned II = 1; II <= Levels; ++II) { 163 unsigned Dir = D->getDirection(II); 164 if (Dir == Dependence::DVEntry::LT || Dir == Dependence::DVEntry::LE) 165 Direction = '<'; 166 else if (Dir == Dependence::DVEntry::GT || 167 Dir == Dependence::DVEntry::GE) 168 Direction = '>'; 169 else if (Dir == Dependence::DVEntry::EQ) 170 Direction = '='; 171 else 172 Direction = '*'; 173 Dep.push_back(Direction); 174 } 175 while (Dep.size() != Level) { 176 Dep.push_back('I'); 177 } 178 179 // Make sure we only add unique entries to the dependency matrix. 180 if (Seen.insert(StringRef(Dep.data(), Dep.size())).second) 181 DepMatrix.push_back(Dep); 182 } 183 } 184 } 185 186 return true; 187 } 188 189 // A loop is moved from index 'from' to an index 'to'. Update the Dependence 190 // matrix by exchanging the two columns. 191 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx, 192 unsigned ToIndx) { 193 for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I) 194 std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]); 195 } 196 197 // After interchanging, check if the direction vector is valid. 198 // [Theorem] A permutation of the loops in a perfect nest is legal if and only 199 // if the direction matrix, after the same permutation is applied to its 200 // columns, has no ">" direction as the leftmost non-"=" direction in any row. 201 static bool isLexicographicallyPositive(std::vector<char> &DV) { 202 for (unsigned char Direction : DV) { 203 if (Direction == '<') 204 return true; 205 if (Direction == '>' || Direction == '*') 206 return false; 207 } 208 return true; 209 } 210 211 // Checks if it is legal to interchange 2 loops. 212 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, 213 unsigned InnerLoopId, 214 unsigned OuterLoopId) { 215 unsigned NumRows = DepMatrix.size(); 216 std::vector<char> Cur; 217 // For each row check if it is valid to interchange. 218 for (unsigned Row = 0; Row < NumRows; ++Row) { 219 // Create temporary DepVector check its lexicographical order 220 // before and after swapping OuterLoop vs InnerLoop 221 Cur = DepMatrix[Row]; 222 if (!isLexicographicallyPositive(Cur)) 223 return false; 224 std::swap(Cur[InnerLoopId], Cur[OuterLoopId]); 225 if (!isLexicographicallyPositive(Cur)) 226 return false; 227 } 228 return true; 229 } 230 231 static void populateWorklist(Loop &L, LoopVector &LoopList) { 232 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: " 233 << L.getHeader()->getParent()->getName() << " Loop: %" 234 << L.getHeader()->getName() << '\n'); 235 assert(LoopList.empty() && "LoopList should initially be empty!"); 236 Loop *CurrentLoop = &L; 237 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops(); 238 while (!Vec->empty()) { 239 // The current loop has multiple subloops in it hence it is not tightly 240 // nested. 241 // Discard all loops above it added into Worklist. 242 if (Vec->size() != 1) { 243 LoopList = {}; 244 return; 245 } 246 247 LoopList.push_back(CurrentLoop); 248 CurrentLoop = Vec->front(); 249 Vec = &CurrentLoop->getSubLoops(); 250 } 251 LoopList.push_back(CurrentLoop); 252 } 253 254 static bool hasSupportedLoopDepth(SmallVectorImpl<Loop *> &LoopList, 255 OptimizationRemarkEmitter &ORE) { 256 unsigned LoopNestDepth = LoopList.size(); 257 if (LoopNestDepth < MinLoopNestDepth || LoopNestDepth > MaxLoopNestDepth) { 258 LLVM_DEBUG(dbgs() << "Unsupported depth of loop nest " << LoopNestDepth 259 << ", the supported range is [" << MinLoopNestDepth 260 << ", " << MaxLoopNestDepth << "].\n"); 261 Loop **OuterLoop = LoopList.begin(); 262 ORE.emit([&]() { 263 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedLoopNestDepth", 264 (*OuterLoop)->getStartLoc(), 265 (*OuterLoop)->getHeader()) 266 << "Unsupported depth of loop nest, the supported range is [" 267 << std::to_string(MinLoopNestDepth) << ", " 268 << std::to_string(MaxLoopNestDepth) << "].\n"; 269 }); 270 return false; 271 } 272 return true; 273 } 274 namespace { 275 276 /// LoopInterchangeLegality checks if it is legal to interchange the loop. 277 class LoopInterchangeLegality { 278 public: 279 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 280 OptimizationRemarkEmitter *ORE) 281 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 282 283 /// Check if the loops can be interchanged. 284 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, 285 CharMatrix &DepMatrix); 286 287 /// Discover induction PHIs in the header of \p L. Induction 288 /// PHIs are added to \p Inductions. 289 bool findInductions(Loop *L, SmallVectorImpl<PHINode *> &Inductions); 290 291 /// Check if the loop structure is understood. We do not handle triangular 292 /// loops for now. 293 bool isLoopStructureUnderstood(); 294 295 bool currentLimitations(); 296 297 const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const { 298 return OuterInnerReductions; 299 } 300 301 const SmallVectorImpl<PHINode *> &getInnerLoopInductions() const { 302 return InnerLoopInductions; 303 } 304 305 private: 306 bool tightlyNested(Loop *Outer, Loop *Inner); 307 bool containsUnsafeInstructions(BasicBlock *BB); 308 309 /// Discover induction and reduction PHIs in the header of \p L. Induction 310 /// PHIs are added to \p Inductions, reductions are added to 311 /// OuterInnerReductions. When the outer loop is passed, the inner loop needs 312 /// to be passed as \p InnerLoop. 313 bool findInductionAndReductions(Loop *L, 314 SmallVector<PHINode *, 8> &Inductions, 315 Loop *InnerLoop); 316 317 Loop *OuterLoop; 318 Loop *InnerLoop; 319 320 ScalarEvolution *SE; 321 322 /// Interface to emit optimization remarks. 323 OptimizationRemarkEmitter *ORE; 324 325 /// Set of reduction PHIs taking part of a reduction across the inner and 326 /// outer loop. 327 SmallPtrSet<PHINode *, 4> OuterInnerReductions; 328 329 /// Set of inner loop induction PHIs 330 SmallVector<PHINode *, 8> InnerLoopInductions; 331 }; 332 333 /// LoopInterchangeProfitability checks if it is profitable to interchange the 334 /// loop. 335 class LoopInterchangeProfitability { 336 public: 337 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 338 OptimizationRemarkEmitter *ORE) 339 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 340 341 /// Check if the loop interchange is profitable. 342 bool isProfitable(const Loop *InnerLoop, const Loop *OuterLoop, 343 unsigned InnerLoopId, unsigned OuterLoopId, 344 CharMatrix &DepMatrix, 345 const DenseMap<const Loop *, unsigned> &CostMap, 346 std::unique_ptr<CacheCost> &CC); 347 348 private: 349 int getInstrOrderCost(); 350 std::optional<bool> isProfitablePerLoopCacheAnalysis( 351 const DenseMap<const Loop *, unsigned> &CostMap, 352 std::unique_ptr<CacheCost> &CC); 353 std::optional<bool> isProfitablePerInstrOrderCost(); 354 std::optional<bool> isProfitableForVectorization(unsigned InnerLoopId, 355 unsigned OuterLoopId, 356 CharMatrix &DepMatrix); 357 Loop *OuterLoop; 358 Loop *InnerLoop; 359 360 /// Scev analysis. 361 ScalarEvolution *SE; 362 363 /// Interface to emit optimization remarks. 364 OptimizationRemarkEmitter *ORE; 365 }; 366 367 /// LoopInterchangeTransform interchanges the loop. 368 class LoopInterchangeTransform { 369 public: 370 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 371 LoopInfo *LI, DominatorTree *DT, 372 const LoopInterchangeLegality &LIL) 373 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LIL(LIL) {} 374 375 /// Interchange OuterLoop and InnerLoop. 376 bool transform(); 377 void restructureLoops(Loop *NewInner, Loop *NewOuter, 378 BasicBlock *OrigInnerPreHeader, 379 BasicBlock *OrigOuterPreHeader); 380 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop); 381 382 private: 383 bool adjustLoopLinks(); 384 bool adjustLoopBranches(); 385 386 Loop *OuterLoop; 387 Loop *InnerLoop; 388 389 /// Scev analysis. 390 ScalarEvolution *SE; 391 392 LoopInfo *LI; 393 DominatorTree *DT; 394 395 const LoopInterchangeLegality &LIL; 396 }; 397 398 struct LoopInterchange { 399 ScalarEvolution *SE = nullptr; 400 LoopInfo *LI = nullptr; 401 DependenceInfo *DI = nullptr; 402 DominatorTree *DT = nullptr; 403 std::unique_ptr<CacheCost> CC = nullptr; 404 405 /// Interface to emit optimization remarks. 406 OptimizationRemarkEmitter *ORE; 407 408 LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI, 409 DominatorTree *DT, std::unique_ptr<CacheCost> &CC, 410 OptimizationRemarkEmitter *ORE) 411 : SE(SE), LI(LI), DI(DI), DT(DT), CC(std::move(CC)), ORE(ORE) {} 412 413 bool run(Loop *L) { 414 if (L->getParentLoop()) 415 return false; 416 SmallVector<Loop *, 8> LoopList; 417 populateWorklist(*L, LoopList); 418 return processLoopList(LoopList); 419 } 420 421 bool run(LoopNest &LN) { 422 SmallVector<Loop *, 8> LoopList(LN.getLoops()); 423 for (unsigned I = 1; I < LoopList.size(); ++I) 424 if (LoopList[I]->getParentLoop() != LoopList[I - 1]) 425 return false; 426 return processLoopList(LoopList); 427 } 428 429 bool isComputableLoopNest(ArrayRef<Loop *> LoopList) { 430 for (Loop *L : LoopList) { 431 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L); 432 if (isa<SCEVCouldNotCompute>(ExitCountOuter)) { 433 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n"); 434 return false; 435 } 436 if (L->getNumBackEdges() != 1) { 437 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n"); 438 return false; 439 } 440 if (!L->getExitingBlock()) { 441 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n"); 442 return false; 443 } 444 } 445 return true; 446 } 447 448 unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) { 449 // TODO: Add a better heuristic to select the loop to be interchanged based 450 // on the dependence matrix. Currently we select the innermost loop. 451 return LoopList.size() - 1; 452 } 453 454 bool processLoopList(SmallVectorImpl<Loop *> &LoopList) { 455 bool Changed = false; 456 457 // Ensure proper loop nest depth. 458 assert(hasSupportedLoopDepth(LoopList, *ORE) && 459 "Unsupported depth of loop nest."); 460 461 unsigned LoopNestDepth = LoopList.size(); 462 if (!isComputableLoopNest(LoopList)) { 463 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n"); 464 return false; 465 } 466 467 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth 468 << "\n"); 469 470 CharMatrix DependencyMatrix; 471 Loop *OuterMostLoop = *(LoopList.begin()); 472 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth, 473 OuterMostLoop, DI, SE, ORE)) { 474 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n"); 475 return false; 476 } 477 478 LLVM_DEBUG(dbgs() << "Dependency matrix before interchange:\n"; 479 printDepMatrix(DependencyMatrix)); 480 481 // Get the Outermost loop exit. 482 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock(); 483 if (!LoopNestExit) { 484 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block"); 485 return false; 486 } 487 488 unsigned SelecLoopId = selectLoopForInterchange(LoopList); 489 // Obtain the loop vector returned from loop cache analysis beforehand, 490 // and put each <Loop, index> pair into a map for constant time query 491 // later. Indices in loop vector reprsent the optimal order of the 492 // corresponding loop, e.g., given a loopnest with depth N, index 0 493 // indicates the loop should be placed as the outermost loop and index N 494 // indicates the loop should be placed as the innermost loop. 495 // 496 // For the old pass manager CacheCost would be null. 497 DenseMap<const Loop *, unsigned> CostMap; 498 if (CC != nullptr) { 499 const auto &LoopCosts = CC->getLoopCosts(); 500 for (unsigned i = 0; i < LoopCosts.size(); i++) { 501 CostMap[LoopCosts[i].first] = i; 502 } 503 } 504 // We try to achieve the globally optimal memory access for the loopnest, 505 // and do interchange based on a bubble-sort fasion. We start from 506 // the innermost loop, move it outwards to the best possible position 507 // and repeat this process. 508 for (unsigned j = SelecLoopId; j > 0; j--) { 509 bool ChangedPerIter = false; 510 for (unsigned i = SelecLoopId; i > SelecLoopId - j; i--) { 511 bool Interchanged = processLoop(LoopList[i], LoopList[i - 1], i, i - 1, 512 DependencyMatrix, CostMap); 513 if (!Interchanged) 514 continue; 515 // Loops interchanged, update LoopList accordingly. 516 std::swap(LoopList[i - 1], LoopList[i]); 517 // Update the DependencyMatrix 518 interChangeDependencies(DependencyMatrix, i, i - 1); 519 520 LLVM_DEBUG(dbgs() << "Dependency matrix after interchange:\n"; 521 printDepMatrix(DependencyMatrix)); 522 523 ChangedPerIter |= Interchanged; 524 Changed |= Interchanged; 525 } 526 // Early abort if there was no interchange during an entire round of 527 // moving loops outwards. 528 if (!ChangedPerIter) 529 break; 530 } 531 return Changed; 532 } 533 534 bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId, 535 unsigned OuterLoopId, 536 std::vector<std::vector<char>> &DependencyMatrix, 537 const DenseMap<const Loop *, unsigned> &CostMap) { 538 LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId 539 << " and OuterLoopId = " << OuterLoopId << "\n"); 540 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE); 541 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) { 542 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n"); 543 return false; 544 } 545 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n"); 546 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE); 547 if (!LIP.isProfitable(InnerLoop, OuterLoop, InnerLoopId, OuterLoopId, 548 DependencyMatrix, CostMap, CC)) { 549 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n"); 550 return false; 551 } 552 553 ORE->emit([&]() { 554 return OptimizationRemark(DEBUG_TYPE, "Interchanged", 555 InnerLoop->getStartLoc(), 556 InnerLoop->getHeader()) 557 << "Loop interchanged with enclosing loop."; 558 }); 559 560 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LIL); 561 LIT.transform(); 562 LLVM_DEBUG(dbgs() << "Loops interchanged.\n"); 563 LoopsInterchanged++; 564 565 llvm::formLCSSARecursively(*OuterLoop, *DT, LI, SE); 566 return true; 567 } 568 }; 569 570 } // end anonymous namespace 571 572 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) { 573 return any_of(*BB, [](const Instruction &I) { 574 return I.mayHaveSideEffects() || I.mayReadFromMemory(); 575 }); 576 } 577 578 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) { 579 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 580 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 581 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 582 583 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n"); 584 585 // A perfectly nested loop will not have any branch in between the outer and 586 // inner block i.e. outer header will branch to either inner preheader and 587 // outerloop latch. 588 BranchInst *OuterLoopHeaderBI = 589 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 590 if (!OuterLoopHeaderBI) 591 return false; 592 593 for (BasicBlock *Succ : successors(OuterLoopHeaderBI)) 594 if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() && 595 Succ != OuterLoopLatch) 596 return false; 597 598 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n"); 599 // We do not have any basic block in between now make sure the outer header 600 // and outer loop latch doesn't contain any unsafe instructions. 601 if (containsUnsafeInstructions(OuterLoopHeader) || 602 containsUnsafeInstructions(OuterLoopLatch)) 603 return false; 604 605 // Also make sure the inner loop preheader does not contain any unsafe 606 // instructions. Note that all instructions in the preheader will be moved to 607 // the outer loop header when interchanging. 608 if (InnerLoopPreHeader != OuterLoopHeader && 609 containsUnsafeInstructions(InnerLoopPreHeader)) 610 return false; 611 612 BasicBlock *InnerLoopExit = InnerLoop->getExitBlock(); 613 // Ensure the inner loop exit block flows to the outer loop latch possibly 614 // through empty blocks. 615 const BasicBlock &SuccInner = 616 LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch); 617 if (&SuccInner != OuterLoopLatch) { 618 LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit 619 << " does not lead to the outer loop latch.\n";); 620 return false; 621 } 622 // The inner loop exit block does flow to the outer loop latch and not some 623 // other BBs, now make sure it contains safe instructions, since it will be 624 // moved into the (new) inner loop after interchange. 625 if (containsUnsafeInstructions(InnerLoopExit)) 626 return false; 627 628 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n"); 629 // We have a perfect loop nest. 630 return true; 631 } 632 633 bool LoopInterchangeLegality::isLoopStructureUnderstood() { 634 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); 635 for (PHINode *InnerInduction : InnerLoopInductions) { 636 unsigned Num = InnerInduction->getNumOperands(); 637 for (unsigned i = 0; i < Num; ++i) { 638 Value *Val = InnerInduction->getOperand(i); 639 if (isa<Constant>(Val)) 640 continue; 641 Instruction *I = dyn_cast<Instruction>(Val); 642 if (!I) 643 return false; 644 // TODO: Handle triangular loops. 645 // e.g. for(int i=0;i<N;i++) 646 // for(int j=i;j<N;j++) 647 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i); 648 if (InnerInduction->getIncomingBlock(IncomBlockIndx) == 649 InnerLoopPreheader && 650 !OuterLoop->isLoopInvariant(I)) { 651 return false; 652 } 653 } 654 } 655 656 // TODO: Handle triangular loops of another form. 657 // e.g. for(int i=0;i<N;i++) 658 // for(int j=0;j<i;j++) 659 // or, 660 // for(int i=0;i<N;i++) 661 // for(int j=0;j*i<N;j++) 662 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 663 BranchInst *InnerLoopLatchBI = 664 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 665 if (!InnerLoopLatchBI->isConditional()) 666 return false; 667 if (CmpInst *InnerLoopCmp = 668 dyn_cast<CmpInst>(InnerLoopLatchBI->getCondition())) { 669 Value *Op0 = InnerLoopCmp->getOperand(0); 670 Value *Op1 = InnerLoopCmp->getOperand(1); 671 672 // LHS and RHS of the inner loop exit condition, e.g., 673 // in "for(int j=0;j<i;j++)", LHS is j and RHS is i. 674 Value *Left = nullptr; 675 Value *Right = nullptr; 676 677 // Check if V only involves inner loop induction variable. 678 // Return true if V is InnerInduction, or a cast from 679 // InnerInduction, or a binary operator that involves 680 // InnerInduction and a constant. 681 std::function<bool(Value *)> IsPathToInnerIndVar; 682 IsPathToInnerIndVar = [this, &IsPathToInnerIndVar](const Value *V) -> bool { 683 if (llvm::is_contained(InnerLoopInductions, V)) 684 return true; 685 if (isa<Constant>(V)) 686 return true; 687 const Instruction *I = dyn_cast<Instruction>(V); 688 if (!I) 689 return false; 690 if (isa<CastInst>(I)) 691 return IsPathToInnerIndVar(I->getOperand(0)); 692 if (isa<BinaryOperator>(I)) 693 return IsPathToInnerIndVar(I->getOperand(0)) && 694 IsPathToInnerIndVar(I->getOperand(1)); 695 return false; 696 }; 697 698 // In case of multiple inner loop indvars, it is okay if LHS and RHS 699 // are both inner indvar related variables. 700 if (IsPathToInnerIndVar(Op0) && IsPathToInnerIndVar(Op1)) 701 return true; 702 703 // Otherwise we check if the cmp instruction compares an inner indvar 704 // related variable (Left) with a outer loop invariant (Right). 705 if (IsPathToInnerIndVar(Op0) && !isa<Constant>(Op0)) { 706 Left = Op0; 707 Right = Op1; 708 } else if (IsPathToInnerIndVar(Op1) && !isa<Constant>(Op1)) { 709 Left = Op1; 710 Right = Op0; 711 } 712 713 if (Left == nullptr) 714 return false; 715 716 const SCEV *S = SE->getSCEV(Right); 717 if (!SE->isLoopInvariant(S, OuterLoop)) 718 return false; 719 } 720 721 return true; 722 } 723 724 // If SV is a LCSSA PHI node with a single incoming value, return the incoming 725 // value. 726 static Value *followLCSSA(Value *SV) { 727 PHINode *PHI = dyn_cast<PHINode>(SV); 728 if (!PHI) 729 return SV; 730 731 if (PHI->getNumIncomingValues() != 1) 732 return SV; 733 return followLCSSA(PHI->getIncomingValue(0)); 734 } 735 736 // Check V's users to see if it is involved in a reduction in L. 737 static PHINode *findInnerReductionPhi(Loop *L, Value *V) { 738 // Reduction variables cannot be constants. 739 if (isa<Constant>(V)) 740 return nullptr; 741 742 for (Value *User : V->users()) { 743 if (PHINode *PHI = dyn_cast<PHINode>(User)) { 744 if (PHI->getNumIncomingValues() == 1) 745 continue; 746 RecurrenceDescriptor RD; 747 if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) { 748 // Detect floating point reduction only when it can be reordered. 749 if (RD.getExactFPMathInst() != nullptr) 750 return nullptr; 751 return PHI; 752 } 753 return nullptr; 754 } 755 } 756 757 return nullptr; 758 } 759 760 bool LoopInterchangeLegality::findInductionAndReductions( 761 Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) { 762 if (!L->getLoopLatch() || !L->getLoopPredecessor()) 763 return false; 764 for (PHINode &PHI : L->getHeader()->phis()) { 765 InductionDescriptor ID; 766 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 767 Inductions.push_back(&PHI); 768 else { 769 // PHIs in inner loops need to be part of a reduction in the outer loop, 770 // discovered when checking the PHIs of the outer loop earlier. 771 if (!InnerLoop) { 772 if (!OuterInnerReductions.count(&PHI)) { 773 LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions " 774 "across the outer loop.\n"); 775 return false; 776 } 777 } else { 778 assert(PHI.getNumIncomingValues() == 2 && 779 "Phis in loop header should have exactly 2 incoming values"); 780 // Check if we have a PHI node in the outer loop that has a reduction 781 // result from the inner loop as an incoming value. 782 Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch())); 783 PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V); 784 if (!InnerRedPhi || 785 !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) { 786 LLVM_DEBUG( 787 dbgs() 788 << "Failed to recognize PHI as an induction or reduction.\n"); 789 return false; 790 } 791 OuterInnerReductions.insert(&PHI); 792 OuterInnerReductions.insert(InnerRedPhi); 793 } 794 } 795 } 796 return true; 797 } 798 799 // This function indicates the current limitations in the transform as a result 800 // of which we do not proceed. 801 bool LoopInterchangeLegality::currentLimitations() { 802 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 803 804 // transform currently expects the loop latches to also be the exiting 805 // blocks. 806 if (InnerLoop->getExitingBlock() != InnerLoopLatch || 807 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() || 808 !isa<BranchInst>(InnerLoopLatch->getTerminator()) || 809 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) { 810 LLVM_DEBUG( 811 dbgs() << "Loops where the latch is not the exiting block are not" 812 << " supported currently.\n"); 813 ORE->emit([&]() { 814 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch", 815 OuterLoop->getStartLoc(), 816 OuterLoop->getHeader()) 817 << "Loops where the latch is not the exiting block cannot be" 818 " interchange currently."; 819 }); 820 return true; 821 } 822 823 SmallVector<PHINode *, 8> Inductions; 824 if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) { 825 LLVM_DEBUG( 826 dbgs() << "Only outer loops with induction or reduction PHI nodes " 827 << "are supported currently.\n"); 828 ORE->emit([&]() { 829 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter", 830 OuterLoop->getStartLoc(), 831 OuterLoop->getHeader()) 832 << "Only outer loops with induction or reduction PHI nodes can be" 833 " interchanged currently."; 834 }); 835 return true; 836 } 837 838 Inductions.clear(); 839 // For multi-level loop nests, make sure that all phi nodes for inner loops 840 // at all levels can be recognized as a induction or reduction phi. Bail out 841 // if a phi node at a certain nesting level cannot be properly recognized. 842 Loop *CurLevelLoop = OuterLoop; 843 while (!CurLevelLoop->getSubLoops().empty()) { 844 // We already made sure that the loop nest is tightly nested. 845 CurLevelLoop = CurLevelLoop->getSubLoops().front(); 846 if (!findInductionAndReductions(CurLevelLoop, Inductions, nullptr)) { 847 LLVM_DEBUG( 848 dbgs() << "Only inner loops with induction or reduction PHI nodes " 849 << "are supported currently.\n"); 850 ORE->emit([&]() { 851 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner", 852 CurLevelLoop->getStartLoc(), 853 CurLevelLoop->getHeader()) 854 << "Only inner loops with induction or reduction PHI nodes can be" 855 " interchange currently."; 856 }); 857 return true; 858 } 859 } 860 861 // TODO: Triangular loops are not handled for now. 862 if (!isLoopStructureUnderstood()) { 863 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n"); 864 ORE->emit([&]() { 865 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner", 866 InnerLoop->getStartLoc(), 867 InnerLoop->getHeader()) 868 << "Inner loop structure not understood currently."; 869 }); 870 return true; 871 } 872 873 return false; 874 } 875 876 bool LoopInterchangeLegality::findInductions( 877 Loop *L, SmallVectorImpl<PHINode *> &Inductions) { 878 for (PHINode &PHI : L->getHeader()->phis()) { 879 InductionDescriptor ID; 880 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 881 Inductions.push_back(&PHI); 882 } 883 return !Inductions.empty(); 884 } 885 886 // We currently only support LCSSA PHI nodes in the inner loop exit, if their 887 // users are either reduction PHIs or PHIs outside the outer loop (which means 888 // the we are only interested in the final value after the loop). 889 static bool 890 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL, 891 SmallPtrSetImpl<PHINode *> &Reductions) { 892 BasicBlock *InnerExit = OuterL->getUniqueExitBlock(); 893 for (PHINode &PHI : InnerExit->phis()) { 894 // Reduction lcssa phi will have only 1 incoming block that from loop latch. 895 if (PHI.getNumIncomingValues() > 1) 896 return false; 897 if (any_of(PHI.users(), [&Reductions, OuterL](User *U) { 898 PHINode *PN = dyn_cast<PHINode>(U); 899 return !PN || 900 (!Reductions.count(PN) && OuterL->contains(PN->getParent())); 901 })) { 902 return false; 903 } 904 } 905 return true; 906 } 907 908 // We currently support LCSSA PHI nodes in the outer loop exit, if their 909 // incoming values do not come from the outer loop latch or if the 910 // outer loop latch has a single predecessor. In that case, the value will 911 // be available if both the inner and outer loop conditions are true, which 912 // will still be true after interchanging. If we have multiple predecessor, 913 // that may not be the case, e.g. because the outer loop latch may be executed 914 // if the inner loop is not executed. 915 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 916 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock(); 917 for (PHINode &PHI : LoopNestExit->phis()) { 918 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) { 919 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i)); 920 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch()) 921 continue; 922 923 // The incoming value is defined in the outer loop latch. Currently we 924 // only support that in case the outer loop latch has a single predecessor. 925 // This guarantees that the outer loop latch is executed if and only if 926 // the inner loop is executed (because tightlyNested() guarantees that the 927 // outer loop header only branches to the inner loop or the outer loop 928 // latch). 929 // FIXME: We could weaken this logic and allow multiple predecessors, 930 // if the values are produced outside the loop latch. We would need 931 // additional logic to update the PHI nodes in the exit block as 932 // well. 933 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr) 934 return false; 935 } 936 } 937 return true; 938 } 939 940 // In case of multi-level nested loops, it may occur that lcssa phis exist in 941 // the latch of InnerLoop, i.e., when defs of the incoming values are further 942 // inside the loopnest. Sometimes those incoming values are not available 943 // after interchange, since the original inner latch will become the new outer 944 // latch which may have predecessor paths that do not include those incoming 945 // values. 946 // TODO: Handle transformation of lcssa phis in the InnerLoop latch in case of 947 // multi-level loop nests. 948 static bool areInnerLoopLatchPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 949 if (InnerLoop->getSubLoops().empty()) 950 return true; 951 // If the original outer latch has only one predecessor, then values defined 952 // further inside the looploop, e.g., in the innermost loop, will be available 953 // at the new outer latch after interchange. 954 if (OuterLoop->getLoopLatch()->getUniquePredecessor() != nullptr) 955 return true; 956 957 // The outer latch has more than one predecessors, i.e., the inner 958 // exit and the inner header. 959 // PHI nodes in the inner latch are lcssa phis where the incoming values 960 // are defined further inside the loopnest. Check if those phis are used 961 // in the original inner latch. If that is the case then bail out since 962 // those incoming values may not be available at the new outer latch. 963 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 964 for (PHINode &PHI : InnerLoopLatch->phis()) { 965 for (auto *U : PHI.users()) { 966 Instruction *UI = cast<Instruction>(U); 967 if (InnerLoopLatch == UI->getParent()) 968 return false; 969 } 970 } 971 return true; 972 } 973 974 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId, 975 unsigned OuterLoopId, 976 CharMatrix &DepMatrix) { 977 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) { 978 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId 979 << " and OuterLoopId = " << OuterLoopId 980 << " due to dependence\n"); 981 ORE->emit([&]() { 982 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence", 983 InnerLoop->getStartLoc(), 984 InnerLoop->getHeader()) 985 << "Cannot interchange loops due to dependences."; 986 }); 987 return false; 988 } 989 // Check if outer and inner loop contain legal instructions only. 990 for (auto *BB : OuterLoop->blocks()) 991 for (Instruction &I : BB->instructionsWithoutDebug()) 992 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 993 // readnone functions do not prevent interchanging. 994 if (CI->onlyWritesMemory()) 995 continue; 996 LLVM_DEBUG( 997 dbgs() << "Loops with call instructions cannot be interchanged " 998 << "safely."); 999 ORE->emit([&]() { 1000 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst", 1001 CI->getDebugLoc(), 1002 CI->getParent()) 1003 << "Cannot interchange loops due to call instruction."; 1004 }); 1005 1006 return false; 1007 } 1008 1009 if (!findInductions(InnerLoop, InnerLoopInductions)) { 1010 LLVM_DEBUG(dbgs() << "Could not find inner loop induction variables.\n"); 1011 return false; 1012 } 1013 1014 if (!areInnerLoopLatchPHIsSupported(OuterLoop, InnerLoop)) { 1015 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop latch.\n"); 1016 ORE->emit([&]() { 1017 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedInnerLatchPHI", 1018 InnerLoop->getStartLoc(), 1019 InnerLoop->getHeader()) 1020 << "Cannot interchange loops because unsupported PHI nodes found " 1021 "in inner loop latch."; 1022 }); 1023 return false; 1024 } 1025 1026 // TODO: The loops could not be interchanged due to current limitations in the 1027 // transform module. 1028 if (currentLimitations()) { 1029 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n"); 1030 return false; 1031 } 1032 1033 // Check if the loops are tightly nested. 1034 if (!tightlyNested(OuterLoop, InnerLoop)) { 1035 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n"); 1036 ORE->emit([&]() { 1037 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested", 1038 InnerLoop->getStartLoc(), 1039 InnerLoop->getHeader()) 1040 << "Cannot interchange loops because they are not tightly " 1041 "nested."; 1042 }); 1043 return false; 1044 } 1045 1046 if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop, 1047 OuterInnerReductions)) { 1048 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n"); 1049 ORE->emit([&]() { 1050 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1051 InnerLoop->getStartLoc(), 1052 InnerLoop->getHeader()) 1053 << "Found unsupported PHI node in loop exit."; 1054 }); 1055 return false; 1056 } 1057 1058 if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) { 1059 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n"); 1060 ORE->emit([&]() { 1061 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1062 OuterLoop->getStartLoc(), 1063 OuterLoop->getHeader()) 1064 << "Found unsupported PHI node in loop exit."; 1065 }); 1066 return false; 1067 } 1068 1069 return true; 1070 } 1071 1072 int LoopInterchangeProfitability::getInstrOrderCost() { 1073 unsigned GoodOrder, BadOrder; 1074 BadOrder = GoodOrder = 0; 1075 for (BasicBlock *BB : InnerLoop->blocks()) { 1076 for (Instruction &Ins : *BB) { 1077 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) { 1078 unsigned NumOp = GEP->getNumOperands(); 1079 bool FoundInnerInduction = false; 1080 bool FoundOuterInduction = false; 1081 for (unsigned i = 0; i < NumOp; ++i) { 1082 // Skip operands that are not SCEV-able. 1083 if (!SE->isSCEVable(GEP->getOperand(i)->getType())) 1084 continue; 1085 1086 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i)); 1087 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal); 1088 if (!AR) 1089 continue; 1090 1091 // If we find the inner induction after an outer induction e.g. 1092 // for(int i=0;i<N;i++) 1093 // for(int j=0;j<N;j++) 1094 // A[i][j] = A[i-1][j-1]+k; 1095 // then it is a good order. 1096 if (AR->getLoop() == InnerLoop) { 1097 // We found an InnerLoop induction after OuterLoop induction. It is 1098 // a good order. 1099 FoundInnerInduction = true; 1100 if (FoundOuterInduction) { 1101 GoodOrder++; 1102 break; 1103 } 1104 } 1105 // If we find the outer induction after an inner induction e.g. 1106 // for(int i=0;i<N;i++) 1107 // for(int j=0;j<N;j++) 1108 // A[j][i] = A[j-1][i-1]+k; 1109 // then it is a bad order. 1110 if (AR->getLoop() == OuterLoop) { 1111 // We found an OuterLoop induction after InnerLoop induction. It is 1112 // a bad order. 1113 FoundOuterInduction = true; 1114 if (FoundInnerInduction) { 1115 BadOrder++; 1116 break; 1117 } 1118 } 1119 } 1120 } 1121 } 1122 } 1123 return GoodOrder - BadOrder; 1124 } 1125 1126 std::optional<bool> 1127 LoopInterchangeProfitability::isProfitablePerLoopCacheAnalysis( 1128 const DenseMap<const Loop *, unsigned> &CostMap, 1129 std::unique_ptr<CacheCost> &CC) { 1130 // This is the new cost model returned from loop cache analysis. 1131 // A smaller index means the loop should be placed an outer loop, and vice 1132 // versa. 1133 if (CostMap.contains(InnerLoop) && CostMap.contains(OuterLoop)) { 1134 unsigned InnerIndex = 0, OuterIndex = 0; 1135 InnerIndex = CostMap.find(InnerLoop)->second; 1136 OuterIndex = CostMap.find(OuterLoop)->second; 1137 LLVM_DEBUG(dbgs() << "InnerIndex = " << InnerIndex 1138 << ", OuterIndex = " << OuterIndex << "\n"); 1139 if (InnerIndex < OuterIndex) 1140 return std::optional<bool>(true); 1141 assert(InnerIndex != OuterIndex && "CostMap should assign unique " 1142 "numbers to each loop"); 1143 if (CC->getLoopCost(*OuterLoop) == CC->getLoopCost(*InnerLoop)) 1144 return std::nullopt; 1145 return std::optional<bool>(false); 1146 } 1147 return std::nullopt; 1148 } 1149 1150 std::optional<bool> 1151 LoopInterchangeProfitability::isProfitablePerInstrOrderCost() { 1152 // Legacy cost model: this is rough cost estimation algorithm. It counts the 1153 // good and bad order of induction variables in the instruction and allows 1154 // reordering if number of bad orders is more than good. 1155 int Cost = getInstrOrderCost(); 1156 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n"); 1157 if (Cost < 0 && Cost < LoopInterchangeCostThreshold) 1158 return std::optional<bool>(true); 1159 1160 return std::nullopt; 1161 } 1162 1163 std::optional<bool> LoopInterchangeProfitability::isProfitableForVectorization( 1164 unsigned InnerLoopId, unsigned OuterLoopId, CharMatrix &DepMatrix) { 1165 for (auto &Row : DepMatrix) { 1166 // If the inner loop is loop independent or doesn't carry any dependency 1167 // it is not profitable to move this to outer position, since we are 1168 // likely able to do inner loop vectorization already. 1169 if (Row[InnerLoopId] == 'I' || Row[InnerLoopId] == '=') 1170 return std::optional<bool>(false); 1171 1172 // If the outer loop is not loop independent it is not profitable to move 1173 // this to inner position, since doing so would not enable inner loop 1174 // parallelism. 1175 if (Row[OuterLoopId] != 'I' && Row[OuterLoopId] != '=') 1176 return std::optional<bool>(false); 1177 } 1178 // If inner loop has dependence and outer loop is loop independent then it 1179 // is/ profitable to interchange to enable inner loop parallelism. 1180 // If there are no dependences, interchanging will not improve anything. 1181 return std::optional<bool>(!DepMatrix.empty()); 1182 } 1183 1184 bool LoopInterchangeProfitability::isProfitable( 1185 const Loop *InnerLoop, const Loop *OuterLoop, unsigned InnerLoopId, 1186 unsigned OuterLoopId, CharMatrix &DepMatrix, 1187 const DenseMap<const Loop *, unsigned> &CostMap, 1188 std::unique_ptr<CacheCost> &CC) { 1189 // isProfitable() is structured to avoid endless loop interchange. 1190 // If loop cache analysis could decide the profitability then, 1191 // profitability check will stop and return the analysis result. 1192 // If cache analysis failed to analyze the loopnest (e.g., 1193 // due to delinearization issues) then only check whether it is 1194 // profitable for InstrOrderCost. Likewise, if InstrOrderCost failed to 1195 // analysis the profitability then only, isProfitableForVectorization 1196 // will decide. 1197 std::optional<bool> shouldInterchange = 1198 isProfitablePerLoopCacheAnalysis(CostMap, CC); 1199 if (!shouldInterchange.has_value()) { 1200 shouldInterchange = isProfitablePerInstrOrderCost(); 1201 if (!shouldInterchange.has_value()) 1202 shouldInterchange = 1203 isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix); 1204 } 1205 if (!shouldInterchange.has_value()) { 1206 ORE->emit([&]() { 1207 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", 1208 InnerLoop->getStartLoc(), 1209 InnerLoop->getHeader()) 1210 << "Insufficient information to calculate the cost of loop for " 1211 "interchange."; 1212 }); 1213 return false; 1214 } else if (!shouldInterchange.value()) { 1215 ORE->emit([&]() { 1216 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", 1217 InnerLoop->getStartLoc(), 1218 InnerLoop->getHeader()) 1219 << "Interchanging loops is not considered to improve cache " 1220 "locality nor vectorization."; 1221 }); 1222 return false; 1223 } 1224 return true; 1225 } 1226 1227 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop, 1228 Loop *InnerLoop) { 1229 for (Loop *L : *OuterLoop) 1230 if (L == InnerLoop) { 1231 OuterLoop->removeChildLoop(L); 1232 return; 1233 } 1234 llvm_unreachable("Couldn't find loop"); 1235 } 1236 1237 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the 1238 /// new inner and outer loop after interchanging: NewInner is the original 1239 /// outer loop and NewOuter is the original inner loop. 1240 /// 1241 /// Before interchanging, we have the following structure 1242 /// Outer preheader 1243 // Outer header 1244 // Inner preheader 1245 // Inner header 1246 // Inner body 1247 // Inner latch 1248 // outer bbs 1249 // Outer latch 1250 // 1251 // After interchanging: 1252 // Inner preheader 1253 // Inner header 1254 // Outer preheader 1255 // Outer header 1256 // Inner body 1257 // outer bbs 1258 // Outer latch 1259 // Inner latch 1260 void LoopInterchangeTransform::restructureLoops( 1261 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader, 1262 BasicBlock *OrigOuterPreHeader) { 1263 Loop *OuterLoopParent = OuterLoop->getParentLoop(); 1264 // The original inner loop preheader moves from the new inner loop to 1265 // the parent loop, if there is one. 1266 NewInner->removeBlockFromLoop(OrigInnerPreHeader); 1267 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent); 1268 1269 // Switch the loop levels. 1270 if (OuterLoopParent) { 1271 // Remove the loop from its parent loop. 1272 removeChildLoop(OuterLoopParent, NewInner); 1273 removeChildLoop(NewInner, NewOuter); 1274 OuterLoopParent->addChildLoop(NewOuter); 1275 } else { 1276 removeChildLoop(NewInner, NewOuter); 1277 LI->changeTopLevelLoop(NewInner, NewOuter); 1278 } 1279 while (!NewOuter->isInnermost()) 1280 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin())); 1281 NewOuter->addChildLoop(NewInner); 1282 1283 // BBs from the original inner loop. 1284 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks()); 1285 1286 // Add BBs from the original outer loop to the original inner loop (excluding 1287 // BBs already in inner loop) 1288 for (BasicBlock *BB : NewInner->blocks()) 1289 if (LI->getLoopFor(BB) == NewInner) 1290 NewOuter->addBlockEntry(BB); 1291 1292 // Now remove inner loop header and latch from the new inner loop and move 1293 // other BBs (the loop body) to the new inner loop. 1294 BasicBlock *OuterHeader = NewOuter->getHeader(); 1295 BasicBlock *OuterLatch = NewOuter->getLoopLatch(); 1296 for (BasicBlock *BB : OrigInnerBBs) { 1297 // Nothing will change for BBs in child loops. 1298 if (LI->getLoopFor(BB) != NewOuter) 1299 continue; 1300 // Remove the new outer loop header and latch from the new inner loop. 1301 if (BB == OuterHeader || BB == OuterLatch) 1302 NewInner->removeBlockFromLoop(BB); 1303 else 1304 LI->changeLoopFor(BB, NewInner); 1305 } 1306 1307 // The preheader of the original outer loop becomes part of the new 1308 // outer loop. 1309 NewOuter->addBlockEntry(OrigOuterPreHeader); 1310 LI->changeLoopFor(OrigOuterPreHeader, NewOuter); 1311 1312 // Tell SE that we move the loops around. 1313 SE->forgetLoop(NewOuter); 1314 } 1315 1316 bool LoopInterchangeTransform::transform() { 1317 bool Transformed = false; 1318 1319 if (InnerLoop->getSubLoops().empty()) { 1320 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1321 LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n"); 1322 auto &InductionPHIs = LIL.getInnerLoopInductions(); 1323 if (InductionPHIs.empty()) { 1324 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n"); 1325 return false; 1326 } 1327 1328 SmallVector<Instruction *, 8> InnerIndexVarList; 1329 for (PHINode *CurInductionPHI : InductionPHIs) { 1330 if (CurInductionPHI->getIncomingBlock(0) == InnerLoopPreHeader) 1331 InnerIndexVarList.push_back( 1332 dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(1))); 1333 else 1334 InnerIndexVarList.push_back( 1335 dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(0))); 1336 } 1337 1338 // Create a new latch block for the inner loop. We split at the 1339 // current latch's terminator and then move the condition and all 1340 // operands that are not either loop-invariant or the induction PHI into the 1341 // new latch block. 1342 BasicBlock *NewLatch = 1343 SplitBlock(InnerLoop->getLoopLatch(), 1344 InnerLoop->getLoopLatch()->getTerminator(), DT, LI); 1345 1346 SmallSetVector<Instruction *, 4> WorkList; 1347 unsigned i = 0; 1348 auto MoveInstructions = [&i, &WorkList, this, &InductionPHIs, NewLatch]() { 1349 for (; i < WorkList.size(); i++) { 1350 // Duplicate instruction and move it the new latch. Update uses that 1351 // have been moved. 1352 Instruction *NewI = WorkList[i]->clone(); 1353 NewI->insertBefore(NewLatch->getFirstNonPHI()); 1354 assert(!NewI->mayHaveSideEffects() && 1355 "Moving instructions with side-effects may change behavior of " 1356 "the loop nest!"); 1357 for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) { 1358 Instruction *UserI = cast<Instruction>(U.getUser()); 1359 if (!InnerLoop->contains(UserI->getParent()) || 1360 UserI->getParent() == NewLatch || 1361 llvm::is_contained(InductionPHIs, UserI)) 1362 U.set(NewI); 1363 } 1364 // Add operands of moved instruction to the worklist, except if they are 1365 // outside the inner loop or are the induction PHI. 1366 for (Value *Op : WorkList[i]->operands()) { 1367 Instruction *OpI = dyn_cast<Instruction>(Op); 1368 if (!OpI || 1369 this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop || 1370 llvm::is_contained(InductionPHIs, OpI)) 1371 continue; 1372 WorkList.insert(OpI); 1373 } 1374 } 1375 }; 1376 1377 // FIXME: Should we interchange when we have a constant condition? 1378 Instruction *CondI = dyn_cast<Instruction>( 1379 cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator()) 1380 ->getCondition()); 1381 if (CondI) 1382 WorkList.insert(CondI); 1383 MoveInstructions(); 1384 for (Instruction *InnerIndexVar : InnerIndexVarList) 1385 WorkList.insert(cast<Instruction>(InnerIndexVar)); 1386 MoveInstructions(); 1387 } 1388 1389 // Ensure the inner loop phi nodes have a separate basic block. 1390 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1391 if (InnerLoopHeader->getFirstNonPHI() != InnerLoopHeader->getTerminator()) { 1392 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI); 1393 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n"); 1394 } 1395 1396 // Instructions in the original inner loop preheader may depend on values 1397 // defined in the outer loop header. Move them there, because the original 1398 // inner loop preheader will become the entry into the interchanged loop nest. 1399 // Currently we move all instructions and rely on LICM to move invariant 1400 // instructions outside the loop nest. 1401 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1402 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1403 if (InnerLoopPreHeader != OuterLoopHeader) { 1404 SmallPtrSet<Instruction *, 4> NeedsMoving; 1405 for (Instruction &I : 1406 make_early_inc_range(make_range(InnerLoopPreHeader->begin(), 1407 std::prev(InnerLoopPreHeader->end())))) 1408 I.moveBeforePreserving(OuterLoopHeader->getTerminator()); 1409 } 1410 1411 Transformed |= adjustLoopLinks(); 1412 if (!Transformed) { 1413 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n"); 1414 return false; 1415 } 1416 1417 return true; 1418 } 1419 1420 /// \brief Move all instructions except the terminator from FromBB right before 1421 /// InsertBefore 1422 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) { 1423 BasicBlock *ToBB = InsertBefore->getParent(); 1424 1425 ToBB->splice(InsertBefore->getIterator(), FromBB, FromBB->begin(), 1426 FromBB->getTerminator()->getIterator()); 1427 } 1428 1429 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact. 1430 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) { 1431 // Save all non-terminator instructions of BB1 into TempInstrs and unlink them 1432 // from BB1 afterwards. 1433 auto Iter = map_range(*BB1, [](Instruction &I) { return &I; }); 1434 SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end())); 1435 for (Instruction *I : TempInstrs) 1436 I->removeFromParent(); 1437 1438 // Move instructions from BB2 to BB1. 1439 moveBBContents(BB2, BB1->getTerminator()); 1440 1441 // Move instructions from TempInstrs to BB2. 1442 for (Instruction *I : TempInstrs) 1443 I->insertBefore(BB2->getTerminator()); 1444 } 1445 1446 // Update BI to jump to NewBB instead of OldBB. Records updates to the 1447 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that 1448 // \p OldBB is exactly once in BI's successor list. 1449 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB, 1450 BasicBlock *NewBB, 1451 std::vector<DominatorTree::UpdateType> &DTUpdates, 1452 bool MustUpdateOnce = true) { 1453 assert((!MustUpdateOnce || 1454 llvm::count_if(successors(BI), 1455 [OldBB](BasicBlock *BB) { 1456 return BB == OldBB; 1457 }) == 1) && "BI must jump to OldBB exactly once."); 1458 bool Changed = false; 1459 for (Use &Op : BI->operands()) 1460 if (Op == OldBB) { 1461 Op.set(NewBB); 1462 Changed = true; 1463 } 1464 1465 if (Changed) { 1466 DTUpdates.push_back( 1467 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB}); 1468 DTUpdates.push_back( 1469 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB}); 1470 } 1471 assert(Changed && "Expected a successor to be updated"); 1472 } 1473 1474 // Move Lcssa PHIs to the right place. 1475 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader, 1476 BasicBlock *InnerLatch, BasicBlock *OuterHeader, 1477 BasicBlock *OuterLatch, BasicBlock *OuterExit, 1478 Loop *InnerLoop, LoopInfo *LI) { 1479 1480 // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are 1481 // defined either in the header or latch. Those blocks will become header and 1482 // latch of the new outer loop, and the only possible users can PHI nodes 1483 // in the exit block of the loop nest or the outer loop header (reduction 1484 // PHIs, in that case, the incoming value must be defined in the inner loop 1485 // header). We can just substitute the user with the incoming value and remove 1486 // the PHI. 1487 for (PHINode &P : make_early_inc_range(InnerExit->phis())) { 1488 assert(P.getNumIncomingValues() == 1 && 1489 "Only loops with a single exit are supported!"); 1490 1491 // Incoming values are guaranteed be instructions currently. 1492 auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch)); 1493 // In case of multi-level nested loops, follow LCSSA to find the incoming 1494 // value defined from the innermost loop. 1495 auto IncIInnerMost = cast<Instruction>(followLCSSA(IncI)); 1496 // Skip phis with incoming values from the inner loop body, excluding the 1497 // header and latch. 1498 if (IncIInnerMost->getParent() != InnerLatch && 1499 IncIInnerMost->getParent() != InnerHeader) 1500 continue; 1501 1502 assert(all_of(P.users(), 1503 [OuterHeader, OuterExit, IncI, InnerHeader](User *U) { 1504 return (cast<PHINode>(U)->getParent() == OuterHeader && 1505 IncI->getParent() == InnerHeader) || 1506 cast<PHINode>(U)->getParent() == OuterExit; 1507 }) && 1508 "Can only replace phis iff the uses are in the loop nest exit or " 1509 "the incoming value is defined in the inner header (it will " 1510 "dominate all loop blocks after interchanging)"); 1511 P.replaceAllUsesWith(IncI); 1512 P.eraseFromParent(); 1513 } 1514 1515 SmallVector<PHINode *, 8> LcssaInnerExit; 1516 for (PHINode &P : InnerExit->phis()) 1517 LcssaInnerExit.push_back(&P); 1518 1519 SmallVector<PHINode *, 8> LcssaInnerLatch; 1520 for (PHINode &P : InnerLatch->phis()) 1521 LcssaInnerLatch.push_back(&P); 1522 1523 // Lcssa PHIs for values used outside the inner loop are in InnerExit. 1524 // If a PHI node has users outside of InnerExit, it has a use outside the 1525 // interchanged loop and we have to preserve it. We move these to 1526 // InnerLatch, which will become the new exit block for the innermost 1527 // loop after interchanging. 1528 for (PHINode *P : LcssaInnerExit) 1529 P->moveBefore(InnerLatch->getFirstNonPHI()); 1530 1531 // If the inner loop latch contains LCSSA PHIs, those come from a child loop 1532 // and we have to move them to the new inner latch. 1533 for (PHINode *P : LcssaInnerLatch) 1534 P->moveBefore(InnerExit->getFirstNonPHI()); 1535 1536 // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have 1537 // incoming values defined in the outer loop, we have to add a new PHI 1538 // in the inner loop latch, which became the exit block of the outer loop, 1539 // after interchanging. 1540 if (OuterExit) { 1541 for (PHINode &P : OuterExit->phis()) { 1542 if (P.getNumIncomingValues() != 1) 1543 continue; 1544 // Skip Phis with incoming values defined in the inner loop. Those should 1545 // already have been updated. 1546 auto I = dyn_cast<Instruction>(P.getIncomingValue(0)); 1547 if (!I || LI->getLoopFor(I->getParent()) == InnerLoop) 1548 continue; 1549 1550 PHINode *NewPhi = dyn_cast<PHINode>(P.clone()); 1551 NewPhi->setIncomingValue(0, P.getIncomingValue(0)); 1552 NewPhi->setIncomingBlock(0, OuterLatch); 1553 // We might have incoming edges from other BBs, i.e., the original outer 1554 // header. 1555 for (auto *Pred : predecessors(InnerLatch)) { 1556 if (Pred == OuterLatch) 1557 continue; 1558 NewPhi->addIncoming(P.getIncomingValue(0), Pred); 1559 } 1560 NewPhi->insertBefore(InnerLatch->getFirstNonPHI()); 1561 P.setIncomingValue(0, NewPhi); 1562 } 1563 } 1564 1565 // Now adjust the incoming blocks for the LCSSA PHIs. 1566 // For PHIs moved from Inner's exit block, we need to replace Inner's latch 1567 // with the new latch. 1568 InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch); 1569 } 1570 1571 bool LoopInterchangeTransform::adjustLoopBranches() { 1572 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n"); 1573 std::vector<DominatorTree::UpdateType> DTUpdates; 1574 1575 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1576 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1577 1578 assert(OuterLoopPreHeader != OuterLoop->getHeader() && 1579 InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader && 1580 InnerLoopPreHeader && "Guaranteed by loop-simplify form"); 1581 // Ensure that both preheaders do not contain PHI nodes and have single 1582 // predecessors. This allows us to move them easily. We use 1583 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing 1584 // preheaders do not satisfy those conditions. 1585 if (isa<PHINode>(OuterLoopPreHeader->begin()) || 1586 !OuterLoopPreHeader->getUniquePredecessor()) 1587 OuterLoopPreHeader = 1588 InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true); 1589 if (InnerLoopPreHeader == OuterLoop->getHeader()) 1590 InnerLoopPreHeader = 1591 InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true); 1592 1593 // Adjust the loop preheader 1594 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1595 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1596 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 1597 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 1598 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor(); 1599 BasicBlock *InnerLoopLatchPredecessor = 1600 InnerLoopLatch->getUniquePredecessor(); 1601 BasicBlock *InnerLoopLatchSuccessor; 1602 BasicBlock *OuterLoopLatchSuccessor; 1603 1604 BranchInst *OuterLoopLatchBI = 1605 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator()); 1606 BranchInst *InnerLoopLatchBI = 1607 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 1608 BranchInst *OuterLoopHeaderBI = 1609 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 1610 BranchInst *InnerLoopHeaderBI = 1611 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator()); 1612 1613 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor || 1614 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI || 1615 !InnerLoopHeaderBI) 1616 return false; 1617 1618 BranchInst *InnerLoopLatchPredecessorBI = 1619 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator()); 1620 BranchInst *OuterLoopPredecessorBI = 1621 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator()); 1622 1623 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI) 1624 return false; 1625 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor(); 1626 if (!InnerLoopHeaderSuccessor) 1627 return false; 1628 1629 // Adjust Loop Preheader and headers. 1630 // The branches in the outer loop predecessor and the outer loop header can 1631 // be unconditional branches or conditional branches with duplicates. Consider 1632 // this when updating the successors. 1633 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader, 1634 InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false); 1635 // The outer loop header might or might not branch to the outer latch. 1636 // We are guaranteed to branch to the inner loop preheader. 1637 if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) { 1638 // In this case the outerLoopHeader should branch to the InnerLoopLatch. 1639 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, InnerLoopLatch, 1640 DTUpdates, 1641 /*MustUpdateOnce=*/false); 1642 } 1643 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader, 1644 InnerLoopHeaderSuccessor, DTUpdates, 1645 /*MustUpdateOnce=*/false); 1646 1647 // Adjust reduction PHI's now that the incoming block has changed. 1648 InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader, 1649 OuterLoopHeader); 1650 1651 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor, 1652 OuterLoopPreHeader, DTUpdates); 1653 1654 // -------------Adjust loop latches----------- 1655 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader) 1656 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1); 1657 else 1658 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0); 1659 1660 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch, 1661 InnerLoopLatchSuccessor, DTUpdates); 1662 1663 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader) 1664 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1); 1665 else 1666 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0); 1667 1668 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor, 1669 OuterLoopLatchSuccessor, DTUpdates); 1670 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch, 1671 DTUpdates); 1672 1673 DT->applyUpdates(DTUpdates); 1674 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader, 1675 OuterLoopPreHeader); 1676 1677 moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch, 1678 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(), 1679 InnerLoop, LI); 1680 // For PHIs in the exit block of the outer loop, outer's latch has been 1681 // replaced by Inners'. 1682 OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1683 1684 auto &OuterInnerReductions = LIL.getOuterInnerReductions(); 1685 // Now update the reduction PHIs in the inner and outer loop headers. 1686 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs; 1687 for (PHINode &PHI : InnerLoopHeader->phis()) 1688 if (OuterInnerReductions.contains(&PHI)) 1689 InnerLoopPHIs.push_back(&PHI); 1690 1691 for (PHINode &PHI : OuterLoopHeader->phis()) 1692 if (OuterInnerReductions.contains(&PHI)) 1693 OuterLoopPHIs.push_back(&PHI); 1694 1695 // Now move the remaining reduction PHIs from outer to inner loop header and 1696 // vice versa. The PHI nodes must be part of a reduction across the inner and 1697 // outer loop and all the remains to do is and updating the incoming blocks. 1698 for (PHINode *PHI : OuterLoopPHIs) { 1699 LLVM_DEBUG(dbgs() << "Outer loop reduction PHIs:\n"; PHI->dump();); 1700 PHI->moveBefore(InnerLoopHeader->getFirstNonPHI()); 1701 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1702 } 1703 for (PHINode *PHI : InnerLoopPHIs) { 1704 LLVM_DEBUG(dbgs() << "Inner loop reduction PHIs:\n"; PHI->dump();); 1705 PHI->moveBefore(OuterLoopHeader->getFirstNonPHI()); 1706 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1707 } 1708 1709 // Update the incoming blocks for moved PHI nodes. 1710 OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader); 1711 OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch); 1712 InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader); 1713 InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1714 1715 // Values defined in the outer loop header could be used in the inner loop 1716 // latch. In that case, we need to create LCSSA phis for them, because after 1717 // interchanging they will be defined in the new inner loop and used in the 1718 // new outer loop. 1719 SmallVector<Instruction *, 4> MayNeedLCSSAPhis; 1720 for (Instruction &I : 1721 make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end()))) 1722 MayNeedLCSSAPhis.push_back(&I); 1723 formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE); 1724 1725 return true; 1726 } 1727 1728 bool LoopInterchangeTransform::adjustLoopLinks() { 1729 // Adjust all branches in the inner and outer loop. 1730 bool Changed = adjustLoopBranches(); 1731 if (Changed) { 1732 // We have interchanged the preheaders so we need to interchange the data in 1733 // the preheaders as well. This is because the content of the inner 1734 // preheader was previously executed inside the outer loop. 1735 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1736 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1737 swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader); 1738 } 1739 return Changed; 1740 } 1741 1742 PreservedAnalyses LoopInterchangePass::run(LoopNest &LN, 1743 LoopAnalysisManager &AM, 1744 LoopStandardAnalysisResults &AR, 1745 LPMUpdater &U) { 1746 Function &F = *LN.getParent(); 1747 SmallVector<Loop *, 8> LoopList(LN.getLoops()); 1748 1749 if (MaxMemInstrCount < 1) { 1750 LLVM_DEBUG(dbgs() << "MaxMemInstrCount should be at least 1"); 1751 return PreservedAnalyses::all(); 1752 } 1753 OptimizationRemarkEmitter ORE(&F); 1754 1755 // Ensure minimum depth of the loop nest to do the interchange. 1756 if (!hasSupportedLoopDepth(LoopList, ORE)) 1757 return PreservedAnalyses::all(); 1758 DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI); 1759 std::unique_ptr<CacheCost> CC = 1760 CacheCost::getCacheCost(LN.getOutermostLoop(), AR, DI); 1761 1762 if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, CC, &ORE).run(LN)) 1763 return PreservedAnalyses::all(); 1764 U.markLoopNestChanged(true); 1765 return getLoopPassPreservedAnalyses(); 1766 } 1767