xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopInterchange.cpp (revision cd58333a62142d47c8571eacc07685251c5a0825)
1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This Pass handles loop interchange transform.
10 // This pass interchanges loops to provide a more cache-friendly memory access
11 // patterns.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/LoopInterchange.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Analysis/DependenceAnalysis.h"
21 #include "llvm/Analysis/LoopCacheAnalysis.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/LoopNestAnalysis.h"
24 #include "llvm/Analysis/LoopPass.h"
25 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/InstrTypes.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/InitializePasses.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Scalar.h"
47 #include "llvm/Transforms/Scalar/LoopPassManager.h"
48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
49 #include "llvm/Transforms/Utils/LoopUtils.h"
50 #include <cassert>
51 #include <utility>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "loop-interchange"
57 
58 STATISTIC(LoopsInterchanged, "Number of loops interchanged");
59 
60 static cl::opt<int> LoopInterchangeCostThreshold(
61     "loop-interchange-threshold", cl::init(0), cl::Hidden,
62     cl::desc("Interchange if you gain more than this number"));
63 
64 namespace {
65 
66 using LoopVector = SmallVector<Loop *, 8>;
67 
68 // TODO: Check if we can use a sparse matrix here.
69 using CharMatrix = std::vector<std::vector<char>>;
70 
71 } // end anonymous namespace
72 
73 // Maximum number of dependencies that can be handled in the dependency matrix.
74 static const unsigned MaxMemInstrCount = 100;
75 
76 // Maximum loop depth supported.
77 static const unsigned MaxLoopNestDepth = 10;
78 
79 #ifdef DUMP_DEP_MATRICIES
80 static void printDepMatrix(CharMatrix &DepMatrix) {
81   for (auto &Row : DepMatrix) {
82     for (auto D : Row)
83       LLVM_DEBUG(dbgs() << D << " ");
84     LLVM_DEBUG(dbgs() << "\n");
85   }
86 }
87 #endif
88 
89 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
90                                      Loop *L, DependenceInfo *DI,
91                                      ScalarEvolution *SE) {
92   using ValueVector = SmallVector<Value *, 16>;
93 
94   ValueVector MemInstr;
95 
96   // For each block.
97   for (BasicBlock *BB : L->blocks()) {
98     // Scan the BB and collect legal loads and stores.
99     for (Instruction &I : *BB) {
100       if (!isa<Instruction>(I))
101         return false;
102       if (auto *Ld = dyn_cast<LoadInst>(&I)) {
103         if (!Ld->isSimple())
104           return false;
105         MemInstr.push_back(&I);
106       } else if (auto *St = dyn_cast<StoreInst>(&I)) {
107         if (!St->isSimple())
108           return false;
109         MemInstr.push_back(&I);
110       }
111     }
112   }
113 
114   LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
115                     << " Loads and Stores to analyze\n");
116 
117   ValueVector::iterator I, IE, J, JE;
118 
119   for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
120     for (J = I, JE = MemInstr.end(); J != JE; ++J) {
121       std::vector<char> Dep;
122       Instruction *Src = cast<Instruction>(*I);
123       Instruction *Dst = cast<Instruction>(*J);
124       // Ignore Input dependencies.
125       if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
126         continue;
127       // Track Output, Flow, and Anti dependencies.
128       if (auto D = DI->depends(Src, Dst, true)) {
129         assert(D->isOrdered() && "Expected an output, flow or anti dep.");
130         // If the direction vector is negative, normalize it to
131         // make it non-negative.
132         if (D->normalize(SE))
133           LLVM_DEBUG(dbgs() << "Negative dependence vector normalized.\n");
134         LLVM_DEBUG(StringRef DepType =
135                        D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
136                    dbgs() << "Found " << DepType
137                           << " dependency between Src and Dst\n"
138                           << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
139         unsigned Levels = D->getLevels();
140         char Direction;
141         for (unsigned II = 1; II <= Levels; ++II) {
142           if (D->isScalar(II)) {
143             Direction = 'S';
144             Dep.push_back(Direction);
145           } else {
146             unsigned Dir = D->getDirection(II);
147             if (Dir == Dependence::DVEntry::LT ||
148                 Dir == Dependence::DVEntry::LE)
149               Direction = '<';
150             else if (Dir == Dependence::DVEntry::GT ||
151                      Dir == Dependence::DVEntry::GE)
152               Direction = '>';
153             else if (Dir == Dependence::DVEntry::EQ)
154               Direction = '=';
155             else
156               Direction = '*';
157             Dep.push_back(Direction);
158           }
159         }
160         while (Dep.size() != Level) {
161           Dep.push_back('I');
162         }
163 
164         DepMatrix.push_back(Dep);
165         if (DepMatrix.size() > MaxMemInstrCount) {
166           LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
167                             << " dependencies inside loop\n");
168           return false;
169         }
170       }
171     }
172   }
173 
174   return true;
175 }
176 
177 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
178 // matrix by exchanging the two columns.
179 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
180                                     unsigned ToIndx) {
181   for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I)
182     std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]);
183 }
184 
185 // After interchanging, check if the direction vector is valid.
186 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
187 // if the direction matrix, after the same permutation is applied to its
188 // columns, has no ">" direction as the leftmost non-"=" direction in any row.
189 static bool isLexicographicallyPositive(std::vector<char> &DV) {
190   for (unsigned Level = 0; Level < DV.size(); ++Level) {
191     unsigned char Direction = DV[Level];
192     if (Direction == '<')
193       return true;
194     if (Direction == '>' || Direction == '*')
195       return false;
196   }
197   return true;
198 }
199 
200 // Checks if it is legal to interchange 2 loops.
201 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
202                                       unsigned InnerLoopId,
203                                       unsigned OuterLoopId) {
204   unsigned NumRows = DepMatrix.size();
205   std::vector<char> Cur;
206   // For each row check if it is valid to interchange.
207   for (unsigned Row = 0; Row < NumRows; ++Row) {
208     // Create temporary DepVector check its lexicographical order
209     // before and after swapping OuterLoop vs InnerLoop
210     Cur = DepMatrix[Row];
211     if (!isLexicographicallyPositive(Cur))
212       return false;
213     std::swap(Cur[InnerLoopId], Cur[OuterLoopId]);
214     if (!isLexicographicallyPositive(Cur))
215       return false;
216   }
217   return true;
218 }
219 
220 static void populateWorklist(Loop &L, LoopVector &LoopList) {
221   LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
222                     << L.getHeader()->getParent()->getName() << " Loop: %"
223                     << L.getHeader()->getName() << '\n');
224   assert(LoopList.empty() && "LoopList should initially be empty!");
225   Loop *CurrentLoop = &L;
226   const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
227   while (!Vec->empty()) {
228     // The current loop has multiple subloops in it hence it is not tightly
229     // nested.
230     // Discard all loops above it added into Worklist.
231     if (Vec->size() != 1) {
232       LoopList = {};
233       return;
234     }
235 
236     LoopList.push_back(CurrentLoop);
237     CurrentLoop = Vec->front();
238     Vec = &CurrentLoop->getSubLoops();
239   }
240   LoopList.push_back(CurrentLoop);
241 }
242 
243 namespace {
244 
245 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
246 class LoopInterchangeLegality {
247 public:
248   LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
249                           OptimizationRemarkEmitter *ORE)
250       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
251 
252   /// Check if the loops can be interchanged.
253   bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
254                            CharMatrix &DepMatrix);
255 
256   /// Discover induction PHIs in the header of \p L. Induction
257   /// PHIs are added to \p Inductions.
258   bool findInductions(Loop *L, SmallVectorImpl<PHINode *> &Inductions);
259 
260   /// Check if the loop structure is understood. We do not handle triangular
261   /// loops for now.
262   bool isLoopStructureUnderstood();
263 
264   bool currentLimitations();
265 
266   const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const {
267     return OuterInnerReductions;
268   }
269 
270   const SmallVectorImpl<PHINode *> &getInnerLoopInductions() const {
271     return InnerLoopInductions;
272   }
273 
274 private:
275   bool tightlyNested(Loop *Outer, Loop *Inner);
276   bool containsUnsafeInstructions(BasicBlock *BB);
277 
278   /// Discover induction and reduction PHIs in the header of \p L. Induction
279   /// PHIs are added to \p Inductions, reductions are added to
280   /// OuterInnerReductions. When the outer loop is passed, the inner loop needs
281   /// to be passed as \p InnerLoop.
282   bool findInductionAndReductions(Loop *L,
283                                   SmallVector<PHINode *, 8> &Inductions,
284                                   Loop *InnerLoop);
285 
286   Loop *OuterLoop;
287   Loop *InnerLoop;
288 
289   ScalarEvolution *SE;
290 
291   /// Interface to emit optimization remarks.
292   OptimizationRemarkEmitter *ORE;
293 
294   /// Set of reduction PHIs taking part of a reduction across the inner and
295   /// outer loop.
296   SmallPtrSet<PHINode *, 4> OuterInnerReductions;
297 
298   /// Set of inner loop induction PHIs
299   SmallVector<PHINode *, 8> InnerLoopInductions;
300 };
301 
302 /// LoopInterchangeProfitability checks if it is profitable to interchange the
303 /// loop.
304 class LoopInterchangeProfitability {
305 public:
306   LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
307                                OptimizationRemarkEmitter *ORE)
308       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
309 
310   /// Check if the loop interchange is profitable.
311   bool isProfitable(const Loop *InnerLoop, const Loop *OuterLoop,
312                     unsigned InnerLoopId, unsigned OuterLoopId,
313                     CharMatrix &DepMatrix,
314                     const DenseMap<const Loop *, unsigned> &CostMap);
315 
316 private:
317   int getInstrOrderCost();
318 
319   Loop *OuterLoop;
320   Loop *InnerLoop;
321 
322   /// Scev analysis.
323   ScalarEvolution *SE;
324 
325   /// Interface to emit optimization remarks.
326   OptimizationRemarkEmitter *ORE;
327 };
328 
329 /// LoopInterchangeTransform interchanges the loop.
330 class LoopInterchangeTransform {
331 public:
332   LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
333                            LoopInfo *LI, DominatorTree *DT,
334                            const LoopInterchangeLegality &LIL)
335       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LIL(LIL) {}
336 
337   /// Interchange OuterLoop and InnerLoop.
338   bool transform();
339   void restructureLoops(Loop *NewInner, Loop *NewOuter,
340                         BasicBlock *OrigInnerPreHeader,
341                         BasicBlock *OrigOuterPreHeader);
342   void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
343 
344 private:
345   bool adjustLoopLinks();
346   bool adjustLoopBranches();
347 
348   Loop *OuterLoop;
349   Loop *InnerLoop;
350 
351   /// Scev analysis.
352   ScalarEvolution *SE;
353 
354   LoopInfo *LI;
355   DominatorTree *DT;
356 
357   const LoopInterchangeLegality &LIL;
358 };
359 
360 struct LoopInterchange {
361   ScalarEvolution *SE = nullptr;
362   LoopInfo *LI = nullptr;
363   DependenceInfo *DI = nullptr;
364   DominatorTree *DT = nullptr;
365   std::unique_ptr<CacheCost> CC = nullptr;
366 
367   /// Interface to emit optimization remarks.
368   OptimizationRemarkEmitter *ORE;
369 
370   LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI,
371                   DominatorTree *DT, std::unique_ptr<CacheCost> &CC,
372                   OptimizationRemarkEmitter *ORE)
373       : SE(SE), LI(LI), DI(DI), DT(DT), CC(std::move(CC)), ORE(ORE) {}
374 
375   bool run(Loop *L) {
376     if (L->getParentLoop())
377       return false;
378     SmallVector<Loop *, 8> LoopList;
379     populateWorklist(*L, LoopList);
380     return processLoopList(LoopList);
381   }
382 
383   bool run(LoopNest &LN) {
384     SmallVector<Loop *, 8> LoopList(LN.getLoops().begin(), LN.getLoops().end());
385     for (unsigned I = 1; I < LoopList.size(); ++I)
386       if (LoopList[I]->getParentLoop() != LoopList[I - 1])
387         return false;
388     return processLoopList(LoopList);
389   }
390 
391   bool isComputableLoopNest(ArrayRef<Loop *> LoopList) {
392     for (Loop *L : LoopList) {
393       const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
394       if (isa<SCEVCouldNotCompute>(ExitCountOuter)) {
395         LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
396         return false;
397       }
398       if (L->getNumBackEdges() != 1) {
399         LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
400         return false;
401       }
402       if (!L->getExitingBlock()) {
403         LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
404         return false;
405       }
406     }
407     return true;
408   }
409 
410   unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) {
411     // TODO: Add a better heuristic to select the loop to be interchanged based
412     // on the dependence matrix. Currently we select the innermost loop.
413     return LoopList.size() - 1;
414   }
415 
416   bool processLoopList(SmallVectorImpl<Loop *> &LoopList) {
417     bool Changed = false;
418     unsigned LoopNestDepth = LoopList.size();
419     if (LoopNestDepth < 2) {
420       LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
421       return false;
422     }
423     if (LoopNestDepth > MaxLoopNestDepth) {
424       LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
425                         << MaxLoopNestDepth << "\n");
426       return false;
427     }
428     if (!isComputableLoopNest(LoopList)) {
429       LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
430       return false;
431     }
432 
433     LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
434                       << "\n");
435 
436     CharMatrix DependencyMatrix;
437     Loop *OuterMostLoop = *(LoopList.begin());
438     if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
439                                   OuterMostLoop, DI, SE)) {
440       LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
441       return false;
442     }
443 #ifdef DUMP_DEP_MATRICIES
444     LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
445     printDepMatrix(DependencyMatrix);
446 #endif
447 
448     // Get the Outermost loop exit.
449     BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
450     if (!LoopNestExit) {
451       LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
452       return false;
453     }
454 
455     unsigned SelecLoopId = selectLoopForInterchange(LoopList);
456     // Obtain the loop vector returned from loop cache analysis beforehand,
457     // and put each <Loop, index> pair into a map for constant time query
458     // later. Indices in loop vector reprsent the optimal order of the
459     // corresponding loop, e.g., given a loopnest with depth N, index 0
460     // indicates the loop should be placed as the outermost loop and index N
461     // indicates the loop should be placed as the innermost loop.
462     //
463     // For the old pass manager CacheCost would be null.
464     DenseMap<const Loop *, unsigned> CostMap;
465     if (CC != nullptr) {
466       const auto &LoopCosts = CC->getLoopCosts();
467       for (unsigned i = 0; i < LoopCosts.size(); i++) {
468         CostMap[LoopCosts[i].first] = i;
469       }
470     }
471     // We try to achieve the globally optimal memory access for the loopnest,
472     // and do interchange based on a bubble-sort fasion. We start from
473     // the innermost loop, move it outwards to the best possible position
474     // and repeat this process.
475     for (unsigned j = SelecLoopId; j > 0; j--) {
476       bool ChangedPerIter = false;
477       for (unsigned i = SelecLoopId; i > SelecLoopId - j; i--) {
478         bool Interchanged = processLoop(LoopList[i], LoopList[i - 1], i, i - 1,
479                                         DependencyMatrix, CostMap);
480         if (!Interchanged)
481           continue;
482         // Loops interchanged, update LoopList accordingly.
483         std::swap(LoopList[i - 1], LoopList[i]);
484         // Update the DependencyMatrix
485         interChangeDependencies(DependencyMatrix, i, i - 1);
486 #ifdef DUMP_DEP_MATRICIES
487         LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
488         printDepMatrix(DependencyMatrix);
489 #endif
490         ChangedPerIter |= Interchanged;
491         Changed |= Interchanged;
492       }
493       // Early abort if there was no interchange during an entire round of
494       // moving loops outwards.
495       if (!ChangedPerIter)
496         break;
497     }
498     return Changed;
499   }
500 
501   bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId,
502                    unsigned OuterLoopId,
503                    std::vector<std::vector<char>> &DependencyMatrix,
504                    const DenseMap<const Loop *, unsigned> &CostMap) {
505     LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId
506                       << " and OuterLoopId = " << OuterLoopId << "\n");
507     LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
508     if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
509       LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
510       return false;
511     }
512     LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
513     LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
514     if (!LIP.isProfitable(InnerLoop, OuterLoop, InnerLoopId, OuterLoopId,
515                           DependencyMatrix, CostMap)) {
516       LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
517       return false;
518     }
519 
520     ORE->emit([&]() {
521       return OptimizationRemark(DEBUG_TYPE, "Interchanged",
522                                 InnerLoop->getStartLoc(),
523                                 InnerLoop->getHeader())
524              << "Loop interchanged with enclosing loop.";
525     });
526 
527     LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LIL);
528     LIT.transform();
529     LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
530     LoopsInterchanged++;
531 
532     llvm::formLCSSARecursively(*OuterLoop, *DT, LI, SE);
533     return true;
534   }
535 };
536 
537 } // end anonymous namespace
538 
539 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) {
540   return any_of(*BB, [](const Instruction &I) {
541     return I.mayHaveSideEffects() || I.mayReadFromMemory();
542   });
543 }
544 
545 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
546   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
547   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
548   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
549 
550   LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
551 
552   // A perfectly nested loop will not have any branch in between the outer and
553   // inner block i.e. outer header will branch to either inner preheader and
554   // outerloop latch.
555   BranchInst *OuterLoopHeaderBI =
556       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
557   if (!OuterLoopHeaderBI)
558     return false;
559 
560   for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
561     if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
562         Succ != OuterLoopLatch)
563       return false;
564 
565   LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
566   // We do not have any basic block in between now make sure the outer header
567   // and outer loop latch doesn't contain any unsafe instructions.
568   if (containsUnsafeInstructions(OuterLoopHeader) ||
569       containsUnsafeInstructions(OuterLoopLatch))
570     return false;
571 
572   // Also make sure the inner loop preheader does not contain any unsafe
573   // instructions. Note that all instructions in the preheader will be moved to
574   // the outer loop header when interchanging.
575   if (InnerLoopPreHeader != OuterLoopHeader &&
576       containsUnsafeInstructions(InnerLoopPreHeader))
577     return false;
578 
579   BasicBlock *InnerLoopExit = InnerLoop->getExitBlock();
580   // Ensure the inner loop exit block flows to the outer loop latch possibly
581   // through empty blocks.
582   const BasicBlock &SuccInner =
583       LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch);
584   if (&SuccInner != OuterLoopLatch) {
585     LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit
586                       << " does not lead to the outer loop latch.\n";);
587     return false;
588   }
589   // The inner loop exit block does flow to the outer loop latch and not some
590   // other BBs, now make sure it contains safe instructions, since it will be
591   // moved into the (new) inner loop after interchange.
592   if (containsUnsafeInstructions(InnerLoopExit))
593     return false;
594 
595   LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
596   // We have a perfect loop nest.
597   return true;
598 }
599 
600 bool LoopInterchangeLegality::isLoopStructureUnderstood() {
601   BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
602   for (PHINode *InnerInduction : InnerLoopInductions) {
603     unsigned Num = InnerInduction->getNumOperands();
604     for (unsigned i = 0; i < Num; ++i) {
605       Value *Val = InnerInduction->getOperand(i);
606       if (isa<Constant>(Val))
607         continue;
608       Instruction *I = dyn_cast<Instruction>(Val);
609       if (!I)
610         return false;
611       // TODO: Handle triangular loops.
612       // e.g. for(int i=0;i<N;i++)
613       //        for(int j=i;j<N;j++)
614       unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
615       if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
616               InnerLoopPreheader &&
617           !OuterLoop->isLoopInvariant(I)) {
618         return false;
619       }
620     }
621   }
622 
623   // TODO: Handle triangular loops of another form.
624   // e.g. for(int i=0;i<N;i++)
625   //        for(int j=0;j<i;j++)
626   // or,
627   //      for(int i=0;i<N;i++)
628   //        for(int j=0;j*i<N;j++)
629   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
630   BranchInst *InnerLoopLatchBI =
631       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
632   if (!InnerLoopLatchBI->isConditional())
633     return false;
634   if (CmpInst *InnerLoopCmp =
635           dyn_cast<CmpInst>(InnerLoopLatchBI->getCondition())) {
636     Value *Op0 = InnerLoopCmp->getOperand(0);
637     Value *Op1 = InnerLoopCmp->getOperand(1);
638 
639     // LHS and RHS of the inner loop exit condition, e.g.,
640     // in "for(int j=0;j<i;j++)", LHS is j and RHS is i.
641     Value *Left = nullptr;
642     Value *Right = nullptr;
643 
644     // Check if V only involves inner loop induction variable.
645     // Return true if V is InnerInduction, or a cast from
646     // InnerInduction, or a binary operator that involves
647     // InnerInduction and a constant.
648     std::function<bool(Value *)> IsPathToInnerIndVar;
649     IsPathToInnerIndVar = [this, &IsPathToInnerIndVar](const Value *V) -> bool {
650       if (llvm::is_contained(InnerLoopInductions, V))
651         return true;
652       if (isa<Constant>(V))
653         return true;
654       const Instruction *I = dyn_cast<Instruction>(V);
655       if (!I)
656         return false;
657       if (isa<CastInst>(I))
658         return IsPathToInnerIndVar(I->getOperand(0));
659       if (isa<BinaryOperator>(I))
660         return IsPathToInnerIndVar(I->getOperand(0)) &&
661                IsPathToInnerIndVar(I->getOperand(1));
662       return false;
663     };
664 
665     // In case of multiple inner loop indvars, it is okay if LHS and RHS
666     // are both inner indvar related variables.
667     if (IsPathToInnerIndVar(Op0) && IsPathToInnerIndVar(Op1))
668       return true;
669 
670     // Otherwise we check if the cmp instruction compares an inner indvar
671     // related variable (Left) with a outer loop invariant (Right).
672     if (IsPathToInnerIndVar(Op0) && !isa<Constant>(Op0)) {
673       Left = Op0;
674       Right = Op1;
675     } else if (IsPathToInnerIndVar(Op1) && !isa<Constant>(Op1)) {
676       Left = Op1;
677       Right = Op0;
678     }
679 
680     if (Left == nullptr)
681       return false;
682 
683     const SCEV *S = SE->getSCEV(Right);
684     if (!SE->isLoopInvariant(S, OuterLoop))
685       return false;
686   }
687 
688   return true;
689 }
690 
691 // If SV is a LCSSA PHI node with a single incoming value, return the incoming
692 // value.
693 static Value *followLCSSA(Value *SV) {
694   PHINode *PHI = dyn_cast<PHINode>(SV);
695   if (!PHI)
696     return SV;
697 
698   if (PHI->getNumIncomingValues() != 1)
699     return SV;
700   return followLCSSA(PHI->getIncomingValue(0));
701 }
702 
703 // Check V's users to see if it is involved in a reduction in L.
704 static PHINode *findInnerReductionPhi(Loop *L, Value *V) {
705   // Reduction variables cannot be constants.
706   if (isa<Constant>(V))
707     return nullptr;
708 
709   for (Value *User : V->users()) {
710     if (PHINode *PHI = dyn_cast<PHINode>(User)) {
711       if (PHI->getNumIncomingValues() == 1)
712         continue;
713       RecurrenceDescriptor RD;
714       if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) {
715         // Detect floating point reduction only when it can be reordered.
716         if (RD.getExactFPMathInst() != nullptr)
717           return nullptr;
718         return PHI;
719       }
720       return nullptr;
721     }
722   }
723 
724   return nullptr;
725 }
726 
727 bool LoopInterchangeLegality::findInductionAndReductions(
728     Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) {
729   if (!L->getLoopLatch() || !L->getLoopPredecessor())
730     return false;
731   for (PHINode &PHI : L->getHeader()->phis()) {
732     RecurrenceDescriptor RD;
733     InductionDescriptor ID;
734     if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
735       Inductions.push_back(&PHI);
736     else {
737       // PHIs in inner loops need to be part of a reduction in the outer loop,
738       // discovered when checking the PHIs of the outer loop earlier.
739       if (!InnerLoop) {
740         if (!OuterInnerReductions.count(&PHI)) {
741           LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
742                                "across the outer loop.\n");
743           return false;
744         }
745       } else {
746         assert(PHI.getNumIncomingValues() == 2 &&
747                "Phis in loop header should have exactly 2 incoming values");
748         // Check if we have a PHI node in the outer loop that has a reduction
749         // result from the inner loop as an incoming value.
750         Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch()));
751         PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V);
752         if (!InnerRedPhi ||
753             !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) {
754           LLVM_DEBUG(
755               dbgs()
756               << "Failed to recognize PHI as an induction or reduction.\n");
757           return false;
758         }
759         OuterInnerReductions.insert(&PHI);
760         OuterInnerReductions.insert(InnerRedPhi);
761       }
762     }
763   }
764   return true;
765 }
766 
767 // This function indicates the current limitations in the transform as a result
768 // of which we do not proceed.
769 bool LoopInterchangeLegality::currentLimitations() {
770   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
771 
772   // transform currently expects the loop latches to also be the exiting
773   // blocks.
774   if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
775       OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
776       !isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
777       !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
778     LLVM_DEBUG(
779         dbgs() << "Loops where the latch is not the exiting block are not"
780                << " supported currently.\n");
781     ORE->emit([&]() {
782       return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
783                                       OuterLoop->getStartLoc(),
784                                       OuterLoop->getHeader())
785              << "Loops where the latch is not the exiting block cannot be"
786                 " interchange currently.";
787     });
788     return true;
789   }
790 
791   SmallVector<PHINode *, 8> Inductions;
792   if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) {
793     LLVM_DEBUG(
794         dbgs() << "Only outer loops with induction or reduction PHI nodes "
795                << "are supported currently.\n");
796     ORE->emit([&]() {
797       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
798                                       OuterLoop->getStartLoc(),
799                                       OuterLoop->getHeader())
800              << "Only outer loops with induction or reduction PHI nodes can be"
801                 " interchanged currently.";
802     });
803     return true;
804   }
805 
806   Inductions.clear();
807   // For multi-level loop nests, make sure that all phi nodes for inner loops
808   // at all levels can be recognized as a induction or reduction phi. Bail out
809   // if a phi node at a certain nesting level cannot be properly recognized.
810   Loop *CurLevelLoop = OuterLoop;
811   while (!CurLevelLoop->getSubLoops().empty()) {
812     // We already made sure that the loop nest is tightly nested.
813     CurLevelLoop = CurLevelLoop->getSubLoops().front();
814     if (!findInductionAndReductions(CurLevelLoop, Inductions, nullptr)) {
815       LLVM_DEBUG(
816           dbgs() << "Only inner loops with induction or reduction PHI nodes "
817                 << "are supported currently.\n");
818       ORE->emit([&]() {
819         return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
820                                         CurLevelLoop->getStartLoc(),
821                                         CurLevelLoop->getHeader())
822               << "Only inner loops with induction or reduction PHI nodes can be"
823                   " interchange currently.";
824       });
825       return true;
826     }
827   }
828 
829   // TODO: Triangular loops are not handled for now.
830   if (!isLoopStructureUnderstood()) {
831     LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
832     ORE->emit([&]() {
833       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
834                                       InnerLoop->getStartLoc(),
835                                       InnerLoop->getHeader())
836              << "Inner loop structure not understood currently.";
837     });
838     return true;
839   }
840 
841   return false;
842 }
843 
844 bool LoopInterchangeLegality::findInductions(
845     Loop *L, SmallVectorImpl<PHINode *> &Inductions) {
846   for (PHINode &PHI : L->getHeader()->phis()) {
847     InductionDescriptor ID;
848     if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
849       Inductions.push_back(&PHI);
850   }
851   return !Inductions.empty();
852 }
853 
854 // We currently only support LCSSA PHI nodes in the inner loop exit, if their
855 // users are either reduction PHIs or PHIs outside the outer loop (which means
856 // the we are only interested in the final value after the loop).
857 static bool
858 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL,
859                               SmallPtrSetImpl<PHINode *> &Reductions) {
860   BasicBlock *InnerExit = OuterL->getUniqueExitBlock();
861   for (PHINode &PHI : InnerExit->phis()) {
862     // Reduction lcssa phi will have only 1 incoming block that from loop latch.
863     if (PHI.getNumIncomingValues() > 1)
864       return false;
865     if (any_of(PHI.users(), [&Reductions, OuterL](User *U) {
866           PHINode *PN = dyn_cast<PHINode>(U);
867           return !PN ||
868                  (!Reductions.count(PN) && OuterL->contains(PN->getParent()));
869         })) {
870       return false;
871     }
872   }
873   return true;
874 }
875 
876 // We currently support LCSSA PHI nodes in the outer loop exit, if their
877 // incoming values do not come from the outer loop latch or if the
878 // outer loop latch has a single predecessor. In that case, the value will
879 // be available if both the inner and outer loop conditions are true, which
880 // will still be true after interchanging. If we have multiple predecessor,
881 // that may not be the case, e.g. because the outer loop latch may be executed
882 // if the inner loop is not executed.
883 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
884   BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
885   for (PHINode &PHI : LoopNestExit->phis()) {
886     for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
887       Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
888       if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
889         continue;
890 
891       // The incoming value is defined in the outer loop latch. Currently we
892       // only support that in case the outer loop latch has a single predecessor.
893       // This guarantees that the outer loop latch is executed if and only if
894       // the inner loop is executed (because tightlyNested() guarantees that the
895       // outer loop header only branches to the inner loop or the outer loop
896       // latch).
897       // FIXME: We could weaken this logic and allow multiple predecessors,
898       //        if the values are produced outside the loop latch. We would need
899       //        additional logic to update the PHI nodes in the exit block as
900       //        well.
901       if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
902         return false;
903     }
904   }
905   return true;
906 }
907 
908 // In case of multi-level nested loops, it may occur that lcssa phis exist in
909 // the latch of InnerLoop, i.e., when defs of the incoming values are further
910 // inside the loopnest. Sometimes those incoming values are not available
911 // after interchange, since the original inner latch will become the new outer
912 // latch which may have predecessor paths that do not include those incoming
913 // values.
914 // TODO: Handle transformation of lcssa phis in the InnerLoop latch in case of
915 // multi-level loop nests.
916 static bool areInnerLoopLatchPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
917   if (InnerLoop->getSubLoops().empty())
918     return true;
919   // If the original outer latch has only one predecessor, then values defined
920   // further inside the looploop, e.g., in the innermost loop, will be available
921   // at the new outer latch after interchange.
922   if (OuterLoop->getLoopLatch()->getUniquePredecessor() != nullptr)
923     return true;
924 
925   // The outer latch has more than one predecessors, i.e., the inner
926   // exit and the inner header.
927   // PHI nodes in the inner latch are lcssa phis where the incoming values
928   // are defined further inside the loopnest. Check if those phis are used
929   // in the original inner latch. If that is the case then bail out since
930   // those incoming values may not be available at the new outer latch.
931   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
932   for (PHINode &PHI : InnerLoopLatch->phis()) {
933     for (auto *U : PHI.users()) {
934       Instruction *UI = cast<Instruction>(U);
935       if (InnerLoopLatch == UI->getParent())
936         return false;
937     }
938   }
939   return true;
940 }
941 
942 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
943                                                   unsigned OuterLoopId,
944                                                   CharMatrix &DepMatrix) {
945   if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
946     LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
947                       << " and OuterLoopId = " << OuterLoopId
948                       << " due to dependence\n");
949     ORE->emit([&]() {
950       return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
951                                       InnerLoop->getStartLoc(),
952                                       InnerLoop->getHeader())
953              << "Cannot interchange loops due to dependences.";
954     });
955     return false;
956   }
957   // Check if outer and inner loop contain legal instructions only.
958   for (auto *BB : OuterLoop->blocks())
959     for (Instruction &I : BB->instructionsWithoutDebug())
960       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
961         // readnone functions do not prevent interchanging.
962         if (CI->onlyWritesMemory())
963           continue;
964         LLVM_DEBUG(
965             dbgs() << "Loops with call instructions cannot be interchanged "
966                    << "safely.");
967         ORE->emit([&]() {
968           return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
969                                           CI->getDebugLoc(),
970                                           CI->getParent())
971                  << "Cannot interchange loops due to call instruction.";
972         });
973 
974         return false;
975       }
976 
977   if (!findInductions(InnerLoop, InnerLoopInductions)) {
978     LLVM_DEBUG(dbgs() << "Cound not find inner loop induction variables.\n");
979     return false;
980   }
981 
982   if (!areInnerLoopLatchPHIsSupported(OuterLoop, InnerLoop)) {
983     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop latch.\n");
984     ORE->emit([&]() {
985       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedInnerLatchPHI",
986                                       InnerLoop->getStartLoc(),
987                                       InnerLoop->getHeader())
988              << "Cannot interchange loops because unsupported PHI nodes found "
989                 "in inner loop latch.";
990     });
991     return false;
992   }
993 
994   // TODO: The loops could not be interchanged due to current limitations in the
995   // transform module.
996   if (currentLimitations()) {
997     LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
998     return false;
999   }
1000 
1001   // Check if the loops are tightly nested.
1002   if (!tightlyNested(OuterLoop, InnerLoop)) {
1003     LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
1004     ORE->emit([&]() {
1005       return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
1006                                       InnerLoop->getStartLoc(),
1007                                       InnerLoop->getHeader())
1008              << "Cannot interchange loops because they are not tightly "
1009                 "nested.";
1010     });
1011     return false;
1012   }
1013 
1014   if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop,
1015                                      OuterInnerReductions)) {
1016     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n");
1017     ORE->emit([&]() {
1018       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1019                                       InnerLoop->getStartLoc(),
1020                                       InnerLoop->getHeader())
1021              << "Found unsupported PHI node in loop exit.";
1022     });
1023     return false;
1024   }
1025 
1026   if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
1027     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
1028     ORE->emit([&]() {
1029       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1030                                       OuterLoop->getStartLoc(),
1031                                       OuterLoop->getHeader())
1032              << "Found unsupported PHI node in loop exit.";
1033     });
1034     return false;
1035   }
1036 
1037   return true;
1038 }
1039 
1040 int LoopInterchangeProfitability::getInstrOrderCost() {
1041   unsigned GoodOrder, BadOrder;
1042   BadOrder = GoodOrder = 0;
1043   for (BasicBlock *BB : InnerLoop->blocks()) {
1044     for (Instruction &Ins : *BB) {
1045       if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
1046         unsigned NumOp = GEP->getNumOperands();
1047         bool FoundInnerInduction = false;
1048         bool FoundOuterInduction = false;
1049         for (unsigned i = 0; i < NumOp; ++i) {
1050           // Skip operands that are not SCEV-able.
1051           if (!SE->isSCEVable(GEP->getOperand(i)->getType()))
1052             continue;
1053 
1054           const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
1055           const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
1056           if (!AR)
1057             continue;
1058 
1059           // If we find the inner induction after an outer induction e.g.
1060           // for(int i=0;i<N;i++)
1061           //   for(int j=0;j<N;j++)
1062           //     A[i][j] = A[i-1][j-1]+k;
1063           // then it is a good order.
1064           if (AR->getLoop() == InnerLoop) {
1065             // We found an InnerLoop induction after OuterLoop induction. It is
1066             // a good order.
1067             FoundInnerInduction = true;
1068             if (FoundOuterInduction) {
1069               GoodOrder++;
1070               break;
1071             }
1072           }
1073           // If we find the outer induction after an inner induction e.g.
1074           // for(int i=0;i<N;i++)
1075           //   for(int j=0;j<N;j++)
1076           //     A[j][i] = A[j-1][i-1]+k;
1077           // then it is a bad order.
1078           if (AR->getLoop() == OuterLoop) {
1079             // We found an OuterLoop induction after InnerLoop induction. It is
1080             // a bad order.
1081             FoundOuterInduction = true;
1082             if (FoundInnerInduction) {
1083               BadOrder++;
1084               break;
1085             }
1086           }
1087         }
1088       }
1089     }
1090   }
1091   return GoodOrder - BadOrder;
1092 }
1093 
1094 static bool isProfitableForVectorization(unsigned InnerLoopId,
1095                                          unsigned OuterLoopId,
1096                                          CharMatrix &DepMatrix) {
1097   // TODO: Improve this heuristic to catch more cases.
1098   // If the inner loop is loop independent or doesn't carry any dependency it is
1099   // profitable to move this to outer position.
1100   for (auto &Row : DepMatrix) {
1101     if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
1102       return false;
1103     // TODO: We need to improve this heuristic.
1104     if (Row[OuterLoopId] != '=')
1105       return false;
1106   }
1107   // If outer loop has dependence and inner loop is loop independent then it is
1108   // profitable to interchange to enable parallelism.
1109   // If there are no dependences, interchanging will not improve anything.
1110   return !DepMatrix.empty();
1111 }
1112 
1113 bool LoopInterchangeProfitability::isProfitable(
1114     const Loop *InnerLoop, const Loop *OuterLoop, unsigned InnerLoopId,
1115     unsigned OuterLoopId, CharMatrix &DepMatrix,
1116     const DenseMap<const Loop *, unsigned> &CostMap) {
1117   // TODO: Remove the legacy cost model.
1118 
1119   // This is the new cost model returned from loop cache analysis.
1120   // A smaller index means the loop should be placed an outer loop, and vice
1121   // versa.
1122   if (CostMap.find(InnerLoop) != CostMap.end() &&
1123       CostMap.find(OuterLoop) != CostMap.end()) {
1124     unsigned InnerIndex = 0, OuterIndex = 0;
1125     InnerIndex = CostMap.find(InnerLoop)->second;
1126     OuterIndex = CostMap.find(OuterLoop)->second;
1127     LLVM_DEBUG(dbgs() << "InnerIndex = " << InnerIndex
1128                       << ", OuterIndex = " << OuterIndex << "\n");
1129     if (InnerIndex < OuterIndex)
1130       return true;
1131   } else {
1132     // Legacy cost model: this is rough cost estimation algorithm. It counts the
1133     // good and bad order of induction variables in the instruction and allows
1134     // reordering if number of bad orders is more than good.
1135     int Cost = getInstrOrderCost();
1136     LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
1137     if (Cost < -LoopInterchangeCostThreshold)
1138       return true;
1139   }
1140 
1141   // It is not profitable as per current cache profitability model. But check if
1142   // we can move this loop outside to improve parallelism.
1143   if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
1144     return true;
1145 
1146   ORE->emit([&]() {
1147     return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1148                                     InnerLoop->getStartLoc(),
1149                                     InnerLoop->getHeader())
1150            << "Interchanging loops is too costly and it does not improve "
1151               "parallelism.";
1152   });
1153   return false;
1154 }
1155 
1156 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
1157                                                Loop *InnerLoop) {
1158   for (Loop *L : *OuterLoop)
1159     if (L == InnerLoop) {
1160       OuterLoop->removeChildLoop(L);
1161       return;
1162     }
1163   llvm_unreachable("Couldn't find loop");
1164 }
1165 
1166 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
1167 /// new inner and outer loop after interchanging: NewInner is the original
1168 /// outer loop and NewOuter is the original inner loop.
1169 ///
1170 /// Before interchanging, we have the following structure
1171 /// Outer preheader
1172 //  Outer header
1173 //    Inner preheader
1174 //    Inner header
1175 //      Inner body
1176 //      Inner latch
1177 //   outer bbs
1178 //   Outer latch
1179 //
1180 // After interchanging:
1181 // Inner preheader
1182 // Inner header
1183 //   Outer preheader
1184 //   Outer header
1185 //     Inner body
1186 //     outer bbs
1187 //     Outer latch
1188 //   Inner latch
1189 void LoopInterchangeTransform::restructureLoops(
1190     Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
1191     BasicBlock *OrigOuterPreHeader) {
1192   Loop *OuterLoopParent = OuterLoop->getParentLoop();
1193   // The original inner loop preheader moves from the new inner loop to
1194   // the parent loop, if there is one.
1195   NewInner->removeBlockFromLoop(OrigInnerPreHeader);
1196   LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
1197 
1198   // Switch the loop levels.
1199   if (OuterLoopParent) {
1200     // Remove the loop from its parent loop.
1201     removeChildLoop(OuterLoopParent, NewInner);
1202     removeChildLoop(NewInner, NewOuter);
1203     OuterLoopParent->addChildLoop(NewOuter);
1204   } else {
1205     removeChildLoop(NewInner, NewOuter);
1206     LI->changeTopLevelLoop(NewInner, NewOuter);
1207   }
1208   while (!NewOuter->isInnermost())
1209     NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
1210   NewOuter->addChildLoop(NewInner);
1211 
1212   // BBs from the original inner loop.
1213   SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
1214 
1215   // Add BBs from the original outer loop to the original inner loop (excluding
1216   // BBs already in inner loop)
1217   for (BasicBlock *BB : NewInner->blocks())
1218     if (LI->getLoopFor(BB) == NewInner)
1219       NewOuter->addBlockEntry(BB);
1220 
1221   // Now remove inner loop header and latch from the new inner loop and move
1222   // other BBs (the loop body) to the new inner loop.
1223   BasicBlock *OuterHeader = NewOuter->getHeader();
1224   BasicBlock *OuterLatch = NewOuter->getLoopLatch();
1225   for (BasicBlock *BB : OrigInnerBBs) {
1226     // Nothing will change for BBs in child loops.
1227     if (LI->getLoopFor(BB) != NewOuter)
1228       continue;
1229     // Remove the new outer loop header and latch from the new inner loop.
1230     if (BB == OuterHeader || BB == OuterLatch)
1231       NewInner->removeBlockFromLoop(BB);
1232     else
1233       LI->changeLoopFor(BB, NewInner);
1234   }
1235 
1236   // The preheader of the original outer loop becomes part of the new
1237   // outer loop.
1238   NewOuter->addBlockEntry(OrigOuterPreHeader);
1239   LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
1240 
1241   // Tell SE that we move the loops around.
1242   SE->forgetLoop(NewOuter);
1243   SE->forgetLoop(NewInner);
1244 }
1245 
1246 bool LoopInterchangeTransform::transform() {
1247   bool Transformed = false;
1248 
1249   if (InnerLoop->getSubLoops().empty()) {
1250     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1251     LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n");
1252     auto &InductionPHIs = LIL.getInnerLoopInductions();
1253     if (InductionPHIs.empty()) {
1254       LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1255       return false;
1256     }
1257 
1258     SmallVector<Instruction *, 8> InnerIndexVarList;
1259     for (PHINode *CurInductionPHI : InductionPHIs) {
1260       if (CurInductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1261         InnerIndexVarList.push_back(
1262             dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(1)));
1263       else
1264         InnerIndexVarList.push_back(
1265             dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(0)));
1266     }
1267 
1268     // Create a new latch block for the inner loop. We split at the
1269     // current latch's terminator and then move the condition and all
1270     // operands that are not either loop-invariant or the induction PHI into the
1271     // new latch block.
1272     BasicBlock *NewLatch =
1273         SplitBlock(InnerLoop->getLoopLatch(),
1274                    InnerLoop->getLoopLatch()->getTerminator(), DT, LI);
1275 
1276     SmallSetVector<Instruction *, 4> WorkList;
1277     unsigned i = 0;
1278     auto MoveInstructions = [&i, &WorkList, this, &InductionPHIs, NewLatch]() {
1279       for (; i < WorkList.size(); i++) {
1280         // Duplicate instruction and move it the new latch. Update uses that
1281         // have been moved.
1282         Instruction *NewI = WorkList[i]->clone();
1283         NewI->insertBefore(NewLatch->getFirstNonPHI());
1284         assert(!NewI->mayHaveSideEffects() &&
1285                "Moving instructions with side-effects may change behavior of "
1286                "the loop nest!");
1287         for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) {
1288           Instruction *UserI = cast<Instruction>(U.getUser());
1289           if (!InnerLoop->contains(UserI->getParent()) ||
1290               UserI->getParent() == NewLatch ||
1291               llvm::is_contained(InductionPHIs, UserI))
1292             U.set(NewI);
1293         }
1294         // Add operands of moved instruction to the worklist, except if they are
1295         // outside the inner loop or are the induction PHI.
1296         for (Value *Op : WorkList[i]->operands()) {
1297           Instruction *OpI = dyn_cast<Instruction>(Op);
1298           if (!OpI ||
1299               this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop ||
1300               llvm::is_contained(InductionPHIs, OpI))
1301             continue;
1302           WorkList.insert(OpI);
1303         }
1304       }
1305     };
1306 
1307     // FIXME: Should we interchange when we have a constant condition?
1308     Instruction *CondI = dyn_cast<Instruction>(
1309         cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator())
1310             ->getCondition());
1311     if (CondI)
1312       WorkList.insert(CondI);
1313     MoveInstructions();
1314     for (Instruction *InnerIndexVar : InnerIndexVarList)
1315       WorkList.insert(cast<Instruction>(InnerIndexVar));
1316     MoveInstructions();
1317   }
1318 
1319   // Ensure the inner loop phi nodes have a separate basic block.
1320   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1321   if (InnerLoopHeader->getFirstNonPHI() != InnerLoopHeader->getTerminator()) {
1322     SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1323     LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
1324   }
1325 
1326   // Instructions in the original inner loop preheader may depend on values
1327   // defined in the outer loop header. Move them there, because the original
1328   // inner loop preheader will become the entry into the interchanged loop nest.
1329   // Currently we move all instructions and rely on LICM to move invariant
1330   // instructions outside the loop nest.
1331   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1332   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1333   if (InnerLoopPreHeader != OuterLoopHeader) {
1334     SmallPtrSet<Instruction *, 4> NeedsMoving;
1335     for (Instruction &I :
1336          make_early_inc_range(make_range(InnerLoopPreHeader->begin(),
1337                                          std::prev(InnerLoopPreHeader->end()))))
1338       I.moveBefore(OuterLoopHeader->getTerminator());
1339   }
1340 
1341   Transformed |= adjustLoopLinks();
1342   if (!Transformed) {
1343     LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
1344     return false;
1345   }
1346 
1347   return true;
1348 }
1349 
1350 /// \brief Move all instructions except the terminator from FromBB right before
1351 /// InsertBefore
1352 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1353   auto &ToList = InsertBefore->getParent()->getInstList();
1354   auto &FromList = FromBB->getInstList();
1355 
1356   ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
1357                 FromBB->getTerminator()->getIterator());
1358 }
1359 
1360 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact.
1361 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) {
1362   // Save all non-terminator instructions of BB1 into TempInstrs and unlink them
1363   // from BB1 afterwards.
1364   auto Iter = map_range(*BB1, [](Instruction &I) { return &I; });
1365   SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end()));
1366   for (Instruction *I : TempInstrs)
1367     I->removeFromParent();
1368 
1369   // Move instructions from BB2 to BB1.
1370   moveBBContents(BB2, BB1->getTerminator());
1371 
1372   // Move instructions from TempInstrs to BB2.
1373   for (Instruction *I : TempInstrs)
1374     I->insertBefore(BB2->getTerminator());
1375 }
1376 
1377 // Update BI to jump to NewBB instead of OldBB. Records updates to the
1378 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that
1379 // \p OldBB  is exactly once in BI's successor list.
1380 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
1381                             BasicBlock *NewBB,
1382                             std::vector<DominatorTree::UpdateType> &DTUpdates,
1383                             bool MustUpdateOnce = true) {
1384   assert((!MustUpdateOnce ||
1385           llvm::count_if(successors(BI),
1386                          [OldBB](BasicBlock *BB) {
1387                            return BB == OldBB;
1388                          }) == 1) && "BI must jump to OldBB exactly once.");
1389   bool Changed = false;
1390   for (Use &Op : BI->operands())
1391     if (Op == OldBB) {
1392       Op.set(NewBB);
1393       Changed = true;
1394     }
1395 
1396   if (Changed) {
1397     DTUpdates.push_back(
1398         {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
1399     DTUpdates.push_back(
1400         {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
1401   }
1402   assert(Changed && "Expected a successor to be updated");
1403 }
1404 
1405 // Move Lcssa PHIs to the right place.
1406 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader,
1407                           BasicBlock *InnerLatch, BasicBlock *OuterHeader,
1408                           BasicBlock *OuterLatch, BasicBlock *OuterExit,
1409                           Loop *InnerLoop, LoopInfo *LI) {
1410 
1411   // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
1412   // defined either in the header or latch. Those blocks will become header and
1413   // latch of the new outer loop, and the only possible users can PHI nodes
1414   // in the exit block of the loop nest or the outer loop header (reduction
1415   // PHIs, in that case, the incoming value must be defined in the inner loop
1416   // header). We can just substitute the user with the incoming value and remove
1417   // the PHI.
1418   for (PHINode &P : make_early_inc_range(InnerExit->phis())) {
1419     assert(P.getNumIncomingValues() == 1 &&
1420            "Only loops with a single exit are supported!");
1421 
1422     // Incoming values are guaranteed be instructions currently.
1423     auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch));
1424     // In case of multi-level nested loops, follow LCSSA to find the incoming
1425     // value defined from the innermost loop.
1426     auto IncIInnerMost = cast<Instruction>(followLCSSA(IncI));
1427     // Skip phis with incoming values from the inner loop body, excluding the
1428     // header and latch.
1429     if (IncIInnerMost->getParent() != InnerLatch &&
1430         IncIInnerMost->getParent() != InnerHeader)
1431       continue;
1432 
1433     assert(all_of(P.users(),
1434                   [OuterHeader, OuterExit, IncI, InnerHeader](User *U) {
1435                     return (cast<PHINode>(U)->getParent() == OuterHeader &&
1436                             IncI->getParent() == InnerHeader) ||
1437                            cast<PHINode>(U)->getParent() == OuterExit;
1438                   }) &&
1439            "Can only replace phis iff the uses are in the loop nest exit or "
1440            "the incoming value is defined in the inner header (it will "
1441            "dominate all loop blocks after interchanging)");
1442     P.replaceAllUsesWith(IncI);
1443     P.eraseFromParent();
1444   }
1445 
1446   SmallVector<PHINode *, 8> LcssaInnerExit;
1447   for (PHINode &P : InnerExit->phis())
1448     LcssaInnerExit.push_back(&P);
1449 
1450   SmallVector<PHINode *, 8> LcssaInnerLatch;
1451   for (PHINode &P : InnerLatch->phis())
1452     LcssaInnerLatch.push_back(&P);
1453 
1454   // Lcssa PHIs for values used outside the inner loop are in InnerExit.
1455   // If a PHI node has users outside of InnerExit, it has a use outside the
1456   // interchanged loop and we have to preserve it. We move these to
1457   // InnerLatch, which will become the new exit block for the innermost
1458   // loop after interchanging.
1459   for (PHINode *P : LcssaInnerExit)
1460     P->moveBefore(InnerLatch->getFirstNonPHI());
1461 
1462   // If the inner loop latch contains LCSSA PHIs, those come from a child loop
1463   // and we have to move them to the new inner latch.
1464   for (PHINode *P : LcssaInnerLatch)
1465     P->moveBefore(InnerExit->getFirstNonPHI());
1466 
1467   // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
1468   // incoming values defined in the outer loop, we have to add a new PHI
1469   // in the inner loop latch, which became the exit block of the outer loop,
1470   // after interchanging.
1471   if (OuterExit) {
1472     for (PHINode &P : OuterExit->phis()) {
1473       if (P.getNumIncomingValues() != 1)
1474         continue;
1475       // Skip Phis with incoming values defined in the inner loop. Those should
1476       // already have been updated.
1477       auto I = dyn_cast<Instruction>(P.getIncomingValue(0));
1478       if (!I || LI->getLoopFor(I->getParent()) == InnerLoop)
1479         continue;
1480 
1481       PHINode *NewPhi = dyn_cast<PHINode>(P.clone());
1482       NewPhi->setIncomingValue(0, P.getIncomingValue(0));
1483       NewPhi->setIncomingBlock(0, OuterLatch);
1484       // We might have incoming edges from other BBs, i.e., the original outer
1485       // header.
1486       for (auto *Pred : predecessors(InnerLatch)) {
1487         if (Pred == OuterLatch)
1488           continue;
1489         NewPhi->addIncoming(P.getIncomingValue(0), Pred);
1490       }
1491       NewPhi->insertBefore(InnerLatch->getFirstNonPHI());
1492       P.setIncomingValue(0, NewPhi);
1493     }
1494   }
1495 
1496   // Now adjust the incoming blocks for the LCSSA PHIs.
1497   // For PHIs moved from Inner's exit block, we need to replace Inner's latch
1498   // with the new latch.
1499   InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch);
1500 }
1501 
1502 bool LoopInterchangeTransform::adjustLoopBranches() {
1503   LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
1504   std::vector<DominatorTree::UpdateType> DTUpdates;
1505 
1506   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1507   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1508 
1509   assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
1510          InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
1511          InnerLoopPreHeader && "Guaranteed by loop-simplify form");
1512   // Ensure that both preheaders do not contain PHI nodes and have single
1513   // predecessors. This allows us to move them easily. We use
1514   // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
1515   // preheaders do not satisfy those conditions.
1516   if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
1517       !OuterLoopPreHeader->getUniquePredecessor())
1518     OuterLoopPreHeader =
1519         InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true);
1520   if (InnerLoopPreHeader == OuterLoop->getHeader())
1521     InnerLoopPreHeader =
1522         InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true);
1523 
1524   // Adjust the loop preheader
1525   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1526   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1527   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1528   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1529   BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1530   BasicBlock *InnerLoopLatchPredecessor =
1531       InnerLoopLatch->getUniquePredecessor();
1532   BasicBlock *InnerLoopLatchSuccessor;
1533   BasicBlock *OuterLoopLatchSuccessor;
1534 
1535   BranchInst *OuterLoopLatchBI =
1536       dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1537   BranchInst *InnerLoopLatchBI =
1538       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1539   BranchInst *OuterLoopHeaderBI =
1540       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1541   BranchInst *InnerLoopHeaderBI =
1542       dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1543 
1544   if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1545       !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1546       !InnerLoopHeaderBI)
1547     return false;
1548 
1549   BranchInst *InnerLoopLatchPredecessorBI =
1550       dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1551   BranchInst *OuterLoopPredecessorBI =
1552       dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1553 
1554   if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1555     return false;
1556   BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1557   if (!InnerLoopHeaderSuccessor)
1558     return false;
1559 
1560   // Adjust Loop Preheader and headers.
1561   // The branches in the outer loop predecessor and the outer loop header can
1562   // be unconditional branches or conditional branches with duplicates. Consider
1563   // this when updating the successors.
1564   updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
1565                   InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false);
1566   // The outer loop header might or might not branch to the outer latch.
1567   // We are guaranteed to branch to the inner loop preheader.
1568   if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) {
1569     // In this case the outerLoopHeader should branch to the InnerLoopLatch.
1570     updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, InnerLoopLatch,
1571                     DTUpdates,
1572                     /*MustUpdateOnce=*/false);
1573   }
1574   updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
1575                   InnerLoopHeaderSuccessor, DTUpdates,
1576                   /*MustUpdateOnce=*/false);
1577 
1578   // Adjust reduction PHI's now that the incoming block has changed.
1579   InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader,
1580                                                OuterLoopHeader);
1581 
1582   updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
1583                   OuterLoopPreHeader, DTUpdates);
1584 
1585   // -------------Adjust loop latches-----------
1586   if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1587     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1588   else
1589     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1590 
1591   updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
1592                   InnerLoopLatchSuccessor, DTUpdates);
1593 
1594   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1595     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1596   else
1597     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1598 
1599   updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
1600                   OuterLoopLatchSuccessor, DTUpdates);
1601   updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
1602                   DTUpdates);
1603 
1604   DT->applyUpdates(DTUpdates);
1605   restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
1606                    OuterLoopPreHeader);
1607 
1608   moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch,
1609                 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(),
1610                 InnerLoop, LI);
1611   // For PHIs in the exit block of the outer loop, outer's latch has been
1612   // replaced by Inners'.
1613   OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1614 
1615   auto &OuterInnerReductions = LIL.getOuterInnerReductions();
1616   // Now update the reduction PHIs in the inner and outer loop headers.
1617   SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
1618   for (PHINode &PHI : InnerLoopHeader->phis())
1619     if (OuterInnerReductions.contains(&PHI))
1620       InnerLoopPHIs.push_back(&PHI);
1621 
1622   for (PHINode &PHI : OuterLoopHeader->phis())
1623     if (OuterInnerReductions.contains(&PHI))
1624       OuterLoopPHIs.push_back(&PHI);
1625 
1626   // Now move the remaining reduction PHIs from outer to inner loop header and
1627   // vice versa. The PHI nodes must be part of a reduction across the inner and
1628   // outer loop and all the remains to do is and updating the incoming blocks.
1629   for (PHINode *PHI : OuterLoopPHIs) {
1630     LLVM_DEBUG(dbgs() << "Outer loop reduction PHIs:\n"; PHI->dump(););
1631     PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
1632     assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1633   }
1634   for (PHINode *PHI : InnerLoopPHIs) {
1635     LLVM_DEBUG(dbgs() << "Inner loop reduction PHIs:\n"; PHI->dump(););
1636     PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
1637     assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1638   }
1639 
1640   // Update the incoming blocks for moved PHI nodes.
1641   OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader);
1642   OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch);
1643   InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader);
1644   InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1645 
1646   // Values defined in the outer loop header could be used in the inner loop
1647   // latch. In that case, we need to create LCSSA phis for them, because after
1648   // interchanging they will be defined in the new inner loop and used in the
1649   // new outer loop.
1650   IRBuilder<> Builder(OuterLoopHeader->getContext());
1651   SmallVector<Instruction *, 4> MayNeedLCSSAPhis;
1652   for (Instruction &I :
1653        make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end())))
1654     MayNeedLCSSAPhis.push_back(&I);
1655   formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder);
1656 
1657   return true;
1658 }
1659 
1660 bool LoopInterchangeTransform::adjustLoopLinks() {
1661   // Adjust all branches in the inner and outer loop.
1662   bool Changed = adjustLoopBranches();
1663   if (Changed) {
1664     // We have interchanged the preheaders so we need to interchange the data in
1665     // the preheaders as well. This is because the content of the inner
1666     // preheader was previously executed inside the outer loop.
1667     BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1668     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1669     swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader);
1670   }
1671   return Changed;
1672 }
1673 
1674 namespace {
1675 /// Main LoopInterchange Pass.
1676 struct LoopInterchangeLegacyPass : public LoopPass {
1677   static char ID;
1678 
1679   LoopInterchangeLegacyPass() : LoopPass(ID) {
1680     initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry());
1681   }
1682 
1683   void getAnalysisUsage(AnalysisUsage &AU) const override {
1684     AU.addRequired<DependenceAnalysisWrapperPass>();
1685     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1686 
1687     getLoopAnalysisUsage(AU);
1688   }
1689 
1690   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1691     if (skipLoop(L))
1692       return false;
1693 
1694     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1695     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1696     auto *DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
1697     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1698     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1699     std::unique_ptr<CacheCost> CC = nullptr;
1700     return LoopInterchange(SE, LI, DI, DT, CC, ORE).run(L);
1701   }
1702 };
1703 } // namespace
1704 
1705 char LoopInterchangeLegacyPass::ID = 0;
1706 
1707 INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass, "loop-interchange",
1708                       "Interchanges loops for cache reuse", false, false)
1709 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1710 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1711 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1712 
1713 INITIALIZE_PASS_END(LoopInterchangeLegacyPass, "loop-interchange",
1714                     "Interchanges loops for cache reuse", false, false)
1715 
1716 Pass *llvm::createLoopInterchangePass() {
1717   return new LoopInterchangeLegacyPass();
1718 }
1719 
1720 PreservedAnalyses LoopInterchangePass::run(LoopNest &LN,
1721                                            LoopAnalysisManager &AM,
1722                                            LoopStandardAnalysisResults &AR,
1723                                            LPMUpdater &U) {
1724   Function &F = *LN.getParent();
1725 
1726   DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI);
1727   std::unique_ptr<CacheCost> CC =
1728       CacheCost::getCacheCost(LN.getOutermostLoop(), AR, DI);
1729   OptimizationRemarkEmitter ORE(&F);
1730   if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, CC, &ORE).run(LN))
1731     return PreservedAnalyses::all();
1732   U.markLoopNestChanged(true);
1733   return getLoopPassPreservedAnalyses();
1734 }
1735