1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This Pass handles loop interchange transform. 10 // This pass interchanges loops to provide a more cache-friendly memory access 11 // patterns. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopInterchange.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Analysis/DependenceAnalysis.h" 21 #include "llvm/Analysis/LoopCacheAnalysis.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/LoopNestAnalysis.h" 24 #include "llvm/Analysis/LoopPass.h" 25 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 26 #include "llvm/Analysis/ScalarEvolution.h" 27 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/InstrTypes.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/User.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/InitializePasses.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Scalar/LoopPassManager.h" 48 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 49 #include "llvm/Transforms/Utils/LoopUtils.h" 50 #include <cassert> 51 #include <utility> 52 #include <vector> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "loop-interchange" 57 58 STATISTIC(LoopsInterchanged, "Number of loops interchanged"); 59 60 static cl::opt<int> LoopInterchangeCostThreshold( 61 "loop-interchange-threshold", cl::init(0), cl::Hidden, 62 cl::desc("Interchange if you gain more than this number")); 63 64 namespace { 65 66 using LoopVector = SmallVector<Loop *, 8>; 67 68 // TODO: Check if we can use a sparse matrix here. 69 using CharMatrix = std::vector<std::vector<char>>; 70 71 } // end anonymous namespace 72 73 // Maximum number of dependencies that can be handled in the dependency matrix. 74 static const unsigned MaxMemInstrCount = 100; 75 76 // Maximum loop depth supported. 77 static const unsigned MaxLoopNestDepth = 10; 78 79 #ifdef DUMP_DEP_MATRICIES 80 static void printDepMatrix(CharMatrix &DepMatrix) { 81 for (auto &Row : DepMatrix) { 82 for (auto D : Row) 83 LLVM_DEBUG(dbgs() << D << " "); 84 LLVM_DEBUG(dbgs() << "\n"); 85 } 86 } 87 #endif 88 89 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, 90 Loop *L, DependenceInfo *DI, 91 ScalarEvolution *SE) { 92 using ValueVector = SmallVector<Value *, 16>; 93 94 ValueVector MemInstr; 95 96 // For each block. 97 for (BasicBlock *BB : L->blocks()) { 98 // Scan the BB and collect legal loads and stores. 99 for (Instruction &I : *BB) { 100 if (!isa<Instruction>(I)) 101 return false; 102 if (auto *Ld = dyn_cast<LoadInst>(&I)) { 103 if (!Ld->isSimple()) 104 return false; 105 MemInstr.push_back(&I); 106 } else if (auto *St = dyn_cast<StoreInst>(&I)) { 107 if (!St->isSimple()) 108 return false; 109 MemInstr.push_back(&I); 110 } 111 } 112 } 113 114 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size() 115 << " Loads and Stores to analyze\n"); 116 117 ValueVector::iterator I, IE, J, JE; 118 119 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) { 120 for (J = I, JE = MemInstr.end(); J != JE; ++J) { 121 std::vector<char> Dep; 122 Instruction *Src = cast<Instruction>(*I); 123 Instruction *Dst = cast<Instruction>(*J); 124 // Ignore Input dependencies. 125 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) 126 continue; 127 // Track Output, Flow, and Anti dependencies. 128 if (auto D = DI->depends(Src, Dst, true)) { 129 assert(D->isOrdered() && "Expected an output, flow or anti dep."); 130 // If the direction vector is negative, normalize it to 131 // make it non-negative. 132 if (D->normalize(SE)) 133 LLVM_DEBUG(dbgs() << "Negative dependence vector normalized.\n"); 134 LLVM_DEBUG(StringRef DepType = 135 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output"; 136 dbgs() << "Found " << DepType 137 << " dependency between Src and Dst\n" 138 << " Src:" << *Src << "\n Dst:" << *Dst << '\n'); 139 unsigned Levels = D->getLevels(); 140 char Direction; 141 for (unsigned II = 1; II <= Levels; ++II) { 142 if (D->isScalar(II)) { 143 Direction = 'S'; 144 Dep.push_back(Direction); 145 } else { 146 unsigned Dir = D->getDirection(II); 147 if (Dir == Dependence::DVEntry::LT || 148 Dir == Dependence::DVEntry::LE) 149 Direction = '<'; 150 else if (Dir == Dependence::DVEntry::GT || 151 Dir == Dependence::DVEntry::GE) 152 Direction = '>'; 153 else if (Dir == Dependence::DVEntry::EQ) 154 Direction = '='; 155 else 156 Direction = '*'; 157 Dep.push_back(Direction); 158 } 159 } 160 while (Dep.size() != Level) { 161 Dep.push_back('I'); 162 } 163 164 DepMatrix.push_back(Dep); 165 if (DepMatrix.size() > MaxMemInstrCount) { 166 LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount 167 << " dependencies inside loop\n"); 168 return false; 169 } 170 } 171 } 172 } 173 174 return true; 175 } 176 177 // A loop is moved from index 'from' to an index 'to'. Update the Dependence 178 // matrix by exchanging the two columns. 179 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx, 180 unsigned ToIndx) { 181 for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I) 182 std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]); 183 } 184 185 // Checks if no dependence exist in the dependency matrix in Row before Column. 186 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row, 187 unsigned Column) { 188 for (unsigned i = 0; i < Column; ++i) { 189 if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' && 190 DepMatrix[Row][i] != 'I') 191 return false; 192 } 193 return true; 194 } 195 196 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row, 197 unsigned OuterLoopId, char InnerDep, 198 char OuterDep) { 199 if (InnerDep == OuterDep) 200 return true; 201 202 // It is legal to interchange if and only if after interchange no row has a 203 // '>' direction as the leftmost non-'='. 204 205 if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I') 206 return true; 207 208 if (InnerDep == '<') 209 return true; 210 211 if (InnerDep == '>') { 212 // If OuterLoopId represents outermost loop then interchanging will make the 213 // 1st dependency as '>' 214 if (OuterLoopId == 0) 215 return false; 216 217 // If all dependencies before OuterloopId are '=','S'or 'I'. Then 218 // interchanging will result in this row having an outermost non '=' 219 // dependency of '>' 220 if (!containsNoDependence(DepMatrix, Row, OuterLoopId)) 221 return true; 222 } 223 224 return false; 225 } 226 227 // Checks if it is legal to interchange 2 loops. 228 // [Theorem] A permutation of the loops in a perfect nest is legal if and only 229 // if the direction matrix, after the same permutation is applied to its 230 // columns, has no ">" direction as the leftmost non-"=" direction in any row. 231 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, 232 unsigned InnerLoopId, 233 unsigned OuterLoopId) { 234 unsigned NumRows = DepMatrix.size(); 235 // For each row check if it is valid to interchange. 236 for (unsigned Row = 0; Row < NumRows; ++Row) { 237 char InnerDep = DepMatrix[Row][InnerLoopId]; 238 char OuterDep = DepMatrix[Row][OuterLoopId]; 239 if (InnerDep == '*' || OuterDep == '*') 240 return false; 241 if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep)) 242 return false; 243 } 244 return true; 245 } 246 247 static void populateWorklist(Loop &L, LoopVector &LoopList) { 248 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: " 249 << L.getHeader()->getParent()->getName() << " Loop: %" 250 << L.getHeader()->getName() << '\n'); 251 assert(LoopList.empty() && "LoopList should initially be empty!"); 252 Loop *CurrentLoop = &L; 253 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops(); 254 while (!Vec->empty()) { 255 // The current loop has multiple subloops in it hence it is not tightly 256 // nested. 257 // Discard all loops above it added into Worklist. 258 if (Vec->size() != 1) { 259 LoopList = {}; 260 return; 261 } 262 263 LoopList.push_back(CurrentLoop); 264 CurrentLoop = Vec->front(); 265 Vec = &CurrentLoop->getSubLoops(); 266 } 267 LoopList.push_back(CurrentLoop); 268 } 269 270 namespace { 271 272 /// LoopInterchangeLegality checks if it is legal to interchange the loop. 273 class LoopInterchangeLegality { 274 public: 275 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 276 OptimizationRemarkEmitter *ORE) 277 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 278 279 /// Check if the loops can be interchanged. 280 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, 281 CharMatrix &DepMatrix); 282 283 /// Discover induction PHIs in the header of \p L. Induction 284 /// PHIs are added to \p Inductions. 285 bool findInductions(Loop *L, SmallVectorImpl<PHINode *> &Inductions); 286 287 /// Check if the loop structure is understood. We do not handle triangular 288 /// loops for now. 289 bool isLoopStructureUnderstood(); 290 291 bool currentLimitations(); 292 293 const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const { 294 return OuterInnerReductions; 295 } 296 297 const SmallVectorImpl<PHINode *> &getInnerLoopInductions() const { 298 return InnerLoopInductions; 299 } 300 301 private: 302 bool tightlyNested(Loop *Outer, Loop *Inner); 303 bool containsUnsafeInstructions(BasicBlock *BB); 304 305 /// Discover induction and reduction PHIs in the header of \p L. Induction 306 /// PHIs are added to \p Inductions, reductions are added to 307 /// OuterInnerReductions. When the outer loop is passed, the inner loop needs 308 /// to be passed as \p InnerLoop. 309 bool findInductionAndReductions(Loop *L, 310 SmallVector<PHINode *, 8> &Inductions, 311 Loop *InnerLoop); 312 313 Loop *OuterLoop; 314 Loop *InnerLoop; 315 316 ScalarEvolution *SE; 317 318 /// Interface to emit optimization remarks. 319 OptimizationRemarkEmitter *ORE; 320 321 /// Set of reduction PHIs taking part of a reduction across the inner and 322 /// outer loop. 323 SmallPtrSet<PHINode *, 4> OuterInnerReductions; 324 325 /// Set of inner loop induction PHIs 326 SmallVector<PHINode *, 8> InnerLoopInductions; 327 }; 328 329 /// LoopInterchangeProfitability checks if it is profitable to interchange the 330 /// loop. 331 class LoopInterchangeProfitability { 332 public: 333 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 334 OptimizationRemarkEmitter *ORE) 335 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 336 337 /// Check if the loop interchange is profitable. 338 bool isProfitable(const Loop *InnerLoop, const Loop *OuterLoop, 339 unsigned InnerLoopId, unsigned OuterLoopId, 340 CharMatrix &DepMatrix, 341 const DenseMap<const Loop *, unsigned> &CostMap); 342 343 private: 344 int getInstrOrderCost(); 345 346 Loop *OuterLoop; 347 Loop *InnerLoop; 348 349 /// Scev analysis. 350 ScalarEvolution *SE; 351 352 /// Interface to emit optimization remarks. 353 OptimizationRemarkEmitter *ORE; 354 }; 355 356 /// LoopInterchangeTransform interchanges the loop. 357 class LoopInterchangeTransform { 358 public: 359 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 360 LoopInfo *LI, DominatorTree *DT, 361 const LoopInterchangeLegality &LIL) 362 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LIL(LIL) {} 363 364 /// Interchange OuterLoop and InnerLoop. 365 bool transform(); 366 void restructureLoops(Loop *NewInner, Loop *NewOuter, 367 BasicBlock *OrigInnerPreHeader, 368 BasicBlock *OrigOuterPreHeader); 369 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop); 370 371 private: 372 bool adjustLoopLinks(); 373 bool adjustLoopBranches(); 374 375 Loop *OuterLoop; 376 Loop *InnerLoop; 377 378 /// Scev analysis. 379 ScalarEvolution *SE; 380 381 LoopInfo *LI; 382 DominatorTree *DT; 383 384 const LoopInterchangeLegality &LIL; 385 }; 386 387 struct LoopInterchange { 388 ScalarEvolution *SE = nullptr; 389 LoopInfo *LI = nullptr; 390 DependenceInfo *DI = nullptr; 391 DominatorTree *DT = nullptr; 392 std::unique_ptr<CacheCost> CC = nullptr; 393 394 /// Interface to emit optimization remarks. 395 OptimizationRemarkEmitter *ORE; 396 397 LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI, 398 DominatorTree *DT, std::unique_ptr<CacheCost> &CC, 399 OptimizationRemarkEmitter *ORE) 400 : SE(SE), LI(LI), DI(DI), DT(DT), CC(std::move(CC)), ORE(ORE) {} 401 402 bool run(Loop *L) { 403 if (L->getParentLoop()) 404 return false; 405 SmallVector<Loop *, 8> LoopList; 406 populateWorklist(*L, LoopList); 407 return processLoopList(LoopList); 408 } 409 410 bool run(LoopNest &LN) { 411 SmallVector<Loop *, 8> LoopList(LN.getLoops().begin(), LN.getLoops().end()); 412 for (unsigned I = 1; I < LoopList.size(); ++I) 413 if (LoopList[I]->getParentLoop() != LoopList[I - 1]) 414 return false; 415 return processLoopList(LoopList); 416 } 417 418 bool isComputableLoopNest(ArrayRef<Loop *> LoopList) { 419 for (Loop *L : LoopList) { 420 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L); 421 if (isa<SCEVCouldNotCompute>(ExitCountOuter)) { 422 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n"); 423 return false; 424 } 425 if (L->getNumBackEdges() != 1) { 426 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n"); 427 return false; 428 } 429 if (!L->getExitingBlock()) { 430 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n"); 431 return false; 432 } 433 } 434 return true; 435 } 436 437 unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) { 438 // TODO: Add a better heuristic to select the loop to be interchanged based 439 // on the dependence matrix. Currently we select the innermost loop. 440 return LoopList.size() - 1; 441 } 442 443 bool processLoopList(SmallVectorImpl<Loop *> &LoopList) { 444 bool Changed = false; 445 unsigned LoopNestDepth = LoopList.size(); 446 if (LoopNestDepth < 2) { 447 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n"); 448 return false; 449 } 450 if (LoopNestDepth > MaxLoopNestDepth) { 451 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than " 452 << MaxLoopNestDepth << "\n"); 453 return false; 454 } 455 if (!isComputableLoopNest(LoopList)) { 456 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n"); 457 return false; 458 } 459 460 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth 461 << "\n"); 462 463 CharMatrix DependencyMatrix; 464 Loop *OuterMostLoop = *(LoopList.begin()); 465 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth, 466 OuterMostLoop, DI, SE)) { 467 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n"); 468 return false; 469 } 470 #ifdef DUMP_DEP_MATRICIES 471 LLVM_DEBUG(dbgs() << "Dependence before interchange\n"); 472 printDepMatrix(DependencyMatrix); 473 #endif 474 475 // Get the Outermost loop exit. 476 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock(); 477 if (!LoopNestExit) { 478 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block"); 479 return false; 480 } 481 482 unsigned SelecLoopId = selectLoopForInterchange(LoopList); 483 // Obtain the loop vector returned from loop cache analysis beforehand, 484 // and put each <Loop, index> pair into a map for constant time query 485 // later. Indices in loop vector reprsent the optimal order of the 486 // corresponding loop, e.g., given a loopnest with depth N, index 0 487 // indicates the loop should be placed as the outermost loop and index N 488 // indicates the loop should be placed as the innermost loop. 489 // 490 // For the old pass manager CacheCost would be null. 491 DenseMap<const Loop *, unsigned> CostMap; 492 if (CC != nullptr) { 493 const auto &LoopCosts = CC->getLoopCosts(); 494 for (unsigned i = 0; i < LoopCosts.size(); i++) { 495 CostMap[LoopCosts[i].first] = i; 496 } 497 } 498 // We try to achieve the globally optimal memory access for the loopnest, 499 // and do interchange based on a bubble-sort fasion. We start from 500 // the innermost loop, move it outwards to the best possible position 501 // and repeat this process. 502 for (unsigned j = SelecLoopId; j > 0; j--) { 503 bool ChangedPerIter = false; 504 for (unsigned i = SelecLoopId; i > SelecLoopId - j; i--) { 505 bool Interchanged = processLoop(LoopList[i], LoopList[i - 1], i, i - 1, 506 DependencyMatrix, CostMap); 507 if (!Interchanged) 508 continue; 509 // Loops interchanged, update LoopList accordingly. 510 std::swap(LoopList[i - 1], LoopList[i]); 511 // Update the DependencyMatrix 512 interChangeDependencies(DependencyMatrix, i, i - 1); 513 #ifdef DUMP_DEP_MATRICIES 514 LLVM_DEBUG(dbgs() << "Dependence after interchange\n"); 515 printDepMatrix(DependencyMatrix); 516 #endif 517 ChangedPerIter |= Interchanged; 518 Changed |= Interchanged; 519 } 520 // Early abort if there was no interchange during an entire round of 521 // moving loops outwards. 522 if (!ChangedPerIter) 523 break; 524 } 525 return Changed; 526 } 527 528 bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId, 529 unsigned OuterLoopId, 530 std::vector<std::vector<char>> &DependencyMatrix, 531 const DenseMap<const Loop *, unsigned> &CostMap) { 532 LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId 533 << " and OuterLoopId = " << OuterLoopId << "\n"); 534 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE); 535 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) { 536 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n"); 537 return false; 538 } 539 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n"); 540 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE); 541 if (!LIP.isProfitable(InnerLoop, OuterLoop, InnerLoopId, OuterLoopId, 542 DependencyMatrix, CostMap)) { 543 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n"); 544 return false; 545 } 546 547 ORE->emit([&]() { 548 return OptimizationRemark(DEBUG_TYPE, "Interchanged", 549 InnerLoop->getStartLoc(), 550 InnerLoop->getHeader()) 551 << "Loop interchanged with enclosing loop."; 552 }); 553 554 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LIL); 555 LIT.transform(); 556 LLVM_DEBUG(dbgs() << "Loops interchanged.\n"); 557 LoopsInterchanged++; 558 559 llvm::formLCSSARecursively(*OuterLoop, *DT, LI, SE); 560 return true; 561 } 562 }; 563 564 } // end anonymous namespace 565 566 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) { 567 return any_of(*BB, [](const Instruction &I) { 568 return I.mayHaveSideEffects() || I.mayReadFromMemory(); 569 }); 570 } 571 572 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) { 573 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 574 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 575 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 576 577 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n"); 578 579 // A perfectly nested loop will not have any branch in between the outer and 580 // inner block i.e. outer header will branch to either inner preheader and 581 // outerloop latch. 582 BranchInst *OuterLoopHeaderBI = 583 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 584 if (!OuterLoopHeaderBI) 585 return false; 586 587 for (BasicBlock *Succ : successors(OuterLoopHeaderBI)) 588 if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() && 589 Succ != OuterLoopLatch) 590 return false; 591 592 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n"); 593 // We do not have any basic block in between now make sure the outer header 594 // and outer loop latch doesn't contain any unsafe instructions. 595 if (containsUnsafeInstructions(OuterLoopHeader) || 596 containsUnsafeInstructions(OuterLoopLatch)) 597 return false; 598 599 // Also make sure the inner loop preheader does not contain any unsafe 600 // instructions. Note that all instructions in the preheader will be moved to 601 // the outer loop header when interchanging. 602 if (InnerLoopPreHeader != OuterLoopHeader && 603 containsUnsafeInstructions(InnerLoopPreHeader)) 604 return false; 605 606 BasicBlock *InnerLoopExit = InnerLoop->getExitBlock(); 607 // Ensure the inner loop exit block flows to the outer loop latch possibly 608 // through empty blocks. 609 const BasicBlock &SuccInner = 610 LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch); 611 if (&SuccInner != OuterLoopLatch) { 612 LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit 613 << " does not lead to the outer loop latch.\n";); 614 return false; 615 } 616 // The inner loop exit block does flow to the outer loop latch and not some 617 // other BBs, now make sure it contains safe instructions, since it will be 618 // moved into the (new) inner loop after interchange. 619 if (containsUnsafeInstructions(InnerLoopExit)) 620 return false; 621 622 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n"); 623 // We have a perfect loop nest. 624 return true; 625 } 626 627 bool LoopInterchangeLegality::isLoopStructureUnderstood() { 628 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); 629 for (PHINode *InnerInduction : InnerLoopInductions) { 630 unsigned Num = InnerInduction->getNumOperands(); 631 for (unsigned i = 0; i < Num; ++i) { 632 Value *Val = InnerInduction->getOperand(i); 633 if (isa<Constant>(Val)) 634 continue; 635 Instruction *I = dyn_cast<Instruction>(Val); 636 if (!I) 637 return false; 638 // TODO: Handle triangular loops. 639 // e.g. for(int i=0;i<N;i++) 640 // for(int j=i;j<N;j++) 641 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i); 642 if (InnerInduction->getIncomingBlock(IncomBlockIndx) == 643 InnerLoopPreheader && 644 !OuterLoop->isLoopInvariant(I)) { 645 return false; 646 } 647 } 648 } 649 650 // TODO: Handle triangular loops of another form. 651 // e.g. for(int i=0;i<N;i++) 652 // for(int j=0;j<i;j++) 653 // or, 654 // for(int i=0;i<N;i++) 655 // for(int j=0;j*i<N;j++) 656 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 657 BranchInst *InnerLoopLatchBI = 658 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 659 if (!InnerLoopLatchBI->isConditional()) 660 return false; 661 if (CmpInst *InnerLoopCmp = 662 dyn_cast<CmpInst>(InnerLoopLatchBI->getCondition())) { 663 Value *Op0 = InnerLoopCmp->getOperand(0); 664 Value *Op1 = InnerLoopCmp->getOperand(1); 665 666 // LHS and RHS of the inner loop exit condition, e.g., 667 // in "for(int j=0;j<i;j++)", LHS is j and RHS is i. 668 Value *Left = nullptr; 669 Value *Right = nullptr; 670 671 // Check if V only involves inner loop induction variable. 672 // Return true if V is InnerInduction, or a cast from 673 // InnerInduction, or a binary operator that involves 674 // InnerInduction and a constant. 675 std::function<bool(Value *)> IsPathToInnerIndVar; 676 IsPathToInnerIndVar = [this, &IsPathToInnerIndVar](const Value *V) -> bool { 677 if (llvm::is_contained(InnerLoopInductions, V)) 678 return true; 679 if (isa<Constant>(V)) 680 return true; 681 const Instruction *I = dyn_cast<Instruction>(V); 682 if (!I) 683 return false; 684 if (isa<CastInst>(I)) 685 return IsPathToInnerIndVar(I->getOperand(0)); 686 if (isa<BinaryOperator>(I)) 687 return IsPathToInnerIndVar(I->getOperand(0)) && 688 IsPathToInnerIndVar(I->getOperand(1)); 689 return false; 690 }; 691 692 // In case of multiple inner loop indvars, it is okay if LHS and RHS 693 // are both inner indvar related variables. 694 if (IsPathToInnerIndVar(Op0) && IsPathToInnerIndVar(Op1)) 695 return true; 696 697 // Otherwise we check if the cmp instruction compares an inner indvar 698 // related variable (Left) with a outer loop invariant (Right). 699 if (IsPathToInnerIndVar(Op0) && !isa<Constant>(Op0)) { 700 Left = Op0; 701 Right = Op1; 702 } else if (IsPathToInnerIndVar(Op1) && !isa<Constant>(Op1)) { 703 Left = Op1; 704 Right = Op0; 705 } 706 707 if (Left == nullptr) 708 return false; 709 710 const SCEV *S = SE->getSCEV(Right); 711 if (!SE->isLoopInvariant(S, OuterLoop)) 712 return false; 713 } 714 715 return true; 716 } 717 718 // If SV is a LCSSA PHI node with a single incoming value, return the incoming 719 // value. 720 static Value *followLCSSA(Value *SV) { 721 PHINode *PHI = dyn_cast<PHINode>(SV); 722 if (!PHI) 723 return SV; 724 725 if (PHI->getNumIncomingValues() != 1) 726 return SV; 727 return followLCSSA(PHI->getIncomingValue(0)); 728 } 729 730 // Check V's users to see if it is involved in a reduction in L. 731 static PHINode *findInnerReductionPhi(Loop *L, Value *V) { 732 // Reduction variables cannot be constants. 733 if (isa<Constant>(V)) 734 return nullptr; 735 736 for (Value *User : V->users()) { 737 if (PHINode *PHI = dyn_cast<PHINode>(User)) { 738 if (PHI->getNumIncomingValues() == 1) 739 continue; 740 RecurrenceDescriptor RD; 741 if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) { 742 // Detect floating point reduction only when it can be reordered. 743 if (RD.getExactFPMathInst() != nullptr) 744 return nullptr; 745 return PHI; 746 } 747 return nullptr; 748 } 749 } 750 751 return nullptr; 752 } 753 754 bool LoopInterchangeLegality::findInductionAndReductions( 755 Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) { 756 if (!L->getLoopLatch() || !L->getLoopPredecessor()) 757 return false; 758 for (PHINode &PHI : L->getHeader()->phis()) { 759 RecurrenceDescriptor RD; 760 InductionDescriptor ID; 761 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 762 Inductions.push_back(&PHI); 763 else { 764 // PHIs in inner loops need to be part of a reduction in the outer loop, 765 // discovered when checking the PHIs of the outer loop earlier. 766 if (!InnerLoop) { 767 if (!OuterInnerReductions.count(&PHI)) { 768 LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions " 769 "across the outer loop.\n"); 770 return false; 771 } 772 } else { 773 assert(PHI.getNumIncomingValues() == 2 && 774 "Phis in loop header should have exactly 2 incoming values"); 775 // Check if we have a PHI node in the outer loop that has a reduction 776 // result from the inner loop as an incoming value. 777 Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch())); 778 PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V); 779 if (!InnerRedPhi || 780 !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) { 781 LLVM_DEBUG( 782 dbgs() 783 << "Failed to recognize PHI as an induction or reduction.\n"); 784 return false; 785 } 786 OuterInnerReductions.insert(&PHI); 787 OuterInnerReductions.insert(InnerRedPhi); 788 } 789 } 790 } 791 return true; 792 } 793 794 // This function indicates the current limitations in the transform as a result 795 // of which we do not proceed. 796 bool LoopInterchangeLegality::currentLimitations() { 797 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 798 799 // transform currently expects the loop latches to also be the exiting 800 // blocks. 801 if (InnerLoop->getExitingBlock() != InnerLoopLatch || 802 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() || 803 !isa<BranchInst>(InnerLoopLatch->getTerminator()) || 804 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) { 805 LLVM_DEBUG( 806 dbgs() << "Loops where the latch is not the exiting block are not" 807 << " supported currently.\n"); 808 ORE->emit([&]() { 809 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch", 810 OuterLoop->getStartLoc(), 811 OuterLoop->getHeader()) 812 << "Loops where the latch is not the exiting block cannot be" 813 " interchange currently."; 814 }); 815 return true; 816 } 817 818 SmallVector<PHINode *, 8> Inductions; 819 if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) { 820 LLVM_DEBUG( 821 dbgs() << "Only outer loops with induction or reduction PHI nodes " 822 << "are supported currently.\n"); 823 ORE->emit([&]() { 824 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter", 825 OuterLoop->getStartLoc(), 826 OuterLoop->getHeader()) 827 << "Only outer loops with induction or reduction PHI nodes can be" 828 " interchanged currently."; 829 }); 830 return true; 831 } 832 833 Inductions.clear(); 834 // For multi-level loop nests, make sure that all phi nodes for inner loops 835 // at all levels can be recognized as a induction or reduction phi. Bail out 836 // if a phi node at a certain nesting level cannot be properly recognized. 837 Loop *CurLevelLoop = OuterLoop; 838 while (!CurLevelLoop->getSubLoops().empty()) { 839 // We already made sure that the loop nest is tightly nested. 840 CurLevelLoop = CurLevelLoop->getSubLoops().front(); 841 if (!findInductionAndReductions(CurLevelLoop, Inductions, nullptr)) { 842 LLVM_DEBUG( 843 dbgs() << "Only inner loops with induction or reduction PHI nodes " 844 << "are supported currently.\n"); 845 ORE->emit([&]() { 846 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner", 847 CurLevelLoop->getStartLoc(), 848 CurLevelLoop->getHeader()) 849 << "Only inner loops with induction or reduction PHI nodes can be" 850 " interchange currently."; 851 }); 852 return true; 853 } 854 } 855 856 // TODO: Triangular loops are not handled for now. 857 if (!isLoopStructureUnderstood()) { 858 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n"); 859 ORE->emit([&]() { 860 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner", 861 InnerLoop->getStartLoc(), 862 InnerLoop->getHeader()) 863 << "Inner loop structure not understood currently."; 864 }); 865 return true; 866 } 867 868 return false; 869 } 870 871 bool LoopInterchangeLegality::findInductions( 872 Loop *L, SmallVectorImpl<PHINode *> &Inductions) { 873 for (PHINode &PHI : L->getHeader()->phis()) { 874 InductionDescriptor ID; 875 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 876 Inductions.push_back(&PHI); 877 } 878 return !Inductions.empty(); 879 } 880 881 // We currently only support LCSSA PHI nodes in the inner loop exit, if their 882 // users are either reduction PHIs or PHIs outside the outer loop (which means 883 // the we are only interested in the final value after the loop). 884 static bool 885 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL, 886 SmallPtrSetImpl<PHINode *> &Reductions) { 887 BasicBlock *InnerExit = OuterL->getUniqueExitBlock(); 888 for (PHINode &PHI : InnerExit->phis()) { 889 // Reduction lcssa phi will have only 1 incoming block that from loop latch. 890 if (PHI.getNumIncomingValues() > 1) 891 return false; 892 if (any_of(PHI.users(), [&Reductions, OuterL](User *U) { 893 PHINode *PN = dyn_cast<PHINode>(U); 894 return !PN || 895 (!Reductions.count(PN) && OuterL->contains(PN->getParent())); 896 })) { 897 return false; 898 } 899 } 900 return true; 901 } 902 903 // We currently support LCSSA PHI nodes in the outer loop exit, if their 904 // incoming values do not come from the outer loop latch or if the 905 // outer loop latch has a single predecessor. In that case, the value will 906 // be available if both the inner and outer loop conditions are true, which 907 // will still be true after interchanging. If we have multiple predecessor, 908 // that may not be the case, e.g. because the outer loop latch may be executed 909 // if the inner loop is not executed. 910 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 911 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock(); 912 for (PHINode &PHI : LoopNestExit->phis()) { 913 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) { 914 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i)); 915 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch()) 916 continue; 917 918 // The incoming value is defined in the outer loop latch. Currently we 919 // only support that in case the outer loop latch has a single predecessor. 920 // This guarantees that the outer loop latch is executed if and only if 921 // the inner loop is executed (because tightlyNested() guarantees that the 922 // outer loop header only branches to the inner loop or the outer loop 923 // latch). 924 // FIXME: We could weaken this logic and allow multiple predecessors, 925 // if the values are produced outside the loop latch. We would need 926 // additional logic to update the PHI nodes in the exit block as 927 // well. 928 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr) 929 return false; 930 } 931 } 932 return true; 933 } 934 935 // In case of multi-level nested loops, it may occur that lcssa phis exist in 936 // the latch of InnerLoop, i.e., when defs of the incoming values are further 937 // inside the loopnest. Sometimes those incoming values are not available 938 // after interchange, since the original inner latch will become the new outer 939 // latch which may have predecessor paths that do not include those incoming 940 // values. 941 // TODO: Handle transformation of lcssa phis in the InnerLoop latch in case of 942 // multi-level loop nests. 943 static bool areInnerLoopLatchPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 944 if (InnerLoop->getSubLoops().empty()) 945 return true; 946 // If the original outer latch has only one predecessor, then values defined 947 // further inside the looploop, e.g., in the innermost loop, will be available 948 // at the new outer latch after interchange. 949 if (OuterLoop->getLoopLatch()->getUniquePredecessor() != nullptr) 950 return true; 951 952 // The outer latch has more than one predecessors, i.e., the inner 953 // exit and the inner header. 954 // PHI nodes in the inner latch are lcssa phis where the incoming values 955 // are defined further inside the loopnest. Check if those phis are used 956 // in the original inner latch. If that is the case then bail out since 957 // those incoming values may not be available at the new outer latch. 958 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 959 for (PHINode &PHI : InnerLoopLatch->phis()) { 960 for (auto *U : PHI.users()) { 961 Instruction *UI = cast<Instruction>(U); 962 if (InnerLoopLatch == UI->getParent()) 963 return false; 964 } 965 } 966 return true; 967 } 968 969 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId, 970 unsigned OuterLoopId, 971 CharMatrix &DepMatrix) { 972 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) { 973 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId 974 << " and OuterLoopId = " << OuterLoopId 975 << " due to dependence\n"); 976 ORE->emit([&]() { 977 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence", 978 InnerLoop->getStartLoc(), 979 InnerLoop->getHeader()) 980 << "Cannot interchange loops due to dependences."; 981 }); 982 return false; 983 } 984 // Check if outer and inner loop contain legal instructions only. 985 for (auto *BB : OuterLoop->blocks()) 986 for (Instruction &I : BB->instructionsWithoutDebug()) 987 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 988 // readnone functions do not prevent interchanging. 989 if (CI->onlyWritesMemory()) 990 continue; 991 LLVM_DEBUG( 992 dbgs() << "Loops with call instructions cannot be interchanged " 993 << "safely."); 994 ORE->emit([&]() { 995 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst", 996 CI->getDebugLoc(), 997 CI->getParent()) 998 << "Cannot interchange loops due to call instruction."; 999 }); 1000 1001 return false; 1002 } 1003 1004 if (!findInductions(InnerLoop, InnerLoopInductions)) { 1005 LLVM_DEBUG(dbgs() << "Cound not find inner loop induction variables.\n"); 1006 return false; 1007 } 1008 1009 if (!areInnerLoopLatchPHIsSupported(OuterLoop, InnerLoop)) { 1010 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop latch.\n"); 1011 ORE->emit([&]() { 1012 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedInnerLatchPHI", 1013 InnerLoop->getStartLoc(), 1014 InnerLoop->getHeader()) 1015 << "Cannot interchange loops because unsupported PHI nodes found " 1016 "in inner loop latch."; 1017 }); 1018 return false; 1019 } 1020 1021 // TODO: The loops could not be interchanged due to current limitations in the 1022 // transform module. 1023 if (currentLimitations()) { 1024 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n"); 1025 return false; 1026 } 1027 1028 // Check if the loops are tightly nested. 1029 if (!tightlyNested(OuterLoop, InnerLoop)) { 1030 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n"); 1031 ORE->emit([&]() { 1032 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested", 1033 InnerLoop->getStartLoc(), 1034 InnerLoop->getHeader()) 1035 << "Cannot interchange loops because they are not tightly " 1036 "nested."; 1037 }); 1038 return false; 1039 } 1040 1041 if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop, 1042 OuterInnerReductions)) { 1043 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n"); 1044 ORE->emit([&]() { 1045 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1046 InnerLoop->getStartLoc(), 1047 InnerLoop->getHeader()) 1048 << "Found unsupported PHI node in loop exit."; 1049 }); 1050 return false; 1051 } 1052 1053 if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) { 1054 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n"); 1055 ORE->emit([&]() { 1056 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1057 OuterLoop->getStartLoc(), 1058 OuterLoop->getHeader()) 1059 << "Found unsupported PHI node in loop exit."; 1060 }); 1061 return false; 1062 } 1063 1064 return true; 1065 } 1066 1067 int LoopInterchangeProfitability::getInstrOrderCost() { 1068 unsigned GoodOrder, BadOrder; 1069 BadOrder = GoodOrder = 0; 1070 for (BasicBlock *BB : InnerLoop->blocks()) { 1071 for (Instruction &Ins : *BB) { 1072 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) { 1073 unsigned NumOp = GEP->getNumOperands(); 1074 bool FoundInnerInduction = false; 1075 bool FoundOuterInduction = false; 1076 for (unsigned i = 0; i < NumOp; ++i) { 1077 // Skip operands that are not SCEV-able. 1078 if (!SE->isSCEVable(GEP->getOperand(i)->getType())) 1079 continue; 1080 1081 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i)); 1082 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal); 1083 if (!AR) 1084 continue; 1085 1086 // If we find the inner induction after an outer induction e.g. 1087 // for(int i=0;i<N;i++) 1088 // for(int j=0;j<N;j++) 1089 // A[i][j] = A[i-1][j-1]+k; 1090 // then it is a good order. 1091 if (AR->getLoop() == InnerLoop) { 1092 // We found an InnerLoop induction after OuterLoop induction. It is 1093 // a good order. 1094 FoundInnerInduction = true; 1095 if (FoundOuterInduction) { 1096 GoodOrder++; 1097 break; 1098 } 1099 } 1100 // If we find the outer induction after an inner induction e.g. 1101 // for(int i=0;i<N;i++) 1102 // for(int j=0;j<N;j++) 1103 // A[j][i] = A[j-1][i-1]+k; 1104 // then it is a bad order. 1105 if (AR->getLoop() == OuterLoop) { 1106 // We found an OuterLoop induction after InnerLoop induction. It is 1107 // a bad order. 1108 FoundOuterInduction = true; 1109 if (FoundInnerInduction) { 1110 BadOrder++; 1111 break; 1112 } 1113 } 1114 } 1115 } 1116 } 1117 } 1118 return GoodOrder - BadOrder; 1119 } 1120 1121 static bool isProfitableForVectorization(unsigned InnerLoopId, 1122 unsigned OuterLoopId, 1123 CharMatrix &DepMatrix) { 1124 // TODO: Improve this heuristic to catch more cases. 1125 // If the inner loop is loop independent or doesn't carry any dependency it is 1126 // profitable to move this to outer position. 1127 for (auto &Row : DepMatrix) { 1128 if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I') 1129 return false; 1130 // TODO: We need to improve this heuristic. 1131 if (Row[OuterLoopId] != '=') 1132 return false; 1133 } 1134 // If outer loop has dependence and inner loop is loop independent then it is 1135 // profitable to interchange to enable parallelism. 1136 // If there are no dependences, interchanging will not improve anything. 1137 return !DepMatrix.empty(); 1138 } 1139 1140 bool LoopInterchangeProfitability::isProfitable( 1141 const Loop *InnerLoop, const Loop *OuterLoop, unsigned InnerLoopId, 1142 unsigned OuterLoopId, CharMatrix &DepMatrix, 1143 const DenseMap<const Loop *, unsigned> &CostMap) { 1144 // TODO: Remove the legacy cost model. 1145 1146 // This is the new cost model returned from loop cache analysis. 1147 // A smaller index means the loop should be placed an outer loop, and vice 1148 // versa. 1149 if (CostMap.find(InnerLoop) != CostMap.end() && 1150 CostMap.find(OuterLoop) != CostMap.end()) { 1151 unsigned InnerIndex = 0, OuterIndex = 0; 1152 InnerIndex = CostMap.find(InnerLoop)->second; 1153 OuterIndex = CostMap.find(OuterLoop)->second; 1154 LLVM_DEBUG(dbgs() << "InnerIndex = " << InnerIndex 1155 << ", OuterIndex = " << OuterIndex << "\n"); 1156 if (InnerIndex < OuterIndex) 1157 return true; 1158 } else { 1159 // Legacy cost model: this is rough cost estimation algorithm. It counts the 1160 // good and bad order of induction variables in the instruction and allows 1161 // reordering if number of bad orders is more than good. 1162 int Cost = getInstrOrderCost(); 1163 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n"); 1164 if (Cost < -LoopInterchangeCostThreshold) 1165 return true; 1166 } 1167 1168 // It is not profitable as per current cache profitability model. But check if 1169 // we can move this loop outside to improve parallelism. 1170 if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix)) 1171 return true; 1172 1173 ORE->emit([&]() { 1174 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", 1175 InnerLoop->getStartLoc(), 1176 InnerLoop->getHeader()) 1177 << "Interchanging loops is too costly and it does not improve " 1178 "parallelism."; 1179 }); 1180 return false; 1181 } 1182 1183 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop, 1184 Loop *InnerLoop) { 1185 for (Loop *L : *OuterLoop) 1186 if (L == InnerLoop) { 1187 OuterLoop->removeChildLoop(L); 1188 return; 1189 } 1190 llvm_unreachable("Couldn't find loop"); 1191 } 1192 1193 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the 1194 /// new inner and outer loop after interchanging: NewInner is the original 1195 /// outer loop and NewOuter is the original inner loop. 1196 /// 1197 /// Before interchanging, we have the following structure 1198 /// Outer preheader 1199 // Outer header 1200 // Inner preheader 1201 // Inner header 1202 // Inner body 1203 // Inner latch 1204 // outer bbs 1205 // Outer latch 1206 // 1207 // After interchanging: 1208 // Inner preheader 1209 // Inner header 1210 // Outer preheader 1211 // Outer header 1212 // Inner body 1213 // outer bbs 1214 // Outer latch 1215 // Inner latch 1216 void LoopInterchangeTransform::restructureLoops( 1217 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader, 1218 BasicBlock *OrigOuterPreHeader) { 1219 Loop *OuterLoopParent = OuterLoop->getParentLoop(); 1220 // The original inner loop preheader moves from the new inner loop to 1221 // the parent loop, if there is one. 1222 NewInner->removeBlockFromLoop(OrigInnerPreHeader); 1223 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent); 1224 1225 // Switch the loop levels. 1226 if (OuterLoopParent) { 1227 // Remove the loop from its parent loop. 1228 removeChildLoop(OuterLoopParent, NewInner); 1229 removeChildLoop(NewInner, NewOuter); 1230 OuterLoopParent->addChildLoop(NewOuter); 1231 } else { 1232 removeChildLoop(NewInner, NewOuter); 1233 LI->changeTopLevelLoop(NewInner, NewOuter); 1234 } 1235 while (!NewOuter->isInnermost()) 1236 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin())); 1237 NewOuter->addChildLoop(NewInner); 1238 1239 // BBs from the original inner loop. 1240 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks()); 1241 1242 // Add BBs from the original outer loop to the original inner loop (excluding 1243 // BBs already in inner loop) 1244 for (BasicBlock *BB : NewInner->blocks()) 1245 if (LI->getLoopFor(BB) == NewInner) 1246 NewOuter->addBlockEntry(BB); 1247 1248 // Now remove inner loop header and latch from the new inner loop and move 1249 // other BBs (the loop body) to the new inner loop. 1250 BasicBlock *OuterHeader = NewOuter->getHeader(); 1251 BasicBlock *OuterLatch = NewOuter->getLoopLatch(); 1252 for (BasicBlock *BB : OrigInnerBBs) { 1253 // Nothing will change for BBs in child loops. 1254 if (LI->getLoopFor(BB) != NewOuter) 1255 continue; 1256 // Remove the new outer loop header and latch from the new inner loop. 1257 if (BB == OuterHeader || BB == OuterLatch) 1258 NewInner->removeBlockFromLoop(BB); 1259 else 1260 LI->changeLoopFor(BB, NewInner); 1261 } 1262 1263 // The preheader of the original outer loop becomes part of the new 1264 // outer loop. 1265 NewOuter->addBlockEntry(OrigOuterPreHeader); 1266 LI->changeLoopFor(OrigOuterPreHeader, NewOuter); 1267 1268 // Tell SE that we move the loops around. 1269 SE->forgetLoop(NewOuter); 1270 SE->forgetLoop(NewInner); 1271 } 1272 1273 bool LoopInterchangeTransform::transform() { 1274 bool Transformed = false; 1275 1276 if (InnerLoop->getSubLoops().empty()) { 1277 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1278 LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n"); 1279 auto &InductionPHIs = LIL.getInnerLoopInductions(); 1280 if (InductionPHIs.empty()) { 1281 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n"); 1282 return false; 1283 } 1284 1285 SmallVector<Instruction *, 8> InnerIndexVarList; 1286 for (PHINode *CurInductionPHI : InductionPHIs) { 1287 if (CurInductionPHI->getIncomingBlock(0) == InnerLoopPreHeader) 1288 InnerIndexVarList.push_back( 1289 dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(1))); 1290 else 1291 InnerIndexVarList.push_back( 1292 dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(0))); 1293 } 1294 1295 // Create a new latch block for the inner loop. We split at the 1296 // current latch's terminator and then move the condition and all 1297 // operands that are not either loop-invariant or the induction PHI into the 1298 // new latch block. 1299 BasicBlock *NewLatch = 1300 SplitBlock(InnerLoop->getLoopLatch(), 1301 InnerLoop->getLoopLatch()->getTerminator(), DT, LI); 1302 1303 SmallSetVector<Instruction *, 4> WorkList; 1304 unsigned i = 0; 1305 auto MoveInstructions = [&i, &WorkList, this, &InductionPHIs, NewLatch]() { 1306 for (; i < WorkList.size(); i++) { 1307 // Duplicate instruction and move it the new latch. Update uses that 1308 // have been moved. 1309 Instruction *NewI = WorkList[i]->clone(); 1310 NewI->insertBefore(NewLatch->getFirstNonPHI()); 1311 assert(!NewI->mayHaveSideEffects() && 1312 "Moving instructions with side-effects may change behavior of " 1313 "the loop nest!"); 1314 for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) { 1315 Instruction *UserI = cast<Instruction>(U.getUser()); 1316 if (!InnerLoop->contains(UserI->getParent()) || 1317 UserI->getParent() == NewLatch || 1318 llvm::is_contained(InductionPHIs, UserI)) 1319 U.set(NewI); 1320 } 1321 // Add operands of moved instruction to the worklist, except if they are 1322 // outside the inner loop or are the induction PHI. 1323 for (Value *Op : WorkList[i]->operands()) { 1324 Instruction *OpI = dyn_cast<Instruction>(Op); 1325 if (!OpI || 1326 this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop || 1327 llvm::is_contained(InductionPHIs, OpI)) 1328 continue; 1329 WorkList.insert(OpI); 1330 } 1331 } 1332 }; 1333 1334 // FIXME: Should we interchange when we have a constant condition? 1335 Instruction *CondI = dyn_cast<Instruction>( 1336 cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator()) 1337 ->getCondition()); 1338 if (CondI) 1339 WorkList.insert(CondI); 1340 MoveInstructions(); 1341 for (Instruction *InnerIndexVar : InnerIndexVarList) 1342 WorkList.insert(cast<Instruction>(InnerIndexVar)); 1343 MoveInstructions(); 1344 } 1345 1346 // Ensure the inner loop phi nodes have a separate basic block. 1347 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1348 if (InnerLoopHeader->getFirstNonPHI() != InnerLoopHeader->getTerminator()) { 1349 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI); 1350 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n"); 1351 } 1352 1353 // Instructions in the original inner loop preheader may depend on values 1354 // defined in the outer loop header. Move them there, because the original 1355 // inner loop preheader will become the entry into the interchanged loop nest. 1356 // Currently we move all instructions and rely on LICM to move invariant 1357 // instructions outside the loop nest. 1358 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1359 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1360 if (InnerLoopPreHeader != OuterLoopHeader) { 1361 SmallPtrSet<Instruction *, 4> NeedsMoving; 1362 for (Instruction &I : 1363 make_early_inc_range(make_range(InnerLoopPreHeader->begin(), 1364 std::prev(InnerLoopPreHeader->end())))) 1365 I.moveBefore(OuterLoopHeader->getTerminator()); 1366 } 1367 1368 Transformed |= adjustLoopLinks(); 1369 if (!Transformed) { 1370 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n"); 1371 return false; 1372 } 1373 1374 return true; 1375 } 1376 1377 /// \brief Move all instructions except the terminator from FromBB right before 1378 /// InsertBefore 1379 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) { 1380 auto &ToList = InsertBefore->getParent()->getInstList(); 1381 auto &FromList = FromBB->getInstList(); 1382 1383 ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(), 1384 FromBB->getTerminator()->getIterator()); 1385 } 1386 1387 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact. 1388 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) { 1389 // Save all non-terminator instructions of BB1 into TempInstrs and unlink them 1390 // from BB1 afterwards. 1391 auto Iter = map_range(*BB1, [](Instruction &I) { return &I; }); 1392 SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end())); 1393 for (Instruction *I : TempInstrs) 1394 I->removeFromParent(); 1395 1396 // Move instructions from BB2 to BB1. 1397 moveBBContents(BB2, BB1->getTerminator()); 1398 1399 // Move instructions from TempInstrs to BB2. 1400 for (Instruction *I : TempInstrs) 1401 I->insertBefore(BB2->getTerminator()); 1402 } 1403 1404 // Update BI to jump to NewBB instead of OldBB. Records updates to the 1405 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that 1406 // \p OldBB is exactly once in BI's successor list. 1407 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB, 1408 BasicBlock *NewBB, 1409 std::vector<DominatorTree::UpdateType> &DTUpdates, 1410 bool MustUpdateOnce = true) { 1411 assert((!MustUpdateOnce || 1412 llvm::count_if(successors(BI), 1413 [OldBB](BasicBlock *BB) { 1414 return BB == OldBB; 1415 }) == 1) && "BI must jump to OldBB exactly once."); 1416 bool Changed = false; 1417 for (Use &Op : BI->operands()) 1418 if (Op == OldBB) { 1419 Op.set(NewBB); 1420 Changed = true; 1421 } 1422 1423 if (Changed) { 1424 DTUpdates.push_back( 1425 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB}); 1426 DTUpdates.push_back( 1427 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB}); 1428 } 1429 assert(Changed && "Expected a successor to be updated"); 1430 } 1431 1432 // Move Lcssa PHIs to the right place. 1433 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader, 1434 BasicBlock *InnerLatch, BasicBlock *OuterHeader, 1435 BasicBlock *OuterLatch, BasicBlock *OuterExit, 1436 Loop *InnerLoop, LoopInfo *LI) { 1437 1438 // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are 1439 // defined either in the header or latch. Those blocks will become header and 1440 // latch of the new outer loop, and the only possible users can PHI nodes 1441 // in the exit block of the loop nest or the outer loop header (reduction 1442 // PHIs, in that case, the incoming value must be defined in the inner loop 1443 // header). We can just substitute the user with the incoming value and remove 1444 // the PHI. 1445 for (PHINode &P : make_early_inc_range(InnerExit->phis())) { 1446 assert(P.getNumIncomingValues() == 1 && 1447 "Only loops with a single exit are supported!"); 1448 1449 // Incoming values are guaranteed be instructions currently. 1450 auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch)); 1451 // In case of multi-level nested loops, follow LCSSA to find the incoming 1452 // value defined from the innermost loop. 1453 auto IncIInnerMost = cast<Instruction>(followLCSSA(IncI)); 1454 // Skip phis with incoming values from the inner loop body, excluding the 1455 // header and latch. 1456 if (IncIInnerMost->getParent() != InnerLatch && 1457 IncIInnerMost->getParent() != InnerHeader) 1458 continue; 1459 1460 assert(all_of(P.users(), 1461 [OuterHeader, OuterExit, IncI, InnerHeader](User *U) { 1462 return (cast<PHINode>(U)->getParent() == OuterHeader && 1463 IncI->getParent() == InnerHeader) || 1464 cast<PHINode>(U)->getParent() == OuterExit; 1465 }) && 1466 "Can only replace phis iff the uses are in the loop nest exit or " 1467 "the incoming value is defined in the inner header (it will " 1468 "dominate all loop blocks after interchanging)"); 1469 P.replaceAllUsesWith(IncI); 1470 P.eraseFromParent(); 1471 } 1472 1473 SmallVector<PHINode *, 8> LcssaInnerExit; 1474 for (PHINode &P : InnerExit->phis()) 1475 LcssaInnerExit.push_back(&P); 1476 1477 SmallVector<PHINode *, 8> LcssaInnerLatch; 1478 for (PHINode &P : InnerLatch->phis()) 1479 LcssaInnerLatch.push_back(&P); 1480 1481 // Lcssa PHIs for values used outside the inner loop are in InnerExit. 1482 // If a PHI node has users outside of InnerExit, it has a use outside the 1483 // interchanged loop and we have to preserve it. We move these to 1484 // InnerLatch, which will become the new exit block for the innermost 1485 // loop after interchanging. 1486 for (PHINode *P : LcssaInnerExit) 1487 P->moveBefore(InnerLatch->getFirstNonPHI()); 1488 1489 // If the inner loop latch contains LCSSA PHIs, those come from a child loop 1490 // and we have to move them to the new inner latch. 1491 for (PHINode *P : LcssaInnerLatch) 1492 P->moveBefore(InnerExit->getFirstNonPHI()); 1493 1494 // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have 1495 // incoming values defined in the outer loop, we have to add a new PHI 1496 // in the inner loop latch, which became the exit block of the outer loop, 1497 // after interchanging. 1498 if (OuterExit) { 1499 for (PHINode &P : OuterExit->phis()) { 1500 if (P.getNumIncomingValues() != 1) 1501 continue; 1502 // Skip Phis with incoming values defined in the inner loop. Those should 1503 // already have been updated. 1504 auto I = dyn_cast<Instruction>(P.getIncomingValue(0)); 1505 if (!I || LI->getLoopFor(I->getParent()) == InnerLoop) 1506 continue; 1507 1508 PHINode *NewPhi = dyn_cast<PHINode>(P.clone()); 1509 NewPhi->setIncomingValue(0, P.getIncomingValue(0)); 1510 NewPhi->setIncomingBlock(0, OuterLatch); 1511 // We might have incoming edges from other BBs, i.e., the original outer 1512 // header. 1513 for (auto *Pred : predecessors(InnerLatch)) { 1514 if (Pred == OuterLatch) 1515 continue; 1516 NewPhi->addIncoming(P.getIncomingValue(0), Pred); 1517 } 1518 NewPhi->insertBefore(InnerLatch->getFirstNonPHI()); 1519 P.setIncomingValue(0, NewPhi); 1520 } 1521 } 1522 1523 // Now adjust the incoming blocks for the LCSSA PHIs. 1524 // For PHIs moved from Inner's exit block, we need to replace Inner's latch 1525 // with the new latch. 1526 InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch); 1527 } 1528 1529 bool LoopInterchangeTransform::adjustLoopBranches() { 1530 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n"); 1531 std::vector<DominatorTree::UpdateType> DTUpdates; 1532 1533 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1534 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1535 1536 assert(OuterLoopPreHeader != OuterLoop->getHeader() && 1537 InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader && 1538 InnerLoopPreHeader && "Guaranteed by loop-simplify form"); 1539 // Ensure that both preheaders do not contain PHI nodes and have single 1540 // predecessors. This allows us to move them easily. We use 1541 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing 1542 // preheaders do not satisfy those conditions. 1543 if (isa<PHINode>(OuterLoopPreHeader->begin()) || 1544 !OuterLoopPreHeader->getUniquePredecessor()) 1545 OuterLoopPreHeader = 1546 InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true); 1547 if (InnerLoopPreHeader == OuterLoop->getHeader()) 1548 InnerLoopPreHeader = 1549 InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true); 1550 1551 // Adjust the loop preheader 1552 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1553 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1554 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 1555 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 1556 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor(); 1557 BasicBlock *InnerLoopLatchPredecessor = 1558 InnerLoopLatch->getUniquePredecessor(); 1559 BasicBlock *InnerLoopLatchSuccessor; 1560 BasicBlock *OuterLoopLatchSuccessor; 1561 1562 BranchInst *OuterLoopLatchBI = 1563 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator()); 1564 BranchInst *InnerLoopLatchBI = 1565 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 1566 BranchInst *OuterLoopHeaderBI = 1567 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 1568 BranchInst *InnerLoopHeaderBI = 1569 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator()); 1570 1571 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor || 1572 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI || 1573 !InnerLoopHeaderBI) 1574 return false; 1575 1576 BranchInst *InnerLoopLatchPredecessorBI = 1577 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator()); 1578 BranchInst *OuterLoopPredecessorBI = 1579 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator()); 1580 1581 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI) 1582 return false; 1583 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor(); 1584 if (!InnerLoopHeaderSuccessor) 1585 return false; 1586 1587 // Adjust Loop Preheader and headers. 1588 // The branches in the outer loop predecessor and the outer loop header can 1589 // be unconditional branches or conditional branches with duplicates. Consider 1590 // this when updating the successors. 1591 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader, 1592 InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false); 1593 // The outer loop header might or might not branch to the outer latch. 1594 // We are guaranteed to branch to the inner loop preheader. 1595 if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) { 1596 // In this case the outerLoopHeader should branch to the InnerLoopLatch. 1597 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, InnerLoopLatch, 1598 DTUpdates, 1599 /*MustUpdateOnce=*/false); 1600 } 1601 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader, 1602 InnerLoopHeaderSuccessor, DTUpdates, 1603 /*MustUpdateOnce=*/false); 1604 1605 // Adjust reduction PHI's now that the incoming block has changed. 1606 InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader, 1607 OuterLoopHeader); 1608 1609 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor, 1610 OuterLoopPreHeader, DTUpdates); 1611 1612 // -------------Adjust loop latches----------- 1613 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader) 1614 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1); 1615 else 1616 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0); 1617 1618 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch, 1619 InnerLoopLatchSuccessor, DTUpdates); 1620 1621 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader) 1622 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1); 1623 else 1624 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0); 1625 1626 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor, 1627 OuterLoopLatchSuccessor, DTUpdates); 1628 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch, 1629 DTUpdates); 1630 1631 DT->applyUpdates(DTUpdates); 1632 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader, 1633 OuterLoopPreHeader); 1634 1635 moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch, 1636 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(), 1637 InnerLoop, LI); 1638 // For PHIs in the exit block of the outer loop, outer's latch has been 1639 // replaced by Inners'. 1640 OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1641 1642 auto &OuterInnerReductions = LIL.getOuterInnerReductions(); 1643 // Now update the reduction PHIs in the inner and outer loop headers. 1644 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs; 1645 for (PHINode &PHI : InnerLoopHeader->phis()) 1646 if (OuterInnerReductions.contains(&PHI)) 1647 InnerLoopPHIs.push_back(&PHI); 1648 1649 for (PHINode &PHI : OuterLoopHeader->phis()) 1650 if (OuterInnerReductions.contains(&PHI)) 1651 OuterLoopPHIs.push_back(&PHI); 1652 1653 // Now move the remaining reduction PHIs from outer to inner loop header and 1654 // vice versa. The PHI nodes must be part of a reduction across the inner and 1655 // outer loop and all the remains to do is and updating the incoming blocks. 1656 for (PHINode *PHI : OuterLoopPHIs) { 1657 LLVM_DEBUG(dbgs() << "Outer loop reduction PHIs:\n"; PHI->dump();); 1658 PHI->moveBefore(InnerLoopHeader->getFirstNonPHI()); 1659 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1660 } 1661 for (PHINode *PHI : InnerLoopPHIs) { 1662 LLVM_DEBUG(dbgs() << "Inner loop reduction PHIs:\n"; PHI->dump();); 1663 PHI->moveBefore(OuterLoopHeader->getFirstNonPHI()); 1664 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1665 } 1666 1667 // Update the incoming blocks for moved PHI nodes. 1668 OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader); 1669 OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch); 1670 InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader); 1671 InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1672 1673 // Values defined in the outer loop header could be used in the inner loop 1674 // latch. In that case, we need to create LCSSA phis for them, because after 1675 // interchanging they will be defined in the new inner loop and used in the 1676 // new outer loop. 1677 IRBuilder<> Builder(OuterLoopHeader->getContext()); 1678 SmallVector<Instruction *, 4> MayNeedLCSSAPhis; 1679 for (Instruction &I : 1680 make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end()))) 1681 MayNeedLCSSAPhis.push_back(&I); 1682 formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder); 1683 1684 return true; 1685 } 1686 1687 bool LoopInterchangeTransform::adjustLoopLinks() { 1688 // Adjust all branches in the inner and outer loop. 1689 bool Changed = adjustLoopBranches(); 1690 if (Changed) { 1691 // We have interchanged the preheaders so we need to interchange the data in 1692 // the preheaders as well. This is because the content of the inner 1693 // preheader was previously executed inside the outer loop. 1694 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1695 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1696 swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader); 1697 } 1698 return Changed; 1699 } 1700 1701 namespace { 1702 /// Main LoopInterchange Pass. 1703 struct LoopInterchangeLegacyPass : public LoopPass { 1704 static char ID; 1705 1706 LoopInterchangeLegacyPass() : LoopPass(ID) { 1707 initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry()); 1708 } 1709 1710 void getAnalysisUsage(AnalysisUsage &AU) const override { 1711 AU.addRequired<DependenceAnalysisWrapperPass>(); 1712 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1713 1714 getLoopAnalysisUsage(AU); 1715 } 1716 1717 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1718 if (skipLoop(L)) 1719 return false; 1720 1721 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1722 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1723 auto *DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI(); 1724 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1725 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1726 std::unique_ptr<CacheCost> CC = nullptr; 1727 return LoopInterchange(SE, LI, DI, DT, CC, ORE).run(L); 1728 } 1729 }; 1730 } // namespace 1731 1732 char LoopInterchangeLegacyPass::ID = 0; 1733 1734 INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass, "loop-interchange", 1735 "Interchanges loops for cache reuse", false, false) 1736 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1737 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) 1738 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1739 1740 INITIALIZE_PASS_END(LoopInterchangeLegacyPass, "loop-interchange", 1741 "Interchanges loops for cache reuse", false, false) 1742 1743 Pass *llvm::createLoopInterchangePass() { 1744 return new LoopInterchangeLegacyPass(); 1745 } 1746 1747 PreservedAnalyses LoopInterchangePass::run(LoopNest &LN, 1748 LoopAnalysisManager &AM, 1749 LoopStandardAnalysisResults &AR, 1750 LPMUpdater &U) { 1751 Function &F = *LN.getParent(); 1752 1753 DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI); 1754 std::unique_ptr<CacheCost> CC = 1755 CacheCost::getCacheCost(LN.getOutermostLoop(), AR, DI); 1756 OptimizationRemarkEmitter ORE(&F); 1757 if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, CC, &ORE).run(LN)) 1758 return PreservedAnalyses::all(); 1759 U.markLoopNestChanged(true); 1760 return getLoopPassPreservedAnalyses(); 1761 } 1762