1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This Pass handles loop interchange transform. 10 // This pass interchanges loops to provide a more cache-friendly memory access 11 // patterns. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopInterchange.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/StringSet.h" 21 #include "llvm/Analysis/DependenceAnalysis.h" 22 #include "llvm/Analysis/LoopCacheAnalysis.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/LoopNestAnalysis.h" 25 #include "llvm/Analysis/LoopPass.h" 26 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/InstrTypes.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/User.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Scalar/LoopPassManager.h" 44 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 45 #include "llvm/Transforms/Utils/LoopUtils.h" 46 #include <cassert> 47 #include <utility> 48 #include <vector> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "loop-interchange" 53 54 STATISTIC(LoopsInterchanged, "Number of loops interchanged"); 55 56 static cl::opt<int> LoopInterchangeCostThreshold( 57 "loop-interchange-threshold", cl::init(0), cl::Hidden, 58 cl::desc("Interchange if you gain more than this number")); 59 60 // Maximum number of load-stores that can be handled in the dependency matrix. 61 static cl::opt<unsigned int> MaxMemInstrCount( 62 "loop-interchange-max-meminstr-count", cl::init(64), cl::Hidden, 63 cl::desc( 64 "Maximum number of load-store instructions that should be handled " 65 "in the dependency matrix. Higher value may lead to more interchanges " 66 "at the cost of compile-time")); 67 68 namespace { 69 70 using LoopVector = SmallVector<Loop *, 8>; 71 72 // TODO: Check if we can use a sparse matrix here. 73 using CharMatrix = std::vector<std::vector<char>>; 74 75 } // end anonymous namespace 76 77 // Maximum loop depth supported. 78 static const unsigned MaxLoopNestDepth = 10; 79 80 #ifndef NDEBUG 81 static void printDepMatrix(CharMatrix &DepMatrix) { 82 for (auto &Row : DepMatrix) { 83 for (auto D : Row) 84 LLVM_DEBUG(dbgs() << D << " "); 85 LLVM_DEBUG(dbgs() << "\n"); 86 } 87 } 88 #endif 89 90 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, 91 Loop *L, DependenceInfo *DI, 92 ScalarEvolution *SE, 93 OptimizationRemarkEmitter *ORE) { 94 using ValueVector = SmallVector<Value *, 16>; 95 96 ValueVector MemInstr; 97 98 // For each block. 99 for (BasicBlock *BB : L->blocks()) { 100 // Scan the BB and collect legal loads and stores. 101 for (Instruction &I : *BB) { 102 if (!isa<Instruction>(I)) 103 return false; 104 if (auto *Ld = dyn_cast<LoadInst>(&I)) { 105 if (!Ld->isSimple()) 106 return false; 107 MemInstr.push_back(&I); 108 } else if (auto *St = dyn_cast<StoreInst>(&I)) { 109 if (!St->isSimple()) 110 return false; 111 MemInstr.push_back(&I); 112 } 113 } 114 } 115 116 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size() 117 << " Loads and Stores to analyze\n"); 118 if (MemInstr.size() > MaxMemInstrCount) { 119 LLVM_DEBUG(dbgs() << "The transform doesn't support more than " 120 << MaxMemInstrCount << " load/stores in a loop\n"); 121 ORE->emit([&]() { 122 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedLoop", 123 L->getStartLoc(), L->getHeader()) 124 << "Number of loads/stores exceeded, the supported maximum " 125 "can be increased with option " 126 "-loop-interchange-maxmeminstr-count."; 127 }); 128 return false; 129 } 130 ValueVector::iterator I, IE, J, JE; 131 StringSet<> Seen; 132 133 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) { 134 for (J = I, JE = MemInstr.end(); J != JE; ++J) { 135 std::vector<char> Dep; 136 Instruction *Src = cast<Instruction>(*I); 137 Instruction *Dst = cast<Instruction>(*J); 138 // Ignore Input dependencies. 139 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) 140 continue; 141 // Track Output, Flow, and Anti dependencies. 142 if (auto D = DI->depends(Src, Dst, true)) { 143 assert(D->isOrdered() && "Expected an output, flow or anti dep."); 144 // If the direction vector is negative, normalize it to 145 // make it non-negative. 146 if (D->normalize(SE)) 147 LLVM_DEBUG(dbgs() << "Negative dependence vector normalized.\n"); 148 LLVM_DEBUG(StringRef DepType = 149 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output"; 150 dbgs() << "Found " << DepType 151 << " dependency between Src and Dst\n" 152 << " Src:" << *Src << "\n Dst:" << *Dst << '\n'); 153 unsigned Levels = D->getLevels(); 154 char Direction; 155 for (unsigned II = 1; II <= Levels; ++II) { 156 unsigned Dir = D->getDirection(II); 157 if (Dir == Dependence::DVEntry::LT || Dir == Dependence::DVEntry::LE) 158 Direction = '<'; 159 else if (Dir == Dependence::DVEntry::GT || 160 Dir == Dependence::DVEntry::GE) 161 Direction = '>'; 162 else if (Dir == Dependence::DVEntry::EQ) 163 Direction = '='; 164 else 165 Direction = '*'; 166 Dep.push_back(Direction); 167 } 168 while (Dep.size() != Level) { 169 Dep.push_back('I'); 170 } 171 172 // Make sure we only add unique entries to the dependency matrix. 173 if (Seen.insert(StringRef(Dep.data(), Dep.size())).second) 174 DepMatrix.push_back(Dep); 175 } 176 } 177 } 178 179 return true; 180 } 181 182 // A loop is moved from index 'from' to an index 'to'. Update the Dependence 183 // matrix by exchanging the two columns. 184 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx, 185 unsigned ToIndx) { 186 for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I) 187 std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]); 188 } 189 190 // After interchanging, check if the direction vector is valid. 191 // [Theorem] A permutation of the loops in a perfect nest is legal if and only 192 // if the direction matrix, after the same permutation is applied to its 193 // columns, has no ">" direction as the leftmost non-"=" direction in any row. 194 static bool isLexicographicallyPositive(std::vector<char> &DV) { 195 for (unsigned char Direction : DV) { 196 if (Direction == '<') 197 return true; 198 if (Direction == '>' || Direction == '*') 199 return false; 200 } 201 return true; 202 } 203 204 // Checks if it is legal to interchange 2 loops. 205 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, 206 unsigned InnerLoopId, 207 unsigned OuterLoopId) { 208 unsigned NumRows = DepMatrix.size(); 209 std::vector<char> Cur; 210 // For each row check if it is valid to interchange. 211 for (unsigned Row = 0; Row < NumRows; ++Row) { 212 // Create temporary DepVector check its lexicographical order 213 // before and after swapping OuterLoop vs InnerLoop 214 Cur = DepMatrix[Row]; 215 if (!isLexicographicallyPositive(Cur)) 216 return false; 217 std::swap(Cur[InnerLoopId], Cur[OuterLoopId]); 218 if (!isLexicographicallyPositive(Cur)) 219 return false; 220 } 221 return true; 222 } 223 224 static void populateWorklist(Loop &L, LoopVector &LoopList) { 225 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: " 226 << L.getHeader()->getParent()->getName() << " Loop: %" 227 << L.getHeader()->getName() << '\n'); 228 assert(LoopList.empty() && "LoopList should initially be empty!"); 229 Loop *CurrentLoop = &L; 230 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops(); 231 while (!Vec->empty()) { 232 // The current loop has multiple subloops in it hence it is not tightly 233 // nested. 234 // Discard all loops above it added into Worklist. 235 if (Vec->size() != 1) { 236 LoopList = {}; 237 return; 238 } 239 240 LoopList.push_back(CurrentLoop); 241 CurrentLoop = Vec->front(); 242 Vec = &CurrentLoop->getSubLoops(); 243 } 244 LoopList.push_back(CurrentLoop); 245 } 246 247 static bool hasMinimumLoopDepth(SmallVectorImpl<Loop *> &LoopList) { 248 unsigned LoopNestDepth = LoopList.size(); 249 if (LoopNestDepth < 2) { 250 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n"); 251 return false; 252 } 253 return true; 254 } 255 namespace { 256 257 /// LoopInterchangeLegality checks if it is legal to interchange the loop. 258 class LoopInterchangeLegality { 259 public: 260 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 261 OptimizationRemarkEmitter *ORE) 262 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 263 264 /// Check if the loops can be interchanged. 265 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, 266 CharMatrix &DepMatrix); 267 268 /// Discover induction PHIs in the header of \p L. Induction 269 /// PHIs are added to \p Inductions. 270 bool findInductions(Loop *L, SmallVectorImpl<PHINode *> &Inductions); 271 272 /// Check if the loop structure is understood. We do not handle triangular 273 /// loops for now. 274 bool isLoopStructureUnderstood(); 275 276 bool currentLimitations(); 277 278 const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const { 279 return OuterInnerReductions; 280 } 281 282 const SmallVectorImpl<PHINode *> &getInnerLoopInductions() const { 283 return InnerLoopInductions; 284 } 285 286 private: 287 bool tightlyNested(Loop *Outer, Loop *Inner); 288 bool containsUnsafeInstructions(BasicBlock *BB); 289 290 /// Discover induction and reduction PHIs in the header of \p L. Induction 291 /// PHIs are added to \p Inductions, reductions are added to 292 /// OuterInnerReductions. When the outer loop is passed, the inner loop needs 293 /// to be passed as \p InnerLoop. 294 bool findInductionAndReductions(Loop *L, 295 SmallVector<PHINode *, 8> &Inductions, 296 Loop *InnerLoop); 297 298 Loop *OuterLoop; 299 Loop *InnerLoop; 300 301 ScalarEvolution *SE; 302 303 /// Interface to emit optimization remarks. 304 OptimizationRemarkEmitter *ORE; 305 306 /// Set of reduction PHIs taking part of a reduction across the inner and 307 /// outer loop. 308 SmallPtrSet<PHINode *, 4> OuterInnerReductions; 309 310 /// Set of inner loop induction PHIs 311 SmallVector<PHINode *, 8> InnerLoopInductions; 312 }; 313 314 /// LoopInterchangeProfitability checks if it is profitable to interchange the 315 /// loop. 316 class LoopInterchangeProfitability { 317 public: 318 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 319 OptimizationRemarkEmitter *ORE) 320 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 321 322 /// Check if the loop interchange is profitable. 323 bool isProfitable(const Loop *InnerLoop, const Loop *OuterLoop, 324 unsigned InnerLoopId, unsigned OuterLoopId, 325 CharMatrix &DepMatrix, 326 const DenseMap<const Loop *, unsigned> &CostMap, 327 std::unique_ptr<CacheCost> &CC); 328 329 private: 330 int getInstrOrderCost(); 331 std::optional<bool> isProfitablePerLoopCacheAnalysis( 332 const DenseMap<const Loop *, unsigned> &CostMap, 333 std::unique_ptr<CacheCost> &CC); 334 std::optional<bool> isProfitablePerInstrOrderCost(); 335 std::optional<bool> isProfitableForVectorization(unsigned InnerLoopId, 336 unsigned OuterLoopId, 337 CharMatrix &DepMatrix); 338 Loop *OuterLoop; 339 Loop *InnerLoop; 340 341 /// Scev analysis. 342 ScalarEvolution *SE; 343 344 /// Interface to emit optimization remarks. 345 OptimizationRemarkEmitter *ORE; 346 }; 347 348 /// LoopInterchangeTransform interchanges the loop. 349 class LoopInterchangeTransform { 350 public: 351 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 352 LoopInfo *LI, DominatorTree *DT, 353 const LoopInterchangeLegality &LIL) 354 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LIL(LIL) {} 355 356 /// Interchange OuterLoop and InnerLoop. 357 bool transform(); 358 void restructureLoops(Loop *NewInner, Loop *NewOuter, 359 BasicBlock *OrigInnerPreHeader, 360 BasicBlock *OrigOuterPreHeader); 361 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop); 362 363 private: 364 bool adjustLoopLinks(); 365 bool adjustLoopBranches(); 366 367 Loop *OuterLoop; 368 Loop *InnerLoop; 369 370 /// Scev analysis. 371 ScalarEvolution *SE; 372 373 LoopInfo *LI; 374 DominatorTree *DT; 375 376 const LoopInterchangeLegality &LIL; 377 }; 378 379 struct LoopInterchange { 380 ScalarEvolution *SE = nullptr; 381 LoopInfo *LI = nullptr; 382 DependenceInfo *DI = nullptr; 383 DominatorTree *DT = nullptr; 384 std::unique_ptr<CacheCost> CC = nullptr; 385 386 /// Interface to emit optimization remarks. 387 OptimizationRemarkEmitter *ORE; 388 389 LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI, 390 DominatorTree *DT, std::unique_ptr<CacheCost> &CC, 391 OptimizationRemarkEmitter *ORE) 392 : SE(SE), LI(LI), DI(DI), DT(DT), CC(std::move(CC)), ORE(ORE) {} 393 394 bool run(Loop *L) { 395 if (L->getParentLoop()) 396 return false; 397 SmallVector<Loop *, 8> LoopList; 398 populateWorklist(*L, LoopList); 399 return processLoopList(LoopList); 400 } 401 402 bool run(LoopNest &LN) { 403 SmallVector<Loop *, 8> LoopList(LN.getLoops()); 404 for (unsigned I = 1; I < LoopList.size(); ++I) 405 if (LoopList[I]->getParentLoop() != LoopList[I - 1]) 406 return false; 407 return processLoopList(LoopList); 408 } 409 410 bool isComputableLoopNest(ArrayRef<Loop *> LoopList) { 411 for (Loop *L : LoopList) { 412 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L); 413 if (isa<SCEVCouldNotCompute>(ExitCountOuter)) { 414 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n"); 415 return false; 416 } 417 if (L->getNumBackEdges() != 1) { 418 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n"); 419 return false; 420 } 421 if (!L->getExitingBlock()) { 422 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n"); 423 return false; 424 } 425 } 426 return true; 427 } 428 429 unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) { 430 // TODO: Add a better heuristic to select the loop to be interchanged based 431 // on the dependence matrix. Currently we select the innermost loop. 432 return LoopList.size() - 1; 433 } 434 435 bool processLoopList(SmallVectorImpl<Loop *> &LoopList) { 436 bool Changed = false; 437 438 // Ensure minimum loop nest depth. 439 assert(hasMinimumLoopDepth(LoopList) && "Loop nest does not meet minimum depth."); 440 441 unsigned LoopNestDepth = LoopList.size(); 442 if (LoopNestDepth > MaxLoopNestDepth) { 443 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than " 444 << MaxLoopNestDepth << "\n"); 445 return false; 446 } 447 if (!isComputableLoopNest(LoopList)) { 448 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n"); 449 return false; 450 } 451 452 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth 453 << "\n"); 454 455 CharMatrix DependencyMatrix; 456 Loop *OuterMostLoop = *(LoopList.begin()); 457 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth, 458 OuterMostLoop, DI, SE, ORE)) { 459 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n"); 460 return false; 461 } 462 463 LLVM_DEBUG(dbgs() << "Dependency matrix before interchange:\n"; 464 printDepMatrix(DependencyMatrix)); 465 466 // Get the Outermost loop exit. 467 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock(); 468 if (!LoopNestExit) { 469 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block"); 470 return false; 471 } 472 473 unsigned SelecLoopId = selectLoopForInterchange(LoopList); 474 // Obtain the loop vector returned from loop cache analysis beforehand, 475 // and put each <Loop, index> pair into a map for constant time query 476 // later. Indices in loop vector reprsent the optimal order of the 477 // corresponding loop, e.g., given a loopnest with depth N, index 0 478 // indicates the loop should be placed as the outermost loop and index N 479 // indicates the loop should be placed as the innermost loop. 480 // 481 // For the old pass manager CacheCost would be null. 482 DenseMap<const Loop *, unsigned> CostMap; 483 if (CC != nullptr) { 484 const auto &LoopCosts = CC->getLoopCosts(); 485 for (unsigned i = 0; i < LoopCosts.size(); i++) { 486 CostMap[LoopCosts[i].first] = i; 487 } 488 } 489 // We try to achieve the globally optimal memory access for the loopnest, 490 // and do interchange based on a bubble-sort fasion. We start from 491 // the innermost loop, move it outwards to the best possible position 492 // and repeat this process. 493 for (unsigned j = SelecLoopId; j > 0; j--) { 494 bool ChangedPerIter = false; 495 for (unsigned i = SelecLoopId; i > SelecLoopId - j; i--) { 496 bool Interchanged = processLoop(LoopList[i], LoopList[i - 1], i, i - 1, 497 DependencyMatrix, CostMap); 498 if (!Interchanged) 499 continue; 500 // Loops interchanged, update LoopList accordingly. 501 std::swap(LoopList[i - 1], LoopList[i]); 502 // Update the DependencyMatrix 503 interChangeDependencies(DependencyMatrix, i, i - 1); 504 505 LLVM_DEBUG(dbgs() << "Dependency matrix after interchange:\n"; 506 printDepMatrix(DependencyMatrix)); 507 508 ChangedPerIter |= Interchanged; 509 Changed |= Interchanged; 510 } 511 // Early abort if there was no interchange during an entire round of 512 // moving loops outwards. 513 if (!ChangedPerIter) 514 break; 515 } 516 return Changed; 517 } 518 519 bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId, 520 unsigned OuterLoopId, 521 std::vector<std::vector<char>> &DependencyMatrix, 522 const DenseMap<const Loop *, unsigned> &CostMap) { 523 LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId 524 << " and OuterLoopId = " << OuterLoopId << "\n"); 525 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE); 526 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) { 527 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n"); 528 return false; 529 } 530 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n"); 531 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE); 532 if (!LIP.isProfitable(InnerLoop, OuterLoop, InnerLoopId, OuterLoopId, 533 DependencyMatrix, CostMap, CC)) { 534 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n"); 535 return false; 536 } 537 538 ORE->emit([&]() { 539 return OptimizationRemark(DEBUG_TYPE, "Interchanged", 540 InnerLoop->getStartLoc(), 541 InnerLoop->getHeader()) 542 << "Loop interchanged with enclosing loop."; 543 }); 544 545 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LIL); 546 LIT.transform(); 547 LLVM_DEBUG(dbgs() << "Loops interchanged.\n"); 548 LoopsInterchanged++; 549 550 llvm::formLCSSARecursively(*OuterLoop, *DT, LI, SE); 551 return true; 552 } 553 }; 554 555 } // end anonymous namespace 556 557 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) { 558 return any_of(*BB, [](const Instruction &I) { 559 return I.mayHaveSideEffects() || I.mayReadFromMemory(); 560 }); 561 } 562 563 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) { 564 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 565 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 566 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 567 568 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n"); 569 570 // A perfectly nested loop will not have any branch in between the outer and 571 // inner block i.e. outer header will branch to either inner preheader and 572 // outerloop latch. 573 BranchInst *OuterLoopHeaderBI = 574 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 575 if (!OuterLoopHeaderBI) 576 return false; 577 578 for (BasicBlock *Succ : successors(OuterLoopHeaderBI)) 579 if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() && 580 Succ != OuterLoopLatch) 581 return false; 582 583 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n"); 584 // We do not have any basic block in between now make sure the outer header 585 // and outer loop latch doesn't contain any unsafe instructions. 586 if (containsUnsafeInstructions(OuterLoopHeader) || 587 containsUnsafeInstructions(OuterLoopLatch)) 588 return false; 589 590 // Also make sure the inner loop preheader does not contain any unsafe 591 // instructions. Note that all instructions in the preheader will be moved to 592 // the outer loop header when interchanging. 593 if (InnerLoopPreHeader != OuterLoopHeader && 594 containsUnsafeInstructions(InnerLoopPreHeader)) 595 return false; 596 597 BasicBlock *InnerLoopExit = InnerLoop->getExitBlock(); 598 // Ensure the inner loop exit block flows to the outer loop latch possibly 599 // through empty blocks. 600 const BasicBlock &SuccInner = 601 LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch); 602 if (&SuccInner != OuterLoopLatch) { 603 LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit 604 << " does not lead to the outer loop latch.\n";); 605 return false; 606 } 607 // The inner loop exit block does flow to the outer loop latch and not some 608 // other BBs, now make sure it contains safe instructions, since it will be 609 // moved into the (new) inner loop after interchange. 610 if (containsUnsafeInstructions(InnerLoopExit)) 611 return false; 612 613 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n"); 614 // We have a perfect loop nest. 615 return true; 616 } 617 618 bool LoopInterchangeLegality::isLoopStructureUnderstood() { 619 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); 620 for (PHINode *InnerInduction : InnerLoopInductions) { 621 unsigned Num = InnerInduction->getNumOperands(); 622 for (unsigned i = 0; i < Num; ++i) { 623 Value *Val = InnerInduction->getOperand(i); 624 if (isa<Constant>(Val)) 625 continue; 626 Instruction *I = dyn_cast<Instruction>(Val); 627 if (!I) 628 return false; 629 // TODO: Handle triangular loops. 630 // e.g. for(int i=0;i<N;i++) 631 // for(int j=i;j<N;j++) 632 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i); 633 if (InnerInduction->getIncomingBlock(IncomBlockIndx) == 634 InnerLoopPreheader && 635 !OuterLoop->isLoopInvariant(I)) { 636 return false; 637 } 638 } 639 } 640 641 // TODO: Handle triangular loops of another form. 642 // e.g. for(int i=0;i<N;i++) 643 // for(int j=0;j<i;j++) 644 // or, 645 // for(int i=0;i<N;i++) 646 // for(int j=0;j*i<N;j++) 647 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 648 BranchInst *InnerLoopLatchBI = 649 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 650 if (!InnerLoopLatchBI->isConditional()) 651 return false; 652 if (CmpInst *InnerLoopCmp = 653 dyn_cast<CmpInst>(InnerLoopLatchBI->getCondition())) { 654 Value *Op0 = InnerLoopCmp->getOperand(0); 655 Value *Op1 = InnerLoopCmp->getOperand(1); 656 657 // LHS and RHS of the inner loop exit condition, e.g., 658 // in "for(int j=0;j<i;j++)", LHS is j and RHS is i. 659 Value *Left = nullptr; 660 Value *Right = nullptr; 661 662 // Check if V only involves inner loop induction variable. 663 // Return true if V is InnerInduction, or a cast from 664 // InnerInduction, or a binary operator that involves 665 // InnerInduction and a constant. 666 std::function<bool(Value *)> IsPathToInnerIndVar; 667 IsPathToInnerIndVar = [this, &IsPathToInnerIndVar](const Value *V) -> bool { 668 if (llvm::is_contained(InnerLoopInductions, V)) 669 return true; 670 if (isa<Constant>(V)) 671 return true; 672 const Instruction *I = dyn_cast<Instruction>(V); 673 if (!I) 674 return false; 675 if (isa<CastInst>(I)) 676 return IsPathToInnerIndVar(I->getOperand(0)); 677 if (isa<BinaryOperator>(I)) 678 return IsPathToInnerIndVar(I->getOperand(0)) && 679 IsPathToInnerIndVar(I->getOperand(1)); 680 return false; 681 }; 682 683 // In case of multiple inner loop indvars, it is okay if LHS and RHS 684 // are both inner indvar related variables. 685 if (IsPathToInnerIndVar(Op0) && IsPathToInnerIndVar(Op1)) 686 return true; 687 688 // Otherwise we check if the cmp instruction compares an inner indvar 689 // related variable (Left) with a outer loop invariant (Right). 690 if (IsPathToInnerIndVar(Op0) && !isa<Constant>(Op0)) { 691 Left = Op0; 692 Right = Op1; 693 } else if (IsPathToInnerIndVar(Op1) && !isa<Constant>(Op1)) { 694 Left = Op1; 695 Right = Op0; 696 } 697 698 if (Left == nullptr) 699 return false; 700 701 const SCEV *S = SE->getSCEV(Right); 702 if (!SE->isLoopInvariant(S, OuterLoop)) 703 return false; 704 } 705 706 return true; 707 } 708 709 // If SV is a LCSSA PHI node with a single incoming value, return the incoming 710 // value. 711 static Value *followLCSSA(Value *SV) { 712 PHINode *PHI = dyn_cast<PHINode>(SV); 713 if (!PHI) 714 return SV; 715 716 if (PHI->getNumIncomingValues() != 1) 717 return SV; 718 return followLCSSA(PHI->getIncomingValue(0)); 719 } 720 721 // Check V's users to see if it is involved in a reduction in L. 722 static PHINode *findInnerReductionPhi(Loop *L, Value *V) { 723 // Reduction variables cannot be constants. 724 if (isa<Constant>(V)) 725 return nullptr; 726 727 for (Value *User : V->users()) { 728 if (PHINode *PHI = dyn_cast<PHINode>(User)) { 729 if (PHI->getNumIncomingValues() == 1) 730 continue; 731 RecurrenceDescriptor RD; 732 if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) { 733 // Detect floating point reduction only when it can be reordered. 734 if (RD.getExactFPMathInst() != nullptr) 735 return nullptr; 736 return PHI; 737 } 738 return nullptr; 739 } 740 } 741 742 return nullptr; 743 } 744 745 bool LoopInterchangeLegality::findInductionAndReductions( 746 Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) { 747 if (!L->getLoopLatch() || !L->getLoopPredecessor()) 748 return false; 749 for (PHINode &PHI : L->getHeader()->phis()) { 750 InductionDescriptor ID; 751 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 752 Inductions.push_back(&PHI); 753 else { 754 // PHIs in inner loops need to be part of a reduction in the outer loop, 755 // discovered when checking the PHIs of the outer loop earlier. 756 if (!InnerLoop) { 757 if (!OuterInnerReductions.count(&PHI)) { 758 LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions " 759 "across the outer loop.\n"); 760 return false; 761 } 762 } else { 763 assert(PHI.getNumIncomingValues() == 2 && 764 "Phis in loop header should have exactly 2 incoming values"); 765 // Check if we have a PHI node in the outer loop that has a reduction 766 // result from the inner loop as an incoming value. 767 Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch())); 768 PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V); 769 if (!InnerRedPhi || 770 !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) { 771 LLVM_DEBUG( 772 dbgs() 773 << "Failed to recognize PHI as an induction or reduction.\n"); 774 return false; 775 } 776 OuterInnerReductions.insert(&PHI); 777 OuterInnerReductions.insert(InnerRedPhi); 778 } 779 } 780 } 781 return true; 782 } 783 784 // This function indicates the current limitations in the transform as a result 785 // of which we do not proceed. 786 bool LoopInterchangeLegality::currentLimitations() { 787 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 788 789 // transform currently expects the loop latches to also be the exiting 790 // blocks. 791 if (InnerLoop->getExitingBlock() != InnerLoopLatch || 792 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() || 793 !isa<BranchInst>(InnerLoopLatch->getTerminator()) || 794 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) { 795 LLVM_DEBUG( 796 dbgs() << "Loops where the latch is not the exiting block are not" 797 << " supported currently.\n"); 798 ORE->emit([&]() { 799 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch", 800 OuterLoop->getStartLoc(), 801 OuterLoop->getHeader()) 802 << "Loops where the latch is not the exiting block cannot be" 803 " interchange currently."; 804 }); 805 return true; 806 } 807 808 SmallVector<PHINode *, 8> Inductions; 809 if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) { 810 LLVM_DEBUG( 811 dbgs() << "Only outer loops with induction or reduction PHI nodes " 812 << "are supported currently.\n"); 813 ORE->emit([&]() { 814 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter", 815 OuterLoop->getStartLoc(), 816 OuterLoop->getHeader()) 817 << "Only outer loops with induction or reduction PHI nodes can be" 818 " interchanged currently."; 819 }); 820 return true; 821 } 822 823 Inductions.clear(); 824 // For multi-level loop nests, make sure that all phi nodes for inner loops 825 // at all levels can be recognized as a induction or reduction phi. Bail out 826 // if a phi node at a certain nesting level cannot be properly recognized. 827 Loop *CurLevelLoop = OuterLoop; 828 while (!CurLevelLoop->getSubLoops().empty()) { 829 // We already made sure that the loop nest is tightly nested. 830 CurLevelLoop = CurLevelLoop->getSubLoops().front(); 831 if (!findInductionAndReductions(CurLevelLoop, Inductions, nullptr)) { 832 LLVM_DEBUG( 833 dbgs() << "Only inner loops with induction or reduction PHI nodes " 834 << "are supported currently.\n"); 835 ORE->emit([&]() { 836 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner", 837 CurLevelLoop->getStartLoc(), 838 CurLevelLoop->getHeader()) 839 << "Only inner loops with induction or reduction PHI nodes can be" 840 " interchange currently."; 841 }); 842 return true; 843 } 844 } 845 846 // TODO: Triangular loops are not handled for now. 847 if (!isLoopStructureUnderstood()) { 848 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n"); 849 ORE->emit([&]() { 850 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner", 851 InnerLoop->getStartLoc(), 852 InnerLoop->getHeader()) 853 << "Inner loop structure not understood currently."; 854 }); 855 return true; 856 } 857 858 return false; 859 } 860 861 bool LoopInterchangeLegality::findInductions( 862 Loop *L, SmallVectorImpl<PHINode *> &Inductions) { 863 for (PHINode &PHI : L->getHeader()->phis()) { 864 InductionDescriptor ID; 865 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 866 Inductions.push_back(&PHI); 867 } 868 return !Inductions.empty(); 869 } 870 871 // We currently only support LCSSA PHI nodes in the inner loop exit, if their 872 // users are either reduction PHIs or PHIs outside the outer loop (which means 873 // the we are only interested in the final value after the loop). 874 static bool 875 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL, 876 SmallPtrSetImpl<PHINode *> &Reductions) { 877 BasicBlock *InnerExit = OuterL->getUniqueExitBlock(); 878 for (PHINode &PHI : InnerExit->phis()) { 879 // Reduction lcssa phi will have only 1 incoming block that from loop latch. 880 if (PHI.getNumIncomingValues() > 1) 881 return false; 882 if (any_of(PHI.users(), [&Reductions, OuterL](User *U) { 883 PHINode *PN = dyn_cast<PHINode>(U); 884 return !PN || 885 (!Reductions.count(PN) && OuterL->contains(PN->getParent())); 886 })) { 887 return false; 888 } 889 } 890 return true; 891 } 892 893 // We currently support LCSSA PHI nodes in the outer loop exit, if their 894 // incoming values do not come from the outer loop latch or if the 895 // outer loop latch has a single predecessor. In that case, the value will 896 // be available if both the inner and outer loop conditions are true, which 897 // will still be true after interchanging. If we have multiple predecessor, 898 // that may not be the case, e.g. because the outer loop latch may be executed 899 // if the inner loop is not executed. 900 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 901 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock(); 902 for (PHINode &PHI : LoopNestExit->phis()) { 903 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) { 904 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i)); 905 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch()) 906 continue; 907 908 // The incoming value is defined in the outer loop latch. Currently we 909 // only support that in case the outer loop latch has a single predecessor. 910 // This guarantees that the outer loop latch is executed if and only if 911 // the inner loop is executed (because tightlyNested() guarantees that the 912 // outer loop header only branches to the inner loop or the outer loop 913 // latch). 914 // FIXME: We could weaken this logic and allow multiple predecessors, 915 // if the values are produced outside the loop latch. We would need 916 // additional logic to update the PHI nodes in the exit block as 917 // well. 918 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr) 919 return false; 920 } 921 } 922 return true; 923 } 924 925 // In case of multi-level nested loops, it may occur that lcssa phis exist in 926 // the latch of InnerLoop, i.e., when defs of the incoming values are further 927 // inside the loopnest. Sometimes those incoming values are not available 928 // after interchange, since the original inner latch will become the new outer 929 // latch which may have predecessor paths that do not include those incoming 930 // values. 931 // TODO: Handle transformation of lcssa phis in the InnerLoop latch in case of 932 // multi-level loop nests. 933 static bool areInnerLoopLatchPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 934 if (InnerLoop->getSubLoops().empty()) 935 return true; 936 // If the original outer latch has only one predecessor, then values defined 937 // further inside the looploop, e.g., in the innermost loop, will be available 938 // at the new outer latch after interchange. 939 if (OuterLoop->getLoopLatch()->getUniquePredecessor() != nullptr) 940 return true; 941 942 // The outer latch has more than one predecessors, i.e., the inner 943 // exit and the inner header. 944 // PHI nodes in the inner latch are lcssa phis where the incoming values 945 // are defined further inside the loopnest. Check if those phis are used 946 // in the original inner latch. If that is the case then bail out since 947 // those incoming values may not be available at the new outer latch. 948 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 949 for (PHINode &PHI : InnerLoopLatch->phis()) { 950 for (auto *U : PHI.users()) { 951 Instruction *UI = cast<Instruction>(U); 952 if (InnerLoopLatch == UI->getParent()) 953 return false; 954 } 955 } 956 return true; 957 } 958 959 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId, 960 unsigned OuterLoopId, 961 CharMatrix &DepMatrix) { 962 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) { 963 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId 964 << " and OuterLoopId = " << OuterLoopId 965 << " due to dependence\n"); 966 ORE->emit([&]() { 967 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence", 968 InnerLoop->getStartLoc(), 969 InnerLoop->getHeader()) 970 << "Cannot interchange loops due to dependences."; 971 }); 972 return false; 973 } 974 // Check if outer and inner loop contain legal instructions only. 975 for (auto *BB : OuterLoop->blocks()) 976 for (Instruction &I : BB->instructionsWithoutDebug()) 977 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 978 // readnone functions do not prevent interchanging. 979 if (CI->onlyWritesMemory()) 980 continue; 981 LLVM_DEBUG( 982 dbgs() << "Loops with call instructions cannot be interchanged " 983 << "safely."); 984 ORE->emit([&]() { 985 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst", 986 CI->getDebugLoc(), 987 CI->getParent()) 988 << "Cannot interchange loops due to call instruction."; 989 }); 990 991 return false; 992 } 993 994 if (!findInductions(InnerLoop, InnerLoopInductions)) { 995 LLVM_DEBUG(dbgs() << "Could not find inner loop induction variables.\n"); 996 return false; 997 } 998 999 if (!areInnerLoopLatchPHIsSupported(OuterLoop, InnerLoop)) { 1000 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop latch.\n"); 1001 ORE->emit([&]() { 1002 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedInnerLatchPHI", 1003 InnerLoop->getStartLoc(), 1004 InnerLoop->getHeader()) 1005 << "Cannot interchange loops because unsupported PHI nodes found " 1006 "in inner loop latch."; 1007 }); 1008 return false; 1009 } 1010 1011 // TODO: The loops could not be interchanged due to current limitations in the 1012 // transform module. 1013 if (currentLimitations()) { 1014 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n"); 1015 return false; 1016 } 1017 1018 // Check if the loops are tightly nested. 1019 if (!tightlyNested(OuterLoop, InnerLoop)) { 1020 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n"); 1021 ORE->emit([&]() { 1022 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested", 1023 InnerLoop->getStartLoc(), 1024 InnerLoop->getHeader()) 1025 << "Cannot interchange loops because they are not tightly " 1026 "nested."; 1027 }); 1028 return false; 1029 } 1030 1031 if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop, 1032 OuterInnerReductions)) { 1033 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n"); 1034 ORE->emit([&]() { 1035 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1036 InnerLoop->getStartLoc(), 1037 InnerLoop->getHeader()) 1038 << "Found unsupported PHI node in loop exit."; 1039 }); 1040 return false; 1041 } 1042 1043 if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) { 1044 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n"); 1045 ORE->emit([&]() { 1046 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1047 OuterLoop->getStartLoc(), 1048 OuterLoop->getHeader()) 1049 << "Found unsupported PHI node in loop exit."; 1050 }); 1051 return false; 1052 } 1053 1054 return true; 1055 } 1056 1057 int LoopInterchangeProfitability::getInstrOrderCost() { 1058 unsigned GoodOrder, BadOrder; 1059 BadOrder = GoodOrder = 0; 1060 for (BasicBlock *BB : InnerLoop->blocks()) { 1061 for (Instruction &Ins : *BB) { 1062 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) { 1063 unsigned NumOp = GEP->getNumOperands(); 1064 bool FoundInnerInduction = false; 1065 bool FoundOuterInduction = false; 1066 for (unsigned i = 0; i < NumOp; ++i) { 1067 // Skip operands that are not SCEV-able. 1068 if (!SE->isSCEVable(GEP->getOperand(i)->getType())) 1069 continue; 1070 1071 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i)); 1072 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal); 1073 if (!AR) 1074 continue; 1075 1076 // If we find the inner induction after an outer induction e.g. 1077 // for(int i=0;i<N;i++) 1078 // for(int j=0;j<N;j++) 1079 // A[i][j] = A[i-1][j-1]+k; 1080 // then it is a good order. 1081 if (AR->getLoop() == InnerLoop) { 1082 // We found an InnerLoop induction after OuterLoop induction. It is 1083 // a good order. 1084 FoundInnerInduction = true; 1085 if (FoundOuterInduction) { 1086 GoodOrder++; 1087 break; 1088 } 1089 } 1090 // If we find the outer induction after an inner induction e.g. 1091 // for(int i=0;i<N;i++) 1092 // for(int j=0;j<N;j++) 1093 // A[j][i] = A[j-1][i-1]+k; 1094 // then it is a bad order. 1095 if (AR->getLoop() == OuterLoop) { 1096 // We found an OuterLoop induction after InnerLoop induction. It is 1097 // a bad order. 1098 FoundOuterInduction = true; 1099 if (FoundInnerInduction) { 1100 BadOrder++; 1101 break; 1102 } 1103 } 1104 } 1105 } 1106 } 1107 } 1108 return GoodOrder - BadOrder; 1109 } 1110 1111 std::optional<bool> 1112 LoopInterchangeProfitability::isProfitablePerLoopCacheAnalysis( 1113 const DenseMap<const Loop *, unsigned> &CostMap, 1114 std::unique_ptr<CacheCost> &CC) { 1115 // This is the new cost model returned from loop cache analysis. 1116 // A smaller index means the loop should be placed an outer loop, and vice 1117 // versa. 1118 if (CostMap.contains(InnerLoop) && CostMap.contains(OuterLoop)) { 1119 unsigned InnerIndex = 0, OuterIndex = 0; 1120 InnerIndex = CostMap.find(InnerLoop)->second; 1121 OuterIndex = CostMap.find(OuterLoop)->second; 1122 LLVM_DEBUG(dbgs() << "InnerIndex = " << InnerIndex 1123 << ", OuterIndex = " << OuterIndex << "\n"); 1124 if (InnerIndex < OuterIndex) 1125 return std::optional<bool>(true); 1126 assert(InnerIndex != OuterIndex && "CostMap should assign unique " 1127 "numbers to each loop"); 1128 if (CC->getLoopCost(*OuterLoop) == CC->getLoopCost(*InnerLoop)) 1129 return std::nullopt; 1130 return std::optional<bool>(false); 1131 } 1132 return std::nullopt; 1133 } 1134 1135 std::optional<bool> 1136 LoopInterchangeProfitability::isProfitablePerInstrOrderCost() { 1137 // Legacy cost model: this is rough cost estimation algorithm. It counts the 1138 // good and bad order of induction variables in the instruction and allows 1139 // reordering if number of bad orders is more than good. 1140 int Cost = getInstrOrderCost(); 1141 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n"); 1142 if (Cost < 0 && Cost < LoopInterchangeCostThreshold) 1143 return std::optional<bool>(true); 1144 1145 return std::nullopt; 1146 } 1147 1148 std::optional<bool> LoopInterchangeProfitability::isProfitableForVectorization( 1149 unsigned InnerLoopId, unsigned OuterLoopId, CharMatrix &DepMatrix) { 1150 for (auto &Row : DepMatrix) { 1151 // If the inner loop is loop independent or doesn't carry any dependency 1152 // it is not profitable to move this to outer position, since we are 1153 // likely able to do inner loop vectorization already. 1154 if (Row[InnerLoopId] == 'I' || Row[InnerLoopId] == '=') 1155 return std::optional<bool>(false); 1156 1157 // If the outer loop is not loop independent it is not profitable to move 1158 // this to inner position, since doing so would not enable inner loop 1159 // parallelism. 1160 if (Row[OuterLoopId] != 'I' && Row[OuterLoopId] != '=') 1161 return std::optional<bool>(false); 1162 } 1163 // If inner loop has dependence and outer loop is loop independent then it 1164 // is/ profitable to interchange to enable inner loop parallelism. 1165 // If there are no dependences, interchanging will not improve anything. 1166 return std::optional<bool>(!DepMatrix.empty()); 1167 } 1168 1169 bool LoopInterchangeProfitability::isProfitable( 1170 const Loop *InnerLoop, const Loop *OuterLoop, unsigned InnerLoopId, 1171 unsigned OuterLoopId, CharMatrix &DepMatrix, 1172 const DenseMap<const Loop *, unsigned> &CostMap, 1173 std::unique_ptr<CacheCost> &CC) { 1174 // isProfitable() is structured to avoid endless loop interchange. 1175 // If loop cache analysis could decide the profitability then, 1176 // profitability check will stop and return the analysis result. 1177 // If cache analysis failed to analyze the loopnest (e.g., 1178 // due to delinearization issues) then only check whether it is 1179 // profitable for InstrOrderCost. Likewise, if InstrOrderCost failed to 1180 // analysis the profitability then only, isProfitableForVectorization 1181 // will decide. 1182 std::optional<bool> shouldInterchange = 1183 isProfitablePerLoopCacheAnalysis(CostMap, CC); 1184 if (!shouldInterchange.has_value()) { 1185 shouldInterchange = isProfitablePerInstrOrderCost(); 1186 if (!shouldInterchange.has_value()) 1187 shouldInterchange = 1188 isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix); 1189 } 1190 if (!shouldInterchange.has_value()) { 1191 ORE->emit([&]() { 1192 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", 1193 InnerLoop->getStartLoc(), 1194 InnerLoop->getHeader()) 1195 << "Insufficient information to calculate the cost of loop for " 1196 "interchange."; 1197 }); 1198 return false; 1199 } else if (!shouldInterchange.value()) { 1200 ORE->emit([&]() { 1201 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", 1202 InnerLoop->getStartLoc(), 1203 InnerLoop->getHeader()) 1204 << "Interchanging loops is not considered to improve cache " 1205 "locality nor vectorization."; 1206 }); 1207 return false; 1208 } 1209 return true; 1210 } 1211 1212 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop, 1213 Loop *InnerLoop) { 1214 for (Loop *L : *OuterLoop) 1215 if (L == InnerLoop) { 1216 OuterLoop->removeChildLoop(L); 1217 return; 1218 } 1219 llvm_unreachable("Couldn't find loop"); 1220 } 1221 1222 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the 1223 /// new inner and outer loop after interchanging: NewInner is the original 1224 /// outer loop and NewOuter is the original inner loop. 1225 /// 1226 /// Before interchanging, we have the following structure 1227 /// Outer preheader 1228 // Outer header 1229 // Inner preheader 1230 // Inner header 1231 // Inner body 1232 // Inner latch 1233 // outer bbs 1234 // Outer latch 1235 // 1236 // After interchanging: 1237 // Inner preheader 1238 // Inner header 1239 // Outer preheader 1240 // Outer header 1241 // Inner body 1242 // outer bbs 1243 // Outer latch 1244 // Inner latch 1245 void LoopInterchangeTransform::restructureLoops( 1246 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader, 1247 BasicBlock *OrigOuterPreHeader) { 1248 Loop *OuterLoopParent = OuterLoop->getParentLoop(); 1249 // The original inner loop preheader moves from the new inner loop to 1250 // the parent loop, if there is one. 1251 NewInner->removeBlockFromLoop(OrigInnerPreHeader); 1252 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent); 1253 1254 // Switch the loop levels. 1255 if (OuterLoopParent) { 1256 // Remove the loop from its parent loop. 1257 removeChildLoop(OuterLoopParent, NewInner); 1258 removeChildLoop(NewInner, NewOuter); 1259 OuterLoopParent->addChildLoop(NewOuter); 1260 } else { 1261 removeChildLoop(NewInner, NewOuter); 1262 LI->changeTopLevelLoop(NewInner, NewOuter); 1263 } 1264 while (!NewOuter->isInnermost()) 1265 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin())); 1266 NewOuter->addChildLoop(NewInner); 1267 1268 // BBs from the original inner loop. 1269 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks()); 1270 1271 // Add BBs from the original outer loop to the original inner loop (excluding 1272 // BBs already in inner loop) 1273 for (BasicBlock *BB : NewInner->blocks()) 1274 if (LI->getLoopFor(BB) == NewInner) 1275 NewOuter->addBlockEntry(BB); 1276 1277 // Now remove inner loop header and latch from the new inner loop and move 1278 // other BBs (the loop body) to the new inner loop. 1279 BasicBlock *OuterHeader = NewOuter->getHeader(); 1280 BasicBlock *OuterLatch = NewOuter->getLoopLatch(); 1281 for (BasicBlock *BB : OrigInnerBBs) { 1282 // Nothing will change for BBs in child loops. 1283 if (LI->getLoopFor(BB) != NewOuter) 1284 continue; 1285 // Remove the new outer loop header and latch from the new inner loop. 1286 if (BB == OuterHeader || BB == OuterLatch) 1287 NewInner->removeBlockFromLoop(BB); 1288 else 1289 LI->changeLoopFor(BB, NewInner); 1290 } 1291 1292 // The preheader of the original outer loop becomes part of the new 1293 // outer loop. 1294 NewOuter->addBlockEntry(OrigOuterPreHeader); 1295 LI->changeLoopFor(OrigOuterPreHeader, NewOuter); 1296 1297 // Tell SE that we move the loops around. 1298 SE->forgetLoop(NewOuter); 1299 } 1300 1301 bool LoopInterchangeTransform::transform() { 1302 bool Transformed = false; 1303 1304 if (InnerLoop->getSubLoops().empty()) { 1305 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1306 LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n"); 1307 auto &InductionPHIs = LIL.getInnerLoopInductions(); 1308 if (InductionPHIs.empty()) { 1309 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n"); 1310 return false; 1311 } 1312 1313 SmallVector<Instruction *, 8> InnerIndexVarList; 1314 for (PHINode *CurInductionPHI : InductionPHIs) { 1315 if (CurInductionPHI->getIncomingBlock(0) == InnerLoopPreHeader) 1316 InnerIndexVarList.push_back( 1317 dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(1))); 1318 else 1319 InnerIndexVarList.push_back( 1320 dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(0))); 1321 } 1322 1323 // Create a new latch block for the inner loop. We split at the 1324 // current latch's terminator and then move the condition and all 1325 // operands that are not either loop-invariant or the induction PHI into the 1326 // new latch block. 1327 BasicBlock *NewLatch = 1328 SplitBlock(InnerLoop->getLoopLatch(), 1329 InnerLoop->getLoopLatch()->getTerminator(), DT, LI); 1330 1331 SmallSetVector<Instruction *, 4> WorkList; 1332 unsigned i = 0; 1333 auto MoveInstructions = [&i, &WorkList, this, &InductionPHIs, NewLatch]() { 1334 for (; i < WorkList.size(); i++) { 1335 // Duplicate instruction and move it the new latch. Update uses that 1336 // have been moved. 1337 Instruction *NewI = WorkList[i]->clone(); 1338 NewI->insertBefore(NewLatch->getFirstNonPHI()); 1339 assert(!NewI->mayHaveSideEffects() && 1340 "Moving instructions with side-effects may change behavior of " 1341 "the loop nest!"); 1342 for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) { 1343 Instruction *UserI = cast<Instruction>(U.getUser()); 1344 if (!InnerLoop->contains(UserI->getParent()) || 1345 UserI->getParent() == NewLatch || 1346 llvm::is_contained(InductionPHIs, UserI)) 1347 U.set(NewI); 1348 } 1349 // Add operands of moved instruction to the worklist, except if they are 1350 // outside the inner loop or are the induction PHI. 1351 for (Value *Op : WorkList[i]->operands()) { 1352 Instruction *OpI = dyn_cast<Instruction>(Op); 1353 if (!OpI || 1354 this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop || 1355 llvm::is_contained(InductionPHIs, OpI)) 1356 continue; 1357 WorkList.insert(OpI); 1358 } 1359 } 1360 }; 1361 1362 // FIXME: Should we interchange when we have a constant condition? 1363 Instruction *CondI = dyn_cast<Instruction>( 1364 cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator()) 1365 ->getCondition()); 1366 if (CondI) 1367 WorkList.insert(CondI); 1368 MoveInstructions(); 1369 for (Instruction *InnerIndexVar : InnerIndexVarList) 1370 WorkList.insert(cast<Instruction>(InnerIndexVar)); 1371 MoveInstructions(); 1372 } 1373 1374 // Ensure the inner loop phi nodes have a separate basic block. 1375 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1376 if (InnerLoopHeader->getFirstNonPHI() != InnerLoopHeader->getTerminator()) { 1377 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI); 1378 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n"); 1379 } 1380 1381 // Instructions in the original inner loop preheader may depend on values 1382 // defined in the outer loop header. Move them there, because the original 1383 // inner loop preheader will become the entry into the interchanged loop nest. 1384 // Currently we move all instructions and rely on LICM to move invariant 1385 // instructions outside the loop nest. 1386 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1387 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1388 if (InnerLoopPreHeader != OuterLoopHeader) { 1389 SmallPtrSet<Instruction *, 4> NeedsMoving; 1390 for (Instruction &I : 1391 make_early_inc_range(make_range(InnerLoopPreHeader->begin(), 1392 std::prev(InnerLoopPreHeader->end())))) 1393 I.moveBeforePreserving(OuterLoopHeader->getTerminator()); 1394 } 1395 1396 Transformed |= adjustLoopLinks(); 1397 if (!Transformed) { 1398 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n"); 1399 return false; 1400 } 1401 1402 return true; 1403 } 1404 1405 /// \brief Move all instructions except the terminator from FromBB right before 1406 /// InsertBefore 1407 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) { 1408 BasicBlock *ToBB = InsertBefore->getParent(); 1409 1410 ToBB->splice(InsertBefore->getIterator(), FromBB, FromBB->begin(), 1411 FromBB->getTerminator()->getIterator()); 1412 } 1413 1414 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact. 1415 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) { 1416 // Save all non-terminator instructions of BB1 into TempInstrs and unlink them 1417 // from BB1 afterwards. 1418 auto Iter = map_range(*BB1, [](Instruction &I) { return &I; }); 1419 SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end())); 1420 for (Instruction *I : TempInstrs) 1421 I->removeFromParent(); 1422 1423 // Move instructions from BB2 to BB1. 1424 moveBBContents(BB2, BB1->getTerminator()); 1425 1426 // Move instructions from TempInstrs to BB2. 1427 for (Instruction *I : TempInstrs) 1428 I->insertBefore(BB2->getTerminator()); 1429 } 1430 1431 // Update BI to jump to NewBB instead of OldBB. Records updates to the 1432 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that 1433 // \p OldBB is exactly once in BI's successor list. 1434 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB, 1435 BasicBlock *NewBB, 1436 std::vector<DominatorTree::UpdateType> &DTUpdates, 1437 bool MustUpdateOnce = true) { 1438 assert((!MustUpdateOnce || 1439 llvm::count_if(successors(BI), 1440 [OldBB](BasicBlock *BB) { 1441 return BB == OldBB; 1442 }) == 1) && "BI must jump to OldBB exactly once."); 1443 bool Changed = false; 1444 for (Use &Op : BI->operands()) 1445 if (Op == OldBB) { 1446 Op.set(NewBB); 1447 Changed = true; 1448 } 1449 1450 if (Changed) { 1451 DTUpdates.push_back( 1452 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB}); 1453 DTUpdates.push_back( 1454 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB}); 1455 } 1456 assert(Changed && "Expected a successor to be updated"); 1457 } 1458 1459 // Move Lcssa PHIs to the right place. 1460 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader, 1461 BasicBlock *InnerLatch, BasicBlock *OuterHeader, 1462 BasicBlock *OuterLatch, BasicBlock *OuterExit, 1463 Loop *InnerLoop, LoopInfo *LI) { 1464 1465 // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are 1466 // defined either in the header or latch. Those blocks will become header and 1467 // latch of the new outer loop, and the only possible users can PHI nodes 1468 // in the exit block of the loop nest or the outer loop header (reduction 1469 // PHIs, in that case, the incoming value must be defined in the inner loop 1470 // header). We can just substitute the user with the incoming value and remove 1471 // the PHI. 1472 for (PHINode &P : make_early_inc_range(InnerExit->phis())) { 1473 assert(P.getNumIncomingValues() == 1 && 1474 "Only loops with a single exit are supported!"); 1475 1476 // Incoming values are guaranteed be instructions currently. 1477 auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch)); 1478 // In case of multi-level nested loops, follow LCSSA to find the incoming 1479 // value defined from the innermost loop. 1480 auto IncIInnerMost = cast<Instruction>(followLCSSA(IncI)); 1481 // Skip phis with incoming values from the inner loop body, excluding the 1482 // header and latch. 1483 if (IncIInnerMost->getParent() != InnerLatch && 1484 IncIInnerMost->getParent() != InnerHeader) 1485 continue; 1486 1487 assert(all_of(P.users(), 1488 [OuterHeader, OuterExit, IncI, InnerHeader](User *U) { 1489 return (cast<PHINode>(U)->getParent() == OuterHeader && 1490 IncI->getParent() == InnerHeader) || 1491 cast<PHINode>(U)->getParent() == OuterExit; 1492 }) && 1493 "Can only replace phis iff the uses are in the loop nest exit or " 1494 "the incoming value is defined in the inner header (it will " 1495 "dominate all loop blocks after interchanging)"); 1496 P.replaceAllUsesWith(IncI); 1497 P.eraseFromParent(); 1498 } 1499 1500 SmallVector<PHINode *, 8> LcssaInnerExit; 1501 for (PHINode &P : InnerExit->phis()) 1502 LcssaInnerExit.push_back(&P); 1503 1504 SmallVector<PHINode *, 8> LcssaInnerLatch; 1505 for (PHINode &P : InnerLatch->phis()) 1506 LcssaInnerLatch.push_back(&P); 1507 1508 // Lcssa PHIs for values used outside the inner loop are in InnerExit. 1509 // If a PHI node has users outside of InnerExit, it has a use outside the 1510 // interchanged loop and we have to preserve it. We move these to 1511 // InnerLatch, which will become the new exit block for the innermost 1512 // loop after interchanging. 1513 for (PHINode *P : LcssaInnerExit) 1514 P->moveBefore(InnerLatch->getFirstNonPHI()); 1515 1516 // If the inner loop latch contains LCSSA PHIs, those come from a child loop 1517 // and we have to move them to the new inner latch. 1518 for (PHINode *P : LcssaInnerLatch) 1519 P->moveBefore(InnerExit->getFirstNonPHI()); 1520 1521 // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have 1522 // incoming values defined in the outer loop, we have to add a new PHI 1523 // in the inner loop latch, which became the exit block of the outer loop, 1524 // after interchanging. 1525 if (OuterExit) { 1526 for (PHINode &P : OuterExit->phis()) { 1527 if (P.getNumIncomingValues() != 1) 1528 continue; 1529 // Skip Phis with incoming values defined in the inner loop. Those should 1530 // already have been updated. 1531 auto I = dyn_cast<Instruction>(P.getIncomingValue(0)); 1532 if (!I || LI->getLoopFor(I->getParent()) == InnerLoop) 1533 continue; 1534 1535 PHINode *NewPhi = dyn_cast<PHINode>(P.clone()); 1536 NewPhi->setIncomingValue(0, P.getIncomingValue(0)); 1537 NewPhi->setIncomingBlock(0, OuterLatch); 1538 // We might have incoming edges from other BBs, i.e., the original outer 1539 // header. 1540 for (auto *Pred : predecessors(InnerLatch)) { 1541 if (Pred == OuterLatch) 1542 continue; 1543 NewPhi->addIncoming(P.getIncomingValue(0), Pred); 1544 } 1545 NewPhi->insertBefore(InnerLatch->getFirstNonPHI()); 1546 P.setIncomingValue(0, NewPhi); 1547 } 1548 } 1549 1550 // Now adjust the incoming blocks for the LCSSA PHIs. 1551 // For PHIs moved from Inner's exit block, we need to replace Inner's latch 1552 // with the new latch. 1553 InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch); 1554 } 1555 1556 bool LoopInterchangeTransform::adjustLoopBranches() { 1557 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n"); 1558 std::vector<DominatorTree::UpdateType> DTUpdates; 1559 1560 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1561 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1562 1563 assert(OuterLoopPreHeader != OuterLoop->getHeader() && 1564 InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader && 1565 InnerLoopPreHeader && "Guaranteed by loop-simplify form"); 1566 // Ensure that both preheaders do not contain PHI nodes and have single 1567 // predecessors. This allows us to move them easily. We use 1568 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing 1569 // preheaders do not satisfy those conditions. 1570 if (isa<PHINode>(OuterLoopPreHeader->begin()) || 1571 !OuterLoopPreHeader->getUniquePredecessor()) 1572 OuterLoopPreHeader = 1573 InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true); 1574 if (InnerLoopPreHeader == OuterLoop->getHeader()) 1575 InnerLoopPreHeader = 1576 InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true); 1577 1578 // Adjust the loop preheader 1579 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1580 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1581 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 1582 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 1583 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor(); 1584 BasicBlock *InnerLoopLatchPredecessor = 1585 InnerLoopLatch->getUniquePredecessor(); 1586 BasicBlock *InnerLoopLatchSuccessor; 1587 BasicBlock *OuterLoopLatchSuccessor; 1588 1589 BranchInst *OuterLoopLatchBI = 1590 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator()); 1591 BranchInst *InnerLoopLatchBI = 1592 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 1593 BranchInst *OuterLoopHeaderBI = 1594 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 1595 BranchInst *InnerLoopHeaderBI = 1596 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator()); 1597 1598 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor || 1599 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI || 1600 !InnerLoopHeaderBI) 1601 return false; 1602 1603 BranchInst *InnerLoopLatchPredecessorBI = 1604 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator()); 1605 BranchInst *OuterLoopPredecessorBI = 1606 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator()); 1607 1608 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI) 1609 return false; 1610 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor(); 1611 if (!InnerLoopHeaderSuccessor) 1612 return false; 1613 1614 // Adjust Loop Preheader and headers. 1615 // The branches in the outer loop predecessor and the outer loop header can 1616 // be unconditional branches or conditional branches with duplicates. Consider 1617 // this when updating the successors. 1618 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader, 1619 InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false); 1620 // The outer loop header might or might not branch to the outer latch. 1621 // We are guaranteed to branch to the inner loop preheader. 1622 if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) { 1623 // In this case the outerLoopHeader should branch to the InnerLoopLatch. 1624 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, InnerLoopLatch, 1625 DTUpdates, 1626 /*MustUpdateOnce=*/false); 1627 } 1628 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader, 1629 InnerLoopHeaderSuccessor, DTUpdates, 1630 /*MustUpdateOnce=*/false); 1631 1632 // Adjust reduction PHI's now that the incoming block has changed. 1633 InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader, 1634 OuterLoopHeader); 1635 1636 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor, 1637 OuterLoopPreHeader, DTUpdates); 1638 1639 // -------------Adjust loop latches----------- 1640 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader) 1641 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1); 1642 else 1643 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0); 1644 1645 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch, 1646 InnerLoopLatchSuccessor, DTUpdates); 1647 1648 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader) 1649 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1); 1650 else 1651 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0); 1652 1653 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor, 1654 OuterLoopLatchSuccessor, DTUpdates); 1655 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch, 1656 DTUpdates); 1657 1658 DT->applyUpdates(DTUpdates); 1659 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader, 1660 OuterLoopPreHeader); 1661 1662 moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch, 1663 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(), 1664 InnerLoop, LI); 1665 // For PHIs in the exit block of the outer loop, outer's latch has been 1666 // replaced by Inners'. 1667 OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1668 1669 auto &OuterInnerReductions = LIL.getOuterInnerReductions(); 1670 // Now update the reduction PHIs in the inner and outer loop headers. 1671 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs; 1672 for (PHINode &PHI : InnerLoopHeader->phis()) 1673 if (OuterInnerReductions.contains(&PHI)) 1674 InnerLoopPHIs.push_back(&PHI); 1675 1676 for (PHINode &PHI : OuterLoopHeader->phis()) 1677 if (OuterInnerReductions.contains(&PHI)) 1678 OuterLoopPHIs.push_back(&PHI); 1679 1680 // Now move the remaining reduction PHIs from outer to inner loop header and 1681 // vice versa. The PHI nodes must be part of a reduction across the inner and 1682 // outer loop and all the remains to do is and updating the incoming blocks. 1683 for (PHINode *PHI : OuterLoopPHIs) { 1684 LLVM_DEBUG(dbgs() << "Outer loop reduction PHIs:\n"; PHI->dump();); 1685 PHI->moveBefore(InnerLoopHeader->getFirstNonPHI()); 1686 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1687 } 1688 for (PHINode *PHI : InnerLoopPHIs) { 1689 LLVM_DEBUG(dbgs() << "Inner loop reduction PHIs:\n"; PHI->dump();); 1690 PHI->moveBefore(OuterLoopHeader->getFirstNonPHI()); 1691 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1692 } 1693 1694 // Update the incoming blocks for moved PHI nodes. 1695 OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader); 1696 OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch); 1697 InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader); 1698 InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1699 1700 // Values defined in the outer loop header could be used in the inner loop 1701 // latch. In that case, we need to create LCSSA phis for them, because after 1702 // interchanging they will be defined in the new inner loop and used in the 1703 // new outer loop. 1704 SmallVector<Instruction *, 4> MayNeedLCSSAPhis; 1705 for (Instruction &I : 1706 make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end()))) 1707 MayNeedLCSSAPhis.push_back(&I); 1708 formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE); 1709 1710 return true; 1711 } 1712 1713 bool LoopInterchangeTransform::adjustLoopLinks() { 1714 // Adjust all branches in the inner and outer loop. 1715 bool Changed = adjustLoopBranches(); 1716 if (Changed) { 1717 // We have interchanged the preheaders so we need to interchange the data in 1718 // the preheaders as well. This is because the content of the inner 1719 // preheader was previously executed inside the outer loop. 1720 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1721 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1722 swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader); 1723 } 1724 return Changed; 1725 } 1726 1727 PreservedAnalyses LoopInterchangePass::run(LoopNest &LN, 1728 LoopAnalysisManager &AM, 1729 LoopStandardAnalysisResults &AR, 1730 LPMUpdater &U) { 1731 Function &F = *LN.getParent(); 1732 SmallVector<Loop *, 8> LoopList(LN.getLoops()); 1733 1734 if (MaxMemInstrCount < 1) { 1735 LLVM_DEBUG(dbgs() << "MaxMemInstrCount should be at least 1"); 1736 return PreservedAnalyses::all(); 1737 } 1738 1739 // Ensure minimum depth of the loop nest to do the interchange. 1740 if (!hasMinimumLoopDepth(LoopList)) 1741 return PreservedAnalyses::all(); 1742 DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI); 1743 std::unique_ptr<CacheCost> CC = 1744 CacheCost::getCacheCost(LN.getOutermostLoop(), AR, DI); 1745 OptimizationRemarkEmitter ORE(&F); 1746 if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, CC, &ORE).run(LN)) 1747 return PreservedAnalyses::all(); 1748 U.markLoopNestChanged(true); 1749 return getLoopPassPreservedAnalyses(); 1750 } 1751