xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopInterchange.cpp (revision 5d281a480e5caae09962b863960d7d057e908a3c)
1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This Pass handles loop interchange transform.
10 // This pass interchanges loops to provide a more cache-friendly memory access
11 // patterns.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/LoopInterchange.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/StringSet.h"
21 #include "llvm/Analysis/DependenceAnalysis.h"
22 #include "llvm/Analysis/LoopCacheAnalysis.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/LoopNestAnalysis.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Scalar/LoopPassManager.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/LoopUtils.h"
46 #include <cassert>
47 #include <utility>
48 #include <vector>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "loop-interchange"
53 
54 STATISTIC(LoopsInterchanged, "Number of loops interchanged");
55 
56 static cl::opt<int> LoopInterchangeCostThreshold(
57     "loop-interchange-threshold", cl::init(0), cl::Hidden,
58     cl::desc("Interchange if you gain more than this number"));
59 
60 // Maximum number of load-stores that can be handled in the dependency matrix.
61 static cl::opt<unsigned int> MaxMemInstrCount(
62     "loop-interchange-max-meminstr-count", cl::init(64), cl::Hidden,
63     cl::desc(
64         "Maximum number of load-store instructions that should be handled "
65         "in the dependency matrix. Higher value may lead to more interchanges "
66         "at the cost of compile-time"));
67 
68 namespace {
69 
70 using LoopVector = SmallVector<Loop *, 8>;
71 
72 // TODO: Check if we can use a sparse matrix here.
73 using CharMatrix = std::vector<std::vector<char>>;
74 
75 } // end anonymous namespace
76 
77 // Maximum loop depth supported.
78 static const unsigned MaxLoopNestDepth = 10;
79 
80 #ifndef NDEBUG
81 static void printDepMatrix(CharMatrix &DepMatrix) {
82   for (auto &Row : DepMatrix) {
83     for (auto D : Row)
84       LLVM_DEBUG(dbgs() << D << " ");
85     LLVM_DEBUG(dbgs() << "\n");
86   }
87 }
88 #endif
89 
90 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
91                                      Loop *L, DependenceInfo *DI,
92                                      ScalarEvolution *SE,
93                                      OptimizationRemarkEmitter *ORE) {
94   using ValueVector = SmallVector<Value *, 16>;
95 
96   ValueVector MemInstr;
97 
98   // For each block.
99   for (BasicBlock *BB : L->blocks()) {
100     // Scan the BB and collect legal loads and stores.
101     for (Instruction &I : *BB) {
102       if (!isa<Instruction>(I))
103         return false;
104       if (auto *Ld = dyn_cast<LoadInst>(&I)) {
105         if (!Ld->isSimple())
106           return false;
107         MemInstr.push_back(&I);
108       } else if (auto *St = dyn_cast<StoreInst>(&I)) {
109         if (!St->isSimple())
110           return false;
111         MemInstr.push_back(&I);
112       }
113     }
114   }
115 
116   LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
117                     << " Loads and Stores to analyze\n");
118   if (MemInstr.size() > MaxMemInstrCount) {
119     LLVM_DEBUG(dbgs() << "The transform doesn't support more than "
120                       << MaxMemInstrCount << " load/stores in a loop\n");
121     ORE->emit([&]() {
122       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedLoop",
123                                       L->getStartLoc(), L->getHeader())
124              << "Number of loads/stores exceeded, the supported maximum "
125                 "can be increased with option "
126                 "-loop-interchange-maxmeminstr-count.";
127     });
128     return false;
129   }
130   ValueVector::iterator I, IE, J, JE;
131   StringSet<> Seen;
132 
133   for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
134     for (J = I, JE = MemInstr.end(); J != JE; ++J) {
135       std::vector<char> Dep;
136       Instruction *Src = cast<Instruction>(*I);
137       Instruction *Dst = cast<Instruction>(*J);
138       // Ignore Input dependencies.
139       if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
140         continue;
141       // Track Output, Flow, and Anti dependencies.
142       if (auto D = DI->depends(Src, Dst, true)) {
143         assert(D->isOrdered() && "Expected an output, flow or anti dep.");
144         // If the direction vector is negative, normalize it to
145         // make it non-negative.
146         if (D->normalize(SE))
147           LLVM_DEBUG(dbgs() << "Negative dependence vector normalized.\n");
148         LLVM_DEBUG(StringRef DepType =
149                        D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
150                    dbgs() << "Found " << DepType
151                           << " dependency between Src and Dst\n"
152                           << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
153         unsigned Levels = D->getLevels();
154         char Direction;
155         for (unsigned II = 1; II <= Levels; ++II) {
156           unsigned Dir = D->getDirection(II);
157           if (Dir == Dependence::DVEntry::LT || Dir == Dependence::DVEntry::LE)
158             Direction = '<';
159           else if (Dir == Dependence::DVEntry::GT ||
160                    Dir == Dependence::DVEntry::GE)
161             Direction = '>';
162           else if (Dir == Dependence::DVEntry::EQ)
163             Direction = '=';
164           else
165             Direction = '*';
166           Dep.push_back(Direction);
167         }
168         while (Dep.size() != Level) {
169           Dep.push_back('I');
170         }
171 
172         // Make sure we only add unique entries to the dependency matrix.
173         if (Seen.insert(StringRef(Dep.data(), Dep.size())).second)
174           DepMatrix.push_back(Dep);
175       }
176     }
177   }
178 
179   return true;
180 }
181 
182 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
183 // matrix by exchanging the two columns.
184 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
185                                     unsigned ToIndx) {
186   for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I)
187     std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]);
188 }
189 
190 // After interchanging, check if the direction vector is valid.
191 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
192 // if the direction matrix, after the same permutation is applied to its
193 // columns, has no ">" direction as the leftmost non-"=" direction in any row.
194 static bool isLexicographicallyPositive(std::vector<char> &DV) {
195   for (unsigned char Direction : DV) {
196     if (Direction == '<')
197       return true;
198     if (Direction == '>' || Direction == '*')
199       return false;
200   }
201   return true;
202 }
203 
204 // Checks if it is legal to interchange 2 loops.
205 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
206                                       unsigned InnerLoopId,
207                                       unsigned OuterLoopId) {
208   unsigned NumRows = DepMatrix.size();
209   std::vector<char> Cur;
210   // For each row check if it is valid to interchange.
211   for (unsigned Row = 0; Row < NumRows; ++Row) {
212     // Create temporary DepVector check its lexicographical order
213     // before and after swapping OuterLoop vs InnerLoop
214     Cur = DepMatrix[Row];
215     if (!isLexicographicallyPositive(Cur))
216       return false;
217     std::swap(Cur[InnerLoopId], Cur[OuterLoopId]);
218     if (!isLexicographicallyPositive(Cur))
219       return false;
220   }
221   return true;
222 }
223 
224 static void populateWorklist(Loop &L, LoopVector &LoopList) {
225   LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
226                     << L.getHeader()->getParent()->getName() << " Loop: %"
227                     << L.getHeader()->getName() << '\n');
228   assert(LoopList.empty() && "LoopList should initially be empty!");
229   Loop *CurrentLoop = &L;
230   const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
231   while (!Vec->empty()) {
232     // The current loop has multiple subloops in it hence it is not tightly
233     // nested.
234     // Discard all loops above it added into Worklist.
235     if (Vec->size() != 1) {
236       LoopList = {};
237       return;
238     }
239 
240     LoopList.push_back(CurrentLoop);
241     CurrentLoop = Vec->front();
242     Vec = &CurrentLoop->getSubLoops();
243   }
244   LoopList.push_back(CurrentLoop);
245 }
246 
247 static bool hasMinimumLoopDepth(SmallVectorImpl<Loop *> &LoopList) {
248   unsigned LoopNestDepth = LoopList.size();
249   if (LoopNestDepth < 2) {
250     LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
251     return false;
252   }
253   return true;
254 }
255 namespace {
256 
257 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
258 class LoopInterchangeLegality {
259 public:
260   LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
261                           OptimizationRemarkEmitter *ORE)
262       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
263 
264   /// Check if the loops can be interchanged.
265   bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
266                            CharMatrix &DepMatrix);
267 
268   /// Discover induction PHIs in the header of \p L. Induction
269   /// PHIs are added to \p Inductions.
270   bool findInductions(Loop *L, SmallVectorImpl<PHINode *> &Inductions);
271 
272   /// Check if the loop structure is understood. We do not handle triangular
273   /// loops for now.
274   bool isLoopStructureUnderstood();
275 
276   bool currentLimitations();
277 
278   const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const {
279     return OuterInnerReductions;
280   }
281 
282   const SmallVectorImpl<PHINode *> &getInnerLoopInductions() const {
283     return InnerLoopInductions;
284   }
285 
286 private:
287   bool tightlyNested(Loop *Outer, Loop *Inner);
288   bool containsUnsafeInstructions(BasicBlock *BB);
289 
290   /// Discover induction and reduction PHIs in the header of \p L. Induction
291   /// PHIs are added to \p Inductions, reductions are added to
292   /// OuterInnerReductions. When the outer loop is passed, the inner loop needs
293   /// to be passed as \p InnerLoop.
294   bool findInductionAndReductions(Loop *L,
295                                   SmallVector<PHINode *, 8> &Inductions,
296                                   Loop *InnerLoop);
297 
298   Loop *OuterLoop;
299   Loop *InnerLoop;
300 
301   ScalarEvolution *SE;
302 
303   /// Interface to emit optimization remarks.
304   OptimizationRemarkEmitter *ORE;
305 
306   /// Set of reduction PHIs taking part of a reduction across the inner and
307   /// outer loop.
308   SmallPtrSet<PHINode *, 4> OuterInnerReductions;
309 
310   /// Set of inner loop induction PHIs
311   SmallVector<PHINode *, 8> InnerLoopInductions;
312 };
313 
314 /// LoopInterchangeProfitability checks if it is profitable to interchange the
315 /// loop.
316 class LoopInterchangeProfitability {
317 public:
318   LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
319                                OptimizationRemarkEmitter *ORE)
320       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
321 
322   /// Check if the loop interchange is profitable.
323   bool isProfitable(const Loop *InnerLoop, const Loop *OuterLoop,
324                     unsigned InnerLoopId, unsigned OuterLoopId,
325                     CharMatrix &DepMatrix,
326                     const DenseMap<const Loop *, unsigned> &CostMap,
327                     std::unique_ptr<CacheCost> &CC);
328 
329 private:
330   int getInstrOrderCost();
331   std::optional<bool> isProfitablePerLoopCacheAnalysis(
332       const DenseMap<const Loop *, unsigned> &CostMap,
333       std::unique_ptr<CacheCost> &CC);
334   std::optional<bool> isProfitablePerInstrOrderCost();
335   std::optional<bool> isProfitableForVectorization(unsigned InnerLoopId,
336                                                    unsigned OuterLoopId,
337                                                    CharMatrix &DepMatrix);
338   Loop *OuterLoop;
339   Loop *InnerLoop;
340 
341   /// Scev analysis.
342   ScalarEvolution *SE;
343 
344   /// Interface to emit optimization remarks.
345   OptimizationRemarkEmitter *ORE;
346 };
347 
348 /// LoopInterchangeTransform interchanges the loop.
349 class LoopInterchangeTransform {
350 public:
351   LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
352                            LoopInfo *LI, DominatorTree *DT,
353                            const LoopInterchangeLegality &LIL)
354       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LIL(LIL) {}
355 
356   /// Interchange OuterLoop and InnerLoop.
357   bool transform();
358   void restructureLoops(Loop *NewInner, Loop *NewOuter,
359                         BasicBlock *OrigInnerPreHeader,
360                         BasicBlock *OrigOuterPreHeader);
361   void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
362 
363 private:
364   bool adjustLoopLinks();
365   bool adjustLoopBranches();
366 
367   Loop *OuterLoop;
368   Loop *InnerLoop;
369 
370   /// Scev analysis.
371   ScalarEvolution *SE;
372 
373   LoopInfo *LI;
374   DominatorTree *DT;
375 
376   const LoopInterchangeLegality &LIL;
377 };
378 
379 struct LoopInterchange {
380   ScalarEvolution *SE = nullptr;
381   LoopInfo *LI = nullptr;
382   DependenceInfo *DI = nullptr;
383   DominatorTree *DT = nullptr;
384   std::unique_ptr<CacheCost> CC = nullptr;
385 
386   /// Interface to emit optimization remarks.
387   OptimizationRemarkEmitter *ORE;
388 
389   LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI,
390                   DominatorTree *DT, std::unique_ptr<CacheCost> &CC,
391                   OptimizationRemarkEmitter *ORE)
392       : SE(SE), LI(LI), DI(DI), DT(DT), CC(std::move(CC)), ORE(ORE) {}
393 
394   bool run(Loop *L) {
395     if (L->getParentLoop())
396       return false;
397     SmallVector<Loop *, 8> LoopList;
398     populateWorklist(*L, LoopList);
399     return processLoopList(LoopList);
400   }
401 
402   bool run(LoopNest &LN) {
403     SmallVector<Loop *, 8> LoopList(LN.getLoops());
404     for (unsigned I = 1; I < LoopList.size(); ++I)
405       if (LoopList[I]->getParentLoop() != LoopList[I - 1])
406         return false;
407     return processLoopList(LoopList);
408   }
409 
410   bool isComputableLoopNest(ArrayRef<Loop *> LoopList) {
411     for (Loop *L : LoopList) {
412       const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
413       if (isa<SCEVCouldNotCompute>(ExitCountOuter)) {
414         LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
415         return false;
416       }
417       if (L->getNumBackEdges() != 1) {
418         LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
419         return false;
420       }
421       if (!L->getExitingBlock()) {
422         LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
423         return false;
424       }
425     }
426     return true;
427   }
428 
429   unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) {
430     // TODO: Add a better heuristic to select the loop to be interchanged based
431     // on the dependence matrix. Currently we select the innermost loop.
432     return LoopList.size() - 1;
433   }
434 
435   bool processLoopList(SmallVectorImpl<Loop *> &LoopList) {
436     bool Changed = false;
437 
438     // Ensure minimum loop nest depth.
439     assert(hasMinimumLoopDepth(LoopList) && "Loop nest does not meet minimum depth.");
440 
441     unsigned LoopNestDepth = LoopList.size();
442     if (LoopNestDepth > MaxLoopNestDepth) {
443       LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
444                         << MaxLoopNestDepth << "\n");
445       return false;
446     }
447     if (!isComputableLoopNest(LoopList)) {
448       LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
449       return false;
450     }
451 
452     LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
453                       << "\n");
454 
455     CharMatrix DependencyMatrix;
456     Loop *OuterMostLoop = *(LoopList.begin());
457     if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
458                                   OuterMostLoop, DI, SE, ORE)) {
459       LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
460       return false;
461     }
462 
463     LLVM_DEBUG(dbgs() << "Dependency matrix before interchange:\n";
464                printDepMatrix(DependencyMatrix));
465 
466     // Get the Outermost loop exit.
467     BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
468     if (!LoopNestExit) {
469       LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
470       return false;
471     }
472 
473     unsigned SelecLoopId = selectLoopForInterchange(LoopList);
474     // Obtain the loop vector returned from loop cache analysis beforehand,
475     // and put each <Loop, index> pair into a map for constant time query
476     // later. Indices in loop vector reprsent the optimal order of the
477     // corresponding loop, e.g., given a loopnest with depth N, index 0
478     // indicates the loop should be placed as the outermost loop and index N
479     // indicates the loop should be placed as the innermost loop.
480     //
481     // For the old pass manager CacheCost would be null.
482     DenseMap<const Loop *, unsigned> CostMap;
483     if (CC != nullptr) {
484       const auto &LoopCosts = CC->getLoopCosts();
485       for (unsigned i = 0; i < LoopCosts.size(); i++) {
486         CostMap[LoopCosts[i].first] = i;
487       }
488     }
489     // We try to achieve the globally optimal memory access for the loopnest,
490     // and do interchange based on a bubble-sort fasion. We start from
491     // the innermost loop, move it outwards to the best possible position
492     // and repeat this process.
493     for (unsigned j = SelecLoopId; j > 0; j--) {
494       bool ChangedPerIter = false;
495       for (unsigned i = SelecLoopId; i > SelecLoopId - j; i--) {
496         bool Interchanged = processLoop(LoopList[i], LoopList[i - 1], i, i - 1,
497                                         DependencyMatrix, CostMap);
498         if (!Interchanged)
499           continue;
500         // Loops interchanged, update LoopList accordingly.
501         std::swap(LoopList[i - 1], LoopList[i]);
502         // Update the DependencyMatrix
503         interChangeDependencies(DependencyMatrix, i, i - 1);
504 
505         LLVM_DEBUG(dbgs() << "Dependency matrix after interchange:\n";
506                    printDepMatrix(DependencyMatrix));
507 
508         ChangedPerIter |= Interchanged;
509         Changed |= Interchanged;
510       }
511       // Early abort if there was no interchange during an entire round of
512       // moving loops outwards.
513       if (!ChangedPerIter)
514         break;
515     }
516     return Changed;
517   }
518 
519   bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId,
520                    unsigned OuterLoopId,
521                    std::vector<std::vector<char>> &DependencyMatrix,
522                    const DenseMap<const Loop *, unsigned> &CostMap) {
523     LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId
524                       << " and OuterLoopId = " << OuterLoopId << "\n");
525     LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
526     if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
527       LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
528       return false;
529     }
530     LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
531     LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
532     if (!LIP.isProfitable(InnerLoop, OuterLoop, InnerLoopId, OuterLoopId,
533                           DependencyMatrix, CostMap, CC)) {
534       LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
535       return false;
536     }
537 
538     ORE->emit([&]() {
539       return OptimizationRemark(DEBUG_TYPE, "Interchanged",
540                                 InnerLoop->getStartLoc(),
541                                 InnerLoop->getHeader())
542              << "Loop interchanged with enclosing loop.";
543     });
544 
545     LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LIL);
546     LIT.transform();
547     LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
548     LoopsInterchanged++;
549 
550     llvm::formLCSSARecursively(*OuterLoop, *DT, LI, SE);
551     return true;
552   }
553 };
554 
555 } // end anonymous namespace
556 
557 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) {
558   return any_of(*BB, [](const Instruction &I) {
559     return I.mayHaveSideEffects() || I.mayReadFromMemory();
560   });
561 }
562 
563 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
564   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
565   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
566   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
567 
568   LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
569 
570   // A perfectly nested loop will not have any branch in between the outer and
571   // inner block i.e. outer header will branch to either inner preheader and
572   // outerloop latch.
573   BranchInst *OuterLoopHeaderBI =
574       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
575   if (!OuterLoopHeaderBI)
576     return false;
577 
578   for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
579     if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
580         Succ != OuterLoopLatch)
581       return false;
582 
583   LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
584   // We do not have any basic block in between now make sure the outer header
585   // and outer loop latch doesn't contain any unsafe instructions.
586   if (containsUnsafeInstructions(OuterLoopHeader) ||
587       containsUnsafeInstructions(OuterLoopLatch))
588     return false;
589 
590   // Also make sure the inner loop preheader does not contain any unsafe
591   // instructions. Note that all instructions in the preheader will be moved to
592   // the outer loop header when interchanging.
593   if (InnerLoopPreHeader != OuterLoopHeader &&
594       containsUnsafeInstructions(InnerLoopPreHeader))
595     return false;
596 
597   BasicBlock *InnerLoopExit = InnerLoop->getExitBlock();
598   // Ensure the inner loop exit block flows to the outer loop latch possibly
599   // through empty blocks.
600   const BasicBlock &SuccInner =
601       LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch);
602   if (&SuccInner != OuterLoopLatch) {
603     LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit
604                       << " does not lead to the outer loop latch.\n";);
605     return false;
606   }
607   // The inner loop exit block does flow to the outer loop latch and not some
608   // other BBs, now make sure it contains safe instructions, since it will be
609   // moved into the (new) inner loop after interchange.
610   if (containsUnsafeInstructions(InnerLoopExit))
611     return false;
612 
613   LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
614   // We have a perfect loop nest.
615   return true;
616 }
617 
618 bool LoopInterchangeLegality::isLoopStructureUnderstood() {
619   BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
620   for (PHINode *InnerInduction : InnerLoopInductions) {
621     unsigned Num = InnerInduction->getNumOperands();
622     for (unsigned i = 0; i < Num; ++i) {
623       Value *Val = InnerInduction->getOperand(i);
624       if (isa<Constant>(Val))
625         continue;
626       Instruction *I = dyn_cast<Instruction>(Val);
627       if (!I)
628         return false;
629       // TODO: Handle triangular loops.
630       // e.g. for(int i=0;i<N;i++)
631       //        for(int j=i;j<N;j++)
632       unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
633       if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
634               InnerLoopPreheader &&
635           !OuterLoop->isLoopInvariant(I)) {
636         return false;
637       }
638     }
639   }
640 
641   // TODO: Handle triangular loops of another form.
642   // e.g. for(int i=0;i<N;i++)
643   //        for(int j=0;j<i;j++)
644   // or,
645   //      for(int i=0;i<N;i++)
646   //        for(int j=0;j*i<N;j++)
647   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
648   BranchInst *InnerLoopLatchBI =
649       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
650   if (!InnerLoopLatchBI->isConditional())
651     return false;
652   if (CmpInst *InnerLoopCmp =
653           dyn_cast<CmpInst>(InnerLoopLatchBI->getCondition())) {
654     Value *Op0 = InnerLoopCmp->getOperand(0);
655     Value *Op1 = InnerLoopCmp->getOperand(1);
656 
657     // LHS and RHS of the inner loop exit condition, e.g.,
658     // in "for(int j=0;j<i;j++)", LHS is j and RHS is i.
659     Value *Left = nullptr;
660     Value *Right = nullptr;
661 
662     // Check if V only involves inner loop induction variable.
663     // Return true if V is InnerInduction, or a cast from
664     // InnerInduction, or a binary operator that involves
665     // InnerInduction and a constant.
666     std::function<bool(Value *)> IsPathToInnerIndVar;
667     IsPathToInnerIndVar = [this, &IsPathToInnerIndVar](const Value *V) -> bool {
668       if (llvm::is_contained(InnerLoopInductions, V))
669         return true;
670       if (isa<Constant>(V))
671         return true;
672       const Instruction *I = dyn_cast<Instruction>(V);
673       if (!I)
674         return false;
675       if (isa<CastInst>(I))
676         return IsPathToInnerIndVar(I->getOperand(0));
677       if (isa<BinaryOperator>(I))
678         return IsPathToInnerIndVar(I->getOperand(0)) &&
679                IsPathToInnerIndVar(I->getOperand(1));
680       return false;
681     };
682 
683     // In case of multiple inner loop indvars, it is okay if LHS and RHS
684     // are both inner indvar related variables.
685     if (IsPathToInnerIndVar(Op0) && IsPathToInnerIndVar(Op1))
686       return true;
687 
688     // Otherwise we check if the cmp instruction compares an inner indvar
689     // related variable (Left) with a outer loop invariant (Right).
690     if (IsPathToInnerIndVar(Op0) && !isa<Constant>(Op0)) {
691       Left = Op0;
692       Right = Op1;
693     } else if (IsPathToInnerIndVar(Op1) && !isa<Constant>(Op1)) {
694       Left = Op1;
695       Right = Op0;
696     }
697 
698     if (Left == nullptr)
699       return false;
700 
701     const SCEV *S = SE->getSCEV(Right);
702     if (!SE->isLoopInvariant(S, OuterLoop))
703       return false;
704   }
705 
706   return true;
707 }
708 
709 // If SV is a LCSSA PHI node with a single incoming value, return the incoming
710 // value.
711 static Value *followLCSSA(Value *SV) {
712   PHINode *PHI = dyn_cast<PHINode>(SV);
713   if (!PHI)
714     return SV;
715 
716   if (PHI->getNumIncomingValues() != 1)
717     return SV;
718   return followLCSSA(PHI->getIncomingValue(0));
719 }
720 
721 // Check V's users to see if it is involved in a reduction in L.
722 static PHINode *findInnerReductionPhi(Loop *L, Value *V) {
723   // Reduction variables cannot be constants.
724   if (isa<Constant>(V))
725     return nullptr;
726 
727   for (Value *User : V->users()) {
728     if (PHINode *PHI = dyn_cast<PHINode>(User)) {
729       if (PHI->getNumIncomingValues() == 1)
730         continue;
731       RecurrenceDescriptor RD;
732       if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) {
733         // Detect floating point reduction only when it can be reordered.
734         if (RD.getExactFPMathInst() != nullptr)
735           return nullptr;
736         return PHI;
737       }
738       return nullptr;
739     }
740   }
741 
742   return nullptr;
743 }
744 
745 bool LoopInterchangeLegality::findInductionAndReductions(
746     Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) {
747   if (!L->getLoopLatch() || !L->getLoopPredecessor())
748     return false;
749   for (PHINode &PHI : L->getHeader()->phis()) {
750     InductionDescriptor ID;
751     if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
752       Inductions.push_back(&PHI);
753     else {
754       // PHIs in inner loops need to be part of a reduction in the outer loop,
755       // discovered when checking the PHIs of the outer loop earlier.
756       if (!InnerLoop) {
757         if (!OuterInnerReductions.count(&PHI)) {
758           LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
759                                "across the outer loop.\n");
760           return false;
761         }
762       } else {
763         assert(PHI.getNumIncomingValues() == 2 &&
764                "Phis in loop header should have exactly 2 incoming values");
765         // Check if we have a PHI node in the outer loop that has a reduction
766         // result from the inner loop as an incoming value.
767         Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch()));
768         PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V);
769         if (!InnerRedPhi ||
770             !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) {
771           LLVM_DEBUG(
772               dbgs()
773               << "Failed to recognize PHI as an induction or reduction.\n");
774           return false;
775         }
776         OuterInnerReductions.insert(&PHI);
777         OuterInnerReductions.insert(InnerRedPhi);
778       }
779     }
780   }
781   return true;
782 }
783 
784 // This function indicates the current limitations in the transform as a result
785 // of which we do not proceed.
786 bool LoopInterchangeLegality::currentLimitations() {
787   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
788 
789   // transform currently expects the loop latches to also be the exiting
790   // blocks.
791   if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
792       OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
793       !isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
794       !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
795     LLVM_DEBUG(
796         dbgs() << "Loops where the latch is not the exiting block are not"
797                << " supported currently.\n");
798     ORE->emit([&]() {
799       return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
800                                       OuterLoop->getStartLoc(),
801                                       OuterLoop->getHeader())
802              << "Loops where the latch is not the exiting block cannot be"
803                 " interchange currently.";
804     });
805     return true;
806   }
807 
808   SmallVector<PHINode *, 8> Inductions;
809   if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) {
810     LLVM_DEBUG(
811         dbgs() << "Only outer loops with induction or reduction PHI nodes "
812                << "are supported currently.\n");
813     ORE->emit([&]() {
814       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
815                                       OuterLoop->getStartLoc(),
816                                       OuterLoop->getHeader())
817              << "Only outer loops with induction or reduction PHI nodes can be"
818                 " interchanged currently.";
819     });
820     return true;
821   }
822 
823   Inductions.clear();
824   // For multi-level loop nests, make sure that all phi nodes for inner loops
825   // at all levels can be recognized as a induction or reduction phi. Bail out
826   // if a phi node at a certain nesting level cannot be properly recognized.
827   Loop *CurLevelLoop = OuterLoop;
828   while (!CurLevelLoop->getSubLoops().empty()) {
829     // We already made sure that the loop nest is tightly nested.
830     CurLevelLoop = CurLevelLoop->getSubLoops().front();
831     if (!findInductionAndReductions(CurLevelLoop, Inductions, nullptr)) {
832       LLVM_DEBUG(
833           dbgs() << "Only inner loops with induction or reduction PHI nodes "
834                 << "are supported currently.\n");
835       ORE->emit([&]() {
836         return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
837                                         CurLevelLoop->getStartLoc(),
838                                         CurLevelLoop->getHeader())
839               << "Only inner loops with induction or reduction PHI nodes can be"
840                   " interchange currently.";
841       });
842       return true;
843     }
844   }
845 
846   // TODO: Triangular loops are not handled for now.
847   if (!isLoopStructureUnderstood()) {
848     LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
849     ORE->emit([&]() {
850       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
851                                       InnerLoop->getStartLoc(),
852                                       InnerLoop->getHeader())
853              << "Inner loop structure not understood currently.";
854     });
855     return true;
856   }
857 
858   return false;
859 }
860 
861 bool LoopInterchangeLegality::findInductions(
862     Loop *L, SmallVectorImpl<PHINode *> &Inductions) {
863   for (PHINode &PHI : L->getHeader()->phis()) {
864     InductionDescriptor ID;
865     if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
866       Inductions.push_back(&PHI);
867   }
868   return !Inductions.empty();
869 }
870 
871 // We currently only support LCSSA PHI nodes in the inner loop exit, if their
872 // users are either reduction PHIs or PHIs outside the outer loop (which means
873 // the we are only interested in the final value after the loop).
874 static bool
875 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL,
876                               SmallPtrSetImpl<PHINode *> &Reductions) {
877   BasicBlock *InnerExit = OuterL->getUniqueExitBlock();
878   for (PHINode &PHI : InnerExit->phis()) {
879     // Reduction lcssa phi will have only 1 incoming block that from loop latch.
880     if (PHI.getNumIncomingValues() > 1)
881       return false;
882     if (any_of(PHI.users(), [&Reductions, OuterL](User *U) {
883           PHINode *PN = dyn_cast<PHINode>(U);
884           return !PN ||
885                  (!Reductions.count(PN) && OuterL->contains(PN->getParent()));
886         })) {
887       return false;
888     }
889   }
890   return true;
891 }
892 
893 // We currently support LCSSA PHI nodes in the outer loop exit, if their
894 // incoming values do not come from the outer loop latch or if the
895 // outer loop latch has a single predecessor. In that case, the value will
896 // be available if both the inner and outer loop conditions are true, which
897 // will still be true after interchanging. If we have multiple predecessor,
898 // that may not be the case, e.g. because the outer loop latch may be executed
899 // if the inner loop is not executed.
900 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
901   BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
902   for (PHINode &PHI : LoopNestExit->phis()) {
903     for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
904       Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
905       if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
906         continue;
907 
908       // The incoming value is defined in the outer loop latch. Currently we
909       // only support that in case the outer loop latch has a single predecessor.
910       // This guarantees that the outer loop latch is executed if and only if
911       // the inner loop is executed (because tightlyNested() guarantees that the
912       // outer loop header only branches to the inner loop or the outer loop
913       // latch).
914       // FIXME: We could weaken this logic and allow multiple predecessors,
915       //        if the values are produced outside the loop latch. We would need
916       //        additional logic to update the PHI nodes in the exit block as
917       //        well.
918       if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
919         return false;
920     }
921   }
922   return true;
923 }
924 
925 // In case of multi-level nested loops, it may occur that lcssa phis exist in
926 // the latch of InnerLoop, i.e., when defs of the incoming values are further
927 // inside the loopnest. Sometimes those incoming values are not available
928 // after interchange, since the original inner latch will become the new outer
929 // latch which may have predecessor paths that do not include those incoming
930 // values.
931 // TODO: Handle transformation of lcssa phis in the InnerLoop latch in case of
932 // multi-level loop nests.
933 static bool areInnerLoopLatchPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
934   if (InnerLoop->getSubLoops().empty())
935     return true;
936   // If the original outer latch has only one predecessor, then values defined
937   // further inside the looploop, e.g., in the innermost loop, will be available
938   // at the new outer latch after interchange.
939   if (OuterLoop->getLoopLatch()->getUniquePredecessor() != nullptr)
940     return true;
941 
942   // The outer latch has more than one predecessors, i.e., the inner
943   // exit and the inner header.
944   // PHI nodes in the inner latch are lcssa phis where the incoming values
945   // are defined further inside the loopnest. Check if those phis are used
946   // in the original inner latch. If that is the case then bail out since
947   // those incoming values may not be available at the new outer latch.
948   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
949   for (PHINode &PHI : InnerLoopLatch->phis()) {
950     for (auto *U : PHI.users()) {
951       Instruction *UI = cast<Instruction>(U);
952       if (InnerLoopLatch == UI->getParent())
953         return false;
954     }
955   }
956   return true;
957 }
958 
959 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
960                                                   unsigned OuterLoopId,
961                                                   CharMatrix &DepMatrix) {
962   if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
963     LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
964                       << " and OuterLoopId = " << OuterLoopId
965                       << " due to dependence\n");
966     ORE->emit([&]() {
967       return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
968                                       InnerLoop->getStartLoc(),
969                                       InnerLoop->getHeader())
970              << "Cannot interchange loops due to dependences.";
971     });
972     return false;
973   }
974   // Check if outer and inner loop contain legal instructions only.
975   for (auto *BB : OuterLoop->blocks())
976     for (Instruction &I : BB->instructionsWithoutDebug())
977       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
978         // readnone functions do not prevent interchanging.
979         if (CI->onlyWritesMemory())
980           continue;
981         LLVM_DEBUG(
982             dbgs() << "Loops with call instructions cannot be interchanged "
983                    << "safely.");
984         ORE->emit([&]() {
985           return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
986                                           CI->getDebugLoc(),
987                                           CI->getParent())
988                  << "Cannot interchange loops due to call instruction.";
989         });
990 
991         return false;
992       }
993 
994   if (!findInductions(InnerLoop, InnerLoopInductions)) {
995     LLVM_DEBUG(dbgs() << "Could not find inner loop induction variables.\n");
996     return false;
997   }
998 
999   if (!areInnerLoopLatchPHIsSupported(OuterLoop, InnerLoop)) {
1000     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop latch.\n");
1001     ORE->emit([&]() {
1002       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedInnerLatchPHI",
1003                                       InnerLoop->getStartLoc(),
1004                                       InnerLoop->getHeader())
1005              << "Cannot interchange loops because unsupported PHI nodes found "
1006                 "in inner loop latch.";
1007     });
1008     return false;
1009   }
1010 
1011   // TODO: The loops could not be interchanged due to current limitations in the
1012   // transform module.
1013   if (currentLimitations()) {
1014     LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
1015     return false;
1016   }
1017 
1018   // Check if the loops are tightly nested.
1019   if (!tightlyNested(OuterLoop, InnerLoop)) {
1020     LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
1021     ORE->emit([&]() {
1022       return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
1023                                       InnerLoop->getStartLoc(),
1024                                       InnerLoop->getHeader())
1025              << "Cannot interchange loops because they are not tightly "
1026                 "nested.";
1027     });
1028     return false;
1029   }
1030 
1031   if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop,
1032                                      OuterInnerReductions)) {
1033     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n");
1034     ORE->emit([&]() {
1035       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1036                                       InnerLoop->getStartLoc(),
1037                                       InnerLoop->getHeader())
1038              << "Found unsupported PHI node in loop exit.";
1039     });
1040     return false;
1041   }
1042 
1043   if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
1044     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
1045     ORE->emit([&]() {
1046       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1047                                       OuterLoop->getStartLoc(),
1048                                       OuterLoop->getHeader())
1049              << "Found unsupported PHI node in loop exit.";
1050     });
1051     return false;
1052   }
1053 
1054   return true;
1055 }
1056 
1057 int LoopInterchangeProfitability::getInstrOrderCost() {
1058   unsigned GoodOrder, BadOrder;
1059   BadOrder = GoodOrder = 0;
1060   for (BasicBlock *BB : InnerLoop->blocks()) {
1061     for (Instruction &Ins : *BB) {
1062       if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
1063         unsigned NumOp = GEP->getNumOperands();
1064         bool FoundInnerInduction = false;
1065         bool FoundOuterInduction = false;
1066         for (unsigned i = 0; i < NumOp; ++i) {
1067           // Skip operands that are not SCEV-able.
1068           if (!SE->isSCEVable(GEP->getOperand(i)->getType()))
1069             continue;
1070 
1071           const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
1072           const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
1073           if (!AR)
1074             continue;
1075 
1076           // If we find the inner induction after an outer induction e.g.
1077           // for(int i=0;i<N;i++)
1078           //   for(int j=0;j<N;j++)
1079           //     A[i][j] = A[i-1][j-1]+k;
1080           // then it is a good order.
1081           if (AR->getLoop() == InnerLoop) {
1082             // We found an InnerLoop induction after OuterLoop induction. It is
1083             // a good order.
1084             FoundInnerInduction = true;
1085             if (FoundOuterInduction) {
1086               GoodOrder++;
1087               break;
1088             }
1089           }
1090           // If we find the outer induction after an inner induction e.g.
1091           // for(int i=0;i<N;i++)
1092           //   for(int j=0;j<N;j++)
1093           //     A[j][i] = A[j-1][i-1]+k;
1094           // then it is a bad order.
1095           if (AR->getLoop() == OuterLoop) {
1096             // We found an OuterLoop induction after InnerLoop induction. It is
1097             // a bad order.
1098             FoundOuterInduction = true;
1099             if (FoundInnerInduction) {
1100               BadOrder++;
1101               break;
1102             }
1103           }
1104         }
1105       }
1106     }
1107   }
1108   return GoodOrder - BadOrder;
1109 }
1110 
1111 std::optional<bool>
1112 LoopInterchangeProfitability::isProfitablePerLoopCacheAnalysis(
1113     const DenseMap<const Loop *, unsigned> &CostMap,
1114     std::unique_ptr<CacheCost> &CC) {
1115   // This is the new cost model returned from loop cache analysis.
1116   // A smaller index means the loop should be placed an outer loop, and vice
1117   // versa.
1118   if (CostMap.contains(InnerLoop) && CostMap.contains(OuterLoop)) {
1119     unsigned InnerIndex = 0, OuterIndex = 0;
1120     InnerIndex = CostMap.find(InnerLoop)->second;
1121     OuterIndex = CostMap.find(OuterLoop)->second;
1122     LLVM_DEBUG(dbgs() << "InnerIndex = " << InnerIndex
1123                       << ", OuterIndex = " << OuterIndex << "\n");
1124     if (InnerIndex < OuterIndex)
1125       return std::optional<bool>(true);
1126     assert(InnerIndex != OuterIndex && "CostMap should assign unique "
1127                                        "numbers to each loop");
1128     if (CC->getLoopCost(*OuterLoop) == CC->getLoopCost(*InnerLoop))
1129       return std::nullopt;
1130     return std::optional<bool>(false);
1131   }
1132   return std::nullopt;
1133 }
1134 
1135 std::optional<bool>
1136 LoopInterchangeProfitability::isProfitablePerInstrOrderCost() {
1137   // Legacy cost model: this is rough cost estimation algorithm. It counts the
1138   // good and bad order of induction variables in the instruction and allows
1139   // reordering if number of bad orders is more than good.
1140   int Cost = getInstrOrderCost();
1141   LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
1142   if (Cost < 0 && Cost < LoopInterchangeCostThreshold)
1143     return std::optional<bool>(true);
1144 
1145   return std::nullopt;
1146 }
1147 
1148 std::optional<bool> LoopInterchangeProfitability::isProfitableForVectorization(
1149     unsigned InnerLoopId, unsigned OuterLoopId, CharMatrix &DepMatrix) {
1150   for (auto &Row : DepMatrix) {
1151     // If the inner loop is loop independent or doesn't carry any dependency
1152     // it is not profitable to move this to outer position, since we are
1153     // likely able to do inner loop vectorization already.
1154     if (Row[InnerLoopId] == 'I' || Row[InnerLoopId] == '=')
1155       return std::optional<bool>(false);
1156 
1157     // If the outer loop is not loop independent it is not profitable to move
1158     // this to inner position, since doing so would not enable inner loop
1159     // parallelism.
1160     if (Row[OuterLoopId] != 'I' && Row[OuterLoopId] != '=')
1161       return std::optional<bool>(false);
1162   }
1163   // If inner loop has dependence and outer loop is loop independent then it
1164   // is/ profitable to interchange to enable inner loop parallelism.
1165   // If there are no dependences, interchanging will not improve anything.
1166   return std::optional<bool>(!DepMatrix.empty());
1167 }
1168 
1169 bool LoopInterchangeProfitability::isProfitable(
1170     const Loop *InnerLoop, const Loop *OuterLoop, unsigned InnerLoopId,
1171     unsigned OuterLoopId, CharMatrix &DepMatrix,
1172     const DenseMap<const Loop *, unsigned> &CostMap,
1173     std::unique_ptr<CacheCost> &CC) {
1174   // isProfitable() is structured to avoid endless loop interchange.
1175   // If loop cache analysis could decide the profitability then,
1176   // profitability check will stop and return the analysis result.
1177   // If cache analysis failed to analyze the loopnest (e.g.,
1178   // due to delinearization issues) then only check whether it is
1179   // profitable for InstrOrderCost. Likewise, if InstrOrderCost failed to
1180   // analysis the profitability then only, isProfitableForVectorization
1181   // will decide.
1182   std::optional<bool> shouldInterchange =
1183       isProfitablePerLoopCacheAnalysis(CostMap, CC);
1184   if (!shouldInterchange.has_value()) {
1185     shouldInterchange = isProfitablePerInstrOrderCost();
1186     if (!shouldInterchange.has_value())
1187       shouldInterchange =
1188           isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix);
1189   }
1190   if (!shouldInterchange.has_value()) {
1191     ORE->emit([&]() {
1192       return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1193                                       InnerLoop->getStartLoc(),
1194                                       InnerLoop->getHeader())
1195              << "Insufficient information to calculate the cost of loop for "
1196                 "interchange.";
1197     });
1198     return false;
1199   } else if (!shouldInterchange.value()) {
1200     ORE->emit([&]() {
1201       return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1202                                       InnerLoop->getStartLoc(),
1203                                       InnerLoop->getHeader())
1204              << "Interchanging loops is not considered to improve cache "
1205                 "locality nor vectorization.";
1206     });
1207     return false;
1208   }
1209   return true;
1210 }
1211 
1212 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
1213                                                Loop *InnerLoop) {
1214   for (Loop *L : *OuterLoop)
1215     if (L == InnerLoop) {
1216       OuterLoop->removeChildLoop(L);
1217       return;
1218     }
1219   llvm_unreachable("Couldn't find loop");
1220 }
1221 
1222 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
1223 /// new inner and outer loop after interchanging: NewInner is the original
1224 /// outer loop and NewOuter is the original inner loop.
1225 ///
1226 /// Before interchanging, we have the following structure
1227 /// Outer preheader
1228 //  Outer header
1229 //    Inner preheader
1230 //    Inner header
1231 //      Inner body
1232 //      Inner latch
1233 //   outer bbs
1234 //   Outer latch
1235 //
1236 // After interchanging:
1237 // Inner preheader
1238 // Inner header
1239 //   Outer preheader
1240 //   Outer header
1241 //     Inner body
1242 //     outer bbs
1243 //     Outer latch
1244 //   Inner latch
1245 void LoopInterchangeTransform::restructureLoops(
1246     Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
1247     BasicBlock *OrigOuterPreHeader) {
1248   Loop *OuterLoopParent = OuterLoop->getParentLoop();
1249   // The original inner loop preheader moves from the new inner loop to
1250   // the parent loop, if there is one.
1251   NewInner->removeBlockFromLoop(OrigInnerPreHeader);
1252   LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
1253 
1254   // Switch the loop levels.
1255   if (OuterLoopParent) {
1256     // Remove the loop from its parent loop.
1257     removeChildLoop(OuterLoopParent, NewInner);
1258     removeChildLoop(NewInner, NewOuter);
1259     OuterLoopParent->addChildLoop(NewOuter);
1260   } else {
1261     removeChildLoop(NewInner, NewOuter);
1262     LI->changeTopLevelLoop(NewInner, NewOuter);
1263   }
1264   while (!NewOuter->isInnermost())
1265     NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
1266   NewOuter->addChildLoop(NewInner);
1267 
1268   // BBs from the original inner loop.
1269   SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
1270 
1271   // Add BBs from the original outer loop to the original inner loop (excluding
1272   // BBs already in inner loop)
1273   for (BasicBlock *BB : NewInner->blocks())
1274     if (LI->getLoopFor(BB) == NewInner)
1275       NewOuter->addBlockEntry(BB);
1276 
1277   // Now remove inner loop header and latch from the new inner loop and move
1278   // other BBs (the loop body) to the new inner loop.
1279   BasicBlock *OuterHeader = NewOuter->getHeader();
1280   BasicBlock *OuterLatch = NewOuter->getLoopLatch();
1281   for (BasicBlock *BB : OrigInnerBBs) {
1282     // Nothing will change for BBs in child loops.
1283     if (LI->getLoopFor(BB) != NewOuter)
1284       continue;
1285     // Remove the new outer loop header and latch from the new inner loop.
1286     if (BB == OuterHeader || BB == OuterLatch)
1287       NewInner->removeBlockFromLoop(BB);
1288     else
1289       LI->changeLoopFor(BB, NewInner);
1290   }
1291 
1292   // The preheader of the original outer loop becomes part of the new
1293   // outer loop.
1294   NewOuter->addBlockEntry(OrigOuterPreHeader);
1295   LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
1296 
1297   // Tell SE that we move the loops around.
1298   SE->forgetLoop(NewOuter);
1299 }
1300 
1301 bool LoopInterchangeTransform::transform() {
1302   bool Transformed = false;
1303 
1304   if (InnerLoop->getSubLoops().empty()) {
1305     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1306     LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n");
1307     auto &InductionPHIs = LIL.getInnerLoopInductions();
1308     if (InductionPHIs.empty()) {
1309       LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1310       return false;
1311     }
1312 
1313     SmallVector<Instruction *, 8> InnerIndexVarList;
1314     for (PHINode *CurInductionPHI : InductionPHIs) {
1315       if (CurInductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1316         InnerIndexVarList.push_back(
1317             dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(1)));
1318       else
1319         InnerIndexVarList.push_back(
1320             dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(0)));
1321     }
1322 
1323     // Create a new latch block for the inner loop. We split at the
1324     // current latch's terminator and then move the condition and all
1325     // operands that are not either loop-invariant or the induction PHI into the
1326     // new latch block.
1327     BasicBlock *NewLatch =
1328         SplitBlock(InnerLoop->getLoopLatch(),
1329                    InnerLoop->getLoopLatch()->getTerminator(), DT, LI);
1330 
1331     SmallSetVector<Instruction *, 4> WorkList;
1332     unsigned i = 0;
1333     auto MoveInstructions = [&i, &WorkList, this, &InductionPHIs, NewLatch]() {
1334       for (; i < WorkList.size(); i++) {
1335         // Duplicate instruction and move it the new latch. Update uses that
1336         // have been moved.
1337         Instruction *NewI = WorkList[i]->clone();
1338         NewI->insertBefore(NewLatch->getFirstNonPHI());
1339         assert(!NewI->mayHaveSideEffects() &&
1340                "Moving instructions with side-effects may change behavior of "
1341                "the loop nest!");
1342         for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) {
1343           Instruction *UserI = cast<Instruction>(U.getUser());
1344           if (!InnerLoop->contains(UserI->getParent()) ||
1345               UserI->getParent() == NewLatch ||
1346               llvm::is_contained(InductionPHIs, UserI))
1347             U.set(NewI);
1348         }
1349         // Add operands of moved instruction to the worklist, except if they are
1350         // outside the inner loop or are the induction PHI.
1351         for (Value *Op : WorkList[i]->operands()) {
1352           Instruction *OpI = dyn_cast<Instruction>(Op);
1353           if (!OpI ||
1354               this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop ||
1355               llvm::is_contained(InductionPHIs, OpI))
1356             continue;
1357           WorkList.insert(OpI);
1358         }
1359       }
1360     };
1361 
1362     // FIXME: Should we interchange when we have a constant condition?
1363     Instruction *CondI = dyn_cast<Instruction>(
1364         cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator())
1365             ->getCondition());
1366     if (CondI)
1367       WorkList.insert(CondI);
1368     MoveInstructions();
1369     for (Instruction *InnerIndexVar : InnerIndexVarList)
1370       WorkList.insert(cast<Instruction>(InnerIndexVar));
1371     MoveInstructions();
1372   }
1373 
1374   // Ensure the inner loop phi nodes have a separate basic block.
1375   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1376   if (InnerLoopHeader->getFirstNonPHI() != InnerLoopHeader->getTerminator()) {
1377     SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1378     LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
1379   }
1380 
1381   // Instructions in the original inner loop preheader may depend on values
1382   // defined in the outer loop header. Move them there, because the original
1383   // inner loop preheader will become the entry into the interchanged loop nest.
1384   // Currently we move all instructions and rely on LICM to move invariant
1385   // instructions outside the loop nest.
1386   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1387   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1388   if (InnerLoopPreHeader != OuterLoopHeader) {
1389     SmallPtrSet<Instruction *, 4> NeedsMoving;
1390     for (Instruction &I :
1391          make_early_inc_range(make_range(InnerLoopPreHeader->begin(),
1392                                          std::prev(InnerLoopPreHeader->end()))))
1393       I.moveBeforePreserving(OuterLoopHeader->getTerminator());
1394   }
1395 
1396   Transformed |= adjustLoopLinks();
1397   if (!Transformed) {
1398     LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
1399     return false;
1400   }
1401 
1402   return true;
1403 }
1404 
1405 /// \brief Move all instructions except the terminator from FromBB right before
1406 /// InsertBefore
1407 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1408   BasicBlock *ToBB = InsertBefore->getParent();
1409 
1410   ToBB->splice(InsertBefore->getIterator(), FromBB, FromBB->begin(),
1411                FromBB->getTerminator()->getIterator());
1412 }
1413 
1414 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact.
1415 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) {
1416   // Save all non-terminator instructions of BB1 into TempInstrs and unlink them
1417   // from BB1 afterwards.
1418   auto Iter = map_range(*BB1, [](Instruction &I) { return &I; });
1419   SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end()));
1420   for (Instruction *I : TempInstrs)
1421     I->removeFromParent();
1422 
1423   // Move instructions from BB2 to BB1.
1424   moveBBContents(BB2, BB1->getTerminator());
1425 
1426   // Move instructions from TempInstrs to BB2.
1427   for (Instruction *I : TempInstrs)
1428     I->insertBefore(BB2->getTerminator());
1429 }
1430 
1431 // Update BI to jump to NewBB instead of OldBB. Records updates to the
1432 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that
1433 // \p OldBB  is exactly once in BI's successor list.
1434 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
1435                             BasicBlock *NewBB,
1436                             std::vector<DominatorTree::UpdateType> &DTUpdates,
1437                             bool MustUpdateOnce = true) {
1438   assert((!MustUpdateOnce ||
1439           llvm::count_if(successors(BI),
1440                          [OldBB](BasicBlock *BB) {
1441                            return BB == OldBB;
1442                          }) == 1) && "BI must jump to OldBB exactly once.");
1443   bool Changed = false;
1444   for (Use &Op : BI->operands())
1445     if (Op == OldBB) {
1446       Op.set(NewBB);
1447       Changed = true;
1448     }
1449 
1450   if (Changed) {
1451     DTUpdates.push_back(
1452         {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
1453     DTUpdates.push_back(
1454         {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
1455   }
1456   assert(Changed && "Expected a successor to be updated");
1457 }
1458 
1459 // Move Lcssa PHIs to the right place.
1460 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader,
1461                           BasicBlock *InnerLatch, BasicBlock *OuterHeader,
1462                           BasicBlock *OuterLatch, BasicBlock *OuterExit,
1463                           Loop *InnerLoop, LoopInfo *LI) {
1464 
1465   // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
1466   // defined either in the header or latch. Those blocks will become header and
1467   // latch of the new outer loop, and the only possible users can PHI nodes
1468   // in the exit block of the loop nest or the outer loop header (reduction
1469   // PHIs, in that case, the incoming value must be defined in the inner loop
1470   // header). We can just substitute the user with the incoming value and remove
1471   // the PHI.
1472   for (PHINode &P : make_early_inc_range(InnerExit->phis())) {
1473     assert(P.getNumIncomingValues() == 1 &&
1474            "Only loops with a single exit are supported!");
1475 
1476     // Incoming values are guaranteed be instructions currently.
1477     auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch));
1478     // In case of multi-level nested loops, follow LCSSA to find the incoming
1479     // value defined from the innermost loop.
1480     auto IncIInnerMost = cast<Instruction>(followLCSSA(IncI));
1481     // Skip phis with incoming values from the inner loop body, excluding the
1482     // header and latch.
1483     if (IncIInnerMost->getParent() != InnerLatch &&
1484         IncIInnerMost->getParent() != InnerHeader)
1485       continue;
1486 
1487     assert(all_of(P.users(),
1488                   [OuterHeader, OuterExit, IncI, InnerHeader](User *U) {
1489                     return (cast<PHINode>(U)->getParent() == OuterHeader &&
1490                             IncI->getParent() == InnerHeader) ||
1491                            cast<PHINode>(U)->getParent() == OuterExit;
1492                   }) &&
1493            "Can only replace phis iff the uses are in the loop nest exit or "
1494            "the incoming value is defined in the inner header (it will "
1495            "dominate all loop blocks after interchanging)");
1496     P.replaceAllUsesWith(IncI);
1497     P.eraseFromParent();
1498   }
1499 
1500   SmallVector<PHINode *, 8> LcssaInnerExit;
1501   for (PHINode &P : InnerExit->phis())
1502     LcssaInnerExit.push_back(&P);
1503 
1504   SmallVector<PHINode *, 8> LcssaInnerLatch;
1505   for (PHINode &P : InnerLatch->phis())
1506     LcssaInnerLatch.push_back(&P);
1507 
1508   // Lcssa PHIs for values used outside the inner loop are in InnerExit.
1509   // If a PHI node has users outside of InnerExit, it has a use outside the
1510   // interchanged loop and we have to preserve it. We move these to
1511   // InnerLatch, which will become the new exit block for the innermost
1512   // loop after interchanging.
1513   for (PHINode *P : LcssaInnerExit)
1514     P->moveBefore(InnerLatch->getFirstNonPHI());
1515 
1516   // If the inner loop latch contains LCSSA PHIs, those come from a child loop
1517   // and we have to move them to the new inner latch.
1518   for (PHINode *P : LcssaInnerLatch)
1519     P->moveBefore(InnerExit->getFirstNonPHI());
1520 
1521   // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
1522   // incoming values defined in the outer loop, we have to add a new PHI
1523   // in the inner loop latch, which became the exit block of the outer loop,
1524   // after interchanging.
1525   if (OuterExit) {
1526     for (PHINode &P : OuterExit->phis()) {
1527       if (P.getNumIncomingValues() != 1)
1528         continue;
1529       // Skip Phis with incoming values defined in the inner loop. Those should
1530       // already have been updated.
1531       auto I = dyn_cast<Instruction>(P.getIncomingValue(0));
1532       if (!I || LI->getLoopFor(I->getParent()) == InnerLoop)
1533         continue;
1534 
1535       PHINode *NewPhi = dyn_cast<PHINode>(P.clone());
1536       NewPhi->setIncomingValue(0, P.getIncomingValue(0));
1537       NewPhi->setIncomingBlock(0, OuterLatch);
1538       // We might have incoming edges from other BBs, i.e., the original outer
1539       // header.
1540       for (auto *Pred : predecessors(InnerLatch)) {
1541         if (Pred == OuterLatch)
1542           continue;
1543         NewPhi->addIncoming(P.getIncomingValue(0), Pred);
1544       }
1545       NewPhi->insertBefore(InnerLatch->getFirstNonPHI());
1546       P.setIncomingValue(0, NewPhi);
1547     }
1548   }
1549 
1550   // Now adjust the incoming blocks for the LCSSA PHIs.
1551   // For PHIs moved from Inner's exit block, we need to replace Inner's latch
1552   // with the new latch.
1553   InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch);
1554 }
1555 
1556 bool LoopInterchangeTransform::adjustLoopBranches() {
1557   LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
1558   std::vector<DominatorTree::UpdateType> DTUpdates;
1559 
1560   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1561   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1562 
1563   assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
1564          InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
1565          InnerLoopPreHeader && "Guaranteed by loop-simplify form");
1566   // Ensure that both preheaders do not contain PHI nodes and have single
1567   // predecessors. This allows us to move them easily. We use
1568   // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
1569   // preheaders do not satisfy those conditions.
1570   if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
1571       !OuterLoopPreHeader->getUniquePredecessor())
1572     OuterLoopPreHeader =
1573         InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true);
1574   if (InnerLoopPreHeader == OuterLoop->getHeader())
1575     InnerLoopPreHeader =
1576         InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true);
1577 
1578   // Adjust the loop preheader
1579   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1580   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1581   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1582   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1583   BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1584   BasicBlock *InnerLoopLatchPredecessor =
1585       InnerLoopLatch->getUniquePredecessor();
1586   BasicBlock *InnerLoopLatchSuccessor;
1587   BasicBlock *OuterLoopLatchSuccessor;
1588 
1589   BranchInst *OuterLoopLatchBI =
1590       dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1591   BranchInst *InnerLoopLatchBI =
1592       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1593   BranchInst *OuterLoopHeaderBI =
1594       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1595   BranchInst *InnerLoopHeaderBI =
1596       dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1597 
1598   if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1599       !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1600       !InnerLoopHeaderBI)
1601     return false;
1602 
1603   BranchInst *InnerLoopLatchPredecessorBI =
1604       dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1605   BranchInst *OuterLoopPredecessorBI =
1606       dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1607 
1608   if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1609     return false;
1610   BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1611   if (!InnerLoopHeaderSuccessor)
1612     return false;
1613 
1614   // Adjust Loop Preheader and headers.
1615   // The branches in the outer loop predecessor and the outer loop header can
1616   // be unconditional branches or conditional branches with duplicates. Consider
1617   // this when updating the successors.
1618   updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
1619                   InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false);
1620   // The outer loop header might or might not branch to the outer latch.
1621   // We are guaranteed to branch to the inner loop preheader.
1622   if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) {
1623     // In this case the outerLoopHeader should branch to the InnerLoopLatch.
1624     updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, InnerLoopLatch,
1625                     DTUpdates,
1626                     /*MustUpdateOnce=*/false);
1627   }
1628   updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
1629                   InnerLoopHeaderSuccessor, DTUpdates,
1630                   /*MustUpdateOnce=*/false);
1631 
1632   // Adjust reduction PHI's now that the incoming block has changed.
1633   InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader,
1634                                                OuterLoopHeader);
1635 
1636   updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
1637                   OuterLoopPreHeader, DTUpdates);
1638 
1639   // -------------Adjust loop latches-----------
1640   if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1641     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1642   else
1643     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1644 
1645   updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
1646                   InnerLoopLatchSuccessor, DTUpdates);
1647 
1648   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1649     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1650   else
1651     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1652 
1653   updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
1654                   OuterLoopLatchSuccessor, DTUpdates);
1655   updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
1656                   DTUpdates);
1657 
1658   DT->applyUpdates(DTUpdates);
1659   restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
1660                    OuterLoopPreHeader);
1661 
1662   moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch,
1663                 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(),
1664                 InnerLoop, LI);
1665   // For PHIs in the exit block of the outer loop, outer's latch has been
1666   // replaced by Inners'.
1667   OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1668 
1669   auto &OuterInnerReductions = LIL.getOuterInnerReductions();
1670   // Now update the reduction PHIs in the inner and outer loop headers.
1671   SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
1672   for (PHINode &PHI : InnerLoopHeader->phis())
1673     if (OuterInnerReductions.contains(&PHI))
1674       InnerLoopPHIs.push_back(&PHI);
1675 
1676   for (PHINode &PHI : OuterLoopHeader->phis())
1677     if (OuterInnerReductions.contains(&PHI))
1678       OuterLoopPHIs.push_back(&PHI);
1679 
1680   // Now move the remaining reduction PHIs from outer to inner loop header and
1681   // vice versa. The PHI nodes must be part of a reduction across the inner and
1682   // outer loop and all the remains to do is and updating the incoming blocks.
1683   for (PHINode *PHI : OuterLoopPHIs) {
1684     LLVM_DEBUG(dbgs() << "Outer loop reduction PHIs:\n"; PHI->dump(););
1685     PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
1686     assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1687   }
1688   for (PHINode *PHI : InnerLoopPHIs) {
1689     LLVM_DEBUG(dbgs() << "Inner loop reduction PHIs:\n"; PHI->dump(););
1690     PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
1691     assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1692   }
1693 
1694   // Update the incoming blocks for moved PHI nodes.
1695   OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader);
1696   OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch);
1697   InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader);
1698   InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1699 
1700   // Values defined in the outer loop header could be used in the inner loop
1701   // latch. In that case, we need to create LCSSA phis for them, because after
1702   // interchanging they will be defined in the new inner loop and used in the
1703   // new outer loop.
1704   SmallVector<Instruction *, 4> MayNeedLCSSAPhis;
1705   for (Instruction &I :
1706        make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end())))
1707     MayNeedLCSSAPhis.push_back(&I);
1708   formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE);
1709 
1710   return true;
1711 }
1712 
1713 bool LoopInterchangeTransform::adjustLoopLinks() {
1714   // Adjust all branches in the inner and outer loop.
1715   bool Changed = adjustLoopBranches();
1716   if (Changed) {
1717     // We have interchanged the preheaders so we need to interchange the data in
1718     // the preheaders as well. This is because the content of the inner
1719     // preheader was previously executed inside the outer loop.
1720     BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1721     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1722     swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader);
1723   }
1724   return Changed;
1725 }
1726 
1727 PreservedAnalyses LoopInterchangePass::run(LoopNest &LN,
1728                                            LoopAnalysisManager &AM,
1729                                            LoopStandardAnalysisResults &AR,
1730                                            LPMUpdater &U) {
1731   Function &F = *LN.getParent();
1732   SmallVector<Loop *, 8> LoopList(LN.getLoops());
1733 
1734   if (MaxMemInstrCount < 1) {
1735     LLVM_DEBUG(dbgs() << "MaxMemInstrCount should be at least 1");
1736     return PreservedAnalyses::all();
1737   }
1738 
1739   // Ensure minimum depth of the loop nest to do the interchange.
1740   if (!hasMinimumLoopDepth(LoopList))
1741     return PreservedAnalyses::all();
1742   DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI);
1743   std::unique_ptr<CacheCost> CC =
1744       CacheCost::getCacheCost(LN.getOutermostLoop(), AR, DI);
1745   OptimizationRemarkEmitter ORE(&F);
1746   if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, CC, &ORE).run(LN))
1747     return PreservedAnalyses::all();
1748   U.markLoopNestChanged(true);
1749   return getLoopPassPreservedAnalyses();
1750 }
1751