1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements an idiom recognizer that transforms simple loops into a 10 // non-loop form. In cases that this kicks in, it can be a significant 11 // performance win. 12 // 13 // If compiling for code size we avoid idiom recognition if the resulting 14 // code could be larger than the code for the original loop. One way this could 15 // happen is if the loop is not removable after idiom recognition due to the 16 // presence of non-idiom instructions. The initial implementation of the 17 // heuristics applies to idioms in multi-block loops. 18 // 19 //===----------------------------------------------------------------------===// 20 // 21 // TODO List: 22 // 23 // Future loop memory idioms to recognize: 24 // memcmp, strlen, etc. 25 // 26 // This could recognize common matrix multiplies and dot product idioms and 27 // replace them with calls to BLAS (if linked in??). 28 // 29 //===----------------------------------------------------------------------===// 30 31 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" 32 #include "llvm/ADT/APInt.h" 33 #include "llvm/ADT/ArrayRef.h" 34 #include "llvm/ADT/DenseMap.h" 35 #include "llvm/ADT/MapVector.h" 36 #include "llvm/ADT/SetVector.h" 37 #include "llvm/ADT/SmallPtrSet.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/ADT/Statistic.h" 40 #include "llvm/ADT/StringRef.h" 41 #include "llvm/Analysis/AliasAnalysis.h" 42 #include "llvm/Analysis/CmpInstAnalysis.h" 43 #include "llvm/Analysis/LoopInfo.h" 44 #include "llvm/Analysis/LoopPass.h" 45 #include "llvm/Analysis/MemoryLocation.h" 46 #include "llvm/Analysis/MemorySSA.h" 47 #include "llvm/Analysis/MemorySSAUpdater.h" 48 #include "llvm/Analysis/MustExecute.h" 49 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 50 #include "llvm/Analysis/ScalarEvolution.h" 51 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 52 #include "llvm/Analysis/TargetLibraryInfo.h" 53 #include "llvm/Analysis/TargetTransformInfo.h" 54 #include "llvm/Analysis/ValueTracking.h" 55 #include "llvm/IR/BasicBlock.h" 56 #include "llvm/IR/Constant.h" 57 #include "llvm/IR/Constants.h" 58 #include "llvm/IR/DataLayout.h" 59 #include "llvm/IR/DebugLoc.h" 60 #include "llvm/IR/DerivedTypes.h" 61 #include "llvm/IR/Dominators.h" 62 #include "llvm/IR/GlobalValue.h" 63 #include "llvm/IR/GlobalVariable.h" 64 #include "llvm/IR/IRBuilder.h" 65 #include "llvm/IR/InstrTypes.h" 66 #include "llvm/IR/Instruction.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/IntrinsicInst.h" 69 #include "llvm/IR/Intrinsics.h" 70 #include "llvm/IR/LLVMContext.h" 71 #include "llvm/IR/Module.h" 72 #include "llvm/IR/PassManager.h" 73 #include "llvm/IR/PatternMatch.h" 74 #include "llvm/IR/Type.h" 75 #include "llvm/IR/User.h" 76 #include "llvm/IR/Value.h" 77 #include "llvm/IR/ValueHandle.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/InstructionCost.h" 82 #include "llvm/Support/raw_ostream.h" 83 #include "llvm/Transforms/Utils/BuildLibCalls.h" 84 #include "llvm/Transforms/Utils/Local.h" 85 #include "llvm/Transforms/Utils/LoopUtils.h" 86 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 87 #include <algorithm> 88 #include <cassert> 89 #include <cstdint> 90 #include <utility> 91 #include <vector> 92 93 using namespace llvm; 94 95 #define DEBUG_TYPE "loop-idiom" 96 97 STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); 98 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); 99 STATISTIC(NumMemMove, "Number of memmove's formed from loop load+stores"); 100 STATISTIC( 101 NumShiftUntilBitTest, 102 "Number of uncountable loops recognized as 'shift until bitttest' idiom"); 103 STATISTIC(NumShiftUntilZero, 104 "Number of uncountable loops recognized as 'shift until zero' idiom"); 105 106 bool DisableLIRP::All; 107 static cl::opt<bool, true> 108 DisableLIRPAll("disable-" DEBUG_TYPE "-all", 109 cl::desc("Options to disable Loop Idiom Recognize Pass."), 110 cl::location(DisableLIRP::All), cl::init(false), 111 cl::ReallyHidden); 112 113 bool DisableLIRP::Memset; 114 static cl::opt<bool, true> 115 DisableLIRPMemset("disable-" DEBUG_TYPE "-memset", 116 cl::desc("Proceed with loop idiom recognize pass, but do " 117 "not convert loop(s) to memset."), 118 cl::location(DisableLIRP::Memset), cl::init(false), 119 cl::ReallyHidden); 120 121 bool DisableLIRP::Memcpy; 122 static cl::opt<bool, true> 123 DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy", 124 cl::desc("Proceed with loop idiom recognize pass, but do " 125 "not convert loop(s) to memcpy."), 126 cl::location(DisableLIRP::Memcpy), cl::init(false), 127 cl::ReallyHidden); 128 129 static cl::opt<bool> UseLIRCodeSizeHeurs( 130 "use-lir-code-size-heurs", 131 cl::desc("Use loop idiom recognition code size heuristics when compiling " 132 "with -Os/-Oz"), 133 cl::init(true), cl::Hidden); 134 135 namespace { 136 137 class LoopIdiomRecognize { 138 Loop *CurLoop = nullptr; 139 AliasAnalysis *AA; 140 DominatorTree *DT; 141 LoopInfo *LI; 142 ScalarEvolution *SE; 143 TargetLibraryInfo *TLI; 144 const TargetTransformInfo *TTI; 145 const DataLayout *DL; 146 OptimizationRemarkEmitter &ORE; 147 bool ApplyCodeSizeHeuristics; 148 std::unique_ptr<MemorySSAUpdater> MSSAU; 149 150 public: 151 explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, 152 LoopInfo *LI, ScalarEvolution *SE, 153 TargetLibraryInfo *TLI, 154 const TargetTransformInfo *TTI, MemorySSA *MSSA, 155 const DataLayout *DL, 156 OptimizationRemarkEmitter &ORE) 157 : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) { 158 if (MSSA) 159 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 160 } 161 162 bool runOnLoop(Loop *L); 163 164 private: 165 using StoreList = SmallVector<StoreInst *, 8>; 166 using StoreListMap = MapVector<Value *, StoreList>; 167 168 StoreListMap StoreRefsForMemset; 169 StoreListMap StoreRefsForMemsetPattern; 170 StoreList StoreRefsForMemcpy; 171 bool HasMemset; 172 bool HasMemsetPattern; 173 bool HasMemcpy; 174 175 /// Return code for isLegalStore() 176 enum LegalStoreKind { 177 None = 0, 178 Memset, 179 MemsetPattern, 180 Memcpy, 181 UnorderedAtomicMemcpy, 182 DontUse // Dummy retval never to be used. Allows catching errors in retval 183 // handling. 184 }; 185 186 /// \name Countable Loop Idiom Handling 187 /// @{ 188 189 bool runOnCountableLoop(); 190 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, 191 SmallVectorImpl<BasicBlock *> &ExitBlocks); 192 193 void collectStores(BasicBlock *BB); 194 LegalStoreKind isLegalStore(StoreInst *SI); 195 enum class ForMemset { No, Yes }; 196 bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, 197 ForMemset For); 198 199 template <typename MemInst> 200 bool processLoopMemIntrinsic( 201 BasicBlock *BB, 202 bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *), 203 const SCEV *BECount); 204 bool processLoopMemCpy(MemCpyInst *MCI, const SCEV *BECount); 205 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); 206 207 bool processLoopStridedStore(Value *DestPtr, const SCEV *StoreSizeSCEV, 208 MaybeAlign StoreAlignment, Value *StoredVal, 209 Instruction *TheStore, 210 SmallPtrSetImpl<Instruction *> &Stores, 211 const SCEVAddRecExpr *Ev, const SCEV *BECount, 212 bool IsNegStride, bool IsLoopMemset = false); 213 bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); 214 bool processLoopStoreOfLoopLoad(Value *DestPtr, Value *SourcePtr, 215 const SCEV *StoreSize, MaybeAlign StoreAlign, 216 MaybeAlign LoadAlign, Instruction *TheStore, 217 Instruction *TheLoad, 218 const SCEVAddRecExpr *StoreEv, 219 const SCEVAddRecExpr *LoadEv, 220 const SCEV *BECount); 221 bool avoidLIRForMultiBlockLoop(bool IsMemset = false, 222 bool IsLoopMemset = false); 223 224 /// @} 225 /// \name Noncountable Loop Idiom Handling 226 /// @{ 227 228 bool runOnNoncountableLoop(); 229 230 bool recognizePopcount(); 231 void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, 232 PHINode *CntPhi, Value *Var); 233 bool isProfitableToInsertFFS(Intrinsic::ID IntrinID, Value *InitX, 234 bool ZeroCheck, size_t CanonicalSize); 235 bool insertFFSIfProfitable(Intrinsic::ID IntrinID, Value *InitX, 236 Instruction *DefX, PHINode *CntPhi, 237 Instruction *CntInst); 238 bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz 239 bool recognizeShiftUntilLessThan(); 240 void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB, 241 Instruction *CntInst, PHINode *CntPhi, 242 Value *Var, Instruction *DefX, 243 const DebugLoc &DL, bool ZeroCheck, 244 bool IsCntPhiUsedOutsideLoop, 245 bool InsertSub = false); 246 247 bool recognizeShiftUntilBitTest(); 248 bool recognizeShiftUntilZero(); 249 250 /// @} 251 }; 252 } // end anonymous namespace 253 254 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, 255 LoopStandardAnalysisResults &AR, 256 LPMUpdater &) { 257 if (DisableLIRP::All) 258 return PreservedAnalyses::all(); 259 260 const auto *DL = &L.getHeader()->getDataLayout(); 261 262 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis 263 // pass. Function analyses need to be preserved across loop transformations 264 // but ORE cannot be preserved (see comment before the pass definition). 265 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 266 267 LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, 268 AR.MSSA, DL, ORE); 269 if (!LIR.runOnLoop(&L)) 270 return PreservedAnalyses::all(); 271 272 auto PA = getLoopPassPreservedAnalyses(); 273 if (AR.MSSA) 274 PA.preserve<MemorySSAAnalysis>(); 275 return PA; 276 } 277 278 static void deleteDeadInstruction(Instruction *I) { 279 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 280 I->eraseFromParent(); 281 } 282 283 //===----------------------------------------------------------------------===// 284 // 285 // Implementation of LoopIdiomRecognize 286 // 287 //===----------------------------------------------------------------------===// 288 289 bool LoopIdiomRecognize::runOnLoop(Loop *L) { 290 CurLoop = L; 291 // If the loop could not be converted to canonical form, it must have an 292 // indirectbr in it, just give up. 293 if (!L->getLoopPreheader()) 294 return false; 295 296 // Disable loop idiom recognition if the function's name is a common idiom. 297 StringRef Name = L->getHeader()->getParent()->getName(); 298 if (Name == "memset" || Name == "memcpy") 299 return false; 300 301 // Determine if code size heuristics need to be applied. 302 ApplyCodeSizeHeuristics = 303 L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs; 304 305 HasMemset = TLI->has(LibFunc_memset); 306 HasMemsetPattern = TLI->has(LibFunc_memset_pattern16); 307 HasMemcpy = TLI->has(LibFunc_memcpy); 308 309 if (HasMemset || HasMemsetPattern || HasMemcpy) 310 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 311 return runOnCountableLoop(); 312 313 return runOnNoncountableLoop(); 314 } 315 316 bool LoopIdiomRecognize::runOnCountableLoop() { 317 const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); 318 assert(!isa<SCEVCouldNotCompute>(BECount) && 319 "runOnCountableLoop() called on a loop without a predictable" 320 "backedge-taken count"); 321 322 // If this loop executes exactly one time, then it should be peeled, not 323 // optimized by this pass. 324 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 325 if (BECst->getAPInt() == 0) 326 return false; 327 328 SmallVector<BasicBlock *, 8> ExitBlocks; 329 CurLoop->getUniqueExitBlocks(ExitBlocks); 330 331 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" 332 << CurLoop->getHeader()->getParent()->getName() 333 << "] Countable Loop %" << CurLoop->getHeader()->getName() 334 << "\n"); 335 336 // The following transforms hoist stores/memsets into the loop pre-header. 337 // Give up if the loop has instructions that may throw. 338 SimpleLoopSafetyInfo SafetyInfo; 339 SafetyInfo.computeLoopSafetyInfo(CurLoop); 340 if (SafetyInfo.anyBlockMayThrow()) 341 return false; 342 343 bool MadeChange = false; 344 345 // Scan all the blocks in the loop that are not in subloops. 346 for (auto *BB : CurLoop->getBlocks()) { 347 // Ignore blocks in subloops. 348 if (LI->getLoopFor(BB) != CurLoop) 349 continue; 350 351 MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); 352 } 353 return MadeChange; 354 } 355 356 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { 357 const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1)); 358 return ConstStride->getAPInt(); 359 } 360 361 /// getMemSetPatternValue - If a strided store of the specified value is safe to 362 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should 363 /// be passed in. Otherwise, return null. 364 /// 365 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these 366 /// just replicate their input array and then pass on to memset_pattern16. 367 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { 368 // FIXME: This could check for UndefValue because it can be merged into any 369 // other valid pattern. 370 371 // If the value isn't a constant, we can't promote it to being in a constant 372 // array. We could theoretically do a store to an alloca or something, but 373 // that doesn't seem worthwhile. 374 Constant *C = dyn_cast<Constant>(V); 375 if (!C || isa<ConstantExpr>(C)) 376 return nullptr; 377 378 // Only handle simple values that are a power of two bytes in size. 379 uint64_t Size = DL->getTypeSizeInBits(V->getType()); 380 if (Size == 0 || (Size & 7) || (Size & (Size - 1))) 381 return nullptr; 382 383 // Don't care enough about darwin/ppc to implement this. 384 if (DL->isBigEndian()) 385 return nullptr; 386 387 // Convert to size in bytes. 388 Size /= 8; 389 390 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see 391 // if the top and bottom are the same (e.g. for vectors and large integers). 392 if (Size > 16) 393 return nullptr; 394 395 // If the constant is exactly 16 bytes, just use it. 396 if (Size == 16) 397 return C; 398 399 // Otherwise, we'll use an array of the constants. 400 unsigned ArraySize = 16 / Size; 401 ArrayType *AT = ArrayType::get(V->getType(), ArraySize); 402 return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C)); 403 } 404 405 LoopIdiomRecognize::LegalStoreKind 406 LoopIdiomRecognize::isLegalStore(StoreInst *SI) { 407 // Don't touch volatile stores. 408 if (SI->isVolatile()) 409 return LegalStoreKind::None; 410 // We only want simple or unordered-atomic stores. 411 if (!SI->isUnordered()) 412 return LegalStoreKind::None; 413 414 // Avoid merging nontemporal stores. 415 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 416 return LegalStoreKind::None; 417 418 Value *StoredVal = SI->getValueOperand(); 419 Value *StorePtr = SI->getPointerOperand(); 420 421 // Don't convert stores of non-integral pointer types to memsets (which stores 422 // integers). 423 if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 424 return LegalStoreKind::None; 425 426 // Reject stores that are so large that they overflow an unsigned. 427 // When storing out scalable vectors we bail out for now, since the code 428 // below currently only works for constant strides. 429 TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); 430 if (SizeInBits.isScalable() || (SizeInBits.getFixedValue() & 7) || 431 (SizeInBits.getFixedValue() >> 32) != 0) 432 return LegalStoreKind::None; 433 434 // See if the pointer expression is an AddRec like {base,+,1} on the current 435 // loop, which indicates a strided store. If we have something else, it's a 436 // random store we can't handle. 437 const SCEVAddRecExpr *StoreEv = 438 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 439 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 440 return LegalStoreKind::None; 441 442 // Check to see if we have a constant stride. 443 if (!isa<SCEVConstant>(StoreEv->getOperand(1))) 444 return LegalStoreKind::None; 445 446 // See if the store can be turned into a memset. 447 448 // If the stored value is a byte-wise value (like i32 -1), then it may be 449 // turned into a memset of i8 -1, assuming that all the consecutive bytes 450 // are stored. A store of i32 0x01020304 can never be turned into a memset, 451 // but it can be turned into memset_pattern if the target supports it. 452 Value *SplatValue = isBytewiseValue(StoredVal, *DL); 453 454 // Note: memset and memset_pattern on unordered-atomic is yet not supported 455 bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple(); 456 457 // If we're allowed to form a memset, and the stored value would be 458 // acceptable for memset, use it. 459 if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset && 460 // Verify that the stored value is loop invariant. If not, we can't 461 // promote the memset. 462 CurLoop->isLoopInvariant(SplatValue)) { 463 // It looks like we can use SplatValue. 464 return LegalStoreKind::Memset; 465 } 466 if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset && 467 // Don't create memset_pattern16s with address spaces. 468 StorePtr->getType()->getPointerAddressSpace() == 0 && 469 getMemSetPatternValue(StoredVal, DL)) { 470 // It looks like we can use PatternValue! 471 return LegalStoreKind::MemsetPattern; 472 } 473 474 // Otherwise, see if the store can be turned into a memcpy. 475 if (HasMemcpy && !DisableLIRP::Memcpy) { 476 // Check to see if the stride matches the size of the store. If so, then we 477 // know that every byte is touched in the loop. 478 APInt Stride = getStoreStride(StoreEv); 479 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 480 if (StoreSize != Stride && StoreSize != -Stride) 481 return LegalStoreKind::None; 482 483 // The store must be feeding a non-volatile load. 484 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); 485 486 // Only allow non-volatile loads 487 if (!LI || LI->isVolatile()) 488 return LegalStoreKind::None; 489 // Only allow simple or unordered-atomic loads 490 if (!LI->isUnordered()) 491 return LegalStoreKind::None; 492 493 // See if the pointer expression is an AddRec like {base,+,1} on the current 494 // loop, which indicates a strided load. If we have something else, it's a 495 // random load we can't handle. 496 const SCEVAddRecExpr *LoadEv = 497 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 498 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 499 return LegalStoreKind::None; 500 501 // The store and load must share the same stride. 502 if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) 503 return LegalStoreKind::None; 504 505 // Success. This store can be converted into a memcpy. 506 UnorderedAtomic = UnorderedAtomic || LI->isAtomic(); 507 return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy 508 : LegalStoreKind::Memcpy; 509 } 510 // This store can't be transformed into a memset/memcpy. 511 return LegalStoreKind::None; 512 } 513 514 void LoopIdiomRecognize::collectStores(BasicBlock *BB) { 515 StoreRefsForMemset.clear(); 516 StoreRefsForMemsetPattern.clear(); 517 StoreRefsForMemcpy.clear(); 518 for (Instruction &I : *BB) { 519 StoreInst *SI = dyn_cast<StoreInst>(&I); 520 if (!SI) 521 continue; 522 523 // Make sure this is a strided store with a constant stride. 524 switch (isLegalStore(SI)) { 525 case LegalStoreKind::None: 526 // Nothing to do 527 break; 528 case LegalStoreKind::Memset: { 529 // Find the base pointer. 530 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 531 StoreRefsForMemset[Ptr].push_back(SI); 532 } break; 533 case LegalStoreKind::MemsetPattern: { 534 // Find the base pointer. 535 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 536 StoreRefsForMemsetPattern[Ptr].push_back(SI); 537 } break; 538 case LegalStoreKind::Memcpy: 539 case LegalStoreKind::UnorderedAtomicMemcpy: 540 StoreRefsForMemcpy.push_back(SI); 541 break; 542 default: 543 assert(false && "unhandled return value"); 544 break; 545 } 546 } 547 } 548 549 /// runOnLoopBlock - Process the specified block, which lives in a counted loop 550 /// with the specified backedge count. This block is known to be in the current 551 /// loop and not in any subloops. 552 bool LoopIdiomRecognize::runOnLoopBlock( 553 BasicBlock *BB, const SCEV *BECount, 554 SmallVectorImpl<BasicBlock *> &ExitBlocks) { 555 // We can only promote stores in this block if they are unconditionally 556 // executed in the loop. For a block to be unconditionally executed, it has 557 // to dominate all the exit blocks of the loop. Verify this now. 558 for (BasicBlock *ExitBlock : ExitBlocks) 559 if (!DT->dominates(BB, ExitBlock)) 560 return false; 561 562 bool MadeChange = false; 563 // Look for store instructions, which may be optimized to memset/memcpy. 564 collectStores(BB); 565 566 // Look for a single store or sets of stores with a common base, which can be 567 // optimized into a memset (memset_pattern). The latter most commonly happens 568 // with structs and handunrolled loops. 569 for (auto &SL : StoreRefsForMemset) 570 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes); 571 572 for (auto &SL : StoreRefsForMemsetPattern) 573 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No); 574 575 // Optimize the store into a memcpy, if it feeds an similarly strided load. 576 for (auto &SI : StoreRefsForMemcpy) 577 MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); 578 579 MadeChange |= processLoopMemIntrinsic<MemCpyInst>( 580 BB, &LoopIdiomRecognize::processLoopMemCpy, BECount); 581 MadeChange |= processLoopMemIntrinsic<MemSetInst>( 582 BB, &LoopIdiomRecognize::processLoopMemSet, BECount); 583 584 return MadeChange; 585 } 586 587 /// See if this store(s) can be promoted to a memset. 588 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, 589 const SCEV *BECount, ForMemset For) { 590 // Try to find consecutive stores that can be transformed into memsets. 591 SetVector<StoreInst *> Heads, Tails; 592 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 593 594 // Do a quadratic search on all of the given stores and find 595 // all of the pairs of stores that follow each other. 596 SmallVector<unsigned, 16> IndexQueue; 597 for (unsigned i = 0, e = SL.size(); i < e; ++i) { 598 assert(SL[i]->isSimple() && "Expected only non-volatile stores."); 599 600 Value *FirstStoredVal = SL[i]->getValueOperand(); 601 Value *FirstStorePtr = SL[i]->getPointerOperand(); 602 const SCEVAddRecExpr *FirstStoreEv = 603 cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr)); 604 APInt FirstStride = getStoreStride(FirstStoreEv); 605 unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType()); 606 607 // See if we can optimize just this store in isolation. 608 if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { 609 Heads.insert(SL[i]); 610 continue; 611 } 612 613 Value *FirstSplatValue = nullptr; 614 Constant *FirstPatternValue = nullptr; 615 616 if (For == ForMemset::Yes) 617 FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL); 618 else 619 FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL); 620 621 assert((FirstSplatValue || FirstPatternValue) && 622 "Expected either splat value or pattern value."); 623 624 IndexQueue.clear(); 625 // If a store has multiple consecutive store candidates, search Stores 626 // array according to the sequence: from i+1 to e, then from i-1 to 0. 627 // This is because usually pairing with immediate succeeding or preceding 628 // candidate create the best chance to find memset opportunity. 629 unsigned j = 0; 630 for (j = i + 1; j < e; ++j) 631 IndexQueue.push_back(j); 632 for (j = i; j > 0; --j) 633 IndexQueue.push_back(j - 1); 634 635 for (auto &k : IndexQueue) { 636 assert(SL[k]->isSimple() && "Expected only non-volatile stores."); 637 Value *SecondStorePtr = SL[k]->getPointerOperand(); 638 const SCEVAddRecExpr *SecondStoreEv = 639 cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr)); 640 APInt SecondStride = getStoreStride(SecondStoreEv); 641 642 if (FirstStride != SecondStride) 643 continue; 644 645 Value *SecondStoredVal = SL[k]->getValueOperand(); 646 Value *SecondSplatValue = nullptr; 647 Constant *SecondPatternValue = nullptr; 648 649 if (For == ForMemset::Yes) 650 SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL); 651 else 652 SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL); 653 654 assert((SecondSplatValue || SecondPatternValue) && 655 "Expected either splat value or pattern value."); 656 657 if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) { 658 if (For == ForMemset::Yes) { 659 if (isa<UndefValue>(FirstSplatValue)) 660 FirstSplatValue = SecondSplatValue; 661 if (FirstSplatValue != SecondSplatValue) 662 continue; 663 } else { 664 if (isa<UndefValue>(FirstPatternValue)) 665 FirstPatternValue = SecondPatternValue; 666 if (FirstPatternValue != SecondPatternValue) 667 continue; 668 } 669 Tails.insert(SL[k]); 670 Heads.insert(SL[i]); 671 ConsecutiveChain[SL[i]] = SL[k]; 672 break; 673 } 674 } 675 } 676 677 // We may run into multiple chains that merge into a single chain. We mark the 678 // stores that we transformed so that we don't visit the same store twice. 679 SmallPtrSet<Value *, 16> TransformedStores; 680 bool Changed = false; 681 682 // For stores that start but don't end a link in the chain: 683 for (StoreInst *I : Heads) { 684 if (Tails.count(I)) 685 continue; 686 687 // We found a store instr that starts a chain. Now follow the chain and try 688 // to transform it. 689 SmallPtrSet<Instruction *, 8> AdjacentStores; 690 StoreInst *HeadStore = I; 691 unsigned StoreSize = 0; 692 693 // Collect the chain into a list. 694 while (Tails.count(I) || Heads.count(I)) { 695 if (TransformedStores.count(I)) 696 break; 697 AdjacentStores.insert(I); 698 699 StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType()); 700 // Move to the next value in the chain. 701 I = ConsecutiveChain[I]; 702 } 703 704 Value *StoredVal = HeadStore->getValueOperand(); 705 Value *StorePtr = HeadStore->getPointerOperand(); 706 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 707 APInt Stride = getStoreStride(StoreEv); 708 709 // Check to see if the stride matches the size of the stores. If so, then 710 // we know that every byte is touched in the loop. 711 if (StoreSize != Stride && StoreSize != -Stride) 712 continue; 713 714 bool IsNegStride = StoreSize == -Stride; 715 716 Type *IntIdxTy = DL->getIndexType(StorePtr->getType()); 717 const SCEV *StoreSizeSCEV = SE->getConstant(IntIdxTy, StoreSize); 718 if (processLoopStridedStore(StorePtr, StoreSizeSCEV, 719 MaybeAlign(HeadStore->getAlign()), StoredVal, 720 HeadStore, AdjacentStores, StoreEv, BECount, 721 IsNegStride)) { 722 TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); 723 Changed = true; 724 } 725 } 726 727 return Changed; 728 } 729 730 /// processLoopMemIntrinsic - Template function for calling different processor 731 /// functions based on mem intrinsic type. 732 template <typename MemInst> 733 bool LoopIdiomRecognize::processLoopMemIntrinsic( 734 BasicBlock *BB, 735 bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *), 736 const SCEV *BECount) { 737 bool MadeChange = false; 738 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 739 Instruction *Inst = &*I++; 740 // Look for memory instructions, which may be optimized to a larger one. 741 if (MemInst *MI = dyn_cast<MemInst>(Inst)) { 742 WeakTrackingVH InstPtr(&*I); 743 if (!(this->*Processor)(MI, BECount)) 744 continue; 745 MadeChange = true; 746 747 // If processing the instruction invalidated our iterator, start over from 748 // the top of the block. 749 if (!InstPtr) 750 I = BB->begin(); 751 } 752 } 753 return MadeChange; 754 } 755 756 /// processLoopMemCpy - See if this memcpy can be promoted to a large memcpy 757 bool LoopIdiomRecognize::processLoopMemCpy(MemCpyInst *MCI, 758 const SCEV *BECount) { 759 // We can only handle non-volatile memcpys with a constant size. 760 if (MCI->isVolatile() || !isa<ConstantInt>(MCI->getLength())) 761 return false; 762 763 // If we're not allowed to hack on memcpy, we fail. 764 if ((!HasMemcpy && !isa<MemCpyInlineInst>(MCI)) || DisableLIRP::Memcpy) 765 return false; 766 767 Value *Dest = MCI->getDest(); 768 Value *Source = MCI->getSource(); 769 if (!Dest || !Source) 770 return false; 771 772 // See if the load and store pointer expressions are AddRec like {base,+,1} on 773 // the current loop, which indicates a strided load and store. If we have 774 // something else, it's a random load or store we can't handle. 775 const SCEVAddRecExpr *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Dest)); 776 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 777 return false; 778 const SCEVAddRecExpr *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Source)); 779 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 780 return false; 781 782 // Reject memcpys that are so large that they overflow an unsigned. 783 uint64_t SizeInBytes = cast<ConstantInt>(MCI->getLength())->getZExtValue(); 784 if ((SizeInBytes >> 32) != 0) 785 return false; 786 787 // Check if the stride matches the size of the memcpy. If so, then we know 788 // that every byte is touched in the loop. 789 const SCEVConstant *ConstStoreStride = 790 dyn_cast<SCEVConstant>(StoreEv->getOperand(1)); 791 const SCEVConstant *ConstLoadStride = 792 dyn_cast<SCEVConstant>(LoadEv->getOperand(1)); 793 if (!ConstStoreStride || !ConstLoadStride) 794 return false; 795 796 APInt StoreStrideValue = ConstStoreStride->getAPInt(); 797 APInt LoadStrideValue = ConstLoadStride->getAPInt(); 798 // Huge stride value - give up 799 if (StoreStrideValue.getBitWidth() > 64 || LoadStrideValue.getBitWidth() > 64) 800 return false; 801 802 if (SizeInBytes != StoreStrideValue && SizeInBytes != -StoreStrideValue) { 803 ORE.emit([&]() { 804 return OptimizationRemarkMissed(DEBUG_TYPE, "SizeStrideUnequal", MCI) 805 << ore::NV("Inst", "memcpy") << " in " 806 << ore::NV("Function", MCI->getFunction()) 807 << " function will not be hoisted: " 808 << ore::NV("Reason", "memcpy size is not equal to stride"); 809 }); 810 return false; 811 } 812 813 int64_t StoreStrideInt = StoreStrideValue.getSExtValue(); 814 int64_t LoadStrideInt = LoadStrideValue.getSExtValue(); 815 // Check if the load stride matches the store stride. 816 if (StoreStrideInt != LoadStrideInt) 817 return false; 818 819 return processLoopStoreOfLoopLoad( 820 Dest, Source, SE->getConstant(Dest->getType(), SizeInBytes), 821 MCI->getDestAlign(), MCI->getSourceAlign(), MCI, MCI, StoreEv, LoadEv, 822 BECount); 823 } 824 825 /// processLoopMemSet - See if this memset can be promoted to a large memset. 826 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, 827 const SCEV *BECount) { 828 // We can only handle non-volatile memsets. 829 if (MSI->isVolatile()) 830 return false; 831 832 // If we're not allowed to hack on memset, we fail. 833 if (!HasMemset || DisableLIRP::Memset) 834 return false; 835 836 Value *Pointer = MSI->getDest(); 837 838 // See if the pointer expression is an AddRec like {base,+,1} on the current 839 // loop, which indicates a strided store. If we have something else, it's a 840 // random store we can't handle. 841 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); 842 if (!Ev || Ev->getLoop() != CurLoop) 843 return false; 844 if (!Ev->isAffine()) { 845 LLVM_DEBUG(dbgs() << " Pointer is not affine, abort\n"); 846 return false; 847 } 848 849 const SCEV *PointerStrideSCEV = Ev->getOperand(1); 850 const SCEV *MemsetSizeSCEV = SE->getSCEV(MSI->getLength()); 851 if (!PointerStrideSCEV || !MemsetSizeSCEV) 852 return false; 853 854 bool IsNegStride = false; 855 const bool IsConstantSize = isa<ConstantInt>(MSI->getLength()); 856 857 if (IsConstantSize) { 858 // Memset size is constant. 859 // Check if the pointer stride matches the memset size. If so, then 860 // we know that every byte is touched in the loop. 861 LLVM_DEBUG(dbgs() << " memset size is constant\n"); 862 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 863 const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); 864 if (!ConstStride) 865 return false; 866 867 APInt Stride = ConstStride->getAPInt(); 868 if (SizeInBytes != Stride && SizeInBytes != -Stride) 869 return false; 870 871 IsNegStride = SizeInBytes == -Stride; 872 } else { 873 // Memset size is non-constant. 874 // Check if the pointer stride matches the memset size. 875 // To be conservative, the pass would not promote pointers that aren't in 876 // address space zero. Also, the pass only handles memset length and stride 877 // that are invariant for the top level loop. 878 LLVM_DEBUG(dbgs() << " memset size is non-constant\n"); 879 if (Pointer->getType()->getPointerAddressSpace() != 0) { 880 LLVM_DEBUG(dbgs() << " pointer is not in address space zero, " 881 << "abort\n"); 882 return false; 883 } 884 if (!SE->isLoopInvariant(MemsetSizeSCEV, CurLoop)) { 885 LLVM_DEBUG(dbgs() << " memset size is not a loop-invariant, " 886 << "abort\n"); 887 return false; 888 } 889 890 // Compare positive direction PointerStrideSCEV with MemsetSizeSCEV 891 IsNegStride = PointerStrideSCEV->isNonConstantNegative(); 892 const SCEV *PositiveStrideSCEV = 893 IsNegStride ? SE->getNegativeSCEV(PointerStrideSCEV) 894 : PointerStrideSCEV; 895 LLVM_DEBUG(dbgs() << " MemsetSizeSCEV: " << *MemsetSizeSCEV << "\n" 896 << " PositiveStrideSCEV: " << *PositiveStrideSCEV 897 << "\n"); 898 899 if (PositiveStrideSCEV != MemsetSizeSCEV) { 900 // If an expression is covered by the loop guard, compare again and 901 // proceed with optimization if equal. 902 const SCEV *FoldedPositiveStride = 903 SE->applyLoopGuards(PositiveStrideSCEV, CurLoop); 904 const SCEV *FoldedMemsetSize = 905 SE->applyLoopGuards(MemsetSizeSCEV, CurLoop); 906 907 LLVM_DEBUG(dbgs() << " Try to fold SCEV based on loop guard\n" 908 << " FoldedMemsetSize: " << *FoldedMemsetSize << "\n" 909 << " FoldedPositiveStride: " << *FoldedPositiveStride 910 << "\n"); 911 912 if (FoldedPositiveStride != FoldedMemsetSize) { 913 LLVM_DEBUG(dbgs() << " SCEV don't match, abort\n"); 914 return false; 915 } 916 } 917 } 918 919 // Verify that the memset value is loop invariant. If not, we can't promote 920 // the memset. 921 Value *SplatValue = MSI->getValue(); 922 if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue)) 923 return false; 924 925 SmallPtrSet<Instruction *, 1> MSIs; 926 MSIs.insert(MSI); 927 return processLoopStridedStore(Pointer, SE->getSCEV(MSI->getLength()), 928 MSI->getDestAlign(), SplatValue, MSI, MSIs, Ev, 929 BECount, IsNegStride, /*IsLoopMemset=*/true); 930 } 931 932 /// mayLoopAccessLocation - Return true if the specified loop might access the 933 /// specified pointer location, which is a loop-strided access. The 'Access' 934 /// argument specifies what the verboten forms of access are (read or write). 935 static bool 936 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, 937 const SCEV *BECount, const SCEV *StoreSizeSCEV, 938 AliasAnalysis &AA, 939 SmallPtrSetImpl<Instruction *> &IgnoredInsts) { 940 // Get the location that may be stored across the loop. Since the access is 941 // strided positively through memory, we say that the modified location starts 942 // at the pointer and has infinite size. 943 LocationSize AccessSize = LocationSize::afterPointer(); 944 945 // If the loop iterates a fixed number of times, we can refine the access size 946 // to be exactly the size of the memset, which is (BECount+1)*StoreSize 947 const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount); 948 const SCEVConstant *ConstSize = dyn_cast<SCEVConstant>(StoreSizeSCEV); 949 if (BECst && ConstSize) { 950 std::optional<uint64_t> BEInt = BECst->getAPInt().tryZExtValue(); 951 std::optional<uint64_t> SizeInt = ConstSize->getAPInt().tryZExtValue(); 952 // FIXME: Should this check for overflow? 953 if (BEInt && SizeInt) 954 AccessSize = LocationSize::precise((*BEInt + 1) * *SizeInt); 955 } 956 957 // TODO: For this to be really effective, we have to dive into the pointer 958 // operand in the store. Store to &A[i] of 100 will always return may alias 959 // with store of &A[100], we need to StoreLoc to be "A" with size of 100, 960 // which will then no-alias a store to &A[100]. 961 MemoryLocation StoreLoc(Ptr, AccessSize); 962 963 for (BasicBlock *B : L->blocks()) 964 for (Instruction &I : *B) 965 if (!IgnoredInsts.contains(&I) && 966 isModOrRefSet(AA.getModRefInfo(&I, StoreLoc) & Access)) 967 return true; 968 return false; 969 } 970 971 // If we have a negative stride, Start refers to the end of the memory location 972 // we're trying to memset. Therefore, we need to recompute the base pointer, 973 // which is just Start - BECount*Size. 974 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, 975 Type *IntPtr, const SCEV *StoreSizeSCEV, 976 ScalarEvolution *SE) { 977 const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr); 978 if (!StoreSizeSCEV->isOne()) { 979 // index = back edge count * store size 980 Index = SE->getMulExpr(Index, 981 SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr), 982 SCEV::FlagNUW); 983 } 984 // base pointer = start - index * store size 985 return SE->getMinusSCEV(Start, Index); 986 } 987 988 /// Compute the number of bytes as a SCEV from the backedge taken count. 989 /// 990 /// This also maps the SCEV into the provided type and tries to handle the 991 /// computation in a way that will fold cleanly. 992 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr, 993 const SCEV *StoreSizeSCEV, Loop *CurLoop, 994 const DataLayout *DL, ScalarEvolution *SE) { 995 const SCEV *TripCountSCEV = 996 SE->getTripCountFromExitCount(BECount, IntPtr, CurLoop); 997 return SE->getMulExpr(TripCountSCEV, 998 SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr), 999 SCEV::FlagNUW); 1000 } 1001 1002 /// processLoopStridedStore - We see a strided store of some value. If we can 1003 /// transform this into a memset or memset_pattern in the loop preheader, do so. 1004 bool LoopIdiomRecognize::processLoopStridedStore( 1005 Value *DestPtr, const SCEV *StoreSizeSCEV, MaybeAlign StoreAlignment, 1006 Value *StoredVal, Instruction *TheStore, 1007 SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, 1008 const SCEV *BECount, bool IsNegStride, bool IsLoopMemset) { 1009 Module *M = TheStore->getModule(); 1010 Value *SplatValue = isBytewiseValue(StoredVal, *DL); 1011 Constant *PatternValue = nullptr; 1012 1013 if (!SplatValue) 1014 PatternValue = getMemSetPatternValue(StoredVal, DL); 1015 1016 assert((SplatValue || PatternValue) && 1017 "Expected either splat value or pattern value."); 1018 1019 // The trip count of the loop and the base pointer of the addrec SCEV is 1020 // guaranteed to be loop invariant, which means that it should dominate the 1021 // header. This allows us to insert code for it in the preheader. 1022 unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); 1023 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1024 IRBuilder<> Builder(Preheader->getTerminator()); 1025 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 1026 SCEVExpanderCleaner ExpCleaner(Expander); 1027 1028 Type *DestInt8PtrTy = Builder.getPtrTy(DestAS); 1029 Type *IntIdxTy = DL->getIndexType(DestPtr->getType()); 1030 1031 bool Changed = false; 1032 const SCEV *Start = Ev->getStart(); 1033 // Handle negative strided loops. 1034 if (IsNegStride) 1035 Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSizeSCEV, SE); 1036 1037 // TODO: ideally we should still be able to generate memset if SCEV expander 1038 // is taught to generate the dependencies at the latest point. 1039 if (!Expander.isSafeToExpand(Start)) 1040 return Changed; 1041 1042 // Okay, we have a strided store "p[i]" of a splattable value. We can turn 1043 // this into a memset in the loop preheader now if we want. However, this 1044 // would be unsafe to do if there is anything else in the loop that may read 1045 // or write to the aliased location. Check for any overlap by generating the 1046 // base pointer and checking the region. 1047 Value *BasePtr = 1048 Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator()); 1049 1050 // From here on out, conservatively report to the pass manager that we've 1051 // changed the IR, even if we later clean up these added instructions. There 1052 // may be structural differences e.g. in the order of use lists not accounted 1053 // for in just a textual dump of the IR. This is written as a variable, even 1054 // though statically all the places this dominates could be replaced with 1055 // 'true', with the hope that anyone trying to be clever / "more precise" with 1056 // the return value will read this comment, and leave them alone. 1057 Changed = true; 1058 1059 if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount, 1060 StoreSizeSCEV, *AA, Stores)) 1061 return Changed; 1062 1063 if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset)) 1064 return Changed; 1065 1066 // Okay, everything looks good, insert the memset. 1067 1068 const SCEV *NumBytesS = 1069 getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE); 1070 1071 // TODO: ideally we should still be able to generate memset if SCEV expander 1072 // is taught to generate the dependencies at the latest point. 1073 if (!Expander.isSafeToExpand(NumBytesS)) 1074 return Changed; 1075 1076 Value *NumBytes = 1077 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); 1078 1079 if (!SplatValue && !isLibFuncEmittable(M, TLI, LibFunc_memset_pattern16)) 1080 return Changed; 1081 1082 AAMDNodes AATags = TheStore->getAAMetadata(); 1083 for (Instruction *Store : Stores) 1084 AATags = AATags.merge(Store->getAAMetadata()); 1085 if (auto CI = dyn_cast<ConstantInt>(NumBytes)) 1086 AATags = AATags.extendTo(CI->getZExtValue()); 1087 else 1088 AATags = AATags.extendTo(-1); 1089 1090 CallInst *NewCall; 1091 if (SplatValue) { 1092 NewCall = Builder.CreateMemSet( 1093 BasePtr, SplatValue, NumBytes, MaybeAlign(StoreAlignment), 1094 /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias); 1095 } else { 1096 assert (isLibFuncEmittable(M, TLI, LibFunc_memset_pattern16)); 1097 // Everything is emitted in default address space 1098 Type *Int8PtrTy = DestInt8PtrTy; 1099 1100 StringRef FuncName = "memset_pattern16"; 1101 FunctionCallee MSP = getOrInsertLibFunc(M, *TLI, LibFunc_memset_pattern16, 1102 Builder.getVoidTy(), Int8PtrTy, Int8PtrTy, IntIdxTy); 1103 inferNonMandatoryLibFuncAttrs(M, FuncName, *TLI); 1104 1105 // Otherwise we should form a memset_pattern16. PatternValue is known to be 1106 // an constant array of 16-bytes. Plop the value into a mergable global. 1107 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, 1108 GlobalValue::PrivateLinkage, 1109 PatternValue, ".memset_pattern"); 1110 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these. 1111 GV->setAlignment(Align(16)); 1112 Value *PatternPtr = GV; 1113 NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes}); 1114 1115 // Set the TBAA info if present. 1116 if (AATags.TBAA) 1117 NewCall->setMetadata(LLVMContext::MD_tbaa, AATags.TBAA); 1118 1119 if (AATags.Scope) 1120 NewCall->setMetadata(LLVMContext::MD_alias_scope, AATags.Scope); 1121 1122 if (AATags.NoAlias) 1123 NewCall->setMetadata(LLVMContext::MD_noalias, AATags.NoAlias); 1124 } 1125 1126 NewCall->setDebugLoc(TheStore->getDebugLoc()); 1127 1128 if (MSSAU) { 1129 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1130 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); 1131 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1132 } 1133 1134 LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" 1135 << " from store to: " << *Ev << " at: " << *TheStore 1136 << "\n"); 1137 1138 ORE.emit([&]() { 1139 OptimizationRemark R(DEBUG_TYPE, "ProcessLoopStridedStore", 1140 NewCall->getDebugLoc(), Preheader); 1141 R << "Transformed loop-strided store in " 1142 << ore::NV("Function", TheStore->getFunction()) 1143 << " function into a call to " 1144 << ore::NV("NewFunction", NewCall->getCalledFunction()) 1145 << "() intrinsic"; 1146 if (!Stores.empty()) 1147 R << ore::setExtraArgs(); 1148 for (auto *I : Stores) { 1149 R << ore::NV("FromBlock", I->getParent()->getName()) 1150 << ore::NV("ToBlock", Preheader->getName()); 1151 } 1152 return R; 1153 }); 1154 1155 // Okay, the memset has been formed. Zap the original store and anything that 1156 // feeds into it. 1157 for (auto *I : Stores) { 1158 if (MSSAU) 1159 MSSAU->removeMemoryAccess(I, true); 1160 deleteDeadInstruction(I); 1161 } 1162 if (MSSAU && VerifyMemorySSA) 1163 MSSAU->getMemorySSA()->verifyMemorySSA(); 1164 ++NumMemSet; 1165 ExpCleaner.markResultUsed(); 1166 return true; 1167 } 1168 1169 /// If the stored value is a strided load in the same loop with the same stride 1170 /// this may be transformable into a memcpy. This kicks in for stuff like 1171 /// for (i) A[i] = B[i]; 1172 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, 1173 const SCEV *BECount) { 1174 assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores."); 1175 1176 Value *StorePtr = SI->getPointerOperand(); 1177 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 1178 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 1179 1180 // The store must be feeding a non-volatile load. 1181 LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); 1182 assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads."); 1183 1184 // See if the pointer expression is an AddRec like {base,+,1} on the current 1185 // loop, which indicates a strided load. If we have something else, it's a 1186 // random load we can't handle. 1187 Value *LoadPtr = LI->getPointerOperand(); 1188 const SCEVAddRecExpr *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr)); 1189 1190 const SCEV *StoreSizeSCEV = SE->getConstant(StorePtr->getType(), StoreSize); 1191 return processLoopStoreOfLoopLoad(StorePtr, LoadPtr, StoreSizeSCEV, 1192 SI->getAlign(), LI->getAlign(), SI, LI, 1193 StoreEv, LoadEv, BECount); 1194 } 1195 1196 namespace { 1197 class MemmoveVerifier { 1198 public: 1199 explicit MemmoveVerifier(const Value &LoadBasePtr, const Value &StoreBasePtr, 1200 const DataLayout &DL) 1201 : DL(DL), BP1(llvm::GetPointerBaseWithConstantOffset( 1202 LoadBasePtr.stripPointerCasts(), LoadOff, DL)), 1203 BP2(llvm::GetPointerBaseWithConstantOffset( 1204 StoreBasePtr.stripPointerCasts(), StoreOff, DL)), 1205 IsSameObject(BP1 == BP2) {} 1206 1207 bool loadAndStoreMayFormMemmove(unsigned StoreSize, bool IsNegStride, 1208 const Instruction &TheLoad, 1209 bool IsMemCpy) const { 1210 if (IsMemCpy) { 1211 // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr 1212 // for negative stride. 1213 if ((!IsNegStride && LoadOff <= StoreOff) || 1214 (IsNegStride && LoadOff >= StoreOff)) 1215 return false; 1216 } else { 1217 // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr 1218 // for negative stride. LoadBasePtr shouldn't overlap with StoreBasePtr. 1219 int64_t LoadSize = 1220 DL.getTypeSizeInBits(TheLoad.getType()).getFixedValue() / 8; 1221 if (BP1 != BP2 || LoadSize != int64_t(StoreSize)) 1222 return false; 1223 if ((!IsNegStride && LoadOff < StoreOff + int64_t(StoreSize)) || 1224 (IsNegStride && LoadOff + LoadSize > StoreOff)) 1225 return false; 1226 } 1227 return true; 1228 } 1229 1230 private: 1231 const DataLayout &DL; 1232 int64_t LoadOff = 0; 1233 int64_t StoreOff = 0; 1234 const Value *BP1; 1235 const Value *BP2; 1236 1237 public: 1238 const bool IsSameObject; 1239 }; 1240 } // namespace 1241 1242 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad( 1243 Value *DestPtr, Value *SourcePtr, const SCEV *StoreSizeSCEV, 1244 MaybeAlign StoreAlign, MaybeAlign LoadAlign, Instruction *TheStore, 1245 Instruction *TheLoad, const SCEVAddRecExpr *StoreEv, 1246 const SCEVAddRecExpr *LoadEv, const SCEV *BECount) { 1247 1248 // FIXME: until llvm.memcpy.inline supports dynamic sizes, we need to 1249 // conservatively bail here, since otherwise we may have to transform 1250 // llvm.memcpy.inline into llvm.memcpy which is illegal. 1251 if (isa<MemCpyInlineInst>(TheStore)) 1252 return false; 1253 1254 // The trip count of the loop and the base pointer of the addrec SCEV is 1255 // guaranteed to be loop invariant, which means that it should dominate the 1256 // header. This allows us to insert code for it in the preheader. 1257 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1258 IRBuilder<> Builder(Preheader->getTerminator()); 1259 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 1260 1261 SCEVExpanderCleaner ExpCleaner(Expander); 1262 1263 bool Changed = false; 1264 const SCEV *StrStart = StoreEv->getStart(); 1265 unsigned StrAS = DestPtr->getType()->getPointerAddressSpace(); 1266 Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS)); 1267 1268 APInt Stride = getStoreStride(StoreEv); 1269 const SCEVConstant *ConstStoreSize = dyn_cast<SCEVConstant>(StoreSizeSCEV); 1270 1271 // TODO: Deal with non-constant size; Currently expect constant store size 1272 assert(ConstStoreSize && "store size is expected to be a constant"); 1273 1274 int64_t StoreSize = ConstStoreSize->getValue()->getZExtValue(); 1275 bool IsNegStride = StoreSize == -Stride; 1276 1277 // Handle negative strided loops. 1278 if (IsNegStride) 1279 StrStart = 1280 getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSizeSCEV, SE); 1281 1282 // Okay, we have a strided store "p[i]" of a loaded value. We can turn 1283 // this into a memcpy in the loop preheader now if we want. However, this 1284 // would be unsafe to do if there is anything else in the loop that may read 1285 // or write the memory region we're storing to. This includes the load that 1286 // feeds the stores. Check for an alias by generating the base address and 1287 // checking everything. 1288 Value *StoreBasePtr = Expander.expandCodeFor( 1289 StrStart, Builder.getPtrTy(StrAS), Preheader->getTerminator()); 1290 1291 // From here on out, conservatively report to the pass manager that we've 1292 // changed the IR, even if we later clean up these added instructions. There 1293 // may be structural differences e.g. in the order of use lists not accounted 1294 // for in just a textual dump of the IR. This is written as a variable, even 1295 // though statically all the places this dominates could be replaced with 1296 // 'true', with the hope that anyone trying to be clever / "more precise" with 1297 // the return value will read this comment, and leave them alone. 1298 Changed = true; 1299 1300 SmallPtrSet<Instruction *, 2> IgnoredInsts; 1301 IgnoredInsts.insert(TheStore); 1302 1303 bool IsMemCpy = isa<MemCpyInst>(TheStore); 1304 const StringRef InstRemark = IsMemCpy ? "memcpy" : "load and store"; 1305 1306 bool LoopAccessStore = 1307 mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount, 1308 StoreSizeSCEV, *AA, IgnoredInsts); 1309 if (LoopAccessStore) { 1310 // For memmove case it's not enough to guarantee that loop doesn't access 1311 // TheStore and TheLoad. Additionally we need to make sure that TheStore is 1312 // the only user of TheLoad. 1313 if (!TheLoad->hasOneUse()) 1314 return Changed; 1315 IgnoredInsts.insert(TheLoad); 1316 if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, 1317 BECount, StoreSizeSCEV, *AA, IgnoredInsts)) { 1318 ORE.emit([&]() { 1319 return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessStore", 1320 TheStore) 1321 << ore::NV("Inst", InstRemark) << " in " 1322 << ore::NV("Function", TheStore->getFunction()) 1323 << " function will not be hoisted: " 1324 << ore::NV("Reason", "The loop may access store location"); 1325 }); 1326 return Changed; 1327 } 1328 IgnoredInsts.erase(TheLoad); 1329 } 1330 1331 const SCEV *LdStart = LoadEv->getStart(); 1332 unsigned LdAS = SourcePtr->getType()->getPointerAddressSpace(); 1333 1334 // Handle negative strided loops. 1335 if (IsNegStride) 1336 LdStart = 1337 getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSizeSCEV, SE); 1338 1339 // For a memcpy, we have to make sure that the input array is not being 1340 // mutated by the loop. 1341 Value *LoadBasePtr = Expander.expandCodeFor(LdStart, Builder.getPtrTy(LdAS), 1342 Preheader->getTerminator()); 1343 1344 // If the store is a memcpy instruction, we must check if it will write to 1345 // the load memory locations. So remove it from the ignored stores. 1346 MemmoveVerifier Verifier(*LoadBasePtr, *StoreBasePtr, *DL); 1347 if (IsMemCpy && !Verifier.IsSameObject) 1348 IgnoredInsts.erase(TheStore); 1349 if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount, 1350 StoreSizeSCEV, *AA, IgnoredInsts)) { 1351 ORE.emit([&]() { 1352 return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessLoad", TheLoad) 1353 << ore::NV("Inst", InstRemark) << " in " 1354 << ore::NV("Function", TheStore->getFunction()) 1355 << " function will not be hoisted: " 1356 << ore::NV("Reason", "The loop may access load location"); 1357 }); 1358 return Changed; 1359 } 1360 1361 bool UseMemMove = IsMemCpy ? Verifier.IsSameObject : LoopAccessStore; 1362 if (UseMemMove) 1363 if (!Verifier.loadAndStoreMayFormMemmove(StoreSize, IsNegStride, *TheLoad, 1364 IsMemCpy)) 1365 return Changed; 1366 1367 if (avoidLIRForMultiBlockLoop()) 1368 return Changed; 1369 1370 // Okay, everything is safe, we can transform this! 1371 1372 const SCEV *NumBytesS = 1373 getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE); 1374 1375 Value *NumBytes = 1376 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); 1377 1378 AAMDNodes AATags = TheLoad->getAAMetadata(); 1379 AAMDNodes StoreAATags = TheStore->getAAMetadata(); 1380 AATags = AATags.merge(StoreAATags); 1381 if (auto CI = dyn_cast<ConstantInt>(NumBytes)) 1382 AATags = AATags.extendTo(CI->getZExtValue()); 1383 else 1384 AATags = AATags.extendTo(-1); 1385 1386 CallInst *NewCall = nullptr; 1387 // Check whether to generate an unordered atomic memcpy: 1388 // If the load or store are atomic, then they must necessarily be unordered 1389 // by previous checks. 1390 if (!TheStore->isAtomic() && !TheLoad->isAtomic()) { 1391 if (UseMemMove) 1392 NewCall = Builder.CreateMemMove( 1393 StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, NumBytes, 1394 /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias); 1395 else 1396 NewCall = 1397 Builder.CreateMemCpy(StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, 1398 NumBytes, /*isVolatile=*/false, AATags.TBAA, 1399 AATags.TBAAStruct, AATags.Scope, AATags.NoAlias); 1400 } else { 1401 // For now don't support unordered atomic memmove. 1402 if (UseMemMove) 1403 return Changed; 1404 // We cannot allow unaligned ops for unordered load/store, so reject 1405 // anything where the alignment isn't at least the element size. 1406 assert((StoreAlign && LoadAlign) && 1407 "Expect unordered load/store to have align."); 1408 if (*StoreAlign < StoreSize || *LoadAlign < StoreSize) 1409 return Changed; 1410 1411 // If the element.atomic memcpy is not lowered into explicit 1412 // loads/stores later, then it will be lowered into an element-size 1413 // specific lib call. If the lib call doesn't exist for our store size, then 1414 // we shouldn't generate the memcpy. 1415 if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize()) 1416 return Changed; 1417 1418 // Create the call. 1419 // Note that unordered atomic loads/stores are *required* by the spec to 1420 // have an alignment but non-atomic loads/stores may not. 1421 NewCall = Builder.CreateElementUnorderedAtomicMemCpy( 1422 StoreBasePtr, *StoreAlign, LoadBasePtr, *LoadAlign, NumBytes, StoreSize, 1423 AATags.TBAA, AATags.TBAAStruct, AATags.Scope, AATags.NoAlias); 1424 } 1425 NewCall->setDebugLoc(TheStore->getDebugLoc()); 1426 1427 if (MSSAU) { 1428 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1429 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); 1430 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1431 } 1432 1433 LLVM_DEBUG(dbgs() << " Formed new call: " << *NewCall << "\n" 1434 << " from load ptr=" << *LoadEv << " at: " << *TheLoad 1435 << "\n" 1436 << " from store ptr=" << *StoreEv << " at: " << *TheStore 1437 << "\n"); 1438 1439 ORE.emit([&]() { 1440 return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad", 1441 NewCall->getDebugLoc(), Preheader) 1442 << "Formed a call to " 1443 << ore::NV("NewFunction", NewCall->getCalledFunction()) 1444 << "() intrinsic from " << ore::NV("Inst", InstRemark) 1445 << " instruction in " << ore::NV("Function", TheStore->getFunction()) 1446 << " function" 1447 << ore::setExtraArgs() 1448 << ore::NV("FromBlock", TheStore->getParent()->getName()) 1449 << ore::NV("ToBlock", Preheader->getName()); 1450 }); 1451 1452 // Okay, a new call to memcpy/memmove has been formed. Zap the original store 1453 // and anything that feeds into it. 1454 if (MSSAU) 1455 MSSAU->removeMemoryAccess(TheStore, true); 1456 deleteDeadInstruction(TheStore); 1457 if (MSSAU && VerifyMemorySSA) 1458 MSSAU->getMemorySSA()->verifyMemorySSA(); 1459 if (UseMemMove) 1460 ++NumMemMove; 1461 else 1462 ++NumMemCpy; 1463 ExpCleaner.markResultUsed(); 1464 return true; 1465 } 1466 1467 // When compiling for codesize we avoid idiom recognition for a multi-block loop 1468 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop. 1469 // 1470 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset, 1471 bool IsLoopMemset) { 1472 if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) { 1473 if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) { 1474 LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName() 1475 << " : LIR " << (IsMemset ? "Memset" : "Memcpy") 1476 << " avoided: multi-block top-level loop\n"); 1477 return true; 1478 } 1479 } 1480 1481 return false; 1482 } 1483 1484 bool LoopIdiomRecognize::runOnNoncountableLoop() { 1485 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" 1486 << CurLoop->getHeader()->getParent()->getName() 1487 << "] Noncountable Loop %" 1488 << CurLoop->getHeader()->getName() << "\n"); 1489 1490 return recognizePopcount() || recognizeAndInsertFFS() || 1491 recognizeShiftUntilBitTest() || recognizeShiftUntilZero() || 1492 recognizeShiftUntilLessThan(); 1493 } 1494 1495 /// Check if the given conditional branch is based on the comparison between 1496 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is 1497 /// true), the control yields to the loop entry. If the branch matches the 1498 /// behavior, the variable involved in the comparison is returned. This function 1499 /// will be called to see if the precondition and postcondition of the loop are 1500 /// in desirable form. 1501 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry, 1502 bool JmpOnZero = false) { 1503 if (!BI || !BI->isConditional()) 1504 return nullptr; 1505 1506 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1507 if (!Cond) 1508 return nullptr; 1509 1510 ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); 1511 if (!CmpZero || !CmpZero->isZero()) 1512 return nullptr; 1513 1514 BasicBlock *TrueSucc = BI->getSuccessor(0); 1515 BasicBlock *FalseSucc = BI->getSuccessor(1); 1516 if (JmpOnZero) 1517 std::swap(TrueSucc, FalseSucc); 1518 1519 ICmpInst::Predicate Pred = Cond->getPredicate(); 1520 if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) || 1521 (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry)) 1522 return Cond->getOperand(0); 1523 1524 return nullptr; 1525 } 1526 1527 /// Check if the given conditional branch is based on an unsigned less-than 1528 /// comparison between a variable and a constant, and if the comparison is false 1529 /// the control yields to the loop entry. If the branch matches the behaviour, 1530 /// the variable involved in the comparison is returned. 1531 static Value *matchShiftULTCondition(BranchInst *BI, BasicBlock *LoopEntry, 1532 APInt &Threshold) { 1533 if (!BI || !BI->isConditional()) 1534 return nullptr; 1535 1536 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1537 if (!Cond) 1538 return nullptr; 1539 1540 ConstantInt *CmpConst = dyn_cast<ConstantInt>(Cond->getOperand(1)); 1541 if (!CmpConst) 1542 return nullptr; 1543 1544 BasicBlock *FalseSucc = BI->getSuccessor(1); 1545 ICmpInst::Predicate Pred = Cond->getPredicate(); 1546 1547 if (Pred == ICmpInst::ICMP_ULT && FalseSucc == LoopEntry) { 1548 Threshold = CmpConst->getValue(); 1549 return Cond->getOperand(0); 1550 } 1551 1552 return nullptr; 1553 } 1554 1555 // Check if the recurrence variable `VarX` is in the right form to create 1556 // the idiom. Returns the value coerced to a PHINode if so. 1557 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX, 1558 BasicBlock *LoopEntry) { 1559 auto *PhiX = dyn_cast<PHINode>(VarX); 1560 if (PhiX && PhiX->getParent() == LoopEntry && 1561 (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX)) 1562 return PhiX; 1563 return nullptr; 1564 } 1565 1566 /// Return true if the idiom is detected in the loop. 1567 /// 1568 /// Additionally: 1569 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) 1570 /// or nullptr if there is no such. 1571 /// 2) \p CntPhi is set to the corresponding phi node 1572 /// or nullptr if there is no such. 1573 /// 3) \p InitX is set to the value whose CTLZ could be used. 1574 /// 4) \p DefX is set to the instruction calculating Loop exit condition. 1575 /// 5) \p Threshold is set to the constant involved in the unsigned less-than 1576 /// comparison. 1577 /// 1578 /// The core idiom we are trying to detect is: 1579 /// \code 1580 /// if (x0 < 2) 1581 /// goto loop-exit // the precondition of the loop 1582 /// cnt0 = init-val 1583 /// do { 1584 /// x = phi (x0, x.next); //PhiX 1585 /// cnt = phi (cnt0, cnt.next) 1586 /// 1587 /// cnt.next = cnt + 1; 1588 /// ... 1589 /// x.next = x >> 1; // DefX 1590 /// } while (x >= 4) 1591 /// loop-exit: 1592 /// \endcode 1593 static bool detectShiftUntilLessThanIdiom(Loop *CurLoop, const DataLayout &DL, 1594 Intrinsic::ID &IntrinID, 1595 Value *&InitX, Instruction *&CntInst, 1596 PHINode *&CntPhi, Instruction *&DefX, 1597 APInt &Threshold) { 1598 BasicBlock *LoopEntry; 1599 1600 DefX = nullptr; 1601 CntInst = nullptr; 1602 CntPhi = nullptr; 1603 LoopEntry = *(CurLoop->block_begin()); 1604 1605 // step 1: Check if the loop-back branch is in desirable form. 1606 if (Value *T = matchShiftULTCondition( 1607 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry, 1608 Threshold)) 1609 DefX = dyn_cast<Instruction>(T); 1610 else 1611 return false; 1612 1613 // step 2: Check the recurrence of variable X 1614 if (!DefX || !isa<PHINode>(DefX)) 1615 return false; 1616 1617 PHINode *VarPhi = cast<PHINode>(DefX); 1618 int Idx = VarPhi->getBasicBlockIndex(LoopEntry); 1619 if (Idx == -1) 1620 return false; 1621 1622 DefX = dyn_cast<Instruction>(VarPhi->getIncomingValue(Idx)); 1623 if (!DefX || DefX->getNumOperands() == 0 || DefX->getOperand(0) != VarPhi) 1624 return false; 1625 1626 // step 3: detect instructions corresponding to "x.next = x >> 1" 1627 if (DefX->getOpcode() != Instruction::LShr) 1628 return false; 1629 1630 IntrinID = Intrinsic::ctlz; 1631 ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1)); 1632 if (!Shft || !Shft->isOne()) 1633 return false; 1634 1635 InitX = VarPhi->getIncomingValueForBlock(CurLoop->getLoopPreheader()); 1636 1637 // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 1638 // or cnt.next = cnt + -1. 1639 // TODO: We can skip the step. If loop trip count is known (CTLZ), 1640 // then all uses of "cnt.next" could be optimized to the trip count 1641 // plus "cnt0". Currently it is not optimized. 1642 // This step could be used to detect POPCNT instruction: 1643 // cnt.next = cnt + (x.next & 1) 1644 for (Instruction &Inst : 1645 llvm::make_range(LoopEntry->getFirstNonPHIIt(), LoopEntry->end())) { 1646 if (Inst.getOpcode() != Instruction::Add) 1647 continue; 1648 1649 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1)); 1650 if (!Inc || (!Inc->isOne() && !Inc->isMinusOne())) 1651 continue; 1652 1653 PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry); 1654 if (!Phi) 1655 continue; 1656 1657 CntInst = &Inst; 1658 CntPhi = Phi; 1659 break; 1660 } 1661 if (!CntInst) 1662 return false; 1663 1664 return true; 1665 } 1666 1667 /// Return true iff the idiom is detected in the loop. 1668 /// 1669 /// Additionally: 1670 /// 1) \p CntInst is set to the instruction counting the population bit. 1671 /// 2) \p CntPhi is set to the corresponding phi node. 1672 /// 3) \p Var is set to the value whose population bits are being counted. 1673 /// 1674 /// The core idiom we are trying to detect is: 1675 /// \code 1676 /// if (x0 != 0) 1677 /// goto loop-exit // the precondition of the loop 1678 /// cnt0 = init-val; 1679 /// do { 1680 /// x1 = phi (x0, x2); 1681 /// cnt1 = phi(cnt0, cnt2); 1682 /// 1683 /// cnt2 = cnt1 + 1; 1684 /// ... 1685 /// x2 = x1 & (x1 - 1); 1686 /// ... 1687 /// } while(x != 0); 1688 /// 1689 /// loop-exit: 1690 /// \endcode 1691 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, 1692 Instruction *&CntInst, PHINode *&CntPhi, 1693 Value *&Var) { 1694 // step 1: Check to see if the look-back branch match this pattern: 1695 // "if (a!=0) goto loop-entry". 1696 BasicBlock *LoopEntry; 1697 Instruction *DefX2, *CountInst; 1698 Value *VarX1, *VarX0; 1699 PHINode *PhiX, *CountPhi; 1700 1701 DefX2 = CountInst = nullptr; 1702 VarX1 = VarX0 = nullptr; 1703 PhiX = CountPhi = nullptr; 1704 LoopEntry = *(CurLoop->block_begin()); 1705 1706 // step 1: Check if the loop-back branch is in desirable form. 1707 { 1708 if (Value *T = matchCondition( 1709 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1710 DefX2 = dyn_cast<Instruction>(T); 1711 else 1712 return false; 1713 } 1714 1715 // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" 1716 { 1717 if (!DefX2 || DefX2->getOpcode() != Instruction::And) 1718 return false; 1719 1720 BinaryOperator *SubOneOp; 1721 1722 if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) 1723 VarX1 = DefX2->getOperand(1); 1724 else { 1725 VarX1 = DefX2->getOperand(0); 1726 SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); 1727 } 1728 if (!SubOneOp || SubOneOp->getOperand(0) != VarX1) 1729 return false; 1730 1731 ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1)); 1732 if (!Dec || 1733 !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) || 1734 (SubOneOp->getOpcode() == Instruction::Add && 1735 Dec->isMinusOne()))) { 1736 return false; 1737 } 1738 } 1739 1740 // step 3: Check the recurrence of variable X 1741 PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry); 1742 if (!PhiX) 1743 return false; 1744 1745 // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 1746 { 1747 CountInst = nullptr; 1748 for (Instruction &Inst : 1749 llvm::make_range(LoopEntry->getFirstNonPHIIt(), LoopEntry->end())) { 1750 if (Inst.getOpcode() != Instruction::Add) 1751 continue; 1752 1753 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1)); 1754 if (!Inc || !Inc->isOne()) 1755 continue; 1756 1757 PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry); 1758 if (!Phi) 1759 continue; 1760 1761 // Check if the result of the instruction is live of the loop. 1762 bool LiveOutLoop = false; 1763 for (User *U : Inst.users()) { 1764 if ((cast<Instruction>(U))->getParent() != LoopEntry) { 1765 LiveOutLoop = true; 1766 break; 1767 } 1768 } 1769 1770 if (LiveOutLoop) { 1771 CountInst = &Inst; 1772 CountPhi = Phi; 1773 break; 1774 } 1775 } 1776 1777 if (!CountInst) 1778 return false; 1779 } 1780 1781 // step 5: check if the precondition is in this form: 1782 // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" 1783 { 1784 auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1785 Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader()); 1786 if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) 1787 return false; 1788 1789 CntInst = CountInst; 1790 CntPhi = CountPhi; 1791 Var = T; 1792 } 1793 1794 return true; 1795 } 1796 1797 /// Return true if the idiom is detected in the loop. 1798 /// 1799 /// Additionally: 1800 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) 1801 /// or nullptr if there is no such. 1802 /// 2) \p CntPhi is set to the corresponding phi node 1803 /// or nullptr if there is no such. 1804 /// 3) \p Var is set to the value whose CTLZ could be used. 1805 /// 4) \p DefX is set to the instruction calculating Loop exit condition. 1806 /// 1807 /// The core idiom we are trying to detect is: 1808 /// \code 1809 /// if (x0 == 0) 1810 /// goto loop-exit // the precondition of the loop 1811 /// cnt0 = init-val; 1812 /// do { 1813 /// x = phi (x0, x.next); //PhiX 1814 /// cnt = phi(cnt0, cnt.next); 1815 /// 1816 /// cnt.next = cnt + 1; 1817 /// ... 1818 /// x.next = x >> 1; // DefX 1819 /// ... 1820 /// } while(x.next != 0); 1821 /// 1822 /// loop-exit: 1823 /// \endcode 1824 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL, 1825 Intrinsic::ID &IntrinID, Value *&InitX, 1826 Instruction *&CntInst, PHINode *&CntPhi, 1827 Instruction *&DefX) { 1828 BasicBlock *LoopEntry; 1829 Value *VarX = nullptr; 1830 1831 DefX = nullptr; 1832 CntInst = nullptr; 1833 CntPhi = nullptr; 1834 LoopEntry = *(CurLoop->block_begin()); 1835 1836 // step 1: Check if the loop-back branch is in desirable form. 1837 if (Value *T = matchCondition( 1838 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1839 DefX = dyn_cast<Instruction>(T); 1840 else 1841 return false; 1842 1843 // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1" 1844 if (!DefX || !DefX->isShift()) 1845 return false; 1846 IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz : 1847 Intrinsic::ctlz; 1848 ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1)); 1849 if (!Shft || !Shft->isOne()) 1850 return false; 1851 VarX = DefX->getOperand(0); 1852 1853 // step 3: Check the recurrence of variable X 1854 PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry); 1855 if (!PhiX) 1856 return false; 1857 1858 InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader()); 1859 1860 // Make sure the initial value can't be negative otherwise the ashr in the 1861 // loop might never reach zero which would make the loop infinite. 1862 if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL)) 1863 return false; 1864 1865 // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 1866 // or cnt.next = cnt + -1. 1867 // TODO: We can skip the step. If loop trip count is known (CTLZ), 1868 // then all uses of "cnt.next" could be optimized to the trip count 1869 // plus "cnt0". Currently it is not optimized. 1870 // This step could be used to detect POPCNT instruction: 1871 // cnt.next = cnt + (x.next & 1) 1872 for (Instruction &Inst : 1873 llvm::make_range(LoopEntry->getFirstNonPHIIt(), LoopEntry->end())) { 1874 if (Inst.getOpcode() != Instruction::Add) 1875 continue; 1876 1877 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1)); 1878 if (!Inc || (!Inc->isOne() && !Inc->isMinusOne())) 1879 continue; 1880 1881 PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry); 1882 if (!Phi) 1883 continue; 1884 1885 CntInst = &Inst; 1886 CntPhi = Phi; 1887 break; 1888 } 1889 if (!CntInst) 1890 return false; 1891 1892 return true; 1893 } 1894 1895 // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always 1896 // profitable if we delete the loop. 1897 bool LoopIdiomRecognize::isProfitableToInsertFFS(Intrinsic::ID IntrinID, 1898 Value *InitX, bool ZeroCheck, 1899 size_t CanonicalSize) { 1900 const Value *Args[] = {InitX, 1901 ConstantInt::getBool(InitX->getContext(), ZeroCheck)}; 1902 1903 // @llvm.dbg doesn't count as they have no semantic effect. 1904 auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug(); 1905 uint32_t HeaderSize = 1906 std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end()); 1907 1908 IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args); 1909 InstructionCost Cost = TTI->getIntrinsicInstrCost( 1910 Attrs, TargetTransformInfo::TCK_SizeAndLatency); 1911 if (HeaderSize != CanonicalSize && Cost > TargetTransformInfo::TCC_Basic) 1912 return false; 1913 1914 return true; 1915 } 1916 1917 /// Convert CTLZ / CTTZ idiom loop into countable loop. 1918 /// If CTLZ / CTTZ inserted as a new trip count returns true; otherwise, 1919 /// returns false. 1920 bool LoopIdiomRecognize::insertFFSIfProfitable(Intrinsic::ID IntrinID, 1921 Value *InitX, Instruction *DefX, 1922 PHINode *CntPhi, 1923 Instruction *CntInst) { 1924 bool IsCntPhiUsedOutsideLoop = false; 1925 for (User *U : CntPhi->users()) 1926 if (!CurLoop->contains(cast<Instruction>(U))) { 1927 IsCntPhiUsedOutsideLoop = true; 1928 break; 1929 } 1930 bool IsCntInstUsedOutsideLoop = false; 1931 for (User *U : CntInst->users()) 1932 if (!CurLoop->contains(cast<Instruction>(U))) { 1933 IsCntInstUsedOutsideLoop = true; 1934 break; 1935 } 1936 // If both CntInst and CntPhi are used outside the loop the profitability 1937 // is questionable. 1938 if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop) 1939 return false; 1940 1941 // For some CPUs result of CTLZ(X) intrinsic is undefined 1942 // when X is 0. If we can not guarantee X != 0, we need to check this 1943 // when expand. 1944 bool ZeroCheck = false; 1945 // It is safe to assume Preheader exist as it was checked in 1946 // parent function RunOnLoop. 1947 BasicBlock *PH = CurLoop->getLoopPreheader(); 1948 1949 // If we are using the count instruction outside the loop, make sure we 1950 // have a zero check as a precondition. Without the check the loop would run 1951 // one iteration for before any check of the input value. This means 0 and 1 1952 // would have identical behavior in the original loop and thus 1953 if (!IsCntPhiUsedOutsideLoop) { 1954 auto *PreCondBB = PH->getSinglePredecessor(); 1955 if (!PreCondBB) 1956 return false; 1957 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1958 if (!PreCondBI) 1959 return false; 1960 if (matchCondition(PreCondBI, PH) != InitX) 1961 return false; 1962 ZeroCheck = true; 1963 } 1964 1965 // FFS idiom loop has only 6 instructions: 1966 // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] 1967 // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] 1968 // %shr = ashr %n.addr.0, 1 1969 // %tobool = icmp eq %shr, 0 1970 // %inc = add nsw %i.0, 1 1971 // br i1 %tobool 1972 size_t IdiomCanonicalSize = 6; 1973 if (!isProfitableToInsertFFS(IntrinID, InitX, ZeroCheck, IdiomCanonicalSize)) 1974 return false; 1975 1976 transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX, 1977 DefX->getDebugLoc(), ZeroCheck, 1978 IsCntPhiUsedOutsideLoop); 1979 return true; 1980 } 1981 1982 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop 1983 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new 1984 /// trip count returns true; otherwise, returns false. 1985 bool LoopIdiomRecognize::recognizeAndInsertFFS() { 1986 // Give up if the loop has multiple blocks or multiple backedges. 1987 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1988 return false; 1989 1990 Intrinsic::ID IntrinID; 1991 Value *InitX; 1992 Instruction *DefX = nullptr; 1993 PHINode *CntPhi = nullptr; 1994 Instruction *CntInst = nullptr; 1995 1996 if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX, CntInst, CntPhi, 1997 DefX)) 1998 return false; 1999 2000 return insertFFSIfProfitable(IntrinID, InitX, DefX, CntPhi, CntInst); 2001 } 2002 2003 bool LoopIdiomRecognize::recognizeShiftUntilLessThan() { 2004 // Give up if the loop has multiple blocks or multiple backedges. 2005 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 2006 return false; 2007 2008 Intrinsic::ID IntrinID; 2009 Value *InitX; 2010 Instruction *DefX = nullptr; 2011 PHINode *CntPhi = nullptr; 2012 Instruction *CntInst = nullptr; 2013 2014 APInt LoopThreshold; 2015 if (!detectShiftUntilLessThanIdiom(CurLoop, *DL, IntrinID, InitX, CntInst, 2016 CntPhi, DefX, LoopThreshold)) 2017 return false; 2018 2019 if (LoopThreshold == 2) { 2020 // Treat as regular FFS. 2021 return insertFFSIfProfitable(IntrinID, InitX, DefX, CntPhi, CntInst); 2022 } 2023 2024 // Look for Floor Log2 Idiom. 2025 if (LoopThreshold != 4) 2026 return false; 2027 2028 // Abort if CntPhi is used outside of the loop. 2029 for (User *U : CntPhi->users()) 2030 if (!CurLoop->contains(cast<Instruction>(U))) 2031 return false; 2032 2033 // It is safe to assume Preheader exist as it was checked in 2034 // parent function RunOnLoop. 2035 BasicBlock *PH = CurLoop->getLoopPreheader(); 2036 auto *PreCondBB = PH->getSinglePredecessor(); 2037 if (!PreCondBB) 2038 return false; 2039 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 2040 if (!PreCondBI) 2041 return false; 2042 2043 APInt PreLoopThreshold; 2044 if (matchShiftULTCondition(PreCondBI, PH, PreLoopThreshold) != InitX || 2045 PreLoopThreshold != 2) 2046 return false; 2047 2048 bool ZeroCheck = true; 2049 2050 // the loop has only 6 instructions: 2051 // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] 2052 // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] 2053 // %shr = ashr %n.addr.0, 1 2054 // %tobool = icmp ult %n.addr.0, C 2055 // %inc = add nsw %i.0, 1 2056 // br i1 %tobool 2057 size_t IdiomCanonicalSize = 6; 2058 if (!isProfitableToInsertFFS(IntrinID, InitX, ZeroCheck, IdiomCanonicalSize)) 2059 return false; 2060 2061 // log2(x) = w − 1 − clz(x) 2062 transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX, 2063 DefX->getDebugLoc(), ZeroCheck, 2064 /*IsCntPhiUsedOutsideLoop=*/false, 2065 /*InsertSub=*/true); 2066 return true; 2067 } 2068 2069 /// Recognizes a population count idiom in a non-countable loop. 2070 /// 2071 /// If detected, transforms the relevant code to issue the popcount intrinsic 2072 /// function call, and returns true; otherwise, returns false. 2073 bool LoopIdiomRecognize::recognizePopcount() { 2074 if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) 2075 return false; 2076 2077 // Counting population are usually conducted by few arithmetic instructions. 2078 // Such instructions can be easily "absorbed" by vacant slots in a 2079 // non-compact loop. Therefore, recognizing popcount idiom only makes sense 2080 // in a compact loop. 2081 2082 // Give up if the loop has multiple blocks or multiple backedges. 2083 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 2084 return false; 2085 2086 BasicBlock *LoopBody = *(CurLoop->block_begin()); 2087 if (LoopBody->size() >= 20) { 2088 // The loop is too big, bail out. 2089 return false; 2090 } 2091 2092 // It should have a preheader containing nothing but an unconditional branch. 2093 BasicBlock *PH = CurLoop->getLoopPreheader(); 2094 if (!PH || &PH->front() != PH->getTerminator()) 2095 return false; 2096 auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator()); 2097 if (!EntryBI || EntryBI->isConditional()) 2098 return false; 2099 2100 // It should have a precondition block where the generated popcount intrinsic 2101 // function can be inserted. 2102 auto *PreCondBB = PH->getSinglePredecessor(); 2103 if (!PreCondBB) 2104 return false; 2105 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 2106 if (!PreCondBI || PreCondBI->isUnconditional()) 2107 return false; 2108 2109 Instruction *CntInst; 2110 PHINode *CntPhi; 2111 Value *Val; 2112 if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val)) 2113 return false; 2114 2115 transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val); 2116 return true; 2117 } 2118 2119 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 2120 const DebugLoc &DL) { 2121 Value *Ops[] = {Val}; 2122 Type *Tys[] = {Val->getType()}; 2123 2124 CallInst *CI = IRBuilder.CreateIntrinsic(Intrinsic::ctpop, Tys, Ops); 2125 CI->setDebugLoc(DL); 2126 2127 return CI; 2128 } 2129 2130 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 2131 const DebugLoc &DL, bool ZeroCheck, 2132 Intrinsic::ID IID) { 2133 Value *Ops[] = {Val, IRBuilder.getInt1(ZeroCheck)}; 2134 Type *Tys[] = {Val->getType()}; 2135 2136 CallInst *CI = IRBuilder.CreateIntrinsic(IID, Tys, Ops); 2137 CI->setDebugLoc(DL); 2138 2139 return CI; 2140 } 2141 2142 /// Transform the following loop (Using CTLZ, CTTZ is similar): 2143 /// loop: 2144 /// CntPhi = PHI [Cnt0, CntInst] 2145 /// PhiX = PHI [InitX, DefX] 2146 /// CntInst = CntPhi + 1 2147 /// DefX = PhiX >> 1 2148 /// LOOP_BODY 2149 /// Br: loop if (DefX != 0) 2150 /// Use(CntPhi) or Use(CntInst) 2151 /// 2152 /// Into: 2153 /// If CntPhi used outside the loop: 2154 /// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1) 2155 /// Count = CountPrev + 1 2156 /// else 2157 /// Count = BitWidth(InitX) - CTLZ(InitX) 2158 /// loop: 2159 /// CntPhi = PHI [Cnt0, CntInst] 2160 /// PhiX = PHI [InitX, DefX] 2161 /// PhiCount = PHI [Count, Dec] 2162 /// CntInst = CntPhi + 1 2163 /// DefX = PhiX >> 1 2164 /// Dec = PhiCount - 1 2165 /// LOOP_BODY 2166 /// Br: loop if (Dec != 0) 2167 /// Use(CountPrev + Cnt0) // Use(CntPhi) 2168 /// or 2169 /// Use(Count + Cnt0) // Use(CntInst) 2170 /// 2171 /// If LOOP_BODY is empty the loop will be deleted. 2172 /// If CntInst and DefX are not used in LOOP_BODY they will be removed. 2173 void LoopIdiomRecognize::transformLoopToCountable( 2174 Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst, 2175 PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL, 2176 bool ZeroCheck, bool IsCntPhiUsedOutsideLoop, bool InsertSub) { 2177 BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator()); 2178 2179 // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block 2180 IRBuilder<> Builder(PreheaderBr); 2181 Builder.SetCurrentDebugLocation(DL); 2182 2183 // If there are no uses of CntPhi crate: 2184 // Count = BitWidth - CTLZ(InitX); 2185 // NewCount = Count; 2186 // If there are uses of CntPhi create: 2187 // NewCount = BitWidth - CTLZ(InitX >> 1); 2188 // Count = NewCount + 1; 2189 Value *InitXNext; 2190 if (IsCntPhiUsedOutsideLoop) { 2191 if (DefX->getOpcode() == Instruction::AShr) 2192 InitXNext = Builder.CreateAShr(InitX, 1); 2193 else if (DefX->getOpcode() == Instruction::LShr) 2194 InitXNext = Builder.CreateLShr(InitX, 1); 2195 else if (DefX->getOpcode() == Instruction::Shl) // cttz 2196 InitXNext = Builder.CreateShl(InitX, 1); 2197 else 2198 llvm_unreachable("Unexpected opcode!"); 2199 } else 2200 InitXNext = InitX; 2201 Value *Count = 2202 createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID); 2203 Type *CountTy = Count->getType(); 2204 Count = Builder.CreateSub( 2205 ConstantInt::get(CountTy, CountTy->getIntegerBitWidth()), Count); 2206 if (InsertSub) 2207 Count = Builder.CreateSub(Count, ConstantInt::get(CountTy, 1)); 2208 Value *NewCount = Count; 2209 if (IsCntPhiUsedOutsideLoop) 2210 Count = Builder.CreateAdd(Count, ConstantInt::get(CountTy, 1)); 2211 2212 NewCount = Builder.CreateZExtOrTrunc(NewCount, CntInst->getType()); 2213 2214 Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader); 2215 if (cast<ConstantInt>(CntInst->getOperand(1))->isOne()) { 2216 // If the counter was being incremented in the loop, add NewCount to the 2217 // counter's initial value, but only if the initial value is not zero. 2218 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 2219 if (!InitConst || !InitConst->isZero()) 2220 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 2221 } else { 2222 // If the count was being decremented in the loop, subtract NewCount from 2223 // the counter's initial value. 2224 NewCount = Builder.CreateSub(CntInitVal, NewCount); 2225 } 2226 2227 // Step 2: Insert new IV and loop condition: 2228 // loop: 2229 // ... 2230 // PhiCount = PHI [Count, Dec] 2231 // ... 2232 // Dec = PhiCount - 1 2233 // ... 2234 // Br: loop if (Dec != 0) 2235 BasicBlock *Body = *(CurLoop->block_begin()); 2236 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 2237 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 2238 2239 PHINode *TcPhi = PHINode::Create(CountTy, 2, "tcphi"); 2240 TcPhi->insertBefore(Body->begin()); 2241 2242 Builder.SetInsertPoint(LbCond); 2243 Instruction *TcDec = cast<Instruction>(Builder.CreateSub( 2244 TcPhi, ConstantInt::get(CountTy, 1), "tcdec", false, true)); 2245 2246 TcPhi->addIncoming(Count, Preheader); 2247 TcPhi->addIncoming(TcDec, Body); 2248 2249 CmpInst::Predicate Pred = 2250 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 2251 LbCond->setPredicate(Pred); 2252 LbCond->setOperand(0, TcDec); 2253 LbCond->setOperand(1, ConstantInt::get(CountTy, 0)); 2254 2255 // Step 3: All the references to the original counter outside 2256 // the loop are replaced with the NewCount 2257 if (IsCntPhiUsedOutsideLoop) 2258 CntPhi->replaceUsesOutsideBlock(NewCount, Body); 2259 else 2260 CntInst->replaceUsesOutsideBlock(NewCount, Body); 2261 2262 // step 4: Forget the "non-computable" trip-count SCEV associated with the 2263 // loop. The loop would otherwise not be deleted even if it becomes empty. 2264 SE->forgetLoop(CurLoop); 2265 } 2266 2267 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, 2268 Instruction *CntInst, 2269 PHINode *CntPhi, Value *Var) { 2270 BasicBlock *PreHead = CurLoop->getLoopPreheader(); 2271 auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator()); 2272 const DebugLoc &DL = CntInst->getDebugLoc(); 2273 2274 // Assuming before transformation, the loop is following: 2275 // if (x) // the precondition 2276 // do { cnt++; x &= x - 1; } while(x); 2277 2278 // Step 1: Insert the ctpop instruction at the end of the precondition block 2279 IRBuilder<> Builder(PreCondBr); 2280 Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; 2281 { 2282 PopCnt = createPopcntIntrinsic(Builder, Var, DL); 2283 NewCount = PopCntZext = 2284 Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); 2285 2286 if (NewCount != PopCnt) 2287 (cast<Instruction>(NewCount))->setDebugLoc(DL); 2288 2289 // TripCnt is exactly the number of iterations the loop has 2290 TripCnt = NewCount; 2291 2292 // If the population counter's initial value is not zero, insert Add Inst. 2293 Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); 2294 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 2295 if (!InitConst || !InitConst->isZero()) { 2296 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 2297 (cast<Instruction>(NewCount))->setDebugLoc(DL); 2298 } 2299 } 2300 2301 // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to 2302 // "if (NewCount == 0) loop-exit". Without this change, the intrinsic 2303 // function would be partial dead code, and downstream passes will drag 2304 // it back from the precondition block to the preheader. 2305 { 2306 ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); 2307 2308 Value *Opnd0 = PopCntZext; 2309 Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); 2310 if (PreCond->getOperand(0) != Var) 2311 std::swap(Opnd0, Opnd1); 2312 2313 ICmpInst *NewPreCond = cast<ICmpInst>( 2314 Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); 2315 PreCondBr->setCondition(NewPreCond); 2316 2317 RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); 2318 } 2319 2320 // Step 3: Note that the population count is exactly the trip count of the 2321 // loop in question, which enable us to convert the loop from noncountable 2322 // loop into a countable one. The benefit is twofold: 2323 // 2324 // - If the loop only counts population, the entire loop becomes dead after 2325 // the transformation. It is a lot easier to prove a countable loop dead 2326 // than to prove a noncountable one. (In some C dialects, an infinite loop 2327 // isn't dead even if it computes nothing useful. In general, DCE needs 2328 // to prove a noncountable loop finite before safely delete it.) 2329 // 2330 // - If the loop also performs something else, it remains alive. 2331 // Since it is transformed to countable form, it can be aggressively 2332 // optimized by some optimizations which are in general not applicable 2333 // to a noncountable loop. 2334 // 2335 // After this step, this loop (conceptually) would look like following: 2336 // newcnt = __builtin_ctpop(x); 2337 // t = newcnt; 2338 // if (x) 2339 // do { cnt++; x &= x-1; t--) } while (t > 0); 2340 BasicBlock *Body = *(CurLoop->block_begin()); 2341 { 2342 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 2343 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 2344 Type *Ty = TripCnt->getType(); 2345 2346 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi"); 2347 TcPhi->insertBefore(Body->begin()); 2348 2349 Builder.SetInsertPoint(LbCond); 2350 Instruction *TcDec = cast<Instruction>( 2351 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), 2352 "tcdec", false, true)); 2353 2354 TcPhi->addIncoming(TripCnt, PreHead); 2355 TcPhi->addIncoming(TcDec, Body); 2356 2357 CmpInst::Predicate Pred = 2358 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; 2359 LbCond->setPredicate(Pred); 2360 LbCond->setOperand(0, TcDec); 2361 LbCond->setOperand(1, ConstantInt::get(Ty, 0)); 2362 } 2363 2364 // Step 4: All the references to the original population counter outside 2365 // the loop are replaced with the NewCount -- the value returned from 2366 // __builtin_ctpop(). 2367 CntInst->replaceUsesOutsideBlock(NewCount, Body); 2368 2369 // step 5: Forget the "non-computable" trip-count SCEV associated with the 2370 // loop. The loop would otherwise not be deleted even if it becomes empty. 2371 SE->forgetLoop(CurLoop); 2372 } 2373 2374 /// Match loop-invariant value. 2375 template <typename SubPattern_t> struct match_LoopInvariant { 2376 SubPattern_t SubPattern; 2377 const Loop *L; 2378 2379 match_LoopInvariant(const SubPattern_t &SP, const Loop *L) 2380 : SubPattern(SP), L(L) {} 2381 2382 template <typename ITy> bool match(ITy *V) { 2383 return L->isLoopInvariant(V) && SubPattern.match(V); 2384 } 2385 }; 2386 2387 /// Matches if the value is loop-invariant. 2388 template <typename Ty> 2389 inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) { 2390 return match_LoopInvariant<Ty>(M, L); 2391 } 2392 2393 /// Return true if the idiom is detected in the loop. 2394 /// 2395 /// The core idiom we are trying to detect is: 2396 /// \code 2397 /// entry: 2398 /// <...> 2399 /// %bitmask = shl i32 1, %bitpos 2400 /// br label %loop 2401 /// 2402 /// loop: 2403 /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] 2404 /// %x.curr.bitmasked = and i32 %x.curr, %bitmask 2405 /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 2406 /// %x.next = shl i32 %x.curr, 1 2407 /// <...> 2408 /// br i1 %x.curr.isbitunset, label %loop, label %end 2409 /// 2410 /// end: 2411 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2412 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2413 /// <...> 2414 /// \endcode 2415 static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX, 2416 Value *&BitMask, Value *&BitPos, 2417 Value *&CurrX, Instruction *&NextX) { 2418 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2419 " Performing shift-until-bittest idiom detection.\n"); 2420 2421 // Give up if the loop has multiple blocks or multiple backedges. 2422 if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { 2423 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n"); 2424 return false; 2425 } 2426 2427 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2428 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2429 assert(LoopPreheaderBB && "There is always a loop preheader."); 2430 2431 using namespace PatternMatch; 2432 2433 // Step 1: Check if the loop backedge is in desirable form. 2434 2435 CmpPredicate Pred; 2436 Value *CmpLHS, *CmpRHS; 2437 BasicBlock *TrueBB, *FalseBB; 2438 if (!match(LoopHeaderBB->getTerminator(), 2439 m_Br(m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)), 2440 m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) { 2441 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n"); 2442 return false; 2443 } 2444 2445 // Step 2: Check if the backedge's condition is in desirable form. 2446 2447 auto MatchVariableBitMask = [&]() { 2448 return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) && 2449 match(CmpLHS, 2450 m_c_And(m_Value(CurrX), 2451 m_CombineAnd( 2452 m_Value(BitMask), 2453 m_LoopInvariant(m_Shl(m_One(), m_Value(BitPos)), 2454 CurLoop)))); 2455 }; 2456 auto MatchConstantBitMask = [&]() { 2457 return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) && 2458 match(CmpLHS, m_And(m_Value(CurrX), 2459 m_CombineAnd(m_Value(BitMask), m_Power2()))) && 2460 (BitPos = ConstantExpr::getExactLogBase2(cast<Constant>(BitMask))); 2461 }; 2462 auto MatchDecomposableConstantBitMask = [&]() { 2463 auto Res = llvm::decomposeBitTestICmp(CmpLHS, CmpRHS, Pred); 2464 if (Res && Res->Mask.isPowerOf2()) { 2465 assert(ICmpInst::isEquality(Res->Pred)); 2466 Pred = Res->Pred; 2467 CurrX = Res->X; 2468 BitMask = ConstantInt::get(CurrX->getType(), Res->Mask); 2469 BitPos = ConstantInt::get(CurrX->getType(), Res->Mask.logBase2()); 2470 return true; 2471 } 2472 return false; 2473 }; 2474 2475 if (!MatchVariableBitMask() && !MatchConstantBitMask() && 2476 !MatchDecomposableConstantBitMask()) { 2477 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n"); 2478 return false; 2479 } 2480 2481 // Step 3: Check if the recurrence is in desirable form. 2482 auto *CurrXPN = dyn_cast<PHINode>(CurrX); 2483 if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) { 2484 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n"); 2485 return false; 2486 } 2487 2488 BaseX = CurrXPN->getIncomingValueForBlock(LoopPreheaderBB); 2489 NextX = 2490 dyn_cast<Instruction>(CurrXPN->getIncomingValueForBlock(LoopHeaderBB)); 2491 2492 assert(CurLoop->isLoopInvariant(BaseX) && 2493 "Expected BaseX to be available in the preheader!"); 2494 2495 if (!NextX || !match(NextX, m_Shl(m_Specific(CurrX), m_One()))) { 2496 // FIXME: support right-shift? 2497 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n"); 2498 return false; 2499 } 2500 2501 // Step 4: Check if the backedge's destinations are in desirable form. 2502 2503 assert(ICmpInst::isEquality(Pred) && 2504 "Should only get equality predicates here."); 2505 2506 // cmp-br is commutative, so canonicalize to a single variant. 2507 if (Pred != ICmpInst::Predicate::ICMP_EQ) { 2508 Pred = ICmpInst::getInversePredicate(Pred); 2509 std::swap(TrueBB, FalseBB); 2510 } 2511 2512 // We expect to exit loop when comparison yields false, 2513 // so when it yields true we should branch back to loop header. 2514 if (TrueBB != LoopHeaderBB) { 2515 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n"); 2516 return false; 2517 } 2518 2519 // Okay, idiom checks out. 2520 return true; 2521 } 2522 2523 /// Look for the following loop: 2524 /// \code 2525 /// entry: 2526 /// <...> 2527 /// %bitmask = shl i32 1, %bitpos 2528 /// br label %loop 2529 /// 2530 /// loop: 2531 /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] 2532 /// %x.curr.bitmasked = and i32 %x.curr, %bitmask 2533 /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 2534 /// %x.next = shl i32 %x.curr, 1 2535 /// <...> 2536 /// br i1 %x.curr.isbitunset, label %loop, label %end 2537 /// 2538 /// end: 2539 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2540 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2541 /// <...> 2542 /// \endcode 2543 /// 2544 /// And transform it into: 2545 /// \code 2546 /// entry: 2547 /// %bitmask = shl i32 1, %bitpos 2548 /// %lowbitmask = add i32 %bitmask, -1 2549 /// %mask = or i32 %lowbitmask, %bitmask 2550 /// %x.masked = and i32 %x, %mask 2551 /// %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked, 2552 /// i1 true) 2553 /// %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros 2554 /// %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1 2555 /// %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos 2556 /// %tripcount = add i32 %backedgetakencount, 1 2557 /// %x.curr = shl i32 %x, %backedgetakencount 2558 /// %x.next = shl i32 %x, %tripcount 2559 /// br label %loop 2560 /// 2561 /// loop: 2562 /// %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ] 2563 /// %loop.iv.next = add nuw i32 %loop.iv, 1 2564 /// %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount 2565 /// <...> 2566 /// br i1 %loop.ivcheck, label %end, label %loop 2567 /// 2568 /// end: 2569 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2570 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2571 /// <...> 2572 /// \endcode 2573 bool LoopIdiomRecognize::recognizeShiftUntilBitTest() { 2574 bool MadeChange = false; 2575 2576 Value *X, *BitMask, *BitPos, *XCurr; 2577 Instruction *XNext; 2578 if (!detectShiftUntilBitTestIdiom(CurLoop, X, BitMask, BitPos, XCurr, 2579 XNext)) { 2580 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2581 " shift-until-bittest idiom detection failed.\n"); 2582 return MadeChange; 2583 } 2584 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n"); 2585 2586 // Ok, it is the idiom we were looking for, we *could* transform this loop, 2587 // but is it profitable to transform? 2588 2589 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2590 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2591 assert(LoopPreheaderBB && "There is always a loop preheader."); 2592 2593 BasicBlock *SuccessorBB = CurLoop->getExitBlock(); 2594 assert(SuccessorBB && "There is only a single successor."); 2595 2596 IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); 2597 Builder.SetCurrentDebugLocation(cast<Instruction>(XCurr)->getDebugLoc()); 2598 2599 Intrinsic::ID IntrID = Intrinsic::ctlz; 2600 Type *Ty = X->getType(); 2601 unsigned Bitwidth = Ty->getScalarSizeInBits(); 2602 2603 TargetTransformInfo::TargetCostKind CostKind = 2604 TargetTransformInfo::TCK_SizeAndLatency; 2605 2606 // The rewrite is considered to be unprofitable iff and only iff the 2607 // intrinsic/shift we'll use are not cheap. Note that we are okay with *just* 2608 // making the loop countable, even if nothing else changes. 2609 IntrinsicCostAttributes Attrs( 2610 IntrID, Ty, {PoisonValue::get(Ty), /*is_zero_poison=*/Builder.getTrue()}); 2611 InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind); 2612 if (Cost > TargetTransformInfo::TCC_Basic) { 2613 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2614 " Intrinsic is too costly, not beneficial\n"); 2615 return MadeChange; 2616 } 2617 if (TTI->getArithmeticInstrCost(Instruction::Shl, Ty, CostKind) > 2618 TargetTransformInfo::TCC_Basic) { 2619 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n"); 2620 return MadeChange; 2621 } 2622 2623 // Ok, transform appears worthwhile. 2624 MadeChange = true; 2625 2626 if (!isGuaranteedNotToBeUndefOrPoison(BitPos)) { 2627 // BitMask may be computed from BitPos, Freeze BitPos so we can increase 2628 // it's use count. 2629 std::optional<BasicBlock::iterator> InsertPt = std::nullopt; 2630 if (auto *BitPosI = dyn_cast<Instruction>(BitPos)) 2631 InsertPt = BitPosI->getInsertionPointAfterDef(); 2632 else 2633 InsertPt = DT->getRoot()->getFirstNonPHIOrDbgOrAlloca(); 2634 if (!InsertPt) 2635 return false; 2636 FreezeInst *BitPosFrozen = 2637 new FreezeInst(BitPos, BitPos->getName() + ".fr", *InsertPt); 2638 BitPos->replaceUsesWithIf(BitPosFrozen, [BitPosFrozen](Use &U) { 2639 return U.getUser() != BitPosFrozen; 2640 }); 2641 BitPos = BitPosFrozen; 2642 } 2643 2644 // Step 1: Compute the loop trip count. 2645 2646 Value *LowBitMask = Builder.CreateAdd(BitMask, Constant::getAllOnesValue(Ty), 2647 BitPos->getName() + ".lowbitmask"); 2648 Value *Mask = 2649 Builder.CreateOr(LowBitMask, BitMask, BitPos->getName() + ".mask"); 2650 Value *XMasked = Builder.CreateAnd(X, Mask, X->getName() + ".masked"); 2651 CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic( 2652 IntrID, Ty, {XMasked, /*is_zero_poison=*/Builder.getTrue()}, 2653 /*FMFSource=*/nullptr, XMasked->getName() + ".numleadingzeros"); 2654 Value *XMaskedNumActiveBits = Builder.CreateSub( 2655 ConstantInt::get(Ty, Ty->getScalarSizeInBits()), XMaskedNumLeadingZeros, 2656 XMasked->getName() + ".numactivebits", /*HasNUW=*/true, 2657 /*HasNSW=*/Bitwidth != 2); 2658 Value *XMaskedLeadingOnePos = 2659 Builder.CreateAdd(XMaskedNumActiveBits, Constant::getAllOnesValue(Ty), 2660 XMasked->getName() + ".leadingonepos", /*HasNUW=*/false, 2661 /*HasNSW=*/Bitwidth > 2); 2662 2663 Value *LoopBackedgeTakenCount = Builder.CreateSub( 2664 BitPos, XMaskedLeadingOnePos, CurLoop->getName() + ".backedgetakencount", 2665 /*HasNUW=*/true, /*HasNSW=*/true); 2666 // We know loop's backedge-taken count, but what's loop's trip count? 2667 // Note that while NUW is always safe, while NSW is only for bitwidths != 2. 2668 Value *LoopTripCount = 2669 Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1), 2670 CurLoop->getName() + ".tripcount", /*HasNUW=*/true, 2671 /*HasNSW=*/Bitwidth != 2); 2672 2673 // Step 2: Compute the recurrence's final value without a loop. 2674 2675 // NewX is always safe to compute, because `LoopBackedgeTakenCount` 2676 // will always be smaller than `bitwidth(X)`, i.e. we never get poison. 2677 Value *NewX = Builder.CreateShl(X, LoopBackedgeTakenCount); 2678 NewX->takeName(XCurr); 2679 if (auto *I = dyn_cast<Instruction>(NewX)) 2680 I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true); 2681 2682 Value *NewXNext; 2683 // Rewriting XNext is more complicated, however, because `X << LoopTripCount` 2684 // will be poison iff `LoopTripCount == bitwidth(X)` (which will happen 2685 // iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know 2686 // that isn't the case, we'll need to emit an alternative, safe IR. 2687 if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() || 2688 PatternMatch::match( 2689 BitPos, PatternMatch::m_SpecificInt_ICMP( 2690 ICmpInst::ICMP_NE, APInt(Ty->getScalarSizeInBits(), 2691 Ty->getScalarSizeInBits() - 1)))) 2692 NewXNext = Builder.CreateShl(X, LoopTripCount); 2693 else { 2694 // Otherwise, just additionally shift by one. It's the smallest solution, 2695 // alternatively, we could check that NewX is INT_MIN (or BitPos is ) 2696 // and select 0 instead. 2697 NewXNext = Builder.CreateShl(NewX, ConstantInt::get(Ty, 1)); 2698 } 2699 2700 NewXNext->takeName(XNext); 2701 if (auto *I = dyn_cast<Instruction>(NewXNext)) 2702 I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true); 2703 2704 // Step 3: Adjust the successor basic block to recieve the computed 2705 // recurrence's final value instead of the recurrence itself. 2706 2707 XCurr->replaceUsesOutsideBlock(NewX, LoopHeaderBB); 2708 XNext->replaceUsesOutsideBlock(NewXNext, LoopHeaderBB); 2709 2710 // Step 4: Rewrite the loop into a countable form, with canonical IV. 2711 2712 // The new canonical induction variable. 2713 Builder.SetInsertPoint(LoopHeaderBB, LoopHeaderBB->begin()); 2714 auto *IV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv"); 2715 2716 // The induction itself. 2717 // Note that while NUW is always safe, while NSW is only for bitwidths != 2. 2718 Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); 2719 auto *IVNext = 2720 Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next", 2721 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); 2722 2723 // The loop trip count check. 2724 auto *IVCheck = Builder.CreateICmpEQ(IVNext, LoopTripCount, 2725 CurLoop->getName() + ".ivcheck"); 2726 Builder.CreateCondBr(IVCheck, SuccessorBB, LoopHeaderBB); 2727 LoopHeaderBB->getTerminator()->eraseFromParent(); 2728 2729 // Populate the IV PHI. 2730 IV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB); 2731 IV->addIncoming(IVNext, LoopHeaderBB); 2732 2733 // Step 5: Forget the "non-computable" trip-count SCEV associated with the 2734 // loop. The loop would otherwise not be deleted even if it becomes empty. 2735 2736 SE->forgetLoop(CurLoop); 2737 2738 // Other passes will take care of actually deleting the loop if possible. 2739 2740 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n"); 2741 2742 ++NumShiftUntilBitTest; 2743 return MadeChange; 2744 } 2745 2746 /// Return true if the idiom is detected in the loop. 2747 /// 2748 /// The core idiom we are trying to detect is: 2749 /// \code 2750 /// entry: 2751 /// <...> 2752 /// %start = <...> 2753 /// %extraoffset = <...> 2754 /// <...> 2755 /// br label %for.cond 2756 /// 2757 /// loop: 2758 /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ] 2759 /// %nbits = add nsw i8 %iv, %extraoffset 2760 /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits 2761 /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0 2762 /// %iv.next = add i8 %iv, 1 2763 /// <...> 2764 /// br i1 %val.shifted.iszero, label %end, label %loop 2765 /// 2766 /// end: 2767 /// %iv.res = phi i8 [ %iv, %loop ] <...> 2768 /// %nbits.res = phi i8 [ %nbits, %loop ] <...> 2769 /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...> 2770 /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...> 2771 /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...> 2772 /// <...> 2773 /// \endcode 2774 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, ScalarEvolution *SE, 2775 Instruction *&ValShiftedIsZero, 2776 Intrinsic::ID &IntrinID, Instruction *&IV, 2777 Value *&Start, Value *&Val, 2778 const SCEV *&ExtraOffsetExpr, 2779 bool &InvertedCond) { 2780 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2781 " Performing shift-until-zero idiom detection.\n"); 2782 2783 // Give up if the loop has multiple blocks or multiple backedges. 2784 if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { 2785 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n"); 2786 return false; 2787 } 2788 2789 Instruction *ValShifted, *NBits, *IVNext; 2790 Value *ExtraOffset; 2791 2792 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2793 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2794 assert(LoopPreheaderBB && "There is always a loop preheader."); 2795 2796 using namespace PatternMatch; 2797 2798 // Step 1: Check if the loop backedge, condition is in desirable form. 2799 2800 CmpPredicate Pred; 2801 BasicBlock *TrueBB, *FalseBB; 2802 if (!match(LoopHeaderBB->getTerminator(), 2803 m_Br(m_Instruction(ValShiftedIsZero), m_BasicBlock(TrueBB), 2804 m_BasicBlock(FalseBB))) || 2805 !match(ValShiftedIsZero, 2806 m_ICmp(Pred, m_Instruction(ValShifted), m_Zero())) || 2807 !ICmpInst::isEquality(Pred)) { 2808 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n"); 2809 return false; 2810 } 2811 2812 // Step 2: Check if the comparison's operand is in desirable form. 2813 // FIXME: Val could be a one-input PHI node, which we should look past. 2814 if (!match(ValShifted, m_Shift(m_LoopInvariant(m_Value(Val), CurLoop), 2815 m_Instruction(NBits)))) { 2816 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad comparisons value computation.\n"); 2817 return false; 2818 } 2819 IntrinID = ValShifted->getOpcode() == Instruction::Shl ? Intrinsic::cttz 2820 : Intrinsic::ctlz; 2821 2822 // Step 3: Check if the shift amount is in desirable form. 2823 2824 if (match(NBits, m_c_Add(m_Instruction(IV), 2825 m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) && 2826 (NBits->hasNoSignedWrap() || NBits->hasNoUnsignedWrap())) 2827 ExtraOffsetExpr = SE->getNegativeSCEV(SE->getSCEV(ExtraOffset)); 2828 else if (match(NBits, 2829 m_Sub(m_Instruction(IV), 2830 m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) && 2831 NBits->hasNoSignedWrap()) 2832 ExtraOffsetExpr = SE->getSCEV(ExtraOffset); 2833 else { 2834 IV = NBits; 2835 ExtraOffsetExpr = SE->getZero(NBits->getType()); 2836 } 2837 2838 // Step 4: Check if the recurrence is in desirable form. 2839 auto *IVPN = dyn_cast<PHINode>(IV); 2840 if (!IVPN || IVPN->getParent() != LoopHeaderBB) { 2841 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n"); 2842 return false; 2843 } 2844 2845 Start = IVPN->getIncomingValueForBlock(LoopPreheaderBB); 2846 IVNext = dyn_cast<Instruction>(IVPN->getIncomingValueForBlock(LoopHeaderBB)); 2847 2848 if (!IVNext || !match(IVNext, m_Add(m_Specific(IVPN), m_One()))) { 2849 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n"); 2850 return false; 2851 } 2852 2853 // Step 4: Check if the backedge's destinations are in desirable form. 2854 2855 assert(ICmpInst::isEquality(Pred) && 2856 "Should only get equality predicates here."); 2857 2858 // cmp-br is commutative, so canonicalize to a single variant. 2859 InvertedCond = Pred != ICmpInst::Predicate::ICMP_EQ; 2860 if (InvertedCond) { 2861 Pred = ICmpInst::getInversePredicate(Pred); 2862 std::swap(TrueBB, FalseBB); 2863 } 2864 2865 // We expect to exit loop when comparison yields true, 2866 // so when it yields false we should branch back to loop header. 2867 if (FalseBB != LoopHeaderBB) { 2868 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n"); 2869 return false; 2870 } 2871 2872 // The new, countable, loop will certainly only run a known number of 2873 // iterations, It won't be infinite. But the old loop might be infinite 2874 // under certain conditions. For logical shifts, the value will become zero 2875 // after at most bitwidth(%Val) loop iterations. However, for arithmetic 2876 // right-shift, iff the sign bit was set, the value will never become zero, 2877 // and the loop may never finish. 2878 if (ValShifted->getOpcode() == Instruction::AShr && 2879 !isMustProgress(CurLoop) && !SE->isKnownNonNegative(SE->getSCEV(Val))) { 2880 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Can not prove the loop is finite.\n"); 2881 return false; 2882 } 2883 2884 // Okay, idiom checks out. 2885 return true; 2886 } 2887 2888 /// Look for the following loop: 2889 /// \code 2890 /// entry: 2891 /// <...> 2892 /// %start = <...> 2893 /// %extraoffset = <...> 2894 /// <...> 2895 /// br label %for.cond 2896 /// 2897 /// loop: 2898 /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ] 2899 /// %nbits = add nsw i8 %iv, %extraoffset 2900 /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits 2901 /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0 2902 /// %iv.next = add i8 %iv, 1 2903 /// <...> 2904 /// br i1 %val.shifted.iszero, label %end, label %loop 2905 /// 2906 /// end: 2907 /// %iv.res = phi i8 [ %iv, %loop ] <...> 2908 /// %nbits.res = phi i8 [ %nbits, %loop ] <...> 2909 /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...> 2910 /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...> 2911 /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...> 2912 /// <...> 2913 /// \endcode 2914 /// 2915 /// And transform it into: 2916 /// \code 2917 /// entry: 2918 /// <...> 2919 /// %start = <...> 2920 /// %extraoffset = <...> 2921 /// <...> 2922 /// %val.numleadingzeros = call i8 @llvm.ct{l,t}z.i8(i8 %val, i1 0) 2923 /// %val.numactivebits = sub i8 8, %val.numleadingzeros 2924 /// %extraoffset.neg = sub i8 0, %extraoffset 2925 /// %tmp = add i8 %val.numactivebits, %extraoffset.neg 2926 /// %iv.final = call i8 @llvm.smax.i8(i8 %tmp, i8 %start) 2927 /// %loop.tripcount = sub i8 %iv.final, %start 2928 /// br label %loop 2929 /// 2930 /// loop: 2931 /// %loop.iv = phi i8 [ 0, %entry ], [ %loop.iv.next, %loop ] 2932 /// %loop.iv.next = add i8 %loop.iv, 1 2933 /// %loop.ivcheck = icmp eq i8 %loop.iv.next, %loop.tripcount 2934 /// %iv = add i8 %loop.iv, %start 2935 /// <...> 2936 /// br i1 %loop.ivcheck, label %end, label %loop 2937 /// 2938 /// end: 2939 /// %iv.res = phi i8 [ %iv.final, %loop ] <...> 2940 /// <...> 2941 /// \endcode 2942 bool LoopIdiomRecognize::recognizeShiftUntilZero() { 2943 bool MadeChange = false; 2944 2945 Instruction *ValShiftedIsZero; 2946 Intrinsic::ID IntrID; 2947 Instruction *IV; 2948 Value *Start, *Val; 2949 const SCEV *ExtraOffsetExpr; 2950 bool InvertedCond; 2951 if (!detectShiftUntilZeroIdiom(CurLoop, SE, ValShiftedIsZero, IntrID, IV, 2952 Start, Val, ExtraOffsetExpr, InvertedCond)) { 2953 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2954 " shift-until-zero idiom detection failed.\n"); 2955 return MadeChange; 2956 } 2957 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom detected!\n"); 2958 2959 // Ok, it is the idiom we were looking for, we *could* transform this loop, 2960 // but is it profitable to transform? 2961 2962 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2963 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2964 assert(LoopPreheaderBB && "There is always a loop preheader."); 2965 2966 BasicBlock *SuccessorBB = CurLoop->getExitBlock(); 2967 assert(SuccessorBB && "There is only a single successor."); 2968 2969 IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); 2970 Builder.SetCurrentDebugLocation(IV->getDebugLoc()); 2971 2972 Type *Ty = Val->getType(); 2973 unsigned Bitwidth = Ty->getScalarSizeInBits(); 2974 2975 TargetTransformInfo::TargetCostKind CostKind = 2976 TargetTransformInfo::TCK_SizeAndLatency; 2977 2978 // The rewrite is considered to be unprofitable iff and only iff the 2979 // intrinsic we'll use are not cheap. Note that we are okay with *just* 2980 // making the loop countable, even if nothing else changes. 2981 IntrinsicCostAttributes Attrs( 2982 IntrID, Ty, {PoisonValue::get(Ty), /*is_zero_poison=*/Builder.getFalse()}); 2983 InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind); 2984 if (Cost > TargetTransformInfo::TCC_Basic) { 2985 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2986 " Intrinsic is too costly, not beneficial\n"); 2987 return MadeChange; 2988 } 2989 2990 // Ok, transform appears worthwhile. 2991 MadeChange = true; 2992 2993 bool OffsetIsZero = false; 2994 if (auto *ExtraOffsetExprC = dyn_cast<SCEVConstant>(ExtraOffsetExpr)) 2995 OffsetIsZero = ExtraOffsetExprC->isZero(); 2996 2997 // Step 1: Compute the loop's final IV value / trip count. 2998 2999 CallInst *ValNumLeadingZeros = Builder.CreateIntrinsic( 3000 IntrID, Ty, {Val, /*is_zero_poison=*/Builder.getFalse()}, 3001 /*FMFSource=*/nullptr, Val->getName() + ".numleadingzeros"); 3002 Value *ValNumActiveBits = Builder.CreateSub( 3003 ConstantInt::get(Ty, Ty->getScalarSizeInBits()), ValNumLeadingZeros, 3004 Val->getName() + ".numactivebits", /*HasNUW=*/true, 3005 /*HasNSW=*/Bitwidth != 2); 3006 3007 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 3008 Expander.setInsertPoint(&*Builder.GetInsertPoint()); 3009 Value *ExtraOffset = Expander.expandCodeFor(ExtraOffsetExpr); 3010 3011 Value *ValNumActiveBitsOffset = Builder.CreateAdd( 3012 ValNumActiveBits, ExtraOffset, ValNumActiveBits->getName() + ".offset", 3013 /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true); 3014 Value *IVFinal = Builder.CreateIntrinsic(Intrinsic::smax, {Ty}, 3015 {ValNumActiveBitsOffset, Start}, 3016 /*FMFSource=*/nullptr, "iv.final"); 3017 3018 auto *LoopBackedgeTakenCount = cast<Instruction>(Builder.CreateSub( 3019 IVFinal, Start, CurLoop->getName() + ".backedgetakencount", 3020 /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true)); 3021 // FIXME: or when the offset was `add nuw` 3022 3023 // We know loop's backedge-taken count, but what's loop's trip count? 3024 Value *LoopTripCount = 3025 Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1), 3026 CurLoop->getName() + ".tripcount", /*HasNUW=*/true, 3027 /*HasNSW=*/Bitwidth != 2); 3028 3029 // Step 2: Adjust the successor basic block to recieve the original 3030 // induction variable's final value instead of the orig. IV itself. 3031 3032 IV->replaceUsesOutsideBlock(IVFinal, LoopHeaderBB); 3033 3034 // Step 3: Rewrite the loop into a countable form, with canonical IV. 3035 3036 // The new canonical induction variable. 3037 Builder.SetInsertPoint(LoopHeaderBB, LoopHeaderBB->begin()); 3038 auto *CIV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv"); 3039 3040 // The induction itself. 3041 Builder.SetInsertPoint(LoopHeaderBB, LoopHeaderBB->getFirstNonPHIIt()); 3042 auto *CIVNext = 3043 Builder.CreateAdd(CIV, ConstantInt::get(Ty, 1), CIV->getName() + ".next", 3044 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); 3045 3046 // The loop trip count check. 3047 auto *CIVCheck = Builder.CreateICmpEQ(CIVNext, LoopTripCount, 3048 CurLoop->getName() + ".ivcheck"); 3049 auto *NewIVCheck = CIVCheck; 3050 if (InvertedCond) { 3051 NewIVCheck = Builder.CreateNot(CIVCheck); 3052 NewIVCheck->takeName(ValShiftedIsZero); 3053 } 3054 3055 // The original IV, but rebased to be an offset to the CIV. 3056 auto *IVDePHId = Builder.CreateAdd(CIV, Start, "", /*HasNUW=*/false, 3057 /*HasNSW=*/true); // FIXME: what about NUW? 3058 IVDePHId->takeName(IV); 3059 3060 // The loop terminator. 3061 Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); 3062 Builder.CreateCondBr(CIVCheck, SuccessorBB, LoopHeaderBB); 3063 LoopHeaderBB->getTerminator()->eraseFromParent(); 3064 3065 // Populate the IV PHI. 3066 CIV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB); 3067 CIV->addIncoming(CIVNext, LoopHeaderBB); 3068 3069 // Step 4: Forget the "non-computable" trip-count SCEV associated with the 3070 // loop. The loop would otherwise not be deleted even if it becomes empty. 3071 3072 SE->forgetLoop(CurLoop); 3073 3074 // Step 5: Try to cleanup the loop's body somewhat. 3075 IV->replaceAllUsesWith(IVDePHId); 3076 IV->eraseFromParent(); 3077 3078 ValShiftedIsZero->replaceAllUsesWith(NewIVCheck); 3079 ValShiftedIsZero->eraseFromParent(); 3080 3081 // Other passes will take care of actually deleting the loop if possible. 3082 3083 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom optimized!\n"); 3084 3085 ++NumShiftUntilZero; 3086 return MadeChange; 3087 } 3088