xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopFuse.cpp (revision 258531b7ac0d43fce84a008235c597f920a6af7e)
1 //===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the loop fusion pass.
11 /// The implementation is largely based on the following document:
12 ///
13 ///       Code Transformations to Augment the Scope of Loop Fusion in a
14 ///         Production Compiler
15 ///       Christopher Mark Barton
16 ///       MSc Thesis
17 ///       https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf
18 ///
19 /// The general approach taken is to collect sets of control flow equivalent
20 /// loops and test whether they can be fused. The necessary conditions for
21 /// fusion are:
22 ///    1. The loops must be adjacent (there cannot be any statements between
23 ///       the two loops).
24 ///    2. The loops must be conforming (they must execute the same number of
25 ///       iterations).
26 ///    3. The loops must be control flow equivalent (if one loop executes, the
27 ///       other is guaranteed to execute).
28 ///    4. There cannot be any negative distance dependencies between the loops.
29 /// If all of these conditions are satisfied, it is safe to fuse the loops.
30 ///
31 /// This implementation creates FusionCandidates that represent the loop and the
32 /// necessary information needed by fusion. It then operates on the fusion
33 /// candidates, first confirming that the candidate is eligible for fusion. The
34 /// candidates are then collected into control flow equivalent sets, sorted in
35 /// dominance order. Each set of control flow equivalent candidates is then
36 /// traversed, attempting to fuse pairs of candidates in the set. If all
37 /// requirements for fusion are met, the two candidates are fused, creating a
38 /// new (fused) candidate which is then added back into the set to consider for
39 /// additional fusion.
40 ///
41 /// This implementation currently does not make any modifications to remove
42 /// conditions for fusion. Code transformations to make loops conform to each of
43 /// the conditions for fusion are discussed in more detail in the document
44 /// above. These can be added to the current implementation in the future.
45 //===----------------------------------------------------------------------===//
46 
47 #include "llvm/Transforms/Scalar/LoopFuse.h"
48 #include "llvm/ADT/Statistic.h"
49 #include "llvm/Analysis/AssumptionCache.h"
50 #include "llvm/Analysis/DependenceAnalysis.h"
51 #include "llvm/Analysis/DomTreeUpdater.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
54 #include "llvm/Analysis/PostDominators.h"
55 #include "llvm/Analysis/ScalarEvolution.h"
56 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
57 #include "llvm/Analysis/TargetTransformInfo.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/Verifier.h"
60 #include "llvm/InitializePasses.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/CodeMoverUtils.h"
69 #include "llvm/Transforms/Utils/LoopPeel.h"
70 
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "loop-fusion"
74 
75 STATISTIC(FuseCounter, "Loops fused");
76 STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion");
77 STATISTIC(InvalidPreheader, "Loop has invalid preheader");
78 STATISTIC(InvalidHeader, "Loop has invalid header");
79 STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks");
80 STATISTIC(InvalidExitBlock, "Loop has invalid exit block");
81 STATISTIC(InvalidLatch, "Loop has invalid latch");
82 STATISTIC(InvalidLoop, "Loop is invalid");
83 STATISTIC(AddressTakenBB, "Basic block has address taken");
84 STATISTIC(MayThrowException, "Loop may throw an exception");
85 STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access");
86 STATISTIC(NotSimplifiedForm, "Loop is not in simplified form");
87 STATISTIC(InvalidDependencies, "Dependencies prevent fusion");
88 STATISTIC(UnknownTripCount, "Loop has unknown trip count");
89 STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop");
90 STATISTIC(NonEqualTripCount, "Loop trip counts are not the same");
91 STATISTIC(NonAdjacent, "Loops are not adjacent");
92 STATISTIC(
93     NonEmptyPreheader,
94     "Loop has a non-empty preheader with instructions that cannot be moved");
95 STATISTIC(FusionNotBeneficial, "Fusion is not beneficial");
96 STATISTIC(NonIdenticalGuards, "Candidates have different guards");
97 STATISTIC(NonEmptyExitBlock, "Candidate has a non-empty exit block with "
98                              "instructions that cannot be moved");
99 STATISTIC(NonEmptyGuardBlock, "Candidate has a non-empty guard block with "
100                               "instructions that cannot be moved");
101 STATISTIC(NotRotated, "Candidate is not rotated");
102 STATISTIC(OnlySecondCandidateIsGuarded,
103           "The second candidate is guarded while the first one is not");
104 STATISTIC(NumHoistedInsts, "Number of hoisted preheader instructions.");
105 STATISTIC(NumSunkInsts, "Number of hoisted preheader instructions.");
106 
107 enum FusionDependenceAnalysisChoice {
108   FUSION_DEPENDENCE_ANALYSIS_SCEV,
109   FUSION_DEPENDENCE_ANALYSIS_DA,
110   FUSION_DEPENDENCE_ANALYSIS_ALL,
111 };
112 
113 static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis(
114     "loop-fusion-dependence-analysis",
115     cl::desc("Which dependence analysis should loop fusion use?"),
116     cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev",
117                           "Use the scalar evolution interface"),
118                clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da",
119                           "Use the dependence analysis interface"),
120                clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all",
121                           "Use all available analyses")),
122     cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL));
123 
124 static cl::opt<unsigned> FusionPeelMaxCount(
125     "loop-fusion-peel-max-count", cl::init(0), cl::Hidden,
126     cl::desc("Max number of iterations to be peeled from a loop, such that "
127              "fusion can take place"));
128 
129 #ifndef NDEBUG
130 static cl::opt<bool>
131     VerboseFusionDebugging("loop-fusion-verbose-debug",
132                            cl::desc("Enable verbose debugging for Loop Fusion"),
133                            cl::Hidden, cl::init(false));
134 #endif
135 
136 namespace {
137 /// This class is used to represent a candidate for loop fusion. When it is
138 /// constructed, it checks the conditions for loop fusion to ensure that it
139 /// represents a valid candidate. It caches several parts of a loop that are
140 /// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead
141 /// of continually querying the underlying Loop to retrieve these values. It is
142 /// assumed these will not change throughout loop fusion.
143 ///
144 /// The invalidate method should be used to indicate that the FusionCandidate is
145 /// no longer a valid candidate for fusion. Similarly, the isValid() method can
146 /// be used to ensure that the FusionCandidate is still valid for fusion.
147 struct FusionCandidate {
148   /// Cache of parts of the loop used throughout loop fusion. These should not
149   /// need to change throughout the analysis and transformation.
150   /// These parts are cached to avoid repeatedly looking up in the Loop class.
151 
152   /// Preheader of the loop this candidate represents
153   BasicBlock *Preheader;
154   /// Header of the loop this candidate represents
155   BasicBlock *Header;
156   /// Blocks in the loop that exit the loop
157   BasicBlock *ExitingBlock;
158   /// The successor block of this loop (where the exiting blocks go to)
159   BasicBlock *ExitBlock;
160   /// Latch of the loop
161   BasicBlock *Latch;
162   /// The loop that this fusion candidate represents
163   Loop *L;
164   /// Vector of instructions in this loop that read from memory
165   SmallVector<Instruction *, 16> MemReads;
166   /// Vector of instructions in this loop that write to memory
167   SmallVector<Instruction *, 16> MemWrites;
168   /// Are all of the members of this fusion candidate still valid
169   bool Valid;
170   /// Guard branch of the loop, if it exists
171   BranchInst *GuardBranch;
172   /// Peeling Paramaters of the Loop.
173   TTI::PeelingPreferences PP;
174   /// Can you Peel this Loop?
175   bool AbleToPeel;
176   /// Has this loop been Peeled
177   bool Peeled;
178 
179   /// Dominator and PostDominator trees are needed for the
180   /// FusionCandidateCompare function, required by FusionCandidateSet to
181   /// determine where the FusionCandidate should be inserted into the set. These
182   /// are used to establish ordering of the FusionCandidates based on dominance.
183   DominatorTree &DT;
184   const PostDominatorTree *PDT;
185 
186   OptimizationRemarkEmitter &ORE;
187 
188   FusionCandidate(Loop *L, DominatorTree &DT, const PostDominatorTree *PDT,
189                   OptimizationRemarkEmitter &ORE, TTI::PeelingPreferences PP)
190       : Preheader(L->getLoopPreheader()), Header(L->getHeader()),
191         ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()),
192         Latch(L->getLoopLatch()), L(L), Valid(true),
193         GuardBranch(L->getLoopGuardBranch()), PP(PP), AbleToPeel(canPeel(L)),
194         Peeled(false), DT(DT), PDT(PDT), ORE(ORE) {
195 
196     // Walk over all blocks in the loop and check for conditions that may
197     // prevent fusion. For each block, walk over all instructions and collect
198     // the memory reads and writes If any instructions that prevent fusion are
199     // found, invalidate this object and return.
200     for (BasicBlock *BB : L->blocks()) {
201       if (BB->hasAddressTaken()) {
202         invalidate();
203         reportInvalidCandidate(AddressTakenBB);
204         return;
205       }
206 
207       for (Instruction &I : *BB) {
208         if (I.mayThrow()) {
209           invalidate();
210           reportInvalidCandidate(MayThrowException);
211           return;
212         }
213         if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
214           if (SI->isVolatile()) {
215             invalidate();
216             reportInvalidCandidate(ContainsVolatileAccess);
217             return;
218           }
219         }
220         if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
221           if (LI->isVolatile()) {
222             invalidate();
223             reportInvalidCandidate(ContainsVolatileAccess);
224             return;
225           }
226         }
227         if (I.mayWriteToMemory())
228           MemWrites.push_back(&I);
229         if (I.mayReadFromMemory())
230           MemReads.push_back(&I);
231       }
232     }
233   }
234 
235   /// Check if all members of the class are valid.
236   bool isValid() const {
237     return Preheader && Header && ExitingBlock && ExitBlock && Latch && L &&
238            !L->isInvalid() && Valid;
239   }
240 
241   /// Verify that all members are in sync with the Loop object.
242   void verify() const {
243     assert(isValid() && "Candidate is not valid!!");
244     assert(!L->isInvalid() && "Loop is invalid!");
245     assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync");
246     assert(Header == L->getHeader() && "Header is out of sync");
247     assert(ExitingBlock == L->getExitingBlock() &&
248            "Exiting Blocks is out of sync");
249     assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync");
250     assert(Latch == L->getLoopLatch() && "Latch is out of sync");
251   }
252 
253   /// Get the entry block for this fusion candidate.
254   ///
255   /// If this fusion candidate represents a guarded loop, the entry block is the
256   /// loop guard block. If it represents an unguarded loop, the entry block is
257   /// the preheader of the loop.
258   BasicBlock *getEntryBlock() const {
259     if (GuardBranch)
260       return GuardBranch->getParent();
261     else
262       return Preheader;
263   }
264 
265   /// After Peeling the loop is modified quite a bit, hence all of the Blocks
266   /// need to be updated accordingly.
267   void updateAfterPeeling() {
268     Preheader = L->getLoopPreheader();
269     Header = L->getHeader();
270     ExitingBlock = L->getExitingBlock();
271     ExitBlock = L->getExitBlock();
272     Latch = L->getLoopLatch();
273     verify();
274   }
275 
276   /// Given a guarded loop, get the successor of the guard that is not in the
277   /// loop.
278   ///
279   /// This method returns the successor of the loop guard that is not located
280   /// within the loop (i.e., the successor of the guard that is not the
281   /// preheader).
282   /// This method is only valid for guarded loops.
283   BasicBlock *getNonLoopBlock() const {
284     assert(GuardBranch && "Only valid on guarded loops.");
285     assert(GuardBranch->isConditional() &&
286            "Expecting guard to be a conditional branch.");
287     if (Peeled)
288       return GuardBranch->getSuccessor(1);
289     return (GuardBranch->getSuccessor(0) == Preheader)
290                ? GuardBranch->getSuccessor(1)
291                : GuardBranch->getSuccessor(0);
292   }
293 
294 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
295   LLVM_DUMP_METHOD void dump() const {
296     dbgs() << "\tGuardBranch: ";
297     if (GuardBranch)
298       dbgs() << *GuardBranch;
299     else
300       dbgs() << "nullptr";
301     dbgs() << "\n"
302            << (GuardBranch ? GuardBranch->getName() : "nullptr") << "\n"
303            << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr")
304            << "\n"
305            << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n"
306            << "\tExitingBB: "
307            << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n"
308            << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr")
309            << "\n"
310            << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n"
311            << "\tEntryBlock: "
312            << (getEntryBlock() ? getEntryBlock()->getName() : "nullptr")
313            << "\n";
314   }
315 #endif
316 
317   /// Determine if a fusion candidate (representing a loop) is eligible for
318   /// fusion. Note that this only checks whether a single loop can be fused - it
319   /// does not check whether it is *legal* to fuse two loops together.
320   bool isEligibleForFusion(ScalarEvolution &SE) const {
321     if (!isValid()) {
322       LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n");
323       if (!Preheader)
324         ++InvalidPreheader;
325       if (!Header)
326         ++InvalidHeader;
327       if (!ExitingBlock)
328         ++InvalidExitingBlock;
329       if (!ExitBlock)
330         ++InvalidExitBlock;
331       if (!Latch)
332         ++InvalidLatch;
333       if (L->isInvalid())
334         ++InvalidLoop;
335 
336       return false;
337     }
338 
339     // Require ScalarEvolution to be able to determine a trip count.
340     if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
341       LLVM_DEBUG(dbgs() << "Loop " << L->getName()
342                         << " trip count not computable!\n");
343       return reportInvalidCandidate(UnknownTripCount);
344     }
345 
346     if (!L->isLoopSimplifyForm()) {
347       LLVM_DEBUG(dbgs() << "Loop " << L->getName()
348                         << " is not in simplified form!\n");
349       return reportInvalidCandidate(NotSimplifiedForm);
350     }
351 
352     if (!L->isRotatedForm()) {
353       LLVM_DEBUG(dbgs() << "Loop " << L->getName() << " is not rotated!\n");
354       return reportInvalidCandidate(NotRotated);
355     }
356 
357     return true;
358   }
359 
360 private:
361   // This is only used internally for now, to clear the MemWrites and MemReads
362   // list and setting Valid to false. I can't envision other uses of this right
363   // now, since once FusionCandidates are put into the FusionCandidateSet they
364   // are immutable. Thus, any time we need to change/update a FusionCandidate,
365   // we must create a new one and insert it into the FusionCandidateSet to
366   // ensure the FusionCandidateSet remains ordered correctly.
367   void invalidate() {
368     MemWrites.clear();
369     MemReads.clear();
370     Valid = false;
371   }
372 
373   bool reportInvalidCandidate(llvm::Statistic &Stat) const {
374     using namespace ore;
375     assert(L && Preheader && "Fusion candidate not initialized properly!");
376 #if LLVM_ENABLE_STATS
377     ++Stat;
378     ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(),
379                                         L->getStartLoc(), Preheader)
380              << "[" << Preheader->getParent()->getName() << "]: "
381              << "Loop is not a candidate for fusion: " << Stat.getDesc());
382 #endif
383     return false;
384   }
385 };
386 
387 struct FusionCandidateCompare {
388   /// Comparison functor to sort two Control Flow Equivalent fusion candidates
389   /// into dominance order.
390   /// If LHS dominates RHS and RHS post-dominates LHS, return true;
391   /// IF RHS dominates LHS and LHS post-dominates RHS, return false;
392   bool operator()(const FusionCandidate &LHS,
393                   const FusionCandidate &RHS) const {
394     const DominatorTree *DT = &(LHS.DT);
395 
396     BasicBlock *LHSEntryBlock = LHS.getEntryBlock();
397     BasicBlock *RHSEntryBlock = RHS.getEntryBlock();
398 
399     // Do not save PDT to local variable as it is only used in asserts and thus
400     // will trigger an unused variable warning if building without asserts.
401     assert(DT && LHS.PDT && "Expecting valid dominator tree");
402 
403     // Do this compare first so if LHS == RHS, function returns false.
404     if (DT->dominates(RHSEntryBlock, LHSEntryBlock)) {
405       // RHS dominates LHS
406       // Verify LHS post-dominates RHS
407       assert(LHS.PDT->dominates(LHSEntryBlock, RHSEntryBlock));
408       return false;
409     }
410 
411     if (DT->dominates(LHSEntryBlock, RHSEntryBlock)) {
412       // Verify RHS Postdominates LHS
413       assert(LHS.PDT->dominates(RHSEntryBlock, LHSEntryBlock));
414       return true;
415     }
416 
417     // If LHS does not dominate RHS and RHS does not dominate LHS then there is
418     // no dominance relationship between the two FusionCandidates. Thus, they
419     // should not be in the same set together.
420     llvm_unreachable(
421         "No dominance relationship between these fusion candidates!");
422   }
423 };
424 
425 using LoopVector = SmallVector<Loop *, 4>;
426 
427 // Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance
428 // order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0
429 // dominates FC1 and FC1 post-dominates FC0.
430 // std::set was chosen because we want a sorted data structure with stable
431 // iterators. A subsequent patch to loop fusion will enable fusing non-adjacent
432 // loops by moving intervening code around. When this intervening code contains
433 // loops, those loops will be moved also. The corresponding FusionCandidates
434 // will also need to be moved accordingly. As this is done, having stable
435 // iterators will simplify the logic. Similarly, having an efficient insert that
436 // keeps the FusionCandidateSet sorted will also simplify the implementation.
437 using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>;
438 using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>;
439 
440 #if !defined(NDEBUG)
441 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
442                                      const FusionCandidate &FC) {
443   if (FC.isValid())
444     OS << FC.Preheader->getName();
445   else
446     OS << "<Invalid>";
447 
448   return OS;
449 }
450 
451 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
452                                      const FusionCandidateSet &CandSet) {
453   for (const FusionCandidate &FC : CandSet)
454     OS << FC << '\n';
455 
456   return OS;
457 }
458 
459 static void
460 printFusionCandidates(const FusionCandidateCollection &FusionCandidates) {
461   dbgs() << "Fusion Candidates: \n";
462   for (const auto &CandidateSet : FusionCandidates) {
463     dbgs() << "*** Fusion Candidate Set ***\n";
464     dbgs() << CandidateSet;
465     dbgs() << "****************************\n";
466   }
467 }
468 #endif
469 
470 /// Collect all loops in function at the same nest level, starting at the
471 /// outermost level.
472 ///
473 /// This data structure collects all loops at the same nest level for a
474 /// given function (specified by the LoopInfo object). It starts at the
475 /// outermost level.
476 struct LoopDepthTree {
477   using LoopsOnLevelTy = SmallVector<LoopVector, 4>;
478   using iterator = LoopsOnLevelTy::iterator;
479   using const_iterator = LoopsOnLevelTy::const_iterator;
480 
481   LoopDepthTree(LoopInfo &LI) : Depth(1) {
482     if (!LI.empty())
483       LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend()));
484   }
485 
486   /// Test whether a given loop has been removed from the function, and thus is
487   /// no longer valid.
488   bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); }
489 
490   /// Record that a given loop has been removed from the function and is no
491   /// longer valid.
492   void removeLoop(const Loop *L) { RemovedLoops.insert(L); }
493 
494   /// Descend the tree to the next (inner) nesting level
495   void descend() {
496     LoopsOnLevelTy LoopsOnNextLevel;
497 
498     for (const LoopVector &LV : *this)
499       for (Loop *L : LV)
500         if (!isRemovedLoop(L) && L->begin() != L->end())
501           LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end()));
502 
503     LoopsOnLevel = LoopsOnNextLevel;
504     RemovedLoops.clear();
505     Depth++;
506   }
507 
508   bool empty() const { return size() == 0; }
509   size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); }
510   unsigned getDepth() const { return Depth; }
511 
512   iterator begin() { return LoopsOnLevel.begin(); }
513   iterator end() { return LoopsOnLevel.end(); }
514   const_iterator begin() const { return LoopsOnLevel.begin(); }
515   const_iterator end() const { return LoopsOnLevel.end(); }
516 
517 private:
518   /// Set of loops that have been removed from the function and are no longer
519   /// valid.
520   SmallPtrSet<const Loop *, 8> RemovedLoops;
521 
522   /// Depth of the current level, starting at 1 (outermost loops).
523   unsigned Depth;
524 
525   /// Vector of loops at the current depth level that have the same parent loop
526   LoopsOnLevelTy LoopsOnLevel;
527 };
528 
529 #ifndef NDEBUG
530 static void printLoopVector(const LoopVector &LV) {
531   dbgs() << "****************************\n";
532   for (auto *L : LV)
533     printLoop(*L, dbgs());
534   dbgs() << "****************************\n";
535 }
536 #endif
537 
538 struct LoopFuser {
539 private:
540   // Sets of control flow equivalent fusion candidates for a given nest level.
541   FusionCandidateCollection FusionCandidates;
542 
543   LoopDepthTree LDT;
544   DomTreeUpdater DTU;
545 
546   LoopInfo &LI;
547   DominatorTree &DT;
548   DependenceInfo &DI;
549   ScalarEvolution &SE;
550   PostDominatorTree &PDT;
551   OptimizationRemarkEmitter &ORE;
552   AssumptionCache &AC;
553   const TargetTransformInfo &TTI;
554 
555 public:
556   LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI,
557             ScalarEvolution &SE, PostDominatorTree &PDT,
558             OptimizationRemarkEmitter &ORE, const DataLayout &DL,
559             AssumptionCache &AC, const TargetTransformInfo &TTI)
560       : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI),
561         DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE), AC(AC), TTI(TTI) {}
562 
563   /// This is the main entry point for loop fusion. It will traverse the
564   /// specified function and collect candidate loops to fuse, starting at the
565   /// outermost nesting level and working inwards.
566   bool fuseLoops(Function &F) {
567 #ifndef NDEBUG
568     if (VerboseFusionDebugging) {
569       LI.print(dbgs());
570     }
571 #endif
572 
573     LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName()
574                       << "\n");
575     bool Changed = false;
576 
577     while (!LDT.empty()) {
578       LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth "
579                         << LDT.getDepth() << "\n";);
580 
581       for (const LoopVector &LV : LDT) {
582         assert(LV.size() > 0 && "Empty loop set was build!");
583 
584         // Skip singleton loop sets as they do not offer fusion opportunities on
585         // this level.
586         if (LV.size() == 1)
587           continue;
588 #ifndef NDEBUG
589         if (VerboseFusionDebugging) {
590           LLVM_DEBUG({
591             dbgs() << "  Visit loop set (#" << LV.size() << "):\n";
592             printLoopVector(LV);
593           });
594         }
595 #endif
596 
597         collectFusionCandidates(LV);
598         Changed |= fuseCandidates();
599       }
600 
601       // Finished analyzing candidates at this level.
602       // Descend to the next level and clear all of the candidates currently
603       // collected. Note that it will not be possible to fuse any of the
604       // existing candidates with new candidates because the new candidates will
605       // be at a different nest level and thus not be control flow equivalent
606       // with all of the candidates collected so far.
607       LLVM_DEBUG(dbgs() << "Descend one level!\n");
608       LDT.descend();
609       FusionCandidates.clear();
610     }
611 
612     if (Changed)
613       LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump(););
614 
615 #ifndef NDEBUG
616     assert(DT.verify());
617     assert(PDT.verify());
618     LI.verify(DT);
619     SE.verify();
620 #endif
621 
622     LLVM_DEBUG(dbgs() << "Loop Fusion complete\n");
623     return Changed;
624   }
625 
626 private:
627   /// Determine if two fusion candidates are control flow equivalent.
628   ///
629   /// Two fusion candidates are control flow equivalent if when one executes,
630   /// the other is guaranteed to execute. This is determined using dominators
631   /// and post-dominators: if A dominates B and B post-dominates A then A and B
632   /// are control-flow equivalent.
633   bool isControlFlowEquivalent(const FusionCandidate &FC0,
634                                const FusionCandidate &FC1) const {
635     assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders");
636 
637     return ::isControlFlowEquivalent(*FC0.getEntryBlock(), *FC1.getEntryBlock(),
638                                      DT, PDT);
639   }
640 
641   /// Iterate over all loops in the given loop set and identify the loops that
642   /// are eligible for fusion. Place all eligible fusion candidates into Control
643   /// Flow Equivalent sets, sorted by dominance.
644   void collectFusionCandidates(const LoopVector &LV) {
645     for (Loop *L : LV) {
646       TTI::PeelingPreferences PP =
647           gatherPeelingPreferences(L, SE, TTI, None, None);
648       FusionCandidate CurrCand(L, DT, &PDT, ORE, PP);
649       if (!CurrCand.isEligibleForFusion(SE))
650         continue;
651 
652       // Go through each list in FusionCandidates and determine if L is control
653       // flow equivalent with the first loop in that list. If it is, append LV.
654       // If not, go to the next list.
655       // If no suitable list is found, start another list and add it to
656       // FusionCandidates.
657       bool FoundSet = false;
658 
659       for (auto &CurrCandSet : FusionCandidates) {
660         if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) {
661           CurrCandSet.insert(CurrCand);
662           FoundSet = true;
663 #ifndef NDEBUG
664           if (VerboseFusionDebugging)
665             LLVM_DEBUG(dbgs() << "Adding " << CurrCand
666                               << " to existing candidate set\n");
667 #endif
668           break;
669         }
670       }
671       if (!FoundSet) {
672         // No set was found. Create a new set and add to FusionCandidates
673 #ifndef NDEBUG
674         if (VerboseFusionDebugging)
675           LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n");
676 #endif
677         FusionCandidateSet NewCandSet;
678         NewCandSet.insert(CurrCand);
679         FusionCandidates.push_back(NewCandSet);
680       }
681       NumFusionCandidates++;
682     }
683   }
684 
685   /// Determine if it is beneficial to fuse two loops.
686   ///
687   /// For now, this method simply returns true because we want to fuse as much
688   /// as possible (primarily to test the pass). This method will evolve, over
689   /// time, to add heuristics for profitability of fusion.
690   bool isBeneficialFusion(const FusionCandidate &FC0,
691                           const FusionCandidate &FC1) {
692     return true;
693   }
694 
695   /// Determine if two fusion candidates have the same trip count (i.e., they
696   /// execute the same number of iterations).
697   ///
698   /// This function will return a pair of values. The first is a boolean,
699   /// stating whether or not the two candidates are known at compile time to
700   /// have the same TripCount. The second is the difference in the two
701   /// TripCounts. This information can be used later to determine whether or not
702   /// peeling can be performed on either one of the candidates.
703   std::pair<bool, Optional<unsigned>>
704   haveIdenticalTripCounts(const FusionCandidate &FC0,
705                           const FusionCandidate &FC1) const {
706 
707     const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L);
708     if (isa<SCEVCouldNotCompute>(TripCount0)) {
709       UncomputableTripCount++;
710       LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!");
711       return {false, None};
712     }
713 
714     const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L);
715     if (isa<SCEVCouldNotCompute>(TripCount1)) {
716       UncomputableTripCount++;
717       LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!");
718       return {false, None};
719     }
720 
721     LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & "
722                       << *TripCount1 << " are "
723                       << (TripCount0 == TripCount1 ? "identical" : "different")
724                       << "\n");
725 
726     if (TripCount0 == TripCount1)
727       return {true, 0};
728 
729     LLVM_DEBUG(dbgs() << "The loops do not have the same tripcount, "
730                          "determining the difference between trip counts\n");
731 
732     // Currently only considering loops with a single exit point
733     // and a non-constant trip count.
734     const unsigned TC0 = SE.getSmallConstantTripCount(FC0.L);
735     const unsigned TC1 = SE.getSmallConstantTripCount(FC1.L);
736 
737     // If any of the tripcounts are zero that means that loop(s) do not have
738     // a single exit or a constant tripcount.
739     if (TC0 == 0 || TC1 == 0) {
740       LLVM_DEBUG(dbgs() << "Loop(s) do not have a single exit point or do not "
741                            "have a constant number of iterations. Peeling "
742                            "is not benefical\n");
743       return {false, None};
744     }
745 
746     Optional<unsigned> Difference;
747     int Diff = TC0 - TC1;
748 
749     if (Diff > 0)
750       Difference = Diff;
751     else {
752       LLVM_DEBUG(
753           dbgs() << "Difference is less than 0. FC1 (second loop) has more "
754                     "iterations than the first one. Currently not supported\n");
755     }
756 
757     LLVM_DEBUG(dbgs() << "Difference in loop trip count is: " << Difference
758                       << "\n");
759 
760     return {false, Difference};
761   }
762 
763   void peelFusionCandidate(FusionCandidate &FC0, const FusionCandidate &FC1,
764                            unsigned PeelCount) {
765     assert(FC0.AbleToPeel && "Should be able to peel loop");
766 
767     LLVM_DEBUG(dbgs() << "Attempting to peel first " << PeelCount
768                       << " iterations of the first loop. \n");
769 
770     FC0.Peeled = peelLoop(FC0.L, PeelCount, &LI, &SE, DT, &AC, true);
771     if (FC0.Peeled) {
772       LLVM_DEBUG(dbgs() << "Done Peeling\n");
773 
774 #ifndef NDEBUG
775       auto IdenticalTripCount = haveIdenticalTripCounts(FC0, FC1);
776 
777       assert(IdenticalTripCount.first && *IdenticalTripCount.second == 0 &&
778              "Loops should have identical trip counts after peeling");
779 #endif
780 
781       FC0.PP.PeelCount += PeelCount;
782 
783       // Peeling does not update the PDT
784       PDT.recalculate(*FC0.Preheader->getParent());
785 
786       FC0.updateAfterPeeling();
787 
788       // In this case the iterations of the loop are constant, so the first
789       // loop will execute completely (will not jump from one of
790       // the peeled blocks to the second loop). Here we are updating the
791       // branch conditions of each of the peeled blocks, such that it will
792       // branch to its successor which is not the preheader of the second loop
793       // in the case of unguarded loops, or the succesors of the exit block of
794       // the first loop otherwise. Doing this update will ensure that the entry
795       // block of the first loop dominates the entry block of the second loop.
796       BasicBlock *BB =
797           FC0.GuardBranch ? FC0.ExitBlock->getUniqueSuccessor() : FC1.Preheader;
798       if (BB) {
799         SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
800         SmallVector<Instruction *, 8> WorkList;
801         for (BasicBlock *Pred : predecessors(BB)) {
802           if (Pred != FC0.ExitBlock) {
803             WorkList.emplace_back(Pred->getTerminator());
804             TreeUpdates.emplace_back(
805                 DominatorTree::UpdateType(DominatorTree::Delete, Pred, BB));
806           }
807         }
808         // Cannot modify the predecessors inside the above loop as it will cause
809         // the iterators to be nullptrs, causing memory errors.
810         for (Instruction *CurrentBranch : WorkList) {
811           BasicBlock *Succ = CurrentBranch->getSuccessor(0);
812           if (Succ == BB)
813             Succ = CurrentBranch->getSuccessor(1);
814           ReplaceInstWithInst(CurrentBranch, BranchInst::Create(Succ));
815         }
816 
817         DTU.applyUpdates(TreeUpdates);
818         DTU.flush();
819       }
820       LLVM_DEBUG(
821           dbgs() << "Sucessfully peeled " << FC0.PP.PeelCount
822                  << " iterations from the first loop.\n"
823                     "Both Loops have the same number of iterations now.\n");
824     }
825   }
826 
827   /// Walk each set of control flow equivalent fusion candidates and attempt to
828   /// fuse them. This does a single linear traversal of all candidates in the
829   /// set. The conditions for legal fusion are checked at this point. If a pair
830   /// of fusion candidates passes all legality checks, they are fused together
831   /// and a new fusion candidate is created and added to the FusionCandidateSet.
832   /// The original fusion candidates are then removed, as they are no longer
833   /// valid.
834   bool fuseCandidates() {
835     bool Fused = false;
836     LLVM_DEBUG(printFusionCandidates(FusionCandidates));
837     for (auto &CandidateSet : FusionCandidates) {
838       if (CandidateSet.size() < 2)
839         continue;
840 
841       LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n"
842                         << CandidateSet << "\n");
843 
844       for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) {
845         assert(!LDT.isRemovedLoop(FC0->L) &&
846                "Should not have removed loops in CandidateSet!");
847         auto FC1 = FC0;
848         for (++FC1; FC1 != CandidateSet.end(); ++FC1) {
849           assert(!LDT.isRemovedLoop(FC1->L) &&
850                  "Should not have removed loops in CandidateSet!");
851 
852           LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump();
853                      dbgs() << " with\n"; FC1->dump(); dbgs() << "\n");
854 
855           FC0->verify();
856           FC1->verify();
857 
858           // Check if the candidates have identical tripcounts (first value of
859           // pair), and if not check the difference in the tripcounts between
860           // the loops (second value of pair). The difference is not equal to
861           // None iff the loops iterate a constant number of times, and have a
862           // single exit.
863           std::pair<bool, Optional<unsigned>> IdenticalTripCountRes =
864               haveIdenticalTripCounts(*FC0, *FC1);
865           bool SameTripCount = IdenticalTripCountRes.first;
866           Optional<unsigned> TCDifference = IdenticalTripCountRes.second;
867 
868           // Here we are checking that FC0 (the first loop) can be peeled, and
869           // both loops have different tripcounts.
870           if (FC0->AbleToPeel && !SameTripCount && TCDifference) {
871             if (*TCDifference > FusionPeelMaxCount) {
872               LLVM_DEBUG(dbgs()
873                          << "Difference in loop trip counts: " << *TCDifference
874                          << " is greater than maximum peel count specificed: "
875                          << FusionPeelMaxCount << "\n");
876             } else {
877               // Dependent on peeling being performed on the first loop, and
878               // assuming all other conditions for fusion return true.
879               SameTripCount = true;
880             }
881           }
882 
883           if (!SameTripCount) {
884             LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip "
885                                  "counts. Not fusing.\n");
886             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
887                                                        NonEqualTripCount);
888             continue;
889           }
890 
891           if (!isAdjacent(*FC0, *FC1)) {
892             LLVM_DEBUG(dbgs()
893                        << "Fusion candidates are not adjacent. Not fusing.\n");
894             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent);
895             continue;
896           }
897 
898           if (!FC0->GuardBranch && FC1->GuardBranch) {
899             LLVM_DEBUG(dbgs() << "The second candidate is guarded while the "
900                                  "first one is not. Not fusing.\n");
901             reportLoopFusion<OptimizationRemarkMissed>(
902                 *FC0, *FC1, OnlySecondCandidateIsGuarded);
903             continue;
904           }
905 
906           // Ensure that FC0 and FC1 have identical guards.
907           // If one (or both) are not guarded, this check is not necessary.
908           if (FC0->GuardBranch && FC1->GuardBranch &&
909               !haveIdenticalGuards(*FC0, *FC1) && !TCDifference) {
910             LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical "
911                                  "guards. Not Fusing.\n");
912             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
913                                                        NonIdenticalGuards);
914             continue;
915           }
916 
917           if (FC0->GuardBranch) {
918             assert(FC1->GuardBranch && "Expecting valid FC1 guard branch");
919 
920             if (!isSafeToMoveBefore(*FC0->ExitBlock,
921                                     *FC1->ExitBlock->getFirstNonPHIOrDbg(), DT,
922                                     &PDT, &DI)) {
923               LLVM_DEBUG(dbgs() << "Fusion candidate contains unsafe "
924                                    "instructions in exit block. Not fusing.\n");
925               reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
926                                                          NonEmptyExitBlock);
927               continue;
928             }
929 
930             if (!isSafeToMoveBefore(
931                     *FC1->GuardBranch->getParent(),
932                     *FC0->GuardBranch->getParent()->getTerminator(), DT, &PDT,
933                     &DI)) {
934               LLVM_DEBUG(dbgs()
935                          << "Fusion candidate contains unsafe "
936                             "instructions in guard block. Not fusing.\n");
937               reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
938                                                          NonEmptyGuardBlock);
939               continue;
940             }
941           }
942 
943           // Check the dependencies across the loops and do not fuse if it would
944           // violate them.
945           if (!dependencesAllowFusion(*FC0, *FC1)) {
946             LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n");
947             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
948                                                        InvalidDependencies);
949             continue;
950           }
951 
952           // If the second loop has instructions in the pre-header, attempt to
953           // hoist them up to the first loop's pre-header or sink them into the
954           // body of the second loop.
955           SmallVector<Instruction *, 4> SafeToHoist;
956           SmallVector<Instruction *, 4> SafeToSink;
957           // At this point, this is the last remaining legality check.
958           // Which means if we can make this pre-header empty, we can fuse
959           // these loops
960           if (!isEmptyPreheader(*FC1)) {
961             LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty "
962                                  "preheader.\n");
963 
964             // If it is not safe to hoist/sink all instructions in the
965             // pre-header, we cannot fuse these loops.
966             if (!collectMovablePreheaderInsts(*FC0, *FC1, SafeToHoist,
967                                               SafeToSink)) {
968               LLVM_DEBUG(dbgs() << "Could not hoist/sink all instructions in "
969                                    "Fusion Candidate Pre-header.\n"
970                                 << "Not Fusing.\n");
971               reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
972                                                          NonEmptyPreheader);
973               continue;
974             }
975           }
976 
977           bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1);
978           LLVM_DEBUG(dbgs()
979                      << "\tFusion appears to be "
980                      << (BeneficialToFuse ? "" : "un") << "profitable!\n");
981           if (!BeneficialToFuse) {
982             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
983                                                        FusionNotBeneficial);
984             continue;
985           }
986           // All analysis has completed and has determined that fusion is legal
987           // and profitable. At this point, start transforming the code and
988           // perform fusion.
989 
990           // Execute the hoist/sink operations on preheader instructions
991           movePreheaderInsts(*FC0, *FC1, SafeToHoist, SafeToSink);
992 
993           LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and "
994                             << *FC1 << "\n");
995 
996           FusionCandidate FC0Copy = *FC0;
997           // Peel the loop after determining that fusion is legal. The Loops
998           // will still be safe to fuse after the peeling is performed.
999           bool Peel = TCDifference && *TCDifference > 0;
1000           if (Peel)
1001             peelFusionCandidate(FC0Copy, *FC1, *TCDifference);
1002 
1003           // Report fusion to the Optimization Remarks.
1004           // Note this needs to be done *before* performFusion because
1005           // performFusion will change the original loops, making it not
1006           // possible to identify them after fusion is complete.
1007           reportLoopFusion<OptimizationRemark>((Peel ? FC0Copy : *FC0), *FC1,
1008                                                FuseCounter);
1009 
1010           FusionCandidate FusedCand(
1011               performFusion((Peel ? FC0Copy : *FC0), *FC1), DT, &PDT, ORE,
1012               FC0Copy.PP);
1013           FusedCand.verify();
1014           assert(FusedCand.isEligibleForFusion(SE) &&
1015                  "Fused candidate should be eligible for fusion!");
1016 
1017           // Notify the loop-depth-tree that these loops are not valid objects
1018           LDT.removeLoop(FC1->L);
1019 
1020           CandidateSet.erase(FC0);
1021           CandidateSet.erase(FC1);
1022 
1023           auto InsertPos = CandidateSet.insert(FusedCand);
1024 
1025           assert(InsertPos.second &&
1026                  "Unable to insert TargetCandidate in CandidateSet!");
1027 
1028           // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations
1029           // of the FC1 loop will attempt to fuse the new (fused) loop with the
1030           // remaining candidates in the current candidate set.
1031           FC0 = FC1 = InsertPos.first;
1032 
1033           LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet
1034                             << "\n");
1035 
1036           Fused = true;
1037         }
1038       }
1039     }
1040     return Fused;
1041   }
1042 
1043   /// Collect instructions in the \p FC1 Preheader that can be hoisted
1044   /// to the \p FC0 Preheader or sunk into the \p FC1 Body
1045   bool collectMovablePreheaderInsts(
1046       const FusionCandidate &FC0, const FusionCandidate &FC1,
1047       SmallVector<Instruction *, 4> &SafeToHoist,
1048       SmallVector<Instruction *, 4> &SafeToSink) const {
1049     BasicBlock *FC1Preheader = FC1.Preheader;
1050     for (Instruction &I : *FC1Preheader) {
1051       // Can't move a branch
1052       if (&I == FC1Preheader->getTerminator())
1053         continue;
1054       // If the instruction has side-effects, give up.
1055       // TODO: The case of mayReadFromMemory we can handle but requires
1056       // additional work with a dependence analysis so for now we give
1057       // up on memory reads.
1058       if (I.mayHaveSideEffects() || I.mayReadFromMemory()) {
1059         LLVM_DEBUG(dbgs() << "Inst: " << I << " may have side-effects.\n");
1060         return false;
1061       }
1062 
1063       LLVM_DEBUG(dbgs() << "Checking Inst: " << I << "\n");
1064 
1065       // First check if can be hoisted
1066       // If the operands of this instruction dominate the FC0 Preheader
1067       // target block, then it is safe to move them to the end of the FC0
1068       const BasicBlock *FC0PreheaderTarget =
1069           FC0.Preheader->getSingleSuccessor();
1070       assert(FC0PreheaderTarget &&
1071              "Expected single successor for loop preheader.");
1072       bool CanHoistInst = true;
1073       for (Use &Op : I.operands()) {
1074         if (auto *OpInst = dyn_cast<Instruction>(Op)) {
1075           bool OpHoisted = is_contained(SafeToHoist, OpInst);
1076           // Check if we have already decided to hoist this operand. In this
1077           // case, it does not dominate FC0 *yet*, but will after we hoist it.
1078           if (!(OpHoisted || DT.dominates(OpInst, FC0PreheaderTarget))) {
1079             CanHoistInst = false;
1080             break;
1081           }
1082         }
1083       }
1084       if (CanHoistInst) {
1085         SafeToHoist.push_back(&I);
1086         LLVM_DEBUG(dbgs() << "\tSafe to hoist.\n");
1087       } else {
1088         LLVM_DEBUG(dbgs() << "\tCould not hoist. Trying to sink...\n");
1089 
1090         for (User *U : I.users()) {
1091           if (auto *UI{dyn_cast<Instruction>(U)}) {
1092             // Cannot sink if user in loop
1093             // If FC1 has phi users of this value, we cannot sink it into FC1.
1094             if (FC1.L->contains(UI)) {
1095               // Cannot hoist or sink this instruction. No hoisting/sinking
1096               // should take place, loops should not fuse
1097               LLVM_DEBUG(dbgs() << "\tCould not sink.\n");
1098               return false;
1099             }
1100           }
1101         }
1102         SafeToSink.push_back(&I);
1103         LLVM_DEBUG(dbgs() << "\tSafe to sink.\n");
1104       }
1105     }
1106     LLVM_DEBUG(
1107         dbgs() << "All preheader instructions could be sunk or hoisted!\n");
1108     return true;
1109   }
1110 
1111   /// Rewrite all additive recurrences in a SCEV to use a new loop.
1112   class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> {
1113   public:
1114     AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL,
1115                        bool UseMax = true)
1116         : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL),
1117           NewL(NewL) {}
1118 
1119     const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
1120       const Loop *ExprL = Expr->getLoop();
1121       SmallVector<const SCEV *, 2> Operands;
1122       if (ExprL == &OldL) {
1123         Operands.append(Expr->op_begin(), Expr->op_end());
1124         return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags());
1125       }
1126 
1127       if (OldL.contains(ExprL)) {
1128         bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE));
1129         if (!UseMax || !Pos || !Expr->isAffine()) {
1130           Valid = false;
1131           return Expr;
1132         }
1133         return visit(Expr->getStart());
1134       }
1135 
1136       for (const SCEV *Op : Expr->operands())
1137         Operands.push_back(visit(Op));
1138       return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags());
1139     }
1140 
1141     bool wasValidSCEV() const { return Valid; }
1142 
1143   private:
1144     bool Valid, UseMax;
1145     const Loop &OldL, &NewL;
1146   };
1147 
1148   /// Return false if the access functions of \p I0 and \p I1 could cause
1149   /// a negative dependence.
1150   bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0,
1151                             Instruction &I1, bool EqualIsInvalid) {
1152     Value *Ptr0 = getLoadStorePointerOperand(&I0);
1153     Value *Ptr1 = getLoadStorePointerOperand(&I1);
1154     if (!Ptr0 || !Ptr1)
1155       return false;
1156 
1157     const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0);
1158     const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1);
1159 #ifndef NDEBUG
1160     if (VerboseFusionDebugging)
1161       LLVM_DEBUG(dbgs() << "    Access function check: " << *SCEVPtr0 << " vs "
1162                         << *SCEVPtr1 << "\n");
1163 #endif
1164     AddRecLoopReplacer Rewriter(SE, L0, L1);
1165     SCEVPtr0 = Rewriter.visit(SCEVPtr0);
1166 #ifndef NDEBUG
1167     if (VerboseFusionDebugging)
1168       LLVM_DEBUG(dbgs() << "    Access function after rewrite: " << *SCEVPtr0
1169                         << " [Valid: " << Rewriter.wasValidSCEV() << "]\n");
1170 #endif
1171     if (!Rewriter.wasValidSCEV())
1172       return false;
1173 
1174     // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by
1175     //       L0) and the other is not. We could check if it is monotone and test
1176     //       the beginning and end value instead.
1177 
1178     BasicBlock *L0Header = L0.getHeader();
1179     auto HasNonLinearDominanceRelation = [&](const SCEV *S) {
1180       const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S);
1181       if (!AddRec)
1182         return false;
1183       return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) &&
1184              !DT.dominates(AddRec->getLoop()->getHeader(), L0Header);
1185     };
1186     if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation))
1187       return false;
1188 
1189     ICmpInst::Predicate Pred =
1190         EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE;
1191     bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1);
1192 #ifndef NDEBUG
1193     if (VerboseFusionDebugging)
1194       LLVM_DEBUG(dbgs() << "    Relation: " << *SCEVPtr0
1195                         << (IsAlwaysGE ? "  >=  " : "  may <  ") << *SCEVPtr1
1196                         << "\n");
1197 #endif
1198     return IsAlwaysGE;
1199   }
1200 
1201   /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in
1202   /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses
1203   /// specified by @p DepChoice are used to determine this.
1204   bool dependencesAllowFusion(const FusionCandidate &FC0,
1205                               const FusionCandidate &FC1, Instruction &I0,
1206                               Instruction &I1, bool AnyDep,
1207                               FusionDependenceAnalysisChoice DepChoice) {
1208 #ifndef NDEBUG
1209     if (VerboseFusionDebugging) {
1210       LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : "
1211                         << DepChoice << "\n");
1212     }
1213 #endif
1214     switch (DepChoice) {
1215     case FUSION_DEPENDENCE_ANALYSIS_SCEV:
1216       return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep);
1217     case FUSION_DEPENDENCE_ANALYSIS_DA: {
1218       auto DepResult = DI.depends(&I0, &I1, true);
1219       if (!DepResult)
1220         return true;
1221 #ifndef NDEBUG
1222       if (VerboseFusionDebugging) {
1223         LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs());
1224                    dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: "
1225                           << (DepResult->isOrdered() ? "true" : "false")
1226                           << "]\n");
1227         LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels()
1228                           << "\n");
1229       }
1230 #endif
1231 
1232       if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor())
1233         LLVM_DEBUG(
1234             dbgs() << "TODO: Implement pred/succ dependence handling!\n");
1235 
1236       // TODO: Can we actually use the dependence info analysis here?
1237       return false;
1238     }
1239 
1240     case FUSION_DEPENDENCE_ANALYSIS_ALL:
1241       return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
1242                                     FUSION_DEPENDENCE_ANALYSIS_SCEV) ||
1243              dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
1244                                     FUSION_DEPENDENCE_ANALYSIS_DA);
1245     }
1246 
1247     llvm_unreachable("Unknown fusion dependence analysis choice!");
1248   }
1249 
1250   /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused.
1251   bool dependencesAllowFusion(const FusionCandidate &FC0,
1252                               const FusionCandidate &FC1) {
1253     LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1
1254                       << "\n");
1255     assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth());
1256     assert(DT.dominates(FC0.getEntryBlock(), FC1.getEntryBlock()));
1257 
1258     for (Instruction *WriteL0 : FC0.MemWrites) {
1259       for (Instruction *WriteL1 : FC1.MemWrites)
1260         if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
1261                                     /* AnyDep */ false,
1262                                     FusionDependenceAnalysis)) {
1263           InvalidDependencies++;
1264           return false;
1265         }
1266       for (Instruction *ReadL1 : FC1.MemReads)
1267         if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1,
1268                                     /* AnyDep */ false,
1269                                     FusionDependenceAnalysis)) {
1270           InvalidDependencies++;
1271           return false;
1272         }
1273     }
1274 
1275     for (Instruction *WriteL1 : FC1.MemWrites) {
1276       for (Instruction *WriteL0 : FC0.MemWrites)
1277         if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
1278                                     /* AnyDep */ false,
1279                                     FusionDependenceAnalysis)) {
1280           InvalidDependencies++;
1281           return false;
1282         }
1283       for (Instruction *ReadL0 : FC0.MemReads)
1284         if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1,
1285                                     /* AnyDep */ false,
1286                                     FusionDependenceAnalysis)) {
1287           InvalidDependencies++;
1288           return false;
1289         }
1290     }
1291 
1292     // Walk through all uses in FC1. For each use, find the reaching def. If the
1293     // def is located in FC0 then it is is not safe to fuse.
1294     for (BasicBlock *BB : FC1.L->blocks())
1295       for (Instruction &I : *BB)
1296         for (auto &Op : I.operands())
1297           if (Instruction *Def = dyn_cast<Instruction>(Op))
1298             if (FC0.L->contains(Def->getParent())) {
1299               InvalidDependencies++;
1300               return false;
1301             }
1302 
1303     return true;
1304   }
1305 
1306   /// Determine if two fusion candidates are adjacent in the CFG.
1307   ///
1308   /// This method will determine if there are additional basic blocks in the CFG
1309   /// between the exit of \p FC0 and the entry of \p FC1.
1310   /// If the two candidates are guarded loops, then it checks whether the
1311   /// non-loop successor of the \p FC0 guard branch is the entry block of \p
1312   /// FC1. If not, then the loops are not adjacent. If the two candidates are
1313   /// not guarded loops, then it checks whether the exit block of \p FC0 is the
1314   /// preheader of \p FC1.
1315   bool isAdjacent(const FusionCandidate &FC0,
1316                   const FusionCandidate &FC1) const {
1317     // If the successor of the guard branch is FC1, then the loops are adjacent
1318     if (FC0.GuardBranch)
1319       return FC0.getNonLoopBlock() == FC1.getEntryBlock();
1320     else
1321       return FC0.ExitBlock == FC1.getEntryBlock();
1322   }
1323 
1324   bool isEmptyPreheader(const FusionCandidate &FC) const {
1325     return FC.Preheader->size() == 1;
1326   }
1327 
1328   /// Hoist \p FC1 Preheader instructions to \p FC0 Preheader
1329   /// and sink others into the body of \p FC1.
1330   void movePreheaderInsts(const FusionCandidate &FC0,
1331                           const FusionCandidate &FC1,
1332                           SmallVector<Instruction *, 4> &HoistInsts,
1333                           SmallVector<Instruction *, 4> &SinkInsts) const {
1334 
1335     // All preheader instructions except the branch must be hoisted or sunk
1336     assert(HoistInsts.size() + SinkInsts.size() == FC1.Preheader->size() - 1 &&
1337            "Attempting to sink and hoist preheader instructions, but not all "
1338            "the preheader instructions are accounted for.");
1339 
1340     NumHoistedInsts += HoistInsts.size();
1341     NumSunkInsts += SinkInsts.size();
1342 
1343     LLVM_DEBUG(if (VerboseFusionDebugging) {
1344       if (!HoistInsts.empty())
1345         dbgs() << "Hoisting: \n";
1346       for (Instruction *I : HoistInsts)
1347         dbgs() << *I << "\n";
1348       if (!SinkInsts.empty())
1349         dbgs() << "Sinking: \n";
1350       for (Instruction *I : SinkInsts)
1351         dbgs() << *I << "\n";
1352     });
1353 
1354     for (Instruction *I : HoistInsts) {
1355       assert(I->getParent() == FC1.Preheader);
1356       I->moveBefore(FC0.Preheader->getTerminator());
1357     }
1358     // insert instructions in reverse order to maintain dominance relationship
1359     for (Instruction *I : reverse(SinkInsts)) {
1360       assert(I->getParent() == FC1.Preheader);
1361       I->moveBefore(&*FC1.ExitBlock->getFirstInsertionPt());
1362     }
1363   }
1364 
1365   /// Determine if two fusion candidates have identical guards
1366   ///
1367   /// This method will determine if two fusion candidates have the same guards.
1368   /// The guards are considered the same if:
1369   ///   1. The instructions to compute the condition used in the compare are
1370   ///      identical.
1371   ///   2. The successors of the guard have the same flow into/around the loop.
1372   /// If the compare instructions are identical, then the first successor of the
1373   /// guard must go to the same place (either the preheader of the loop or the
1374   /// NonLoopBlock). In other words, the the first successor of both loops must
1375   /// both go into the loop (i.e., the preheader) or go around the loop (i.e.,
1376   /// the NonLoopBlock). The same must be true for the second successor.
1377   bool haveIdenticalGuards(const FusionCandidate &FC0,
1378                            const FusionCandidate &FC1) const {
1379     assert(FC0.GuardBranch && FC1.GuardBranch &&
1380            "Expecting FC0 and FC1 to be guarded loops.");
1381 
1382     if (auto FC0CmpInst =
1383             dyn_cast<Instruction>(FC0.GuardBranch->getCondition()))
1384       if (auto FC1CmpInst =
1385               dyn_cast<Instruction>(FC1.GuardBranch->getCondition()))
1386         if (!FC0CmpInst->isIdenticalTo(FC1CmpInst))
1387           return false;
1388 
1389     // The compare instructions are identical.
1390     // Now make sure the successor of the guards have the same flow into/around
1391     // the loop
1392     if (FC0.GuardBranch->getSuccessor(0) == FC0.Preheader)
1393       return (FC1.GuardBranch->getSuccessor(0) == FC1.Preheader);
1394     else
1395       return (FC1.GuardBranch->getSuccessor(1) == FC1.Preheader);
1396   }
1397 
1398   /// Modify the latch branch of FC to be unconditional since successors of the
1399   /// branch are the same.
1400   void simplifyLatchBranch(const FusionCandidate &FC) const {
1401     BranchInst *FCLatchBranch = dyn_cast<BranchInst>(FC.Latch->getTerminator());
1402     if (FCLatchBranch) {
1403       assert(FCLatchBranch->isConditional() &&
1404              FCLatchBranch->getSuccessor(0) == FCLatchBranch->getSuccessor(1) &&
1405              "Expecting the two successors of FCLatchBranch to be the same");
1406       BranchInst *NewBranch =
1407           BranchInst::Create(FCLatchBranch->getSuccessor(0));
1408       ReplaceInstWithInst(FCLatchBranch, NewBranch);
1409     }
1410   }
1411 
1412   /// Move instructions from FC0.Latch to FC1.Latch. If FC0.Latch has an unique
1413   /// successor, then merge FC0.Latch with its unique successor.
1414   void mergeLatch(const FusionCandidate &FC0, const FusionCandidate &FC1) {
1415     moveInstructionsToTheBeginning(*FC0.Latch, *FC1.Latch, DT, PDT, DI);
1416     if (BasicBlock *Succ = FC0.Latch->getUniqueSuccessor()) {
1417       MergeBlockIntoPredecessor(Succ, &DTU, &LI);
1418       DTU.flush();
1419     }
1420   }
1421 
1422   /// Fuse two fusion candidates, creating a new fused loop.
1423   ///
1424   /// This method contains the mechanics of fusing two loops, represented by \p
1425   /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1
1426   /// postdominates \p FC0 (making them control flow equivalent). It also
1427   /// assumes that the other conditions for fusion have been met: adjacent,
1428   /// identical trip counts, and no negative distance dependencies exist that
1429   /// would prevent fusion. Thus, there is no checking for these conditions in
1430   /// this method.
1431   ///
1432   /// Fusion is performed by rewiring the CFG to update successor blocks of the
1433   /// components of tho loop. Specifically, the following changes are done:
1434   ///
1435   ///   1. The preheader of \p FC1 is removed as it is no longer necessary
1436   ///   (because it is currently only a single statement block).
1437   ///   2. The latch of \p FC0 is modified to jump to the header of \p FC1.
1438   ///   3. The latch of \p FC1 i modified to jump to the header of \p FC0.
1439   ///   4. All blocks from \p FC1 are removed from FC1 and added to FC0.
1440   ///
1441   /// All of these modifications are done with dominator tree updates, thus
1442   /// keeping the dominator (and post dominator) information up-to-date.
1443   ///
1444   /// This can be improved in the future by actually merging blocks during
1445   /// fusion. For example, the preheader of \p FC1 can be merged with the
1446   /// preheader of \p FC0. This would allow loops with more than a single
1447   /// statement in the preheader to be fused. Similarly, the latch blocks of the
1448   /// two loops could also be fused into a single block. This will require
1449   /// analysis to prove it is safe to move the contents of the block past
1450   /// existing code, which currently has not been implemented.
1451   Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) {
1452     assert(FC0.isValid() && FC1.isValid() &&
1453            "Expecting valid fusion candidates");
1454 
1455     LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump();
1456                dbgs() << "Fusion Candidate 1: \n"; FC1.dump(););
1457 
1458     // Move instructions from the preheader of FC1 to the end of the preheader
1459     // of FC0.
1460     moveInstructionsToTheEnd(*FC1.Preheader, *FC0.Preheader, DT, PDT, DI);
1461 
1462     // Fusing guarded loops is handled slightly differently than non-guarded
1463     // loops and has been broken out into a separate method instead of trying to
1464     // intersperse the logic within a single method.
1465     if (FC0.GuardBranch)
1466       return fuseGuardedLoops(FC0, FC1);
1467 
1468     assert(FC1.Preheader ==
1469            (FC0.Peeled ? FC0.ExitBlock->getUniqueSuccessor() : FC0.ExitBlock));
1470     assert(FC1.Preheader->size() == 1 &&
1471            FC1.Preheader->getSingleSuccessor() == FC1.Header);
1472 
1473     // Remember the phi nodes originally in the header of FC0 in order to rewire
1474     // them later. However, this is only necessary if the new loop carried
1475     // values might not dominate the exiting branch. While we do not generally
1476     // test if this is the case but simply insert intermediate phi nodes, we
1477     // need to make sure these intermediate phi nodes have different
1478     // predecessors. To this end, we filter the special case where the exiting
1479     // block is the latch block of the first loop. Nothing needs to be done
1480     // anyway as all loop carried values dominate the latch and thereby also the
1481     // exiting branch.
1482     SmallVector<PHINode *, 8> OriginalFC0PHIs;
1483     if (FC0.ExitingBlock != FC0.Latch)
1484       for (PHINode &PHI : FC0.Header->phis())
1485         OriginalFC0PHIs.push_back(&PHI);
1486 
1487     // Replace incoming blocks for header PHIs first.
1488     FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
1489     FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
1490 
1491     // Then modify the control flow and update DT and PDT.
1492     SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
1493 
1494     // The old exiting block of the first loop (FC0) has to jump to the header
1495     // of the second as we need to execute the code in the second header block
1496     // regardless of the trip count. That is, if the trip count is 0, so the
1497     // back edge is never taken, we still have to execute both loop headers,
1498     // especially (but not only!) if the second is a do-while style loop.
1499     // However, doing so might invalidate the phi nodes of the first loop as
1500     // the new values do only need to dominate their latch and not the exiting
1501     // predicate. To remedy this potential problem we always introduce phi
1502     // nodes in the header of the second loop later that select the loop carried
1503     // value, if the second header was reached through an old latch of the
1504     // first, or undef otherwise. This is sound as exiting the first implies the
1505     // second will exit too, __without__ taking the back-edge. [Their
1506     // trip-counts are equal after all.
1507     // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go
1508     // to FC1.Header? I think this is basically what the three sequences are
1509     // trying to accomplish; however, doing this directly in the CFG may mean
1510     // the DT/PDT becomes invalid
1511     if (!FC0.Peeled) {
1512       FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader,
1513                                                            FC1.Header);
1514       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1515           DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader));
1516       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1517           DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1518     } else {
1519       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1520           DominatorTree::Delete, FC0.ExitBlock, FC1.Preheader));
1521 
1522       // Remove the ExitBlock of the first Loop (also not needed)
1523       FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
1524                                                            FC1.Header);
1525       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1526           DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
1527       FC0.ExitBlock->getTerminator()->eraseFromParent();
1528       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1529           DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1530       new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);
1531     }
1532 
1533     // The pre-header of L1 is not necessary anymore.
1534     assert(pred_empty(FC1.Preheader));
1535     FC1.Preheader->getTerminator()->eraseFromParent();
1536     new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
1537     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1538         DominatorTree::Delete, FC1.Preheader, FC1.Header));
1539 
1540     // Moves the phi nodes from the second to the first loops header block.
1541     while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
1542       if (SE.isSCEVable(PHI->getType()))
1543         SE.forgetValue(PHI);
1544       if (PHI->hasNUsesOrMore(1))
1545         PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
1546       else
1547         PHI->eraseFromParent();
1548     }
1549 
1550     // Introduce new phi nodes in the second loop header to ensure
1551     // exiting the first and jumping to the header of the second does not break
1552     // the SSA property of the phis originally in the first loop. See also the
1553     // comment above.
1554     Instruction *L1HeaderIP = &FC1.Header->front();
1555     for (PHINode *LCPHI : OriginalFC0PHIs) {
1556       int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1557       assert(L1LatchBBIdx >= 0 &&
1558              "Expected loop carried value to be rewired at this point!");
1559 
1560       Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1561 
1562       PHINode *L1HeaderPHI = PHINode::Create(
1563           LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
1564       L1HeaderPHI->addIncoming(LCV, FC0.Latch);
1565       L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
1566                                FC0.ExitingBlock);
1567 
1568       LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1569     }
1570 
1571     // Replace latch terminator destinations.
1572     FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
1573     FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
1574 
1575     // Modify the latch branch of FC0 to be unconditional as both successors of
1576     // the branch are the same.
1577     simplifyLatchBranch(FC0);
1578 
1579     // If FC0.Latch and FC0.ExitingBlock are the same then we have already
1580     // performed the updates above.
1581     if (FC0.Latch != FC0.ExitingBlock)
1582       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1583           DominatorTree::Insert, FC0.Latch, FC1.Header));
1584 
1585     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1586                                                        FC0.Latch, FC0.Header));
1587     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1588                                                        FC1.Latch, FC0.Header));
1589     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1590                                                        FC1.Latch, FC1.Header));
1591 
1592     // Update DT/PDT
1593     DTU.applyUpdates(TreeUpdates);
1594 
1595     LI.removeBlock(FC1.Preheader);
1596     DTU.deleteBB(FC1.Preheader);
1597     if (FC0.Peeled) {
1598       LI.removeBlock(FC0.ExitBlock);
1599       DTU.deleteBB(FC0.ExitBlock);
1600     }
1601 
1602     DTU.flush();
1603 
1604     // Is there a way to keep SE up-to-date so we don't need to forget the loops
1605     // and rebuild the information in subsequent passes of fusion?
1606     // Note: Need to forget the loops before merging the loop latches, as
1607     // mergeLatch may remove the only block in FC1.
1608     SE.forgetLoop(FC1.L);
1609     SE.forgetLoop(FC0.L);
1610 
1611     // Move instructions from FC0.Latch to FC1.Latch.
1612     // Note: mergeLatch requires an updated DT.
1613     mergeLatch(FC0, FC1);
1614 
1615     // Merge the loops.
1616     SmallVector<BasicBlock *, 8> Blocks(FC1.L->blocks());
1617     for (BasicBlock *BB : Blocks) {
1618       FC0.L->addBlockEntry(BB);
1619       FC1.L->removeBlockFromLoop(BB);
1620       if (LI.getLoopFor(BB) != FC1.L)
1621         continue;
1622       LI.changeLoopFor(BB, FC0.L);
1623     }
1624     while (!FC1.L->isInnermost()) {
1625       const auto &ChildLoopIt = FC1.L->begin();
1626       Loop *ChildLoop = *ChildLoopIt;
1627       FC1.L->removeChildLoop(ChildLoopIt);
1628       FC0.L->addChildLoop(ChildLoop);
1629     }
1630 
1631     // Delete the now empty loop L1.
1632     LI.erase(FC1.L);
1633 
1634 #ifndef NDEBUG
1635     assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
1636     assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1637     assert(PDT.verify());
1638     LI.verify(DT);
1639     SE.verify();
1640 #endif
1641 
1642     LLVM_DEBUG(dbgs() << "Fusion done:\n");
1643 
1644     return FC0.L;
1645   }
1646 
1647   /// Report details on loop fusion opportunities.
1648   ///
1649   /// This template function can be used to report both successful and missed
1650   /// loop fusion opportunities, based on the RemarkKind. The RemarkKind should
1651   /// be one of:
1652   ///   - OptimizationRemarkMissed to report when loop fusion is unsuccessful
1653   ///     given two valid fusion candidates.
1654   ///   - OptimizationRemark to report successful fusion of two fusion
1655   ///     candidates.
1656   /// The remarks will be printed using the form:
1657   ///    <path/filename>:<line number>:<column number>: [<function name>]:
1658   ///       <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description>
1659   template <typename RemarkKind>
1660   void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1,
1661                         llvm::Statistic &Stat) {
1662     assert(FC0.Preheader && FC1.Preheader &&
1663            "Expecting valid fusion candidates");
1664     using namespace ore;
1665 #if LLVM_ENABLE_STATS
1666     ++Stat;
1667     ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(),
1668                         FC0.Preheader)
1669              << "[" << FC0.Preheader->getParent()->getName()
1670              << "]: " << NV("Cand1", StringRef(FC0.Preheader->getName()))
1671              << " and " << NV("Cand2", StringRef(FC1.Preheader->getName()))
1672              << ": " << Stat.getDesc());
1673 #endif
1674   }
1675 
1676   /// Fuse two guarded fusion candidates, creating a new fused loop.
1677   ///
1678   /// Fusing guarded loops is handled much the same way as fusing non-guarded
1679   /// loops. The rewiring of the CFG is slightly different though, because of
1680   /// the presence of the guards around the loops and the exit blocks after the
1681   /// loop body. As such, the new loop is rewired as follows:
1682   ///    1. Keep the guard branch from FC0 and use the non-loop block target
1683   /// from the FC1 guard branch.
1684   ///    2. Remove the exit block from FC0 (this exit block should be empty
1685   /// right now).
1686   ///    3. Remove the guard branch for FC1
1687   ///    4. Remove the preheader for FC1.
1688   /// The exit block successor for the latch of FC0 is updated to be the header
1689   /// of FC1 and the non-exit block successor of the latch of FC1 is updated to
1690   /// be the header of FC0, thus creating the fused loop.
1691   Loop *fuseGuardedLoops(const FusionCandidate &FC0,
1692                          const FusionCandidate &FC1) {
1693     assert(FC0.GuardBranch && FC1.GuardBranch && "Expecting guarded loops");
1694 
1695     BasicBlock *FC0GuardBlock = FC0.GuardBranch->getParent();
1696     BasicBlock *FC1GuardBlock = FC1.GuardBranch->getParent();
1697     BasicBlock *FC0NonLoopBlock = FC0.getNonLoopBlock();
1698     BasicBlock *FC1NonLoopBlock = FC1.getNonLoopBlock();
1699     BasicBlock *FC0ExitBlockSuccessor = FC0.ExitBlock->getUniqueSuccessor();
1700 
1701     // Move instructions from the exit block of FC0 to the beginning of the exit
1702     // block of FC1, in the case that the FC0 loop has not been peeled. In the
1703     // case that FC0 loop is peeled, then move the instructions of the successor
1704     // of the FC0 Exit block to the beginning of the exit block of FC1.
1705     moveInstructionsToTheBeginning(
1706         (FC0.Peeled ? *FC0ExitBlockSuccessor : *FC0.ExitBlock), *FC1.ExitBlock,
1707         DT, PDT, DI);
1708 
1709     // Move instructions from the guard block of FC1 to the end of the guard
1710     // block of FC0.
1711     moveInstructionsToTheEnd(*FC1GuardBlock, *FC0GuardBlock, DT, PDT, DI);
1712 
1713     assert(FC0NonLoopBlock == FC1GuardBlock && "Loops are not adjacent");
1714 
1715     SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
1716 
1717     ////////////////////////////////////////////////////////////////////////////
1718     // Update the Loop Guard
1719     ////////////////////////////////////////////////////////////////////////////
1720     // The guard for FC0 is updated to guard both FC0 and FC1. This is done by
1721     // changing the NonLoopGuardBlock for FC0 to the NonLoopGuardBlock for FC1.
1722     // Thus, one path from the guard goes to the preheader for FC0 (and thus
1723     // executes the new fused loop) and the other path goes to the NonLoopBlock
1724     // for FC1 (where FC1 guard would have gone if FC1 was not executed).
1725     FC1NonLoopBlock->replacePhiUsesWith(FC1GuardBlock, FC0GuardBlock);
1726     FC0.GuardBranch->replaceUsesOfWith(FC0NonLoopBlock, FC1NonLoopBlock);
1727 
1728     BasicBlock *BBToUpdate = FC0.Peeled ? FC0ExitBlockSuccessor : FC0.ExitBlock;
1729     BBToUpdate->getTerminator()->replaceUsesOfWith(FC1GuardBlock, FC1.Header);
1730 
1731     // The guard of FC1 is not necessary anymore.
1732     FC1.GuardBranch->eraseFromParent();
1733     new UnreachableInst(FC1GuardBlock->getContext(), FC1GuardBlock);
1734 
1735     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1736         DominatorTree::Delete, FC1GuardBlock, FC1.Preheader));
1737     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1738         DominatorTree::Delete, FC1GuardBlock, FC1NonLoopBlock));
1739     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1740         DominatorTree::Delete, FC0GuardBlock, FC1GuardBlock));
1741     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1742         DominatorTree::Insert, FC0GuardBlock, FC1NonLoopBlock));
1743 
1744     if (FC0.Peeled) {
1745       // Remove the Block after the ExitBlock of FC0
1746       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1747           DominatorTree::Delete, FC0ExitBlockSuccessor, FC1GuardBlock));
1748       FC0ExitBlockSuccessor->getTerminator()->eraseFromParent();
1749       new UnreachableInst(FC0ExitBlockSuccessor->getContext(),
1750                           FC0ExitBlockSuccessor);
1751     }
1752 
1753     assert(pred_empty(FC1GuardBlock) &&
1754            "Expecting guard block to have no predecessors");
1755     assert(succ_empty(FC1GuardBlock) &&
1756            "Expecting guard block to have no successors");
1757 
1758     // Remember the phi nodes originally in the header of FC0 in order to rewire
1759     // them later. However, this is only necessary if the new loop carried
1760     // values might not dominate the exiting branch. While we do not generally
1761     // test if this is the case but simply insert intermediate phi nodes, we
1762     // need to make sure these intermediate phi nodes have different
1763     // predecessors. To this end, we filter the special case where the exiting
1764     // block is the latch block of the first loop. Nothing needs to be done
1765     // anyway as all loop carried values dominate the latch and thereby also the
1766     // exiting branch.
1767     // KB: This is no longer necessary because FC0.ExitingBlock == FC0.Latch
1768     // (because the loops are rotated. Thus, nothing will ever be added to
1769     // OriginalFC0PHIs.
1770     SmallVector<PHINode *, 8> OriginalFC0PHIs;
1771     if (FC0.ExitingBlock != FC0.Latch)
1772       for (PHINode &PHI : FC0.Header->phis())
1773         OriginalFC0PHIs.push_back(&PHI);
1774 
1775     assert(OriginalFC0PHIs.empty() && "Expecting OriginalFC0PHIs to be empty!");
1776 
1777     // Replace incoming blocks for header PHIs first.
1778     FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
1779     FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
1780 
1781     // The old exiting block of the first loop (FC0) has to jump to the header
1782     // of the second as we need to execute the code in the second header block
1783     // regardless of the trip count. That is, if the trip count is 0, so the
1784     // back edge is never taken, we still have to execute both loop headers,
1785     // especially (but not only!) if the second is a do-while style loop.
1786     // However, doing so might invalidate the phi nodes of the first loop as
1787     // the new values do only need to dominate their latch and not the exiting
1788     // predicate. To remedy this potential problem we always introduce phi
1789     // nodes in the header of the second loop later that select the loop carried
1790     // value, if the second header was reached through an old latch of the
1791     // first, or undef otherwise. This is sound as exiting the first implies the
1792     // second will exit too, __without__ taking the back-edge (their
1793     // trip-counts are equal after all).
1794     FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
1795                                                          FC1.Header);
1796 
1797     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1798         DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
1799     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1800         DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1801 
1802     // Remove FC0 Exit Block
1803     // The exit block for FC0 is no longer needed since control will flow
1804     // directly to the header of FC1. Since it is an empty block, it can be
1805     // removed at this point.
1806     // TODO: In the future, we can handle non-empty exit blocks my merging any
1807     // instructions from FC0 exit block into FC1 exit block prior to removing
1808     // the block.
1809     assert(pred_empty(FC0.ExitBlock) && "Expecting exit block to be empty");
1810     FC0.ExitBlock->getTerminator()->eraseFromParent();
1811     new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);
1812 
1813     // Remove FC1 Preheader
1814     // The pre-header of L1 is not necessary anymore.
1815     assert(pred_empty(FC1.Preheader));
1816     FC1.Preheader->getTerminator()->eraseFromParent();
1817     new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
1818     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1819         DominatorTree::Delete, FC1.Preheader, FC1.Header));
1820 
1821     // Moves the phi nodes from the second to the first loops header block.
1822     while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
1823       if (SE.isSCEVable(PHI->getType()))
1824         SE.forgetValue(PHI);
1825       if (PHI->hasNUsesOrMore(1))
1826         PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
1827       else
1828         PHI->eraseFromParent();
1829     }
1830 
1831     // Introduce new phi nodes in the second loop header to ensure
1832     // exiting the first and jumping to the header of the second does not break
1833     // the SSA property of the phis originally in the first loop. See also the
1834     // comment above.
1835     Instruction *L1HeaderIP = &FC1.Header->front();
1836     for (PHINode *LCPHI : OriginalFC0PHIs) {
1837       int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1838       assert(L1LatchBBIdx >= 0 &&
1839              "Expected loop carried value to be rewired at this point!");
1840 
1841       Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1842 
1843       PHINode *L1HeaderPHI = PHINode::Create(
1844           LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
1845       L1HeaderPHI->addIncoming(LCV, FC0.Latch);
1846       L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
1847                                FC0.ExitingBlock);
1848 
1849       LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1850     }
1851 
1852     // Update the latches
1853 
1854     // Replace latch terminator destinations.
1855     FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
1856     FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
1857 
1858     // Modify the latch branch of FC0 to be unconditional as both successors of
1859     // the branch are the same.
1860     simplifyLatchBranch(FC0);
1861 
1862     // If FC0.Latch and FC0.ExitingBlock are the same then we have already
1863     // performed the updates above.
1864     if (FC0.Latch != FC0.ExitingBlock)
1865       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1866           DominatorTree::Insert, FC0.Latch, FC1.Header));
1867 
1868     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1869                                                        FC0.Latch, FC0.Header));
1870     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1871                                                        FC1.Latch, FC0.Header));
1872     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1873                                                        FC1.Latch, FC1.Header));
1874 
1875     // All done
1876     // Apply the updates to the Dominator Tree and cleanup.
1877 
1878     assert(succ_empty(FC1GuardBlock) && "FC1GuardBlock has successors!!");
1879     assert(pred_empty(FC1GuardBlock) && "FC1GuardBlock has predecessors!!");
1880 
1881     // Update DT/PDT
1882     DTU.applyUpdates(TreeUpdates);
1883 
1884     LI.removeBlock(FC1GuardBlock);
1885     LI.removeBlock(FC1.Preheader);
1886     LI.removeBlock(FC0.ExitBlock);
1887     if (FC0.Peeled) {
1888       LI.removeBlock(FC0ExitBlockSuccessor);
1889       DTU.deleteBB(FC0ExitBlockSuccessor);
1890     }
1891     DTU.deleteBB(FC1GuardBlock);
1892     DTU.deleteBB(FC1.Preheader);
1893     DTU.deleteBB(FC0.ExitBlock);
1894     DTU.flush();
1895 
1896     // Is there a way to keep SE up-to-date so we don't need to forget the loops
1897     // and rebuild the information in subsequent passes of fusion?
1898     // Note: Need to forget the loops before merging the loop latches, as
1899     // mergeLatch may remove the only block in FC1.
1900     SE.forgetLoop(FC1.L);
1901     SE.forgetLoop(FC0.L);
1902 
1903     // Move instructions from FC0.Latch to FC1.Latch.
1904     // Note: mergeLatch requires an updated DT.
1905     mergeLatch(FC0, FC1);
1906 
1907     // Merge the loops.
1908     SmallVector<BasicBlock *, 8> Blocks(FC1.L->blocks());
1909     for (BasicBlock *BB : Blocks) {
1910       FC0.L->addBlockEntry(BB);
1911       FC1.L->removeBlockFromLoop(BB);
1912       if (LI.getLoopFor(BB) != FC1.L)
1913         continue;
1914       LI.changeLoopFor(BB, FC0.L);
1915     }
1916     while (!FC1.L->isInnermost()) {
1917       const auto &ChildLoopIt = FC1.L->begin();
1918       Loop *ChildLoop = *ChildLoopIt;
1919       FC1.L->removeChildLoop(ChildLoopIt);
1920       FC0.L->addChildLoop(ChildLoop);
1921     }
1922 
1923     // Delete the now empty loop L1.
1924     LI.erase(FC1.L);
1925 
1926 #ifndef NDEBUG
1927     assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
1928     assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1929     assert(PDT.verify());
1930     LI.verify(DT);
1931     SE.verify();
1932 #endif
1933 
1934     LLVM_DEBUG(dbgs() << "Fusion done:\n");
1935 
1936     return FC0.L;
1937   }
1938 };
1939 
1940 struct LoopFuseLegacy : public FunctionPass {
1941 
1942   static char ID;
1943 
1944   LoopFuseLegacy() : FunctionPass(ID) {
1945     initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry());
1946   }
1947 
1948   void getAnalysisUsage(AnalysisUsage &AU) const override {
1949     AU.addRequiredID(LoopSimplifyID);
1950     AU.addRequired<ScalarEvolutionWrapperPass>();
1951     AU.addRequired<LoopInfoWrapperPass>();
1952     AU.addRequired<DominatorTreeWrapperPass>();
1953     AU.addRequired<PostDominatorTreeWrapperPass>();
1954     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1955     AU.addRequired<DependenceAnalysisWrapperPass>();
1956     AU.addRequired<AssumptionCacheTracker>();
1957     AU.addRequired<TargetTransformInfoWrapperPass>();
1958 
1959     AU.addPreserved<ScalarEvolutionWrapperPass>();
1960     AU.addPreserved<LoopInfoWrapperPass>();
1961     AU.addPreserved<DominatorTreeWrapperPass>();
1962     AU.addPreserved<PostDominatorTreeWrapperPass>();
1963   }
1964 
1965   bool runOnFunction(Function &F) override {
1966     if (skipFunction(F))
1967       return false;
1968 
1969     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1970     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1971     auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI();
1972     auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1973     auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1974     auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1975     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1976     const TargetTransformInfo &TTI =
1977         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1978     const DataLayout &DL = F.getParent()->getDataLayout();
1979 
1980     LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL, AC, TTI);
1981     return LF.fuseLoops(F);
1982   }
1983 };
1984 } // namespace
1985 
1986 PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) {
1987   auto &LI = AM.getResult<LoopAnalysis>(F);
1988   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1989   auto &DI = AM.getResult<DependenceAnalysis>(F);
1990   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1991   auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
1992   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1993   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1994   const TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
1995   const DataLayout &DL = F.getParent()->getDataLayout();
1996 
1997   LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL, AC, TTI);
1998   bool Changed = LF.fuseLoops(F);
1999   if (!Changed)
2000     return PreservedAnalyses::all();
2001 
2002   PreservedAnalyses PA;
2003   PA.preserve<DominatorTreeAnalysis>();
2004   PA.preserve<PostDominatorTreeAnalysis>();
2005   PA.preserve<ScalarEvolutionAnalysis>();
2006   PA.preserve<LoopAnalysis>();
2007   return PA;
2008 }
2009 
2010 char LoopFuseLegacy::ID = 0;
2011 
2012 INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false,
2013                       false)
2014 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
2015 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
2016 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2017 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
2018 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2019 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
2020 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2021 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
2022 INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false)
2023 
2024 FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); }
2025