xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopFlatten.cpp (revision fab5659c79410f50b38b2986f3dc8412f3ad9a81)
1 //===- LoopFlatten.cpp - Loop flattening pass------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass flattens pairs nested loops into a single loop.
10 //
11 // The intention is to optimise loop nests like this, which together access an
12 // array linearly:
13 //   for (int i = 0; i < N; ++i)
14 //     for (int j = 0; j < M; ++j)
15 //       f(A[i*M+j]);
16 // into one loop:
17 //   for (int i = 0; i < (N*M); ++i)
18 //     f(A[i]);
19 //
20 // It can also flatten loops where the induction variables are not used in the
21 // loop. This is only worth doing if the induction variables are only used in an
22 // expression like i*M+j. If they had any other uses, we would have to insert a
23 // div/mod to reconstruct the original values, so this wouldn't be profitable.
24 //
25 // We also need to prove that N*M will not overflow.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/Transforms/Scalar/LoopFlatten.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/ScalarEvolution.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/IRBuilder.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/PatternMatch.h"
41 #include "llvm/IR/Verifier.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Scalar.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/Transforms/Utils/LoopUtils.h"
49 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
50 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
51 
52 #define DEBUG_TYPE "loop-flatten"
53 
54 using namespace llvm;
55 using namespace llvm::PatternMatch;
56 
57 static cl::opt<unsigned> RepeatedInstructionThreshold(
58     "loop-flatten-cost-threshold", cl::Hidden, cl::init(2),
59     cl::desc("Limit on the cost of instructions that can be repeated due to "
60              "loop flattening"));
61 
62 static cl::opt<bool>
63     AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden,
64                      cl::init(false),
65                      cl::desc("Assume that the product of the two iteration "
66                               "trip counts will never overflow"));
67 
68 static cl::opt<bool>
69     WidenIV("loop-flatten-widen-iv", cl::Hidden,
70             cl::init(true),
71             cl::desc("Widen the loop induction variables, if possible, so "
72                      "overflow checks won't reject flattening"));
73 
74 struct FlattenInfo {
75   Loop *OuterLoop = nullptr;
76   Loop *InnerLoop = nullptr;
77   // These PHINodes correspond to loop induction variables, which are expected
78   // to start at zero and increment by one on each loop.
79   PHINode *InnerInductionPHI = nullptr;
80   PHINode *OuterInductionPHI = nullptr;
81   Value *InnerTripCount = nullptr;
82   Value *OuterTripCount = nullptr;
83   BinaryOperator *InnerIncrement = nullptr;
84   BinaryOperator *OuterIncrement = nullptr;
85   BranchInst *InnerBranch = nullptr;
86   BranchInst *OuterBranch = nullptr;
87   SmallPtrSet<Value *, 4> LinearIVUses;
88   SmallPtrSet<PHINode *, 4> InnerPHIsToTransform;
89 
90   // Whether this holds the flatten info before or after widening.
91   bool Widened = false;
92 
93   FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL) {};
94 };
95 
96 // Finds the induction variable, increment and trip count for a simple loop that
97 // we can flatten.
98 static bool findLoopComponents(
99     Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions,
100     PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment,
101     BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) {
102   LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n");
103 
104   if (!L->isLoopSimplifyForm()) {
105     LLVM_DEBUG(dbgs() << "Loop is not in normal form\n");
106     return false;
107   }
108 
109   // Currently, to simplify the implementation, the Loop induction variable must
110   // start at zero and increment with a step size of one.
111   if (!L->isCanonical(*SE)) {
112     LLVM_DEBUG(dbgs() << "Loop is not canonical\n");
113     return false;
114   }
115 
116   // There must be exactly one exiting block, and it must be the same at the
117   // latch.
118   BasicBlock *Latch = L->getLoopLatch();
119   if (L->getExitingBlock() != Latch) {
120     LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n");
121     return false;
122   }
123 
124   // Find the induction PHI. If there is no induction PHI, we can't do the
125   // transformation. TODO: could other variables trigger this? Do we have to
126   // search for the best one?
127   InductionPHI = L->getInductionVariable(*SE);
128   if (!InductionPHI) {
129     LLVM_DEBUG(dbgs() << "Could not find induction PHI\n");
130     return false;
131   }
132   LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump());
133 
134   bool ContinueOnTrue = L->contains(Latch->getTerminator()->getSuccessor(0));
135   auto IsValidPredicate = [&](ICmpInst::Predicate Pred) {
136     if (ContinueOnTrue)
137       return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT;
138     else
139       return Pred == CmpInst::ICMP_EQ;
140   };
141 
142   // Find Compare and make sure it is valid. getLatchCmpInst checks that the
143   // back branch of the latch is conditional.
144   ICmpInst *Compare = L->getLatchCmpInst();
145   if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) ||
146       Compare->hasNUsesOrMore(2)) {
147     LLVM_DEBUG(dbgs() << "Could not find valid comparison\n");
148     return false;
149   }
150   BackBranch = cast<BranchInst>(Latch->getTerminator());
151   IterationInstructions.insert(BackBranch);
152   LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump());
153   IterationInstructions.insert(Compare);
154   LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump());
155 
156   // Find increment and trip count.
157   // There are exactly 2 incoming values to the induction phi; one from the
158   // pre-header and one from the latch. The incoming latch value is the
159   // increment variable.
160   Increment =
161       dyn_cast<BinaryOperator>(InductionPHI->getIncomingValueForBlock(Latch));
162   if (Increment->hasNUsesOrMore(3)) {
163     LLVM_DEBUG(dbgs() << "Could not find valid increment\n");
164     return false;
165   }
166   // The trip count is the RHS of the compare. If this doesn't match the trip
167   // count computed by SCEV then this is either because the trip count variable
168   // has been widened (then leave the trip count as it is), or because it is a
169   // constant and another transformation has changed the compare, e.g.
170   // icmp ult %inc, tripcount -> icmp ult %j, tripcount-1, then we don't flatten
171   // the loop (yet).
172   TripCount = Compare->getOperand(1);
173   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
174   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
175     LLVM_DEBUG(dbgs() << "Backedge-taken count is not predictable\n");
176     return false;
177   }
178   const SCEV *SCEVTripCount = SE->getTripCountFromExitCount(BackedgeTakenCount);
179   if (SE->getSCEV(TripCount) != SCEVTripCount) {
180     if (!IsWidened) {
181       LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
182       return false;
183     }
184     auto TripCountInst = dyn_cast<Instruction>(TripCount);
185     if (!TripCountInst) {
186       LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n");
187       return false;
188     }
189     if ((!isa<ZExtInst>(TripCountInst) && !isa<SExtInst>(TripCountInst)) ||
190         SE->getSCEV(TripCountInst->getOperand(0)) != SCEVTripCount) {
191       LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n");
192       return false;
193     }
194   }
195   IterationInstructions.insert(Increment);
196   LLVM_DEBUG(dbgs() << "Found increment: "; Increment->dump());
197   LLVM_DEBUG(dbgs() << "Found trip count: "; TripCount->dump());
198 
199   LLVM_DEBUG(dbgs() << "Successfully found all loop components\n");
200   return true;
201 }
202 
203 static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) {
204   // All PHIs in the inner and outer headers must either be:
205   // - The induction PHI, which we are going to rewrite as one induction in
206   //   the new loop. This is already checked by findLoopComponents.
207   // - An outer header PHI with all incoming values from outside the loop.
208   //   LoopSimplify guarantees we have a pre-header, so we don't need to
209   //   worry about that here.
210   // - Pairs of PHIs in the inner and outer headers, which implement a
211   //   loop-carried dependency that will still be valid in the new loop. To
212   //   be valid, this variable must be modified only in the inner loop.
213 
214   // The set of PHI nodes in the outer loop header that we know will still be
215   // valid after the transformation. These will not need to be modified (with
216   // the exception of the induction variable), but we do need to check that
217   // there are no unsafe PHI nodes.
218   SmallPtrSet<PHINode *, 4> SafeOuterPHIs;
219   SafeOuterPHIs.insert(FI.OuterInductionPHI);
220 
221   // Check that all PHI nodes in the inner loop header match one of the valid
222   // patterns.
223   for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) {
224     // The induction PHIs break these rules, and that's OK because we treat
225     // them specially when doing the transformation.
226     if (&InnerPHI == FI.InnerInductionPHI)
227       continue;
228 
229     // Each inner loop PHI node must have two incoming values/blocks - one
230     // from the pre-header, and one from the latch.
231     assert(InnerPHI.getNumIncomingValues() == 2);
232     Value *PreHeaderValue =
233         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader());
234     Value *LatchValue =
235         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch());
236 
237     // The incoming value from the outer loop must be the PHI node in the
238     // outer loop header, with no modifications made in the top of the outer
239     // loop.
240     PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue);
241     if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) {
242       LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n");
243       return false;
244     }
245 
246     // The other incoming value must come from the inner loop, without any
247     // modifications in the tail end of the outer loop. We are in LCSSA form,
248     // so this will actually be a PHI in the inner loop's exit block, which
249     // only uses values from inside the inner loop.
250     PHINode *LCSSAPHI = dyn_cast<PHINode>(
251         OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch()));
252     if (!LCSSAPHI) {
253       LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n");
254       return false;
255     }
256 
257     // The value used by the LCSSA PHI must be the same one that the inner
258     // loop's PHI uses.
259     if (LCSSAPHI->hasConstantValue() != LatchValue) {
260       LLVM_DEBUG(
261           dbgs() << "LCSSA PHI incoming value does not match latch value\n");
262       return false;
263     }
264 
265     LLVM_DEBUG(dbgs() << "PHI pair is safe:\n");
266     LLVM_DEBUG(dbgs() << "  Inner: "; InnerPHI.dump());
267     LLVM_DEBUG(dbgs() << "  Outer: "; OuterPHI->dump());
268     SafeOuterPHIs.insert(OuterPHI);
269     FI.InnerPHIsToTransform.insert(&InnerPHI);
270   }
271 
272   for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) {
273     if (!SafeOuterPHIs.count(&OuterPHI)) {
274       LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump());
275       return false;
276     }
277   }
278 
279   LLVM_DEBUG(dbgs() << "checkPHIs: OK\n");
280   return true;
281 }
282 
283 static bool
284 checkOuterLoopInsts(FlattenInfo &FI,
285                     SmallPtrSetImpl<Instruction *> &IterationInstructions,
286                     const TargetTransformInfo *TTI) {
287   // Check for instructions in the outer but not inner loop. If any of these
288   // have side-effects then this transformation is not legal, and if there is
289   // a significant amount of code here which can't be optimised out that it's
290   // not profitable (as these instructions would get executed for each
291   // iteration of the inner loop).
292   InstructionCost RepeatedInstrCost = 0;
293   for (auto *B : FI.OuterLoop->getBlocks()) {
294     if (FI.InnerLoop->contains(B))
295       continue;
296 
297     for (auto &I : *B) {
298       if (!isa<PHINode>(&I) && !I.isTerminator() &&
299           !isSafeToSpeculativelyExecute(&I)) {
300         LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have "
301                              "side effects: ";
302                    I.dump());
303         return false;
304       }
305       // The execution count of the outer loop's iteration instructions
306       // (increment, compare and branch) will be increased, but the
307       // equivalent instructions will be removed from the inner loop, so
308       // they make a net difference of zero.
309       if (IterationInstructions.count(&I))
310         continue;
311       // The uncoditional branch to the inner loop's header will turn into
312       // a fall-through, so adds no cost.
313       BranchInst *Br = dyn_cast<BranchInst>(&I);
314       if (Br && Br->isUnconditional() &&
315           Br->getSuccessor(0) == FI.InnerLoop->getHeader())
316         continue;
317       // Multiplies of the outer iteration variable and inner iteration
318       // count will be optimised out.
319       if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI),
320                             m_Specific(FI.InnerTripCount))))
321         continue;
322       InstructionCost Cost =
323           TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
324       LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump());
325       RepeatedInstrCost += Cost;
326     }
327   }
328 
329   LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: "
330                     << RepeatedInstrCost << "\n");
331   // Bail out if flattening the loops would cause instructions in the outer
332   // loop but not in the inner loop to be executed extra times.
333   if (RepeatedInstrCost > RepeatedInstructionThreshold) {
334     LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n");
335     return false;
336   }
337 
338   LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n");
339   return true;
340 }
341 
342 static bool checkIVUsers(FlattenInfo &FI) {
343   // We require all uses of both induction variables to match this pattern:
344   //
345   //   (OuterPHI * InnerTripCount) + InnerPHI
346   //
347   // Any uses of the induction variables not matching that pattern would
348   // require a div/mod to reconstruct in the flattened loop, so the
349   // transformation wouldn't be profitable.
350 
351   Value *InnerTripCount = FI.InnerTripCount;
352   if (FI.Widened &&
353       (isa<SExtInst>(InnerTripCount) || isa<ZExtInst>(InnerTripCount)))
354     InnerTripCount = cast<Instruction>(InnerTripCount)->getOperand(0);
355 
356   // Check that all uses of the inner loop's induction variable match the
357   // expected pattern, recording the uses of the outer IV.
358   SmallPtrSet<Value *, 4> ValidOuterPHIUses;
359   for (User *U : FI.InnerInductionPHI->users()) {
360     if (U == FI.InnerIncrement)
361       continue;
362 
363     // After widening the IVs, a trunc instruction might have been introduced, so
364     // look through truncs.
365     if (isa<TruncInst>(U)) {
366       if (!U->hasOneUse())
367         return false;
368       U = *U->user_begin();
369     }
370 
371     LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump());
372 
373     Value *MatchedMul;
374     Value *MatchedItCount;
375     bool IsAdd = match(U, m_c_Add(m_Specific(FI.InnerInductionPHI),
376                                   m_Value(MatchedMul))) &&
377                  match(MatchedMul, m_c_Mul(m_Specific(FI.OuterInductionPHI),
378                                            m_Value(MatchedItCount)));
379 
380     // Matches the same pattern as above, except it also looks for truncs
381     // on the phi, which can be the result of widening the induction variables.
382     bool IsAddTrunc = match(U, m_c_Add(m_Trunc(m_Specific(FI.InnerInductionPHI)),
383                                        m_Value(MatchedMul))) &&
384                       match(MatchedMul,
385                             m_c_Mul(m_Trunc(m_Specific(FI.OuterInductionPHI)),
386                             m_Value(MatchedItCount)));
387 
388     if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerTripCount) {
389       LLVM_DEBUG(dbgs() << "Use is optimisable\n");
390       ValidOuterPHIUses.insert(MatchedMul);
391       FI.LinearIVUses.insert(U);
392     } else {
393       LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
394       return false;
395     }
396   }
397 
398   // Check that there are no uses of the outer IV other than the ones found
399   // as part of the pattern above.
400   for (User *U : FI.OuterInductionPHI->users()) {
401     if (U == FI.OuterIncrement)
402       continue;
403 
404     auto IsValidOuterPHIUses = [&] (User *U) -> bool {
405       LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump());
406       if (!ValidOuterPHIUses.count(U)) {
407         LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
408         return false;
409       }
410       LLVM_DEBUG(dbgs() << "Use is optimisable\n");
411       return true;
412     };
413 
414     if (auto *V = dyn_cast<TruncInst>(U)) {
415       for (auto *K : V->users()) {
416         if (!IsValidOuterPHIUses(K))
417           return false;
418       }
419       continue;
420     }
421 
422     if (!IsValidOuterPHIUses(U))
423       return false;
424   }
425 
426   LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n";
427              dbgs() << "Found " << FI.LinearIVUses.size()
428                     << " value(s) that can be replaced:\n";
429              for (Value *V : FI.LinearIVUses) {
430                dbgs() << "  ";
431                V->dump();
432              });
433   return true;
434 }
435 
436 // Return an OverflowResult dependant on if overflow of the multiplication of
437 // InnerTripCount and OuterTripCount can be assumed not to happen.
438 static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT,
439                                     AssumptionCache *AC) {
440   Function *F = FI.OuterLoop->getHeader()->getParent();
441   const DataLayout &DL = F->getParent()->getDataLayout();
442 
443   // For debugging/testing.
444   if (AssumeNoOverflow)
445     return OverflowResult::NeverOverflows;
446 
447   // Check if the multiply could not overflow due to known ranges of the
448   // input values.
449   OverflowResult OR = computeOverflowForUnsignedMul(
450       FI.InnerTripCount, FI.OuterTripCount, DL, AC,
451       FI.OuterLoop->getLoopPreheader()->getTerminator(), DT);
452   if (OR != OverflowResult::MayOverflow)
453     return OR;
454 
455   for (Value *V : FI.LinearIVUses) {
456     for (Value *U : V->users()) {
457       if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
458         // The IV is used as the operand of a GEP, and the IV is at least as
459         // wide as the address space of the GEP. In this case, the GEP would
460         // wrap around the address space before the IV increment wraps, which
461         // would be UB.
462         if (GEP->isInBounds() &&
463             V->getType()->getIntegerBitWidth() >=
464                 DL.getPointerTypeSizeInBits(GEP->getType())) {
465           LLVM_DEBUG(
466               dbgs() << "use of linear IV would be UB if overflow occurred: ";
467               GEP->dump());
468           return OverflowResult::NeverOverflows;
469         }
470       }
471     }
472   }
473 
474   return OverflowResult::MayOverflow;
475 }
476 
477 static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
478                                ScalarEvolution *SE, AssumptionCache *AC,
479                                const TargetTransformInfo *TTI) {
480   SmallPtrSet<Instruction *, 8> IterationInstructions;
481   if (!findLoopComponents(FI.InnerLoop, IterationInstructions,
482                           FI.InnerInductionPHI, FI.InnerTripCount,
483                           FI.InnerIncrement, FI.InnerBranch, SE, FI.Widened))
484     return false;
485   if (!findLoopComponents(FI.OuterLoop, IterationInstructions,
486                           FI.OuterInductionPHI, FI.OuterTripCount,
487                           FI.OuterIncrement, FI.OuterBranch, SE, FI.Widened))
488     return false;
489 
490   // Both of the loop trip count values must be invariant in the outer loop
491   // (non-instructions are all inherently invariant).
492   if (!FI.OuterLoop->isLoopInvariant(FI.InnerTripCount)) {
493     LLVM_DEBUG(dbgs() << "inner loop trip count not invariant\n");
494     return false;
495   }
496   if (!FI.OuterLoop->isLoopInvariant(FI.OuterTripCount)) {
497     LLVM_DEBUG(dbgs() << "outer loop trip count not invariant\n");
498     return false;
499   }
500 
501   if (!checkPHIs(FI, TTI))
502     return false;
503 
504   // FIXME: it should be possible to handle different types correctly.
505   if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType())
506     return false;
507 
508   if (!checkOuterLoopInsts(FI, IterationInstructions, TTI))
509     return false;
510 
511   // Find the values in the loop that can be replaced with the linearized
512   // induction variable, and check that there are no other uses of the inner
513   // or outer induction variable. If there were, we could still do this
514   // transformation, but we'd have to insert a div/mod to calculate the
515   // original IVs, so it wouldn't be profitable.
516   if (!checkIVUsers(FI))
517     return false;
518 
519   LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n");
520   return true;
521 }
522 
523 static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
524                               ScalarEvolution *SE, AssumptionCache *AC,
525                               const TargetTransformInfo *TTI) {
526   Function *F = FI.OuterLoop->getHeader()->getParent();
527   LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n");
528   {
529     using namespace ore;
530     OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(),
531                               FI.InnerLoop->getHeader());
532     OptimizationRemarkEmitter ORE(F);
533     Remark << "Flattened into outer loop";
534     ORE.emit(Remark);
535   }
536 
537   Value *NewTripCount = BinaryOperator::CreateMul(
538       FI.InnerTripCount, FI.OuterTripCount, "flatten.tripcount",
539       FI.OuterLoop->getLoopPreheader()->getTerminator());
540   LLVM_DEBUG(dbgs() << "Created new trip count in preheader: ";
541              NewTripCount->dump());
542 
543   // Fix up PHI nodes that take values from the inner loop back-edge, which
544   // we are about to remove.
545   FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
546 
547   // The old Phi will be optimised away later, but for now we can't leave
548   // leave it in an invalid state, so are updating them too.
549   for (PHINode *PHI : FI.InnerPHIsToTransform)
550     PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
551 
552   // Modify the trip count of the outer loop to be the product of the two
553   // trip counts.
554   cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount);
555 
556   // Replace the inner loop backedge with an unconditional branch to the exit.
557   BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock();
558   BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock();
559   InnerExitingBlock->getTerminator()->eraseFromParent();
560   BranchInst::Create(InnerExitBlock, InnerExitingBlock);
561   DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
562 
563   // Replace all uses of the polynomial calculated from the two induction
564   // variables with the one new one.
565   IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator());
566   for (Value *V : FI.LinearIVUses) {
567     Value *OuterValue = FI.OuterInductionPHI;
568     if (FI.Widened)
569       OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(),
570                                        "flatten.trunciv");
571 
572     LLVM_DEBUG(dbgs() << "Replacing: "; V->dump();
573                dbgs() << "with:      "; OuterValue->dump());
574     V->replaceAllUsesWith(OuterValue);
575   }
576 
577   // Tell LoopInfo, SCEV and the pass manager that the inner loop has been
578   // deleted, and any information that have about the outer loop invalidated.
579   SE->forgetLoop(FI.OuterLoop);
580   SE->forgetLoop(FI.InnerLoop);
581   LI->erase(FI.InnerLoop);
582   return true;
583 }
584 
585 static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
586                        ScalarEvolution *SE, AssumptionCache *AC,
587                        const TargetTransformInfo *TTI) {
588   if (!WidenIV) {
589     LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n");
590     return false;
591   }
592 
593   LLVM_DEBUG(dbgs() << "Try widening the IVs\n");
594   Module *M = FI.InnerLoop->getHeader()->getParent()->getParent();
595   auto &DL = M->getDataLayout();
596   auto *InnerType = FI.InnerInductionPHI->getType();
597   auto *OuterType = FI.OuterInductionPHI->getType();
598   unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits();
599   auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext());
600 
601   // If both induction types are less than the maximum legal integer width,
602   // promote both to the widest type available so we know calculating
603   // (OuterTripCount * InnerTripCount) as the new trip count is safe.
604   if (InnerType != OuterType ||
605       InnerType->getScalarSizeInBits() >= MaxLegalSize ||
606       MaxLegalType->getScalarSizeInBits() < InnerType->getScalarSizeInBits() * 2) {
607     LLVM_DEBUG(dbgs() << "Can't widen the IV\n");
608     return false;
609   }
610 
611   SCEVExpander Rewriter(*SE, DL, "loopflatten");
612   SmallVector<WideIVInfo, 2> WideIVs;
613   SmallVector<WeakTrackingVH, 4> DeadInsts;
614   WideIVs.push_back( {FI.InnerInductionPHI, MaxLegalType, false });
615   WideIVs.push_back( {FI.OuterInductionPHI, MaxLegalType, false });
616   unsigned ElimExt = 0;
617   unsigned Widened = 0;
618 
619   for (const auto &WideIV : WideIVs) {
620     PHINode *WidePhi = createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts,
621                                     ElimExt, Widened, true /* HasGuards */,
622                                     true /* UsePostIncrementRanges */);
623     if (!WidePhi)
624       return false;
625     LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump());
626     LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump());
627     RecursivelyDeleteDeadPHINode(WideIV.NarrowIV);
628   }
629   // After widening, rediscover all the loop components.
630   assert(Widened && "Widened IV expected");
631   FI.Widened = true;
632   return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
633 }
634 
635 static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
636                             ScalarEvolution *SE, AssumptionCache *AC,
637                             const TargetTransformInfo *TTI) {
638   LLVM_DEBUG(
639       dbgs() << "Loop flattening running on outer loop "
640              << FI.OuterLoop->getHeader()->getName() << " and inner loop "
641              << FI.InnerLoop->getHeader()->getName() << " in "
642              << FI.OuterLoop->getHeader()->getParent()->getName() << "\n");
643 
644   if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI))
645     return false;
646 
647   // Check if we can widen the induction variables to avoid overflow checks.
648   if (CanWidenIV(FI, DT, LI, SE, AC, TTI))
649     return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
650 
651   // Check if the new iteration variable might overflow. In this case, we
652   // need to version the loop, and select the original version at runtime if
653   // the iteration space is too large.
654   // TODO: We currently don't version the loop.
655   OverflowResult OR = checkOverflow(FI, DT, AC);
656   if (OR == OverflowResult::AlwaysOverflowsHigh ||
657       OR == OverflowResult::AlwaysOverflowsLow) {
658     LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n");
659     return false;
660   } else if (OR == OverflowResult::MayOverflow) {
661     LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n");
662     return false;
663   }
664 
665   LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n");
666   return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
667 }
668 
669 bool Flatten(LoopNest &LN, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE,
670              AssumptionCache *AC, TargetTransformInfo *TTI) {
671   bool Changed = false;
672   for (Loop *InnerLoop : LN.getLoops()) {
673     auto *OuterLoop = InnerLoop->getParentLoop();
674     if (!OuterLoop)
675       continue;
676     FlattenInfo FI(OuterLoop, InnerLoop);
677     Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI);
678   }
679   return Changed;
680 }
681 
682 PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM,
683                                        LoopStandardAnalysisResults &AR,
684                                        LPMUpdater &U) {
685 
686   bool Changed = false;
687 
688   // The loop flattening pass requires loops to be
689   // in simplified form, and also needs LCSSA. Running
690   // this pass will simplify all loops that contain inner loops,
691   // regardless of whether anything ends up being flattened.
692   Changed |= Flatten(LN, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI);
693 
694   if (!Changed)
695     return PreservedAnalyses::all();
696 
697   return PreservedAnalyses::none();
698 }
699 
700 namespace {
701 class LoopFlattenLegacyPass : public FunctionPass {
702 public:
703   static char ID; // Pass ID, replacement for typeid
704   LoopFlattenLegacyPass() : FunctionPass(ID) {
705     initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry());
706   }
707 
708   // Possibly flatten loop L into its child.
709   bool runOnFunction(Function &F) override;
710 
711   void getAnalysisUsage(AnalysisUsage &AU) const override {
712     getLoopAnalysisUsage(AU);
713     AU.addRequired<TargetTransformInfoWrapperPass>();
714     AU.addPreserved<TargetTransformInfoWrapperPass>();
715     AU.addRequired<AssumptionCacheTracker>();
716     AU.addPreserved<AssumptionCacheTracker>();
717   }
718 };
719 } // namespace
720 
721 char LoopFlattenLegacyPass::ID = 0;
722 INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
723                       false, false)
724 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
725 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
726 INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
727                     false, false)
728 
729 FunctionPass *llvm::createLoopFlattenPass() { return new LoopFlattenLegacyPass(); }
730 
731 bool LoopFlattenLegacyPass::runOnFunction(Function &F) {
732   ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
733   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
734   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
735   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
736   auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>();
737   auto *TTI = &TTIP.getTTI(F);
738   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
739   bool Changed = false;
740   for (Loop *L : *LI) {
741     auto LN = LoopNest::getLoopNest(*L, *SE);
742     Changed |= Flatten(*LN, DT, LI, SE, AC, TTI);
743   }
744   return Changed;
745 }
746