1 //===- LoopFlatten.cpp - Loop flattening pass------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass flattens pairs nested loops into a single loop. 10 // 11 // The intention is to optimise loop nests like this, which together access an 12 // array linearly: 13 // for (int i = 0; i < N; ++i) 14 // for (int j = 0; j < M; ++j) 15 // f(A[i*M+j]); 16 // into one loop: 17 // for (int i = 0; i < (N*M); ++i) 18 // f(A[i]); 19 // 20 // It can also flatten loops where the induction variables are not used in the 21 // loop. This is only worth doing if the induction variables are only used in an 22 // expression like i*M+j. If they had any other uses, we would have to insert a 23 // div/mod to reconstruct the original values, so this wouldn't be profitable. 24 // 25 // We also need to prove that N*M will not overflow. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/Transforms/Scalar/LoopFlatten.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/ScalarEvolution.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/Verifier.h" 41 #include "llvm/InitializePasses.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Scalar.h" 46 #include "llvm/Transforms/Utils/Local.h" 47 #include "llvm/Transforms/Utils/LoopUtils.h" 48 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 49 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 50 51 #define DEBUG_TYPE "loop-flatten" 52 53 using namespace llvm; 54 using namespace llvm::PatternMatch; 55 56 static cl::opt<unsigned> RepeatedInstructionThreshold( 57 "loop-flatten-cost-threshold", cl::Hidden, cl::init(2), 58 cl::desc("Limit on the cost of instructions that can be repeated due to " 59 "loop flattening")); 60 61 static cl::opt<bool> 62 AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden, 63 cl::init(false), 64 cl::desc("Assume that the product of the two iteration " 65 "limits will never overflow")); 66 67 static cl::opt<bool> 68 WidenIV("loop-flatten-widen-iv", cl::Hidden, 69 cl::init(false), 70 cl::desc("Widen the loop induction variables, if possible, so " 71 "overflow checks won't reject flattening")); 72 73 struct FlattenInfo { 74 Loop *OuterLoop = nullptr; 75 Loop *InnerLoop = nullptr; 76 PHINode *InnerInductionPHI = nullptr; 77 PHINode *OuterInductionPHI = nullptr; 78 Value *InnerLimit = nullptr; 79 Value *OuterLimit = nullptr; 80 BinaryOperator *InnerIncrement = nullptr; 81 BinaryOperator *OuterIncrement = nullptr; 82 BranchInst *InnerBranch = nullptr; 83 BranchInst *OuterBranch = nullptr; 84 SmallPtrSet<Value *, 4> LinearIVUses; 85 SmallPtrSet<PHINode *, 4> InnerPHIsToTransform; 86 87 FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL) {}; 88 }; 89 90 // Finds the induction variable, increment and limit for a simple loop that we 91 // can flatten. 92 static bool findLoopComponents( 93 Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions, 94 PHINode *&InductionPHI, Value *&Limit, BinaryOperator *&Increment, 95 BranchInst *&BackBranch, ScalarEvolution *SE) { 96 LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n"); 97 98 if (!L->isLoopSimplifyForm()) { 99 LLVM_DEBUG(dbgs() << "Loop is not in normal form\n"); 100 return false; 101 } 102 103 // There must be exactly one exiting block, and it must be the same at the 104 // latch. 105 BasicBlock *Latch = L->getLoopLatch(); 106 if (L->getExitingBlock() != Latch) { 107 LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n"); 108 return false; 109 } 110 // Latch block must end in a conditional branch. 111 BackBranch = dyn_cast<BranchInst>(Latch->getTerminator()); 112 if (!BackBranch || !BackBranch->isConditional()) { 113 LLVM_DEBUG(dbgs() << "Could not find back-branch\n"); 114 return false; 115 } 116 IterationInstructions.insert(BackBranch); 117 LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump()); 118 bool ContinueOnTrue = L->contains(BackBranch->getSuccessor(0)); 119 120 // Find the induction PHI. If there is no induction PHI, we can't do the 121 // transformation. TODO: could other variables trigger this? Do we have to 122 // search for the best one? 123 InductionPHI = nullptr; 124 for (PHINode &PHI : L->getHeader()->phis()) { 125 InductionDescriptor ID; 126 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) { 127 InductionPHI = &PHI; 128 LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump()); 129 break; 130 } 131 } 132 if (!InductionPHI) { 133 LLVM_DEBUG(dbgs() << "Could not find induction PHI\n"); 134 return false; 135 } 136 137 auto IsValidPredicate = [&](ICmpInst::Predicate Pred) { 138 if (ContinueOnTrue) 139 return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT; 140 else 141 return Pred == CmpInst::ICMP_EQ; 142 }; 143 144 // Find Compare and make sure it is valid 145 ICmpInst *Compare = dyn_cast<ICmpInst>(BackBranch->getCondition()); 146 if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) || 147 Compare->hasNUsesOrMore(2)) { 148 LLVM_DEBUG(dbgs() << "Could not find valid comparison\n"); 149 return false; 150 } 151 IterationInstructions.insert(Compare); 152 LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump()); 153 154 // Find increment and limit from the compare 155 Increment = nullptr; 156 if (match(Compare->getOperand(0), 157 m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) { 158 Increment = dyn_cast<BinaryOperator>(Compare->getOperand(0)); 159 Limit = Compare->getOperand(1); 160 } else if (Compare->getUnsignedPredicate() == CmpInst::ICMP_NE && 161 match(Compare->getOperand(1), 162 m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) { 163 Increment = dyn_cast<BinaryOperator>(Compare->getOperand(1)); 164 Limit = Compare->getOperand(0); 165 } 166 if (!Increment || Increment->hasNUsesOrMore(3)) { 167 LLVM_DEBUG(dbgs() << "Cound not find valid increment\n"); 168 return false; 169 } 170 IterationInstructions.insert(Increment); 171 LLVM_DEBUG(dbgs() << "Found increment: "; Increment->dump()); 172 LLVM_DEBUG(dbgs() << "Found limit: "; Limit->dump()); 173 174 assert(InductionPHI->getNumIncomingValues() == 2); 175 assert(InductionPHI->getIncomingValueForBlock(Latch) == Increment && 176 "PHI value is not increment inst"); 177 178 auto *CI = dyn_cast<ConstantInt>( 179 InductionPHI->getIncomingValueForBlock(L->getLoopPreheader())); 180 if (!CI || !CI->isZero()) { 181 LLVM_DEBUG(dbgs() << "PHI value is not zero: "; CI->dump()); 182 return false; 183 } 184 185 LLVM_DEBUG(dbgs() << "Successfully found all loop components\n"); 186 return true; 187 } 188 189 static bool checkPHIs(struct FlattenInfo &FI, 190 const TargetTransformInfo *TTI) { 191 // All PHIs in the inner and outer headers must either be: 192 // - The induction PHI, which we are going to rewrite as one induction in 193 // the new loop. This is already checked by findLoopComponents. 194 // - An outer header PHI with all incoming values from outside the loop. 195 // LoopSimplify guarantees we have a pre-header, so we don't need to 196 // worry about that here. 197 // - Pairs of PHIs in the inner and outer headers, which implement a 198 // loop-carried dependency that will still be valid in the new loop. To 199 // be valid, this variable must be modified only in the inner loop. 200 201 // The set of PHI nodes in the outer loop header that we know will still be 202 // valid after the transformation. These will not need to be modified (with 203 // the exception of the induction variable), but we do need to check that 204 // there are no unsafe PHI nodes. 205 SmallPtrSet<PHINode *, 4> SafeOuterPHIs; 206 SafeOuterPHIs.insert(FI.OuterInductionPHI); 207 208 // Check that all PHI nodes in the inner loop header match one of the valid 209 // patterns. 210 for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) { 211 // The induction PHIs break these rules, and that's OK because we treat 212 // them specially when doing the transformation. 213 if (&InnerPHI == FI.InnerInductionPHI) 214 continue; 215 216 // Each inner loop PHI node must have two incoming values/blocks - one 217 // from the pre-header, and one from the latch. 218 assert(InnerPHI.getNumIncomingValues() == 2); 219 Value *PreHeaderValue = 220 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader()); 221 Value *LatchValue = 222 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch()); 223 224 // The incoming value from the outer loop must be the PHI node in the 225 // outer loop header, with no modifications made in the top of the outer 226 // loop. 227 PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue); 228 if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) { 229 LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n"); 230 return false; 231 } 232 233 // The other incoming value must come from the inner loop, without any 234 // modifications in the tail end of the outer loop. We are in LCSSA form, 235 // so this will actually be a PHI in the inner loop's exit block, which 236 // only uses values from inside the inner loop. 237 PHINode *LCSSAPHI = dyn_cast<PHINode>( 238 OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch())); 239 if (!LCSSAPHI) { 240 LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n"); 241 return false; 242 } 243 244 // The value used by the LCSSA PHI must be the same one that the inner 245 // loop's PHI uses. 246 if (LCSSAPHI->hasConstantValue() != LatchValue) { 247 LLVM_DEBUG( 248 dbgs() << "LCSSA PHI incoming value does not match latch value\n"); 249 return false; 250 } 251 252 LLVM_DEBUG(dbgs() << "PHI pair is safe:\n"); 253 LLVM_DEBUG(dbgs() << " Inner: "; InnerPHI.dump()); 254 LLVM_DEBUG(dbgs() << " Outer: "; OuterPHI->dump()); 255 SafeOuterPHIs.insert(OuterPHI); 256 FI.InnerPHIsToTransform.insert(&InnerPHI); 257 } 258 259 for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) { 260 if (!SafeOuterPHIs.count(&OuterPHI)) { 261 LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump()); 262 return false; 263 } 264 } 265 266 LLVM_DEBUG(dbgs() << "checkPHIs: OK\n"); 267 return true; 268 } 269 270 static bool 271 checkOuterLoopInsts(struct FlattenInfo &FI, 272 SmallPtrSetImpl<Instruction *> &IterationInstructions, 273 const TargetTransformInfo *TTI) { 274 // Check for instructions in the outer but not inner loop. If any of these 275 // have side-effects then this transformation is not legal, and if there is 276 // a significant amount of code here which can't be optimised out that it's 277 // not profitable (as these instructions would get executed for each 278 // iteration of the inner loop). 279 unsigned RepeatedInstrCost = 0; 280 for (auto *B : FI.OuterLoop->getBlocks()) { 281 if (FI.InnerLoop->contains(B)) 282 continue; 283 284 for (auto &I : *B) { 285 if (!isa<PHINode>(&I) && !I.isTerminator() && 286 !isSafeToSpeculativelyExecute(&I)) { 287 LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have " 288 "side effects: "; 289 I.dump()); 290 return false; 291 } 292 // The execution count of the outer loop's iteration instructions 293 // (increment, compare and branch) will be increased, but the 294 // equivalent instructions will be removed from the inner loop, so 295 // they make a net difference of zero. 296 if (IterationInstructions.count(&I)) 297 continue; 298 // The uncoditional branch to the inner loop's header will turn into 299 // a fall-through, so adds no cost. 300 BranchInst *Br = dyn_cast<BranchInst>(&I); 301 if (Br && Br->isUnconditional() && 302 Br->getSuccessor(0) == FI.InnerLoop->getHeader()) 303 continue; 304 // Multiplies of the outer iteration variable and inner iteration 305 // count will be optimised out. 306 if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI), 307 m_Specific(FI.InnerLimit)))) 308 continue; 309 int Cost = TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 310 LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump()); 311 RepeatedInstrCost += Cost; 312 } 313 } 314 315 LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: " 316 << RepeatedInstrCost << "\n"); 317 // Bail out if flattening the loops would cause instructions in the outer 318 // loop but not in the inner loop to be executed extra times. 319 if (RepeatedInstrCost > RepeatedInstructionThreshold) { 320 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n"); 321 return false; 322 } 323 324 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n"); 325 return true; 326 } 327 328 static bool checkIVUsers(struct FlattenInfo &FI) { 329 // We require all uses of both induction variables to match this pattern: 330 // 331 // (OuterPHI * InnerLimit) + InnerPHI 332 // 333 // Any uses of the induction variables not matching that pattern would 334 // require a div/mod to reconstruct in the flattened loop, so the 335 // transformation wouldn't be profitable. 336 337 Value *InnerLimit = FI.InnerLimit; 338 if (auto *I = dyn_cast<SExtInst>(InnerLimit)) 339 InnerLimit = I->getOperand(0); 340 341 // Check that all uses of the inner loop's induction variable match the 342 // expected pattern, recording the uses of the outer IV. 343 SmallPtrSet<Value *, 4> ValidOuterPHIUses; 344 for (User *U : FI.InnerInductionPHI->users()) { 345 if (U == FI.InnerIncrement) 346 continue; 347 348 // After widening the IVs, a trunc instruction might have been introduced, so 349 // look through truncs. 350 if (dyn_cast<TruncInst>(U) ) { 351 if (!U->hasOneUse()) 352 return false; 353 U = *U->user_begin(); 354 } 355 356 LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump()); 357 358 Value *MatchedMul; 359 Value *MatchedItCount; 360 bool IsAdd = match(U, m_c_Add(m_Specific(FI.InnerInductionPHI), 361 m_Value(MatchedMul))) && 362 match(MatchedMul, m_c_Mul(m_Specific(FI.OuterInductionPHI), 363 m_Value(MatchedItCount))); 364 365 // Matches the same pattern as above, except it also looks for truncs 366 // on the phi, which can be the result of widening the induction variables. 367 bool IsAddTrunc = match(U, m_c_Add(m_Trunc(m_Specific(FI.InnerInductionPHI)), 368 m_Value(MatchedMul))) && 369 match(MatchedMul, 370 m_c_Mul(m_Trunc(m_Specific(FI.OuterInductionPHI)), 371 m_Value(MatchedItCount))); 372 373 if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerLimit) { 374 LLVM_DEBUG(dbgs() << "Use is optimisable\n"); 375 ValidOuterPHIUses.insert(MatchedMul); 376 FI.LinearIVUses.insert(U); 377 } else { 378 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 379 return false; 380 } 381 } 382 383 // Check that there are no uses of the outer IV other than the ones found 384 // as part of the pattern above. 385 for (User *U : FI.OuterInductionPHI->users()) { 386 if (U == FI.OuterIncrement) 387 continue; 388 389 auto IsValidOuterPHIUses = [&] (User *U) -> bool { 390 LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump()); 391 if (!ValidOuterPHIUses.count(U)) { 392 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 393 return false; 394 } 395 LLVM_DEBUG(dbgs() << "Use is optimisable\n"); 396 return true; 397 }; 398 399 if (auto *V = dyn_cast<TruncInst>(U)) { 400 for (auto *K : V->users()) { 401 if (!IsValidOuterPHIUses(K)) 402 return false; 403 } 404 continue; 405 } 406 407 if (!IsValidOuterPHIUses(U)) 408 return false; 409 } 410 411 LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n"; 412 dbgs() << "Found " << FI.LinearIVUses.size() 413 << " value(s) that can be replaced:\n"; 414 for (Value *V : FI.LinearIVUses) { 415 dbgs() << " "; 416 V->dump(); 417 }); 418 return true; 419 } 420 421 // Return an OverflowResult dependant on if overflow of the multiplication of 422 // InnerLimit and OuterLimit can be assumed not to happen. 423 static OverflowResult checkOverflow(struct FlattenInfo &FI, 424 DominatorTree *DT, AssumptionCache *AC) { 425 Function *F = FI.OuterLoop->getHeader()->getParent(); 426 const DataLayout &DL = F->getParent()->getDataLayout(); 427 428 // For debugging/testing. 429 if (AssumeNoOverflow) 430 return OverflowResult::NeverOverflows; 431 432 // Check if the multiply could not overflow due to known ranges of the 433 // input values. 434 OverflowResult OR = computeOverflowForUnsignedMul( 435 FI.InnerLimit, FI.OuterLimit, DL, AC, 436 FI.OuterLoop->getLoopPreheader()->getTerminator(), DT); 437 if (OR != OverflowResult::MayOverflow) 438 return OR; 439 440 for (Value *V : FI.LinearIVUses) { 441 for (Value *U : V->users()) { 442 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) { 443 // The IV is used as the operand of a GEP, and the IV is at least as 444 // wide as the address space of the GEP. In this case, the GEP would 445 // wrap around the address space before the IV increment wraps, which 446 // would be UB. 447 if (GEP->isInBounds() && 448 V->getType()->getIntegerBitWidth() >= 449 DL.getPointerTypeSizeInBits(GEP->getType())) { 450 LLVM_DEBUG( 451 dbgs() << "use of linear IV would be UB if overflow occurred: "; 452 GEP->dump()); 453 return OverflowResult::NeverOverflows; 454 } 455 } 456 } 457 } 458 459 return OverflowResult::MayOverflow; 460 } 461 462 static bool CanFlattenLoopPair(struct FlattenInfo &FI, DominatorTree *DT, 463 LoopInfo *LI, ScalarEvolution *SE, 464 AssumptionCache *AC, const TargetTransformInfo *TTI) { 465 SmallPtrSet<Instruction *, 8> IterationInstructions; 466 if (!findLoopComponents(FI.InnerLoop, IterationInstructions, FI.InnerInductionPHI, 467 FI.InnerLimit, FI.InnerIncrement, FI.InnerBranch, SE)) 468 return false; 469 if (!findLoopComponents(FI.OuterLoop, IterationInstructions, FI.OuterInductionPHI, 470 FI.OuterLimit, FI.OuterIncrement, FI.OuterBranch, SE)) 471 return false; 472 473 // Both of the loop limit values must be invariant in the outer loop 474 // (non-instructions are all inherently invariant). 475 if (!FI.OuterLoop->isLoopInvariant(FI.InnerLimit)) { 476 LLVM_DEBUG(dbgs() << "inner loop limit not invariant\n"); 477 return false; 478 } 479 if (!FI.OuterLoop->isLoopInvariant(FI.OuterLimit)) { 480 LLVM_DEBUG(dbgs() << "outer loop limit not invariant\n"); 481 return false; 482 } 483 484 if (!checkPHIs(FI, TTI)) 485 return false; 486 487 // FIXME: it should be possible to handle different types correctly. 488 if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType()) 489 return false; 490 491 if (!checkOuterLoopInsts(FI, IterationInstructions, TTI)) 492 return false; 493 494 // Find the values in the loop that can be replaced with the linearized 495 // induction variable, and check that there are no other uses of the inner 496 // or outer induction variable. If there were, we could still do this 497 // transformation, but we'd have to insert a div/mod to calculate the 498 // original IVs, so it wouldn't be profitable. 499 if (!checkIVUsers(FI)) 500 return false; 501 502 LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n"); 503 return true; 504 } 505 506 static bool DoFlattenLoopPair(struct FlattenInfo &FI, DominatorTree *DT, 507 LoopInfo *LI, ScalarEvolution *SE, 508 AssumptionCache *AC, 509 const TargetTransformInfo *TTI) { 510 Function *F = FI.OuterLoop->getHeader()->getParent(); 511 LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n"); 512 { 513 using namespace ore; 514 OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(), 515 FI.InnerLoop->getHeader()); 516 OptimizationRemarkEmitter ORE(F); 517 Remark << "Flattened into outer loop"; 518 ORE.emit(Remark); 519 } 520 521 Value *NewTripCount = 522 BinaryOperator::CreateMul(FI.InnerLimit, FI.OuterLimit, "flatten.tripcount", 523 FI.OuterLoop->getLoopPreheader()->getTerminator()); 524 LLVM_DEBUG(dbgs() << "Created new trip count in preheader: "; 525 NewTripCount->dump()); 526 527 // Fix up PHI nodes that take values from the inner loop back-edge, which 528 // we are about to remove. 529 FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 530 531 // The old Phi will be optimised away later, but for now we can't leave 532 // leave it in an invalid state, so are updating them too. 533 for (PHINode *PHI : FI.InnerPHIsToTransform) 534 PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 535 536 // Modify the trip count of the outer loop to be the product of the two 537 // trip counts. 538 cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount); 539 540 // Replace the inner loop backedge with an unconditional branch to the exit. 541 BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock(); 542 BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock(); 543 InnerExitingBlock->getTerminator()->eraseFromParent(); 544 BranchInst::Create(InnerExitBlock, InnerExitingBlock); 545 DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader()); 546 547 auto HasSExtUser = [] (Value *V) -> Value * { 548 for (User *U : V->users() ) 549 if (dyn_cast<SExtInst>(U)) 550 return U; 551 return nullptr; 552 }; 553 554 // Replace all uses of the polynomial calculated from the two induction 555 // variables with the one new one. 556 for (Value *V : FI.LinearIVUses) { 557 // If the induction variable has been widened, look through the SExt. 558 if (Value *U = HasSExtUser(V)) 559 V = U; 560 V->replaceAllUsesWith(FI.OuterInductionPHI); 561 } 562 563 // Tell LoopInfo, SCEV and the pass manager that the inner loop has been 564 // deleted, and any information that have about the outer loop invalidated. 565 SE->forgetLoop(FI.OuterLoop); 566 SE->forgetLoop(FI.InnerLoop); 567 LI->erase(FI.InnerLoop); 568 return true; 569 } 570 571 static bool CanWidenIV(struct FlattenInfo &FI, DominatorTree *DT, 572 LoopInfo *LI, ScalarEvolution *SE, 573 AssumptionCache *AC, const TargetTransformInfo *TTI) { 574 if (!WidenIV) { 575 LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n"); 576 return false; 577 } 578 579 LLVM_DEBUG(dbgs() << "Try widening the IVs\n"); 580 Module *M = FI.InnerLoop->getHeader()->getParent()->getParent(); 581 auto &DL = M->getDataLayout(); 582 auto *InnerType = FI.InnerInductionPHI->getType(); 583 auto *OuterType = FI.OuterInductionPHI->getType(); 584 unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits(); 585 auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext()); 586 587 // If both induction types are less than the maximum legal integer width, 588 // promote both to the widest type available so we know calculating 589 // (OuterLimit * InnerLimit) as the new trip count is safe. 590 if (InnerType != OuterType || 591 InnerType->getScalarSizeInBits() >= MaxLegalSize || 592 MaxLegalType->getScalarSizeInBits() < InnerType->getScalarSizeInBits() * 2) { 593 LLVM_DEBUG(dbgs() << "Can't widen the IV\n"); 594 return false; 595 } 596 597 SCEVExpander Rewriter(*SE, DL, "loopflatten"); 598 SmallVector<WideIVInfo, 2> WideIVs; 599 SmallVector<WeakTrackingVH, 4> DeadInsts; 600 WideIVs.push_back( {FI.InnerInductionPHI, MaxLegalType, false }); 601 WideIVs.push_back( {FI.OuterInductionPHI, MaxLegalType, false }); 602 unsigned ElimExt; 603 unsigned Widened; 604 605 for (unsigned i = 0; i < WideIVs.size(); i++) { 606 PHINode *WidePhi = createWideIV(WideIVs[i], LI, SE, Rewriter, DT, DeadInsts, 607 ElimExt, Widened, true /* HasGuards */, 608 true /* UsePostIncrementRanges */); 609 if (!WidePhi) 610 return false; 611 LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump()); 612 LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIVs[i].NarrowIV->dump()); 613 RecursivelyDeleteDeadPHINode(WideIVs[i].NarrowIV); 614 } 615 // After widening, rediscover all the loop components. 616 return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI); 617 } 618 619 static bool FlattenLoopPair(struct FlattenInfo &FI, DominatorTree *DT, 620 LoopInfo *LI, ScalarEvolution *SE, 621 AssumptionCache *AC, 622 const TargetTransformInfo *TTI) { 623 LLVM_DEBUG( 624 dbgs() << "Loop flattening running on outer loop " 625 << FI.OuterLoop->getHeader()->getName() << " and inner loop " 626 << FI.InnerLoop->getHeader()->getName() << " in " 627 << FI.OuterLoop->getHeader()->getParent()->getName() << "\n"); 628 629 if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI)) 630 return false; 631 632 // Check if we can widen the induction variables to avoid overflow checks. 633 if (CanWidenIV(FI, DT, LI, SE, AC, TTI)) 634 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI); 635 636 // Check if the new iteration variable might overflow. In this case, we 637 // need to version the loop, and select the original version at runtime if 638 // the iteration space is too large. 639 // TODO: We currently don't version the loop. 640 OverflowResult OR = checkOverflow(FI, DT, AC); 641 if (OR == OverflowResult::AlwaysOverflowsHigh || 642 OR == OverflowResult::AlwaysOverflowsLow) { 643 LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n"); 644 return false; 645 } else if (OR == OverflowResult::MayOverflow) { 646 LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n"); 647 return false; 648 } 649 650 LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n"); 651 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI); 652 } 653 654 bool Flatten(DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, 655 AssumptionCache *AC, TargetTransformInfo *TTI) { 656 bool Changed = false; 657 for (auto *InnerLoop : LI->getLoopsInPreorder()) { 658 auto *OuterLoop = InnerLoop->getParentLoop(); 659 if (!OuterLoop) 660 continue; 661 struct FlattenInfo FI(OuterLoop, InnerLoop); 662 Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI); 663 } 664 return Changed; 665 } 666 667 PreservedAnalyses LoopFlattenPass::run(Function &F, 668 FunctionAnalysisManager &AM) { 669 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 670 auto *LI = &AM.getResult<LoopAnalysis>(F); 671 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 672 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 673 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 674 675 if (!Flatten(DT, LI, SE, AC, TTI)) 676 return PreservedAnalyses::all(); 677 678 PreservedAnalyses PA; 679 PA.preserveSet<CFGAnalyses>(); 680 return PA; 681 } 682 683 namespace { 684 class LoopFlattenLegacyPass : public FunctionPass { 685 public: 686 static char ID; // Pass ID, replacement for typeid 687 LoopFlattenLegacyPass() : FunctionPass(ID) { 688 initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry()); 689 } 690 691 // Possibly flatten loop L into its child. 692 bool runOnFunction(Function &F) override; 693 694 void getAnalysisUsage(AnalysisUsage &AU) const override { 695 getLoopAnalysisUsage(AU); 696 AU.addRequired<TargetTransformInfoWrapperPass>(); 697 AU.addPreserved<TargetTransformInfoWrapperPass>(); 698 AU.addRequired<AssumptionCacheTracker>(); 699 AU.addPreserved<AssumptionCacheTracker>(); 700 } 701 }; 702 } // namespace 703 704 char LoopFlattenLegacyPass::ID = 0; 705 INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops", 706 false, false) 707 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 708 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 709 INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops", 710 false, false) 711 712 FunctionPass *llvm::createLoopFlattenPass() { return new LoopFlattenLegacyPass(); } 713 714 bool LoopFlattenLegacyPass::runOnFunction(Function &F) { 715 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 716 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 717 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 718 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 719 auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>(); 720 auto *TTI = &TTIP.getTTI(F); 721 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 722 return Flatten(DT, LI, SE, AC, TTI); 723 } 724