xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopFlatten.cpp (revision f117ed542fd2c327924d7767268d75ce77559944)
1 //===- LoopFlatten.cpp - Loop flattening pass------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass flattens pairs nested loops into a single loop.
10 //
11 // The intention is to optimise loop nests like this, which together access an
12 // array linearly:
13 //   for (int i = 0; i < N; ++i)
14 //     for (int j = 0; j < M; ++j)
15 //       f(A[i*M+j]);
16 // into one loop:
17 //   for (int i = 0; i < (N*M); ++i)
18 //     f(A[i]);
19 //
20 // It can also flatten loops where the induction variables are not used in the
21 // loop. This is only worth doing if the induction variables are only used in an
22 // expression like i*M+j. If they had any other uses, we would have to insert a
23 // div/mod to reconstruct the original values, so this wouldn't be profitable.
24 //
25 // We also need to prove that N*M will not overflow.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/Transforms/Scalar/LoopFlatten.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/ScalarEvolution.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/IRBuilder.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/PatternMatch.h"
41 #include "llvm/IR/Verifier.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Scalar.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/Transforms/Utils/LoopUtils.h"
49 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
50 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
51 
52 #define DEBUG_TYPE "loop-flatten"
53 
54 using namespace llvm;
55 using namespace llvm::PatternMatch;
56 
57 static cl::opt<unsigned> RepeatedInstructionThreshold(
58     "loop-flatten-cost-threshold", cl::Hidden, cl::init(2),
59     cl::desc("Limit on the cost of instructions that can be repeated due to "
60              "loop flattening"));
61 
62 static cl::opt<bool>
63     AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden,
64                      cl::init(false),
65                      cl::desc("Assume that the product of the two iteration "
66                               "trip counts will never overflow"));
67 
68 static cl::opt<bool>
69     WidenIV("loop-flatten-widen-iv", cl::Hidden,
70             cl::init(true),
71             cl::desc("Widen the loop induction variables, if possible, so "
72                      "overflow checks won't reject flattening"));
73 
74 struct FlattenInfo {
75   Loop *OuterLoop = nullptr;
76   Loop *InnerLoop = nullptr;
77   // These PHINodes correspond to loop induction variables, which are expected
78   // to start at zero and increment by one on each loop.
79   PHINode *InnerInductionPHI = nullptr;
80   PHINode *OuterInductionPHI = nullptr;
81   Value *InnerTripCount = nullptr;
82   Value *OuterTripCount = nullptr;
83   BinaryOperator *InnerIncrement = nullptr;
84   BinaryOperator *OuterIncrement = nullptr;
85   BranchInst *InnerBranch = nullptr;
86   BranchInst *OuterBranch = nullptr;
87   SmallPtrSet<Value *, 4> LinearIVUses;
88   SmallPtrSet<PHINode *, 4> InnerPHIsToTransform;
89 
90   // Whether this holds the flatten info before or after widening.
91   bool Widened = false;
92 
93   FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL) {};
94 };
95 
96 // Finds the induction variable, increment and trip count for a simple loop that
97 // we can flatten.
98 static bool findLoopComponents(
99     Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions,
100     PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment,
101     BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) {
102   LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n");
103 
104   if (!L->isLoopSimplifyForm()) {
105     LLVM_DEBUG(dbgs() << "Loop is not in normal form\n");
106     return false;
107   }
108 
109   // Currently, to simplify the implementation, the Loop induction variable must
110   // start at zero and increment with a step size of one.
111   if (!L->isCanonical(*SE)) {
112     LLVM_DEBUG(dbgs() << "Loop is not canonical\n");
113     return false;
114   }
115 
116   // There must be exactly one exiting block, and it must be the same at the
117   // latch.
118   BasicBlock *Latch = L->getLoopLatch();
119   if (L->getExitingBlock() != Latch) {
120     LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n");
121     return false;
122   }
123 
124   // Find the induction PHI. If there is no induction PHI, we can't do the
125   // transformation. TODO: could other variables trigger this? Do we have to
126   // search for the best one?
127   InductionPHI = L->getInductionVariable(*SE);
128   if (!InductionPHI) {
129     LLVM_DEBUG(dbgs() << "Could not find induction PHI\n");
130     return false;
131   }
132   LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump());
133 
134   bool ContinueOnTrue = L->contains(Latch->getTerminator()->getSuccessor(0));
135   auto IsValidPredicate = [&](ICmpInst::Predicate Pred) {
136     if (ContinueOnTrue)
137       return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT;
138     else
139       return Pred == CmpInst::ICMP_EQ;
140   };
141 
142   // Find Compare and make sure it is valid. getLatchCmpInst checks that the
143   // back branch of the latch is conditional.
144   ICmpInst *Compare = L->getLatchCmpInst();
145   if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) ||
146       Compare->hasNUsesOrMore(2)) {
147     LLVM_DEBUG(dbgs() << "Could not find valid comparison\n");
148     return false;
149   }
150   BackBranch = cast<BranchInst>(Latch->getTerminator());
151   IterationInstructions.insert(BackBranch);
152   LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump());
153   IterationInstructions.insert(Compare);
154   LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump());
155 
156   // Find increment and trip count.
157   // There are exactly 2 incoming values to the induction phi; one from the
158   // pre-header and one from the latch. The incoming latch value is the
159   // increment variable.
160   Increment =
161       dyn_cast<BinaryOperator>(InductionPHI->getIncomingValueForBlock(Latch));
162   if (Increment->hasNUsesOrMore(3)) {
163     LLVM_DEBUG(dbgs() << "Could not find valid increment\n");
164     return false;
165   }
166   // The trip count is the RHS of the compare. If this doesn't match the trip
167   // count computed by SCEV then this is either because the trip count variable
168   // has been widened (then leave the trip count as it is), or because it is a
169   // constant and another transformation has changed the compare, e.g.
170   // icmp ult %inc, tripcount -> icmp ult %j, tripcount-1.
171   TripCount = Compare->getOperand(1);
172   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
173   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
174     LLVM_DEBUG(dbgs() << "Backedge-taken count is not predictable\n");
175     return false;
176   }
177   const SCEV *SCEVTripCount = SE->getTripCountFromExitCount(BackedgeTakenCount);
178   if (SE->getSCEV(TripCount) != SCEVTripCount && !IsWidened) {
179     ConstantInt *RHS = dyn_cast<ConstantInt>(TripCount);
180     if (!RHS) {
181       LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
182       return false;
183     }
184     // The L->isCanonical check above ensures we only get here if the loop
185     // increments by 1 on each iteration, so the RHS of the Compare is
186     // tripcount-1 (i.e equivalent to the backedge taken count).
187     assert(SE->getSCEV(RHS) == BackedgeTakenCount &&
188            "Expected RHS of compare to be equal to the backedge taken count");
189     ConstantInt *One = ConstantInt::get(RHS->getType(), 1);
190     TripCount = ConstantInt::get(TripCount->getContext(),
191                                  RHS->getValue() + One->getValue());
192   } else if (SE->getSCEV(TripCount) != SCEVTripCount) {
193     auto *TripCountInst = dyn_cast<Instruction>(TripCount);
194     if (!TripCountInst) {
195       LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n");
196       return false;
197     }
198     if ((!isa<ZExtInst>(TripCountInst) && !isa<SExtInst>(TripCountInst)) ||
199         SE->getSCEV(TripCountInst->getOperand(0)) != SCEVTripCount) {
200       LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n");
201       return false;
202     }
203   }
204   IterationInstructions.insert(Increment);
205   LLVM_DEBUG(dbgs() << "Found increment: "; Increment->dump());
206   LLVM_DEBUG(dbgs() << "Found trip count: "; TripCount->dump());
207 
208   LLVM_DEBUG(dbgs() << "Successfully found all loop components\n");
209   return true;
210 }
211 
212 static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) {
213   // All PHIs in the inner and outer headers must either be:
214   // - The induction PHI, which we are going to rewrite as one induction in
215   //   the new loop. This is already checked by findLoopComponents.
216   // - An outer header PHI with all incoming values from outside the loop.
217   //   LoopSimplify guarantees we have a pre-header, so we don't need to
218   //   worry about that here.
219   // - Pairs of PHIs in the inner and outer headers, which implement a
220   //   loop-carried dependency that will still be valid in the new loop. To
221   //   be valid, this variable must be modified only in the inner loop.
222 
223   // The set of PHI nodes in the outer loop header that we know will still be
224   // valid after the transformation. These will not need to be modified (with
225   // the exception of the induction variable), but we do need to check that
226   // there are no unsafe PHI nodes.
227   SmallPtrSet<PHINode *, 4> SafeOuterPHIs;
228   SafeOuterPHIs.insert(FI.OuterInductionPHI);
229 
230   // Check that all PHI nodes in the inner loop header match one of the valid
231   // patterns.
232   for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) {
233     // The induction PHIs break these rules, and that's OK because we treat
234     // them specially when doing the transformation.
235     if (&InnerPHI == FI.InnerInductionPHI)
236       continue;
237 
238     // Each inner loop PHI node must have two incoming values/blocks - one
239     // from the pre-header, and one from the latch.
240     assert(InnerPHI.getNumIncomingValues() == 2);
241     Value *PreHeaderValue =
242         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader());
243     Value *LatchValue =
244         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch());
245 
246     // The incoming value from the outer loop must be the PHI node in the
247     // outer loop header, with no modifications made in the top of the outer
248     // loop.
249     PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue);
250     if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) {
251       LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n");
252       return false;
253     }
254 
255     // The other incoming value must come from the inner loop, without any
256     // modifications in the tail end of the outer loop. We are in LCSSA form,
257     // so this will actually be a PHI in the inner loop's exit block, which
258     // only uses values from inside the inner loop.
259     PHINode *LCSSAPHI = dyn_cast<PHINode>(
260         OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch()));
261     if (!LCSSAPHI) {
262       LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n");
263       return false;
264     }
265 
266     // The value used by the LCSSA PHI must be the same one that the inner
267     // loop's PHI uses.
268     if (LCSSAPHI->hasConstantValue() != LatchValue) {
269       LLVM_DEBUG(
270           dbgs() << "LCSSA PHI incoming value does not match latch value\n");
271       return false;
272     }
273 
274     LLVM_DEBUG(dbgs() << "PHI pair is safe:\n");
275     LLVM_DEBUG(dbgs() << "  Inner: "; InnerPHI.dump());
276     LLVM_DEBUG(dbgs() << "  Outer: "; OuterPHI->dump());
277     SafeOuterPHIs.insert(OuterPHI);
278     FI.InnerPHIsToTransform.insert(&InnerPHI);
279   }
280 
281   for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) {
282     if (!SafeOuterPHIs.count(&OuterPHI)) {
283       LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump());
284       return false;
285     }
286   }
287 
288   LLVM_DEBUG(dbgs() << "checkPHIs: OK\n");
289   return true;
290 }
291 
292 static bool
293 checkOuterLoopInsts(FlattenInfo &FI,
294                     SmallPtrSetImpl<Instruction *> &IterationInstructions,
295                     const TargetTransformInfo *TTI) {
296   // Check for instructions in the outer but not inner loop. If any of these
297   // have side-effects then this transformation is not legal, and if there is
298   // a significant amount of code here which can't be optimised out that it's
299   // not profitable (as these instructions would get executed for each
300   // iteration of the inner loop).
301   InstructionCost RepeatedInstrCost = 0;
302   for (auto *B : FI.OuterLoop->getBlocks()) {
303     if (FI.InnerLoop->contains(B))
304       continue;
305 
306     for (auto &I : *B) {
307       if (!isa<PHINode>(&I) && !I.isTerminator() &&
308           !isSafeToSpeculativelyExecute(&I)) {
309         LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have "
310                              "side effects: ";
311                    I.dump());
312         return false;
313       }
314       // The execution count of the outer loop's iteration instructions
315       // (increment, compare and branch) will be increased, but the
316       // equivalent instructions will be removed from the inner loop, so
317       // they make a net difference of zero.
318       if (IterationInstructions.count(&I))
319         continue;
320       // The uncoditional branch to the inner loop's header will turn into
321       // a fall-through, so adds no cost.
322       BranchInst *Br = dyn_cast<BranchInst>(&I);
323       if (Br && Br->isUnconditional() &&
324           Br->getSuccessor(0) == FI.InnerLoop->getHeader())
325         continue;
326       // Multiplies of the outer iteration variable and inner iteration
327       // count will be optimised out.
328       if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI),
329                             m_Specific(FI.InnerTripCount))))
330         continue;
331       InstructionCost Cost =
332           TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
333       LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump());
334       RepeatedInstrCost += Cost;
335     }
336   }
337 
338   LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: "
339                     << RepeatedInstrCost << "\n");
340   // Bail out if flattening the loops would cause instructions in the outer
341   // loop but not in the inner loop to be executed extra times.
342   if (RepeatedInstrCost > RepeatedInstructionThreshold) {
343     LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n");
344     return false;
345   }
346 
347   LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n");
348   return true;
349 }
350 
351 static bool checkIVUsers(FlattenInfo &FI) {
352   // We require all uses of both induction variables to match this pattern:
353   //
354   //   (OuterPHI * InnerTripCount) + InnerPHI
355   //
356   // Any uses of the induction variables not matching that pattern would
357   // require a div/mod to reconstruct in the flattened loop, so the
358   // transformation wouldn't be profitable.
359 
360   Value *InnerTripCount = FI.InnerTripCount;
361   if (FI.Widened &&
362       (isa<SExtInst>(InnerTripCount) || isa<ZExtInst>(InnerTripCount)))
363     InnerTripCount = cast<Instruction>(InnerTripCount)->getOperand(0);
364 
365   // Check that all uses of the inner loop's induction variable match the
366   // expected pattern, recording the uses of the outer IV.
367   SmallPtrSet<Value *, 4> ValidOuterPHIUses;
368   for (User *U : FI.InnerInductionPHI->users()) {
369     if (U == FI.InnerIncrement)
370       continue;
371 
372     // After widening the IVs, a trunc instruction might have been introduced, so
373     // look through truncs.
374     if (isa<TruncInst>(U)) {
375       if (!U->hasOneUse())
376         return false;
377       U = *U->user_begin();
378     }
379 
380     // If the use is in the compare (which is also the condition of the inner
381     // branch) then the compare has been altered by another transformation e.g
382     // icmp ult %inc, tripcount -> icmp ult %j, tripcount-1, where tripcount is
383     // a constant. Ignore this use as the compare gets removed later anyway.
384     if (U == FI.InnerBranch->getCondition())
385       continue;
386 
387     LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump());
388 
389     Value *MatchedMul;
390     Value *MatchedItCount;
391     bool IsAdd = match(U, m_c_Add(m_Specific(FI.InnerInductionPHI),
392                                   m_Value(MatchedMul))) &&
393                  match(MatchedMul, m_c_Mul(m_Specific(FI.OuterInductionPHI),
394                                            m_Value(MatchedItCount)));
395 
396     // Matches the same pattern as above, except it also looks for truncs
397     // on the phi, which can be the result of widening the induction variables.
398     bool IsAddTrunc = match(U, m_c_Add(m_Trunc(m_Specific(FI.InnerInductionPHI)),
399                                        m_Value(MatchedMul))) &&
400                       match(MatchedMul,
401                             m_c_Mul(m_Trunc(m_Specific(FI.OuterInductionPHI)),
402                             m_Value(MatchedItCount)));
403 
404     if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerTripCount) {
405       LLVM_DEBUG(dbgs() << "Use is optimisable\n");
406       ValidOuterPHIUses.insert(MatchedMul);
407       FI.LinearIVUses.insert(U);
408     } else {
409       LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
410       return false;
411     }
412   }
413 
414   // Check that there are no uses of the outer IV other than the ones found
415   // as part of the pattern above.
416   for (User *U : FI.OuterInductionPHI->users()) {
417     if (U == FI.OuterIncrement)
418       continue;
419 
420     auto IsValidOuterPHIUses = [&] (User *U) -> bool {
421       LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump());
422       if (!ValidOuterPHIUses.count(U)) {
423         LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
424         return false;
425       }
426       LLVM_DEBUG(dbgs() << "Use is optimisable\n");
427       return true;
428     };
429 
430     if (auto *V = dyn_cast<TruncInst>(U)) {
431       for (auto *K : V->users()) {
432         if (!IsValidOuterPHIUses(K))
433           return false;
434       }
435       continue;
436     }
437 
438     if (!IsValidOuterPHIUses(U))
439       return false;
440   }
441 
442   LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n";
443              dbgs() << "Found " << FI.LinearIVUses.size()
444                     << " value(s) that can be replaced:\n";
445              for (Value *V : FI.LinearIVUses) {
446                dbgs() << "  ";
447                V->dump();
448              });
449   return true;
450 }
451 
452 // Return an OverflowResult dependant on if overflow of the multiplication of
453 // InnerTripCount and OuterTripCount can be assumed not to happen.
454 static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT,
455                                     AssumptionCache *AC) {
456   Function *F = FI.OuterLoop->getHeader()->getParent();
457   const DataLayout &DL = F->getParent()->getDataLayout();
458 
459   // For debugging/testing.
460   if (AssumeNoOverflow)
461     return OverflowResult::NeverOverflows;
462 
463   // Check if the multiply could not overflow due to known ranges of the
464   // input values.
465   OverflowResult OR = computeOverflowForUnsignedMul(
466       FI.InnerTripCount, FI.OuterTripCount, DL, AC,
467       FI.OuterLoop->getLoopPreheader()->getTerminator(), DT);
468   if (OR != OverflowResult::MayOverflow)
469     return OR;
470 
471   for (Value *V : FI.LinearIVUses) {
472     for (Value *U : V->users()) {
473       if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
474         // The IV is used as the operand of a GEP, and the IV is at least as
475         // wide as the address space of the GEP. In this case, the GEP would
476         // wrap around the address space before the IV increment wraps, which
477         // would be UB.
478         if (GEP->isInBounds() &&
479             V->getType()->getIntegerBitWidth() >=
480                 DL.getPointerTypeSizeInBits(GEP->getType())) {
481           LLVM_DEBUG(
482               dbgs() << "use of linear IV would be UB if overflow occurred: ";
483               GEP->dump());
484           return OverflowResult::NeverOverflows;
485         }
486       }
487     }
488   }
489 
490   return OverflowResult::MayOverflow;
491 }
492 
493 static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
494                                ScalarEvolution *SE, AssumptionCache *AC,
495                                const TargetTransformInfo *TTI) {
496   SmallPtrSet<Instruction *, 8> IterationInstructions;
497   if (!findLoopComponents(FI.InnerLoop, IterationInstructions,
498                           FI.InnerInductionPHI, FI.InnerTripCount,
499                           FI.InnerIncrement, FI.InnerBranch, SE, FI.Widened))
500     return false;
501   if (!findLoopComponents(FI.OuterLoop, IterationInstructions,
502                           FI.OuterInductionPHI, FI.OuterTripCount,
503                           FI.OuterIncrement, FI.OuterBranch, SE, FI.Widened))
504     return false;
505 
506   // Both of the loop trip count values must be invariant in the outer loop
507   // (non-instructions are all inherently invariant).
508   if (!FI.OuterLoop->isLoopInvariant(FI.InnerTripCount)) {
509     LLVM_DEBUG(dbgs() << "inner loop trip count not invariant\n");
510     return false;
511   }
512   if (!FI.OuterLoop->isLoopInvariant(FI.OuterTripCount)) {
513     LLVM_DEBUG(dbgs() << "outer loop trip count not invariant\n");
514     return false;
515   }
516 
517   if (!checkPHIs(FI, TTI))
518     return false;
519 
520   // FIXME: it should be possible to handle different types correctly.
521   if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType())
522     return false;
523 
524   if (!checkOuterLoopInsts(FI, IterationInstructions, TTI))
525     return false;
526 
527   // Find the values in the loop that can be replaced with the linearized
528   // induction variable, and check that there are no other uses of the inner
529   // or outer induction variable. If there were, we could still do this
530   // transformation, but we'd have to insert a div/mod to calculate the
531   // original IVs, so it wouldn't be profitable.
532   if (!checkIVUsers(FI))
533     return false;
534 
535   LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n");
536   return true;
537 }
538 
539 static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
540                               ScalarEvolution *SE, AssumptionCache *AC,
541                               const TargetTransformInfo *TTI) {
542   Function *F = FI.OuterLoop->getHeader()->getParent();
543   LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n");
544   {
545     using namespace ore;
546     OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(),
547                               FI.InnerLoop->getHeader());
548     OptimizationRemarkEmitter ORE(F);
549     Remark << "Flattened into outer loop";
550     ORE.emit(Remark);
551   }
552 
553   Value *NewTripCount = BinaryOperator::CreateMul(
554       FI.InnerTripCount, FI.OuterTripCount, "flatten.tripcount",
555       FI.OuterLoop->getLoopPreheader()->getTerminator());
556   LLVM_DEBUG(dbgs() << "Created new trip count in preheader: ";
557              NewTripCount->dump());
558 
559   // Fix up PHI nodes that take values from the inner loop back-edge, which
560   // we are about to remove.
561   FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
562 
563   // The old Phi will be optimised away later, but for now we can't leave
564   // leave it in an invalid state, so are updating them too.
565   for (PHINode *PHI : FI.InnerPHIsToTransform)
566     PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
567 
568   // Modify the trip count of the outer loop to be the product of the two
569   // trip counts.
570   cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount);
571 
572   // Replace the inner loop backedge with an unconditional branch to the exit.
573   BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock();
574   BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock();
575   InnerExitingBlock->getTerminator()->eraseFromParent();
576   BranchInst::Create(InnerExitBlock, InnerExitingBlock);
577   DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
578 
579   // Replace all uses of the polynomial calculated from the two induction
580   // variables with the one new one.
581   IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator());
582   for (Value *V : FI.LinearIVUses) {
583     Value *OuterValue = FI.OuterInductionPHI;
584     if (FI.Widened)
585       OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(),
586                                        "flatten.trunciv");
587 
588     LLVM_DEBUG(dbgs() << "Replacing: "; V->dump();
589                dbgs() << "with:      "; OuterValue->dump());
590     V->replaceAllUsesWith(OuterValue);
591   }
592 
593   // Tell LoopInfo, SCEV and the pass manager that the inner loop has been
594   // deleted, and any information that have about the outer loop invalidated.
595   SE->forgetLoop(FI.OuterLoop);
596   SE->forgetLoop(FI.InnerLoop);
597   LI->erase(FI.InnerLoop);
598   return true;
599 }
600 
601 static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
602                        ScalarEvolution *SE, AssumptionCache *AC,
603                        const TargetTransformInfo *TTI) {
604   if (!WidenIV) {
605     LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n");
606     return false;
607   }
608 
609   LLVM_DEBUG(dbgs() << "Try widening the IVs\n");
610   Module *M = FI.InnerLoop->getHeader()->getParent()->getParent();
611   auto &DL = M->getDataLayout();
612   auto *InnerType = FI.InnerInductionPHI->getType();
613   auto *OuterType = FI.OuterInductionPHI->getType();
614   unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits();
615   auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext());
616 
617   // If both induction types are less than the maximum legal integer width,
618   // promote both to the widest type available so we know calculating
619   // (OuterTripCount * InnerTripCount) as the new trip count is safe.
620   if (InnerType != OuterType ||
621       InnerType->getScalarSizeInBits() >= MaxLegalSize ||
622       MaxLegalType->getScalarSizeInBits() < InnerType->getScalarSizeInBits() * 2) {
623     LLVM_DEBUG(dbgs() << "Can't widen the IV\n");
624     return false;
625   }
626 
627   SCEVExpander Rewriter(*SE, DL, "loopflatten");
628   SmallVector<WideIVInfo, 2> WideIVs;
629   SmallVector<WeakTrackingVH, 4> DeadInsts;
630   WideIVs.push_back( {FI.InnerInductionPHI, MaxLegalType, false });
631   WideIVs.push_back( {FI.OuterInductionPHI, MaxLegalType, false });
632   unsigned ElimExt = 0;
633   unsigned Widened = 0;
634 
635   for (const auto &WideIV : WideIVs) {
636     PHINode *WidePhi = createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts,
637                                     ElimExt, Widened, true /* HasGuards */,
638                                     true /* UsePostIncrementRanges */);
639     if (!WidePhi)
640       return false;
641     LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump());
642     LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump());
643     RecursivelyDeleteDeadPHINode(WideIV.NarrowIV);
644   }
645   // After widening, rediscover all the loop components.
646   assert(Widened && "Widened IV expected");
647   FI.Widened = true;
648   return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
649 }
650 
651 static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
652                             ScalarEvolution *SE, AssumptionCache *AC,
653                             const TargetTransformInfo *TTI) {
654   LLVM_DEBUG(
655       dbgs() << "Loop flattening running on outer loop "
656              << FI.OuterLoop->getHeader()->getName() << " and inner loop "
657              << FI.InnerLoop->getHeader()->getName() << " in "
658              << FI.OuterLoop->getHeader()->getParent()->getName() << "\n");
659 
660   if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI))
661     return false;
662 
663   // Check if we can widen the induction variables to avoid overflow checks.
664   if (CanWidenIV(FI, DT, LI, SE, AC, TTI))
665     return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
666 
667   // Check if the new iteration variable might overflow. In this case, we
668   // need to version the loop, and select the original version at runtime if
669   // the iteration space is too large.
670   // TODO: We currently don't version the loop.
671   OverflowResult OR = checkOverflow(FI, DT, AC);
672   if (OR == OverflowResult::AlwaysOverflowsHigh ||
673       OR == OverflowResult::AlwaysOverflowsLow) {
674     LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n");
675     return false;
676   } else if (OR == OverflowResult::MayOverflow) {
677     LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n");
678     return false;
679   }
680 
681   LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n");
682   return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
683 }
684 
685 bool Flatten(LoopNest &LN, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE,
686              AssumptionCache *AC, TargetTransformInfo *TTI) {
687   bool Changed = false;
688   for (Loop *InnerLoop : LN.getLoops()) {
689     auto *OuterLoop = InnerLoop->getParentLoop();
690     if (!OuterLoop)
691       continue;
692     FlattenInfo FI(OuterLoop, InnerLoop);
693     Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI);
694   }
695   return Changed;
696 }
697 
698 PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM,
699                                        LoopStandardAnalysisResults &AR,
700                                        LPMUpdater &U) {
701 
702   bool Changed = false;
703 
704   // The loop flattening pass requires loops to be
705   // in simplified form, and also needs LCSSA. Running
706   // this pass will simplify all loops that contain inner loops,
707   // regardless of whether anything ends up being flattened.
708   Changed |= Flatten(LN, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI);
709 
710   if (!Changed)
711     return PreservedAnalyses::all();
712 
713   return PreservedAnalyses::none();
714 }
715 
716 namespace {
717 class LoopFlattenLegacyPass : public FunctionPass {
718 public:
719   static char ID; // Pass ID, replacement for typeid
720   LoopFlattenLegacyPass() : FunctionPass(ID) {
721     initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry());
722   }
723 
724   // Possibly flatten loop L into its child.
725   bool runOnFunction(Function &F) override;
726 
727   void getAnalysisUsage(AnalysisUsage &AU) const override {
728     getLoopAnalysisUsage(AU);
729     AU.addRequired<TargetTransformInfoWrapperPass>();
730     AU.addPreserved<TargetTransformInfoWrapperPass>();
731     AU.addRequired<AssumptionCacheTracker>();
732     AU.addPreserved<AssumptionCacheTracker>();
733   }
734 };
735 } // namespace
736 
737 char LoopFlattenLegacyPass::ID = 0;
738 INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
739                       false, false)
740 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
741 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
742 INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
743                     false, false)
744 
745 FunctionPass *llvm::createLoopFlattenPass() { return new LoopFlattenLegacyPass(); }
746 
747 bool LoopFlattenLegacyPass::runOnFunction(Function &F) {
748   ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
749   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
750   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
751   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
752   auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>();
753   auto *TTI = &TTIP.getTTI(F);
754   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
755   bool Changed = false;
756   for (Loop *L : *LI) {
757     auto LN = LoopNest::getLoopNest(*L, *SE);
758     Changed |= Flatten(*LN, DT, LI, SE, AC, TTI);
759   }
760   return Changed;
761 }
762