1 //===- LoopFlatten.cpp - Loop flattening pass------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass flattens pairs nested loops into a single loop. 10 // 11 // The intention is to optimise loop nests like this, which together access an 12 // array linearly: 13 // for (int i = 0; i < N; ++i) 14 // for (int j = 0; j < M; ++j) 15 // f(A[i*M+j]); 16 // into one loop: 17 // for (int i = 0; i < (N*M); ++i) 18 // f(A[i]); 19 // 20 // It can also flatten loops where the induction variables are not used in the 21 // loop. This is only worth doing if the induction variables are only used in an 22 // expression like i*M+j. If they had any other uses, we would have to insert a 23 // div/mod to reconstruct the original values, so this wouldn't be profitable. 24 // 25 // We also need to prove that N*M will not overflow. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/Transforms/Scalar/LoopFlatten.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/LoopPass.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/ScalarEvolution.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/IR/Verifier.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Utils/LoopUtils.h" 48 49 #define DEBUG_TYPE "loop-flatten" 50 51 using namespace llvm; 52 using namespace llvm::PatternMatch; 53 54 static cl::opt<unsigned> RepeatedInstructionThreshold( 55 "loop-flatten-cost-threshold", cl::Hidden, cl::init(2), 56 cl::desc("Limit on the cost of instructions that can be repeated due to " 57 "loop flattening")); 58 59 static cl::opt<bool> 60 AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden, 61 cl::init(false), 62 cl::desc("Assume that the product of the two iteration " 63 "limits will never overflow")); 64 65 struct FlattenInfo { 66 Loop *OuterLoop = nullptr; 67 Loop *InnerLoop = nullptr; 68 PHINode *InnerInductionPHI = nullptr; 69 PHINode *OuterInductionPHI = nullptr; 70 Value *InnerLimit = nullptr; 71 Value *OuterLimit = nullptr; 72 BinaryOperator *InnerIncrement = nullptr; 73 BinaryOperator *OuterIncrement = nullptr; 74 BranchInst *InnerBranch = nullptr; 75 BranchInst *OuterBranch = nullptr; 76 SmallPtrSet<Value *, 4> LinearIVUses; 77 SmallPtrSet<PHINode *, 4> InnerPHIsToTransform; 78 79 FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL) {}; 80 }; 81 82 // Finds the induction variable, increment and limit for a simple loop that we 83 // can flatten. 84 static bool findLoopComponents( 85 Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions, 86 PHINode *&InductionPHI, Value *&Limit, BinaryOperator *&Increment, 87 BranchInst *&BackBranch, ScalarEvolution *SE) { 88 LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n"); 89 90 if (!L->isLoopSimplifyForm()) { 91 LLVM_DEBUG(dbgs() << "Loop is not in normal form\n"); 92 return false; 93 } 94 95 // There must be exactly one exiting block, and it must be the same at the 96 // latch. 97 BasicBlock *Latch = L->getLoopLatch(); 98 if (L->getExitingBlock() != Latch) { 99 LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n"); 100 return false; 101 } 102 // Latch block must end in a conditional branch. 103 BackBranch = dyn_cast<BranchInst>(Latch->getTerminator()); 104 if (!BackBranch || !BackBranch->isConditional()) { 105 LLVM_DEBUG(dbgs() << "Could not find back-branch\n"); 106 return false; 107 } 108 IterationInstructions.insert(BackBranch); 109 LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump()); 110 bool ContinueOnTrue = L->contains(BackBranch->getSuccessor(0)); 111 112 // Find the induction PHI. If there is no induction PHI, we can't do the 113 // transformation. TODO: could other variables trigger this? Do we have to 114 // search for the best one? 115 InductionPHI = nullptr; 116 for (PHINode &PHI : L->getHeader()->phis()) { 117 InductionDescriptor ID; 118 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) { 119 InductionPHI = &PHI; 120 LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump()); 121 break; 122 } 123 } 124 if (!InductionPHI) { 125 LLVM_DEBUG(dbgs() << "Could not find induction PHI\n"); 126 return false; 127 } 128 129 auto IsValidPredicate = [&](ICmpInst::Predicate Pred) { 130 if (ContinueOnTrue) 131 return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT; 132 else 133 return Pred == CmpInst::ICMP_EQ; 134 }; 135 136 // Find Compare and make sure it is valid 137 ICmpInst *Compare = dyn_cast<ICmpInst>(BackBranch->getCondition()); 138 if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) || 139 Compare->hasNUsesOrMore(2)) { 140 LLVM_DEBUG(dbgs() << "Could not find valid comparison\n"); 141 return false; 142 } 143 IterationInstructions.insert(Compare); 144 LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump()); 145 146 // Find increment and limit from the compare 147 Increment = nullptr; 148 if (match(Compare->getOperand(0), 149 m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) { 150 Increment = dyn_cast<BinaryOperator>(Compare->getOperand(0)); 151 Limit = Compare->getOperand(1); 152 } else if (Compare->getUnsignedPredicate() == CmpInst::ICMP_NE && 153 match(Compare->getOperand(1), 154 m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) { 155 Increment = dyn_cast<BinaryOperator>(Compare->getOperand(1)); 156 Limit = Compare->getOperand(0); 157 } 158 if (!Increment || Increment->hasNUsesOrMore(3)) { 159 LLVM_DEBUG(dbgs() << "Cound not find valid increment\n"); 160 return false; 161 } 162 IterationInstructions.insert(Increment); 163 LLVM_DEBUG(dbgs() << "Found increment: "; Increment->dump()); 164 LLVM_DEBUG(dbgs() << "Found limit: "; Limit->dump()); 165 166 assert(InductionPHI->getNumIncomingValues() == 2); 167 assert(InductionPHI->getIncomingValueForBlock(Latch) == Increment && 168 "PHI value is not increment inst"); 169 170 auto *CI = dyn_cast<ConstantInt>( 171 InductionPHI->getIncomingValueForBlock(L->getLoopPreheader())); 172 if (!CI || !CI->isZero()) { 173 LLVM_DEBUG(dbgs() << "PHI value is not zero: "; CI->dump()); 174 return false; 175 } 176 177 LLVM_DEBUG(dbgs() << "Successfully found all loop components\n"); 178 return true; 179 } 180 181 static bool checkPHIs(struct FlattenInfo &FI, 182 const TargetTransformInfo *TTI) { 183 // All PHIs in the inner and outer headers must either be: 184 // - The induction PHI, which we are going to rewrite as one induction in 185 // the new loop. This is already checked by findLoopComponents. 186 // - An outer header PHI with all incoming values from outside the loop. 187 // LoopSimplify guarantees we have a pre-header, so we don't need to 188 // worry about that here. 189 // - Pairs of PHIs in the inner and outer headers, which implement a 190 // loop-carried dependency that will still be valid in the new loop. To 191 // be valid, this variable must be modified only in the inner loop. 192 193 // The set of PHI nodes in the outer loop header that we know will still be 194 // valid after the transformation. These will not need to be modified (with 195 // the exception of the induction variable), but we do need to check that 196 // there are no unsafe PHI nodes. 197 SmallPtrSet<PHINode *, 4> SafeOuterPHIs; 198 SafeOuterPHIs.insert(FI.OuterInductionPHI); 199 200 // Check that all PHI nodes in the inner loop header match one of the valid 201 // patterns. 202 for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) { 203 // The induction PHIs break these rules, and that's OK because we treat 204 // them specially when doing the transformation. 205 if (&InnerPHI == FI.InnerInductionPHI) 206 continue; 207 208 // Each inner loop PHI node must have two incoming values/blocks - one 209 // from the pre-header, and one from the latch. 210 assert(InnerPHI.getNumIncomingValues() == 2); 211 Value *PreHeaderValue = 212 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader()); 213 Value *LatchValue = 214 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch()); 215 216 // The incoming value from the outer loop must be the PHI node in the 217 // outer loop header, with no modifications made in the top of the outer 218 // loop. 219 PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue); 220 if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) { 221 LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n"); 222 return false; 223 } 224 225 // The other incoming value must come from the inner loop, without any 226 // modifications in the tail end of the outer loop. We are in LCSSA form, 227 // so this will actually be a PHI in the inner loop's exit block, which 228 // only uses values from inside the inner loop. 229 PHINode *LCSSAPHI = dyn_cast<PHINode>( 230 OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch())); 231 if (!LCSSAPHI) { 232 LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n"); 233 return false; 234 } 235 236 // The value used by the LCSSA PHI must be the same one that the inner 237 // loop's PHI uses. 238 if (LCSSAPHI->hasConstantValue() != LatchValue) { 239 LLVM_DEBUG( 240 dbgs() << "LCSSA PHI incoming value does not match latch value\n"); 241 return false; 242 } 243 244 LLVM_DEBUG(dbgs() << "PHI pair is safe:\n"); 245 LLVM_DEBUG(dbgs() << " Inner: "; InnerPHI.dump()); 246 LLVM_DEBUG(dbgs() << " Outer: "; OuterPHI->dump()); 247 SafeOuterPHIs.insert(OuterPHI); 248 FI.InnerPHIsToTransform.insert(&InnerPHI); 249 } 250 251 for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) { 252 if (!SafeOuterPHIs.count(&OuterPHI)) { 253 LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump()); 254 return false; 255 } 256 } 257 258 return true; 259 } 260 261 static bool 262 checkOuterLoopInsts(struct FlattenInfo &FI, 263 SmallPtrSetImpl<Instruction *> &IterationInstructions, 264 const TargetTransformInfo *TTI) { 265 // Check for instructions in the outer but not inner loop. If any of these 266 // have side-effects then this transformation is not legal, and if there is 267 // a significant amount of code here which can't be optimised out that it's 268 // not profitable (as these instructions would get executed for each 269 // iteration of the inner loop). 270 unsigned RepeatedInstrCost = 0; 271 for (auto *B : FI.OuterLoop->getBlocks()) { 272 if (FI.InnerLoop->contains(B)) 273 continue; 274 275 for (auto &I : *B) { 276 if (!isa<PHINode>(&I) && !I.isTerminator() && 277 !isSafeToSpeculativelyExecute(&I)) { 278 LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have " 279 "side effects: "; 280 I.dump()); 281 return false; 282 } 283 // The execution count of the outer loop's iteration instructions 284 // (increment, compare and branch) will be increased, but the 285 // equivalent instructions will be removed from the inner loop, so 286 // they make a net difference of zero. 287 if (IterationInstructions.count(&I)) 288 continue; 289 // The uncoditional branch to the inner loop's header will turn into 290 // a fall-through, so adds no cost. 291 BranchInst *Br = dyn_cast<BranchInst>(&I); 292 if (Br && Br->isUnconditional() && 293 Br->getSuccessor(0) == FI.InnerLoop->getHeader()) 294 continue; 295 // Multiplies of the outer iteration variable and inner iteration 296 // count will be optimised out. 297 if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI), 298 m_Specific(FI.InnerLimit)))) 299 continue; 300 int Cost = TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 301 LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump()); 302 RepeatedInstrCost += Cost; 303 } 304 } 305 306 LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: " 307 << RepeatedInstrCost << "\n"); 308 // Bail out if flattening the loops would cause instructions in the outer 309 // loop but not in the inner loop to be executed extra times. 310 if (RepeatedInstrCost > RepeatedInstructionThreshold) 311 return false; 312 313 return true; 314 } 315 316 static bool checkIVUsers(struct FlattenInfo &FI) { 317 // We require all uses of both induction variables to match this pattern: 318 // 319 // (OuterPHI * InnerLimit) + InnerPHI 320 // 321 // Any uses of the induction variables not matching that pattern would 322 // require a div/mod to reconstruct in the flattened loop, so the 323 // transformation wouldn't be profitable. 324 325 // Check that all uses of the inner loop's induction variable match the 326 // expected pattern, recording the uses of the outer IV. 327 SmallPtrSet<Value *, 4> ValidOuterPHIUses; 328 for (User *U : FI.InnerInductionPHI->users()) { 329 if (U == FI.InnerIncrement) 330 continue; 331 332 LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump()); 333 334 Value *MatchedMul, *MatchedItCount; 335 if (match(U, m_c_Add(m_Specific(FI.InnerInductionPHI), 336 m_Value(MatchedMul))) && 337 match(MatchedMul, 338 m_c_Mul(m_Specific(FI.OuterInductionPHI), 339 m_Value(MatchedItCount))) && 340 MatchedItCount == FI.InnerLimit) { 341 LLVM_DEBUG(dbgs() << "Use is optimisable\n"); 342 ValidOuterPHIUses.insert(MatchedMul); 343 FI.LinearIVUses.insert(U); 344 } else { 345 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 346 return false; 347 } 348 } 349 350 // Check that there are no uses of the outer IV other than the ones found 351 // as part of the pattern above. 352 for (User *U : FI.OuterInductionPHI->users()) { 353 if (U == FI.OuterIncrement) 354 continue; 355 356 LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump()); 357 358 if (!ValidOuterPHIUses.count(U)) { 359 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 360 return false; 361 } else { 362 LLVM_DEBUG(dbgs() << "Use is optimisable\n"); 363 } 364 } 365 366 LLVM_DEBUG(dbgs() << "Found " << FI.LinearIVUses.size() 367 << " value(s) that can be replaced:\n"; 368 for (Value *V : FI.LinearIVUses) { 369 dbgs() << " "; 370 V->dump(); 371 }); 372 373 return true; 374 } 375 376 // Return an OverflowResult dependant on if overflow of the multiplication of 377 // InnerLimit and OuterLimit can be assumed not to happen. 378 static OverflowResult checkOverflow(struct FlattenInfo &FI, 379 DominatorTree *DT, AssumptionCache *AC) { 380 Function *F = FI.OuterLoop->getHeader()->getParent(); 381 const DataLayout &DL = F->getParent()->getDataLayout(); 382 383 // For debugging/testing. 384 if (AssumeNoOverflow) 385 return OverflowResult::NeverOverflows; 386 387 // Check if the multiply could not overflow due to known ranges of the 388 // input values. 389 OverflowResult OR = computeOverflowForUnsignedMul( 390 FI.InnerLimit, FI.OuterLimit, DL, AC, 391 FI.OuterLoop->getLoopPreheader()->getTerminator(), DT); 392 if (OR != OverflowResult::MayOverflow) 393 return OR; 394 395 for (Value *V : FI.LinearIVUses) { 396 for (Value *U : V->users()) { 397 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) { 398 // The IV is used as the operand of a GEP, and the IV is at least as 399 // wide as the address space of the GEP. In this case, the GEP would 400 // wrap around the address space before the IV increment wraps, which 401 // would be UB. 402 if (GEP->isInBounds() && 403 V->getType()->getIntegerBitWidth() >= 404 DL.getPointerTypeSizeInBits(GEP->getType())) { 405 LLVM_DEBUG( 406 dbgs() << "use of linear IV would be UB if overflow occurred: "; 407 GEP->dump()); 408 return OverflowResult::NeverOverflows; 409 } 410 } 411 } 412 } 413 414 return OverflowResult::MayOverflow; 415 } 416 417 static bool FlattenLoopPair(struct FlattenInfo &FI, DominatorTree *DT, 418 LoopInfo *LI, ScalarEvolution *SE, 419 AssumptionCache *AC, const TargetTransformInfo *TTI, 420 std::function<void(Loop *)> markLoopAsDeleted) { 421 Function *F = FI.OuterLoop->getHeader()->getParent(); 422 423 LLVM_DEBUG(dbgs() << "Loop flattening running on outer loop " 424 << FI.OuterLoop->getHeader()->getName() << " and inner loop " 425 << FI.InnerLoop->getHeader()->getName() << " in " 426 << F->getName() << "\n"); 427 428 SmallPtrSet<Instruction *, 8> IterationInstructions; 429 430 if (!findLoopComponents(FI.InnerLoop, IterationInstructions, FI.InnerInductionPHI, 431 FI.InnerLimit, FI.InnerIncrement, FI.InnerBranch, SE)) 432 return false; 433 if (!findLoopComponents(FI.OuterLoop, IterationInstructions, FI.OuterInductionPHI, 434 FI.OuterLimit, FI.OuterIncrement, FI.OuterBranch, SE)) 435 return false; 436 437 // Both of the loop limit values must be invariant in the outer loop 438 // (non-instructions are all inherently invariant). 439 if (!FI.OuterLoop->isLoopInvariant(FI.InnerLimit)) { 440 LLVM_DEBUG(dbgs() << "inner loop limit not invariant\n"); 441 return false; 442 } 443 if (!FI.OuterLoop->isLoopInvariant(FI.OuterLimit)) { 444 LLVM_DEBUG(dbgs() << "outer loop limit not invariant\n"); 445 return false; 446 } 447 448 if (!checkPHIs(FI, TTI)) 449 return false; 450 451 // FIXME: it should be possible to handle different types correctly. 452 if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType()) 453 return false; 454 455 if (!checkOuterLoopInsts(FI, IterationInstructions, TTI)) 456 return false; 457 458 // Find the values in the loop that can be replaced with the linearized 459 // induction variable, and check that there are no other uses of the inner 460 // or outer induction variable. If there were, we could still do this 461 // transformation, but we'd have to insert a div/mod to calculate the 462 // original IVs, so it wouldn't be profitable. 463 if (!checkIVUsers(FI)) 464 return false; 465 466 // Check if the new iteration variable might overflow. In this case, we 467 // need to version the loop, and select the original version at runtime if 468 // the iteration space is too large. 469 // TODO: We currently don't version the loop. 470 // TODO: it might be worth using a wider iteration variable rather than 471 // versioning the loop, if a wide enough type is legal. 472 bool MustVersionLoop = true; 473 OverflowResult OR = checkOverflow(FI, DT, AC); 474 if (OR == OverflowResult::AlwaysOverflowsHigh || 475 OR == OverflowResult::AlwaysOverflowsLow) { 476 LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n"); 477 return false; 478 } else if (OR == OverflowResult::MayOverflow) { 479 LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n"); 480 } else { 481 LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n"); 482 MustVersionLoop = false; 483 } 484 485 // We cannot safely flatten the loop. Exit now. 486 if (MustVersionLoop) 487 return false; 488 489 // Do the actual transformation. 490 LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n"); 491 492 { 493 using namespace ore; 494 OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(), 495 FI.InnerLoop->getHeader()); 496 OptimizationRemarkEmitter ORE(F); 497 Remark << "Flattened into outer loop"; 498 ORE.emit(Remark); 499 } 500 501 Value *NewTripCount = 502 BinaryOperator::CreateMul(FI.InnerLimit, FI.OuterLimit, "flatten.tripcount", 503 FI.OuterLoop->getLoopPreheader()->getTerminator()); 504 LLVM_DEBUG(dbgs() << "Created new trip count in preheader: "; 505 NewTripCount->dump()); 506 507 // Fix up PHI nodes that take values from the inner loop back-edge, which 508 // we are about to remove. 509 FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 510 for (PHINode *PHI : FI.InnerPHIsToTransform) 511 PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 512 513 // Modify the trip count of the outer loop to be the product of the two 514 // trip counts. 515 cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount); 516 517 // Replace the inner loop backedge with an unconditional branch to the exit. 518 BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock(); 519 BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock(); 520 InnerExitingBlock->getTerminator()->eraseFromParent(); 521 BranchInst::Create(InnerExitBlock, InnerExitingBlock); 522 DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader()); 523 524 // Replace all uses of the polynomial calculated from the two induction 525 // variables with the one new one. 526 for (Value *V : FI.LinearIVUses) 527 V->replaceAllUsesWith(FI.OuterInductionPHI); 528 529 // Tell LoopInfo, SCEV and the pass manager that the inner loop has been 530 // deleted, and any information that have about the outer loop invalidated. 531 markLoopAsDeleted(FI.InnerLoop); 532 SE->forgetLoop(FI.OuterLoop); 533 SE->forgetLoop(FI.InnerLoop); 534 LI->erase(FI.InnerLoop); 535 536 return true; 537 } 538 539 PreservedAnalyses LoopFlattenPass::run(Loop &L, LoopAnalysisManager &AM, 540 LoopStandardAnalysisResults &AR, 541 LPMUpdater &Updater) { 542 if (L.getSubLoops().size() != 1) 543 return PreservedAnalyses::all(); 544 545 Loop *InnerLoop = *L.begin(); 546 std::string LoopName(InnerLoop->getName()); 547 struct FlattenInfo FI(InnerLoop->getParentLoop(), InnerLoop); 548 if (!FlattenLoopPair( 549 FI, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI, 550 [&](Loop *L) { Updater.markLoopAsDeleted(*L, LoopName); })) 551 return PreservedAnalyses::all(); 552 return getLoopPassPreservedAnalyses(); 553 } 554 555 namespace { 556 class LoopFlattenLegacyPass : public LoopPass { 557 public: 558 static char ID; // Pass ID, replacement for typeid 559 LoopFlattenLegacyPass() : LoopPass(ID) { 560 initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry()); 561 } 562 563 // Possibly flatten loop L into its child. 564 bool runOnLoop(Loop *L, LPPassManager &) override; 565 566 void getAnalysisUsage(AnalysisUsage &AU) const override { 567 getLoopAnalysisUsage(AU); 568 AU.addRequired<TargetTransformInfoWrapperPass>(); 569 AU.addPreserved<TargetTransformInfoWrapperPass>(); 570 AU.addRequired<AssumptionCacheTracker>(); 571 AU.addPreserved<AssumptionCacheTracker>(); 572 } 573 }; 574 } // namespace 575 576 char LoopFlattenLegacyPass::ID = 0; 577 INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops", 578 false, false) 579 INITIALIZE_PASS_DEPENDENCY(LoopPass) 580 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 581 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 582 INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops", 583 false, false) 584 585 Pass *llvm::createLoopFlattenPass() { return new LoopFlattenLegacyPass(); } 586 587 bool LoopFlattenLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 588 if (skipLoop(L)) 589 return false; 590 591 if (L->getSubLoops().size() != 1) 592 return false; 593 594 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 595 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 596 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 597 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 598 auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>(); 599 TargetTransformInfo *TTI = &TTIP.getTTI(*L->getHeader()->getParent()); 600 AssumptionCache *AC = 601 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 602 *L->getHeader()->getParent()); 603 604 Loop *InnerLoop = *L->begin(); 605 struct FlattenInfo FI(InnerLoop->getParentLoop(), InnerLoop); 606 return FlattenLoopPair(FI, DT, LI, SE, AC, TTI, 607 [&](Loop *L) { LPM.markLoopAsDeleted(*L); }); 608 } 609