xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopFlatten.cpp (revision e2217247146afa13b886d80e75c8e717f9f56aa7)
1 //===- LoopFlatten.cpp - Loop flattening pass------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass flattens pairs nested loops into a single loop.
10 //
11 // The intention is to optimise loop nests like this, which together access an
12 // array linearly:
13 //   for (int i = 0; i < N; ++i)
14 //     for (int j = 0; j < M; ++j)
15 //       f(A[i*M+j]);
16 // into one loop:
17 //   for (int i = 0; i < (N*M); ++i)
18 //     f(A[i]);
19 //
20 // It can also flatten loops where the induction variables are not used in the
21 // loop. This is only worth doing if the induction variables are only used in an
22 // expression like i*M+j. If they had any other uses, we would have to insert a
23 // div/mod to reconstruct the original values, so this wouldn't be profitable.
24 //
25 // We also need to prove that N*M will not overflow.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/Transforms/Scalar/LoopFlatten.h"
30 
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AssumptionCache.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/IRBuilder.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/IR/PatternMatch.h"
43 #include "llvm/IR/Verifier.h"
44 #include "llvm/InitializePasses.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Transforms/Scalar.h"
49 #include "llvm/Transforms/Utils/Local.h"
50 #include "llvm/Transforms/Utils/LoopUtils.h"
51 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
52 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
53 
54 using namespace llvm;
55 using namespace llvm::PatternMatch;
56 
57 #define DEBUG_TYPE "loop-flatten"
58 
59 STATISTIC(NumFlattened, "Number of loops flattened");
60 
61 static cl::opt<unsigned> RepeatedInstructionThreshold(
62     "loop-flatten-cost-threshold", cl::Hidden, cl::init(2),
63     cl::desc("Limit on the cost of instructions that can be repeated due to "
64              "loop flattening"));
65 
66 static cl::opt<bool>
67     AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden,
68                      cl::init(false),
69                      cl::desc("Assume that the product of the two iteration "
70                               "trip counts will never overflow"));
71 
72 static cl::opt<bool>
73     WidenIV("loop-flatten-widen-iv", cl::Hidden,
74             cl::init(true),
75             cl::desc("Widen the loop induction variables, if possible, so "
76                      "overflow checks won't reject flattening"));
77 
78 struct FlattenInfo {
79   Loop *OuterLoop = nullptr;
80   Loop *InnerLoop = nullptr;
81   // These PHINodes correspond to loop induction variables, which are expected
82   // to start at zero and increment by one on each loop.
83   PHINode *InnerInductionPHI = nullptr;
84   PHINode *OuterInductionPHI = nullptr;
85   Value *InnerTripCount = nullptr;
86   Value *OuterTripCount = nullptr;
87   BinaryOperator *InnerIncrement = nullptr;
88   BinaryOperator *OuterIncrement = nullptr;
89   BranchInst *InnerBranch = nullptr;
90   BranchInst *OuterBranch = nullptr;
91   SmallPtrSet<Value *, 4> LinearIVUses;
92   SmallPtrSet<PHINode *, 4> InnerPHIsToTransform;
93 
94   // Whether this holds the flatten info before or after widening.
95   bool Widened = false;
96 
97   FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL) {};
98 };
99 
100 static bool
101 setLoopComponents(Value *&TC, Value *&TripCount, BinaryOperator *&Increment,
102                   SmallPtrSetImpl<Instruction *> &IterationInstructions) {
103   TripCount = TC;
104   IterationInstructions.insert(Increment);
105   LLVM_DEBUG(dbgs() << "Found Increment: "; Increment->dump());
106   LLVM_DEBUG(dbgs() << "Found trip count: "; TripCount->dump());
107   LLVM_DEBUG(dbgs() << "Successfully found all loop components\n");
108   return true;
109 }
110 
111 // Finds the induction variable, increment and trip count for a simple loop that
112 // we can flatten.
113 static bool findLoopComponents(
114     Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions,
115     PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment,
116     BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) {
117   LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n");
118 
119   if (!L->isLoopSimplifyForm()) {
120     LLVM_DEBUG(dbgs() << "Loop is not in normal form\n");
121     return false;
122   }
123 
124   // Currently, to simplify the implementation, the Loop induction variable must
125   // start at zero and increment with a step size of one.
126   if (!L->isCanonical(*SE)) {
127     LLVM_DEBUG(dbgs() << "Loop is not canonical\n");
128     return false;
129   }
130 
131   // There must be exactly one exiting block, and it must be the same at the
132   // latch.
133   BasicBlock *Latch = L->getLoopLatch();
134   if (L->getExitingBlock() != Latch) {
135     LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n");
136     return false;
137   }
138 
139   // Find the induction PHI. If there is no induction PHI, we can't do the
140   // transformation. TODO: could other variables trigger this? Do we have to
141   // search for the best one?
142   InductionPHI = L->getInductionVariable(*SE);
143   if (!InductionPHI) {
144     LLVM_DEBUG(dbgs() << "Could not find induction PHI\n");
145     return false;
146   }
147   LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump());
148 
149   bool ContinueOnTrue = L->contains(Latch->getTerminator()->getSuccessor(0));
150   auto IsValidPredicate = [&](ICmpInst::Predicate Pred) {
151     if (ContinueOnTrue)
152       return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT;
153     else
154       return Pred == CmpInst::ICMP_EQ;
155   };
156 
157   // Find Compare and make sure it is valid. getLatchCmpInst checks that the
158   // back branch of the latch is conditional.
159   ICmpInst *Compare = L->getLatchCmpInst();
160   if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) ||
161       Compare->hasNUsesOrMore(2)) {
162     LLVM_DEBUG(dbgs() << "Could not find valid comparison\n");
163     return false;
164   }
165   BackBranch = cast<BranchInst>(Latch->getTerminator());
166   IterationInstructions.insert(BackBranch);
167   LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump());
168   IterationInstructions.insert(Compare);
169   LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump());
170 
171   // Find increment and trip count.
172   // There are exactly 2 incoming values to the induction phi; one from the
173   // pre-header and one from the latch. The incoming latch value is the
174   // increment variable.
175   Increment =
176       dyn_cast<BinaryOperator>(InductionPHI->getIncomingValueForBlock(Latch));
177   if (Increment->hasNUsesOrMore(3)) {
178     LLVM_DEBUG(dbgs() << "Could not find valid increment\n");
179     return false;
180   }
181   // The trip count is the RHS of the compare. If this doesn't match the trip
182   // count computed by SCEV then this is because the trip count variable
183   // has been widened so the types don't match, or because it is a constant and
184   // another transformation has changed the compare (e.g. icmp ult %inc,
185   // tripcount -> icmp ult %j, tripcount-1), or both.
186   Value *RHS = Compare->getOperand(1);
187   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
188   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
189     LLVM_DEBUG(dbgs() << "Backedge-taken count is not predictable\n");
190     return false;
191   }
192   const SCEV *SCEVTripCount = SE->getTripCountFromExitCount(BackedgeTakenCount);
193   const SCEV *SCEVRHS = SE->getSCEV(RHS);
194   if (SCEVRHS == SCEVTripCount)
195     return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
196   ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(RHS);
197   if (ConstantRHS) {
198     const SCEV *BackedgeTCExt = nullptr;
199     if (IsWidened) {
200       const SCEV *SCEVTripCountExt;
201       // Find the extended backedge taken count and extended trip count using
202       // SCEV. One of these should now match the RHS of the compare.
203       BackedgeTCExt = SE->getZeroExtendExpr(BackedgeTakenCount, RHS->getType());
204       SCEVTripCountExt = SE->getTripCountFromExitCount(BackedgeTCExt);
205       if (SCEVRHS != BackedgeTCExt && SCEVRHS != SCEVTripCountExt) {
206         LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
207         return false;
208       }
209     }
210     // If the RHS of the compare is equal to the backedge taken count we need
211     // to add one to get the trip count.
212     if (SCEVRHS == BackedgeTCExt || SCEVRHS == BackedgeTakenCount) {
213       ConstantInt *One = ConstantInt::get(ConstantRHS->getType(), 1);
214       Value *NewRHS = ConstantInt::get(
215           ConstantRHS->getContext(), ConstantRHS->getValue() + One->getValue());
216       return setLoopComponents(NewRHS, TripCount, Increment,
217                                IterationInstructions);
218     }
219     return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
220   }
221   // If the RHS isn't a constant then check that the reason it doesn't match
222   // the SCEV trip count is because the RHS is a ZExt or SExt instruction
223   // (and take the trip count to be the RHS).
224   if (!IsWidened) {
225     LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
226     return false;
227   }
228   auto *TripCountInst = dyn_cast<Instruction>(RHS);
229   if (!TripCountInst) {
230     LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
231     return false;
232   }
233   if ((!isa<ZExtInst>(TripCountInst) && !isa<SExtInst>(TripCountInst)) ||
234       SE->getSCEV(TripCountInst->getOperand(0)) != SCEVTripCount) {
235     LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n");
236     return false;
237   }
238   return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
239 }
240 
241 static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) {
242   // All PHIs in the inner and outer headers must either be:
243   // - The induction PHI, which we are going to rewrite as one induction in
244   //   the new loop. This is already checked by findLoopComponents.
245   // - An outer header PHI with all incoming values from outside the loop.
246   //   LoopSimplify guarantees we have a pre-header, so we don't need to
247   //   worry about that here.
248   // - Pairs of PHIs in the inner and outer headers, which implement a
249   //   loop-carried dependency that will still be valid in the new loop. To
250   //   be valid, this variable must be modified only in the inner loop.
251 
252   // The set of PHI nodes in the outer loop header that we know will still be
253   // valid after the transformation. These will not need to be modified (with
254   // the exception of the induction variable), but we do need to check that
255   // there are no unsafe PHI nodes.
256   SmallPtrSet<PHINode *, 4> SafeOuterPHIs;
257   SafeOuterPHIs.insert(FI.OuterInductionPHI);
258 
259   // Check that all PHI nodes in the inner loop header match one of the valid
260   // patterns.
261   for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) {
262     // The induction PHIs break these rules, and that's OK because we treat
263     // them specially when doing the transformation.
264     if (&InnerPHI == FI.InnerInductionPHI)
265       continue;
266 
267     // Each inner loop PHI node must have two incoming values/blocks - one
268     // from the pre-header, and one from the latch.
269     assert(InnerPHI.getNumIncomingValues() == 2);
270     Value *PreHeaderValue =
271         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader());
272     Value *LatchValue =
273         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch());
274 
275     // The incoming value from the outer loop must be the PHI node in the
276     // outer loop header, with no modifications made in the top of the outer
277     // loop.
278     PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue);
279     if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) {
280       LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n");
281       return false;
282     }
283 
284     // The other incoming value must come from the inner loop, without any
285     // modifications in the tail end of the outer loop. We are in LCSSA form,
286     // so this will actually be a PHI in the inner loop's exit block, which
287     // only uses values from inside the inner loop.
288     PHINode *LCSSAPHI = dyn_cast<PHINode>(
289         OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch()));
290     if (!LCSSAPHI) {
291       LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n");
292       return false;
293     }
294 
295     // The value used by the LCSSA PHI must be the same one that the inner
296     // loop's PHI uses.
297     if (LCSSAPHI->hasConstantValue() != LatchValue) {
298       LLVM_DEBUG(
299           dbgs() << "LCSSA PHI incoming value does not match latch value\n");
300       return false;
301     }
302 
303     LLVM_DEBUG(dbgs() << "PHI pair is safe:\n");
304     LLVM_DEBUG(dbgs() << "  Inner: "; InnerPHI.dump());
305     LLVM_DEBUG(dbgs() << "  Outer: "; OuterPHI->dump());
306     SafeOuterPHIs.insert(OuterPHI);
307     FI.InnerPHIsToTransform.insert(&InnerPHI);
308   }
309 
310   for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) {
311     if (!SafeOuterPHIs.count(&OuterPHI)) {
312       LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump());
313       return false;
314     }
315   }
316 
317   LLVM_DEBUG(dbgs() << "checkPHIs: OK\n");
318   return true;
319 }
320 
321 static bool
322 checkOuterLoopInsts(FlattenInfo &FI,
323                     SmallPtrSetImpl<Instruction *> &IterationInstructions,
324                     const TargetTransformInfo *TTI) {
325   // Check for instructions in the outer but not inner loop. If any of these
326   // have side-effects then this transformation is not legal, and if there is
327   // a significant amount of code here which can't be optimised out that it's
328   // not profitable (as these instructions would get executed for each
329   // iteration of the inner loop).
330   InstructionCost RepeatedInstrCost = 0;
331   for (auto *B : FI.OuterLoop->getBlocks()) {
332     if (FI.InnerLoop->contains(B))
333       continue;
334 
335     for (auto &I : *B) {
336       if (!isa<PHINode>(&I) && !I.isTerminator() &&
337           !isSafeToSpeculativelyExecute(&I)) {
338         LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have "
339                              "side effects: ";
340                    I.dump());
341         return false;
342       }
343       // The execution count of the outer loop's iteration instructions
344       // (increment, compare and branch) will be increased, but the
345       // equivalent instructions will be removed from the inner loop, so
346       // they make a net difference of zero.
347       if (IterationInstructions.count(&I))
348         continue;
349       // The uncoditional branch to the inner loop's header will turn into
350       // a fall-through, so adds no cost.
351       BranchInst *Br = dyn_cast<BranchInst>(&I);
352       if (Br && Br->isUnconditional() &&
353           Br->getSuccessor(0) == FI.InnerLoop->getHeader())
354         continue;
355       // Multiplies of the outer iteration variable and inner iteration
356       // count will be optimised out.
357       if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI),
358                             m_Specific(FI.InnerTripCount))))
359         continue;
360       InstructionCost Cost =
361           TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
362       LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump());
363       RepeatedInstrCost += Cost;
364     }
365   }
366 
367   LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: "
368                     << RepeatedInstrCost << "\n");
369   // Bail out if flattening the loops would cause instructions in the outer
370   // loop but not in the inner loop to be executed extra times.
371   if (RepeatedInstrCost > RepeatedInstructionThreshold) {
372     LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n");
373     return false;
374   }
375 
376   LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n");
377   return true;
378 }
379 
380 static bool checkIVUsers(FlattenInfo &FI) {
381   // We require all uses of both induction variables to match this pattern:
382   //
383   //   (OuterPHI * InnerTripCount) + InnerPHI
384   //
385   // Any uses of the induction variables not matching that pattern would
386   // require a div/mod to reconstruct in the flattened loop, so the
387   // transformation wouldn't be profitable.
388 
389   Value *InnerTripCount = FI.InnerTripCount;
390   if (FI.Widened &&
391       (isa<SExtInst>(InnerTripCount) || isa<ZExtInst>(InnerTripCount)))
392     InnerTripCount = cast<Instruction>(InnerTripCount)->getOperand(0);
393 
394   // Check that all uses of the inner loop's induction variable match the
395   // expected pattern, recording the uses of the outer IV.
396   SmallPtrSet<Value *, 4> ValidOuterPHIUses;
397   for (User *U : FI.InnerInductionPHI->users()) {
398     if (U == FI.InnerIncrement)
399       continue;
400 
401     // After widening the IVs, a trunc instruction might have been introduced, so
402     // look through truncs.
403     if (isa<TruncInst>(U)) {
404       if (!U->hasOneUse())
405         return false;
406       U = *U->user_begin();
407     }
408 
409     // If the use is in the compare (which is also the condition of the inner
410     // branch) then the compare has been altered by another transformation e.g
411     // icmp ult %inc, tripcount -> icmp ult %j, tripcount-1, where tripcount is
412     // a constant. Ignore this use as the compare gets removed later anyway.
413     if (U == FI.InnerBranch->getCondition())
414       continue;
415 
416     LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump());
417 
418     Value *MatchedMul;
419     Value *MatchedItCount;
420     bool IsAdd = match(U, m_c_Add(m_Specific(FI.InnerInductionPHI),
421                                   m_Value(MatchedMul))) &&
422                  match(MatchedMul, m_c_Mul(m_Specific(FI.OuterInductionPHI),
423                                            m_Value(MatchedItCount)));
424 
425     // Matches the same pattern as above, except it also looks for truncs
426     // on the phi, which can be the result of widening the induction variables.
427     bool IsAddTrunc = match(U, m_c_Add(m_Trunc(m_Specific(FI.InnerInductionPHI)),
428                                        m_Value(MatchedMul))) &&
429                       match(MatchedMul,
430                             m_c_Mul(m_Trunc(m_Specific(FI.OuterInductionPHI)),
431                             m_Value(MatchedItCount)));
432 
433     if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerTripCount) {
434       LLVM_DEBUG(dbgs() << "Use is optimisable\n");
435       ValidOuterPHIUses.insert(MatchedMul);
436       FI.LinearIVUses.insert(U);
437     } else {
438       LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
439       return false;
440     }
441   }
442 
443   // Check that there are no uses of the outer IV other than the ones found
444   // as part of the pattern above.
445   for (User *U : FI.OuterInductionPHI->users()) {
446     if (U == FI.OuterIncrement)
447       continue;
448 
449     auto IsValidOuterPHIUses = [&] (User *U) -> bool {
450       LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump());
451       if (!ValidOuterPHIUses.count(U)) {
452         LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
453         return false;
454       }
455       LLVM_DEBUG(dbgs() << "Use is optimisable\n");
456       return true;
457     };
458 
459     if (auto *V = dyn_cast<TruncInst>(U)) {
460       for (auto *K : V->users()) {
461         if (!IsValidOuterPHIUses(K))
462           return false;
463       }
464       continue;
465     }
466 
467     if (!IsValidOuterPHIUses(U))
468       return false;
469   }
470 
471   LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n";
472              dbgs() << "Found " << FI.LinearIVUses.size()
473                     << " value(s) that can be replaced:\n";
474              for (Value *V : FI.LinearIVUses) {
475                dbgs() << "  ";
476                V->dump();
477              });
478   return true;
479 }
480 
481 // Return an OverflowResult dependant on if overflow of the multiplication of
482 // InnerTripCount and OuterTripCount can be assumed not to happen.
483 static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT,
484                                     AssumptionCache *AC) {
485   Function *F = FI.OuterLoop->getHeader()->getParent();
486   const DataLayout &DL = F->getParent()->getDataLayout();
487 
488   // For debugging/testing.
489   if (AssumeNoOverflow)
490     return OverflowResult::NeverOverflows;
491 
492   // Check if the multiply could not overflow due to known ranges of the
493   // input values.
494   OverflowResult OR = computeOverflowForUnsignedMul(
495       FI.InnerTripCount, FI.OuterTripCount, DL, AC,
496       FI.OuterLoop->getLoopPreheader()->getTerminator(), DT);
497   if (OR != OverflowResult::MayOverflow)
498     return OR;
499 
500   for (Value *V : FI.LinearIVUses) {
501     for (Value *U : V->users()) {
502       if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
503         for (Value *GEPUser : U->users()) {
504           Instruction *GEPUserInst = dyn_cast<Instruction>(GEPUser);
505           if (!isa<LoadInst>(GEPUserInst) &&
506               !(isa<StoreInst>(GEPUserInst) &&
507                 GEP == GEPUserInst->getOperand(1)))
508             continue;
509           if (!isGuaranteedToExecuteForEveryIteration(GEPUserInst,
510                                                       FI.InnerLoop))
511             continue;
512           // The IV is used as the operand of a GEP which dominates the loop
513           // latch, and the IV is at least as wide as the address space of the
514           // GEP. In this case, the GEP would wrap around the address space
515           // before the IV increment wraps, which would be UB.
516           if (GEP->isInBounds() &&
517               V->getType()->getIntegerBitWidth() >=
518                   DL.getPointerTypeSizeInBits(GEP->getType())) {
519             LLVM_DEBUG(
520                 dbgs() << "use of linear IV would be UB if overflow occurred: ";
521                 GEP->dump());
522             return OverflowResult::NeverOverflows;
523           }
524         }
525       }
526     }
527   }
528 
529   return OverflowResult::MayOverflow;
530 }
531 
532 static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
533                                ScalarEvolution *SE, AssumptionCache *AC,
534                                const TargetTransformInfo *TTI) {
535   SmallPtrSet<Instruction *, 8> IterationInstructions;
536   if (!findLoopComponents(FI.InnerLoop, IterationInstructions,
537                           FI.InnerInductionPHI, FI.InnerTripCount,
538                           FI.InnerIncrement, FI.InnerBranch, SE, FI.Widened))
539     return false;
540   if (!findLoopComponents(FI.OuterLoop, IterationInstructions,
541                           FI.OuterInductionPHI, FI.OuterTripCount,
542                           FI.OuterIncrement, FI.OuterBranch, SE, FI.Widened))
543     return false;
544 
545   // Both of the loop trip count values must be invariant in the outer loop
546   // (non-instructions are all inherently invariant).
547   if (!FI.OuterLoop->isLoopInvariant(FI.InnerTripCount)) {
548     LLVM_DEBUG(dbgs() << "inner loop trip count not invariant\n");
549     return false;
550   }
551   if (!FI.OuterLoop->isLoopInvariant(FI.OuterTripCount)) {
552     LLVM_DEBUG(dbgs() << "outer loop trip count not invariant\n");
553     return false;
554   }
555 
556   if (!checkPHIs(FI, TTI))
557     return false;
558 
559   // FIXME: it should be possible to handle different types correctly.
560   if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType())
561     return false;
562 
563   if (!checkOuterLoopInsts(FI, IterationInstructions, TTI))
564     return false;
565 
566   // Find the values in the loop that can be replaced with the linearized
567   // induction variable, and check that there are no other uses of the inner
568   // or outer induction variable. If there were, we could still do this
569   // transformation, but we'd have to insert a div/mod to calculate the
570   // original IVs, so it wouldn't be profitable.
571   if (!checkIVUsers(FI))
572     return false;
573 
574   LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n");
575   return true;
576 }
577 
578 static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
579                               ScalarEvolution *SE, AssumptionCache *AC,
580                               const TargetTransformInfo *TTI) {
581   Function *F = FI.OuterLoop->getHeader()->getParent();
582   LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n");
583   {
584     using namespace ore;
585     OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(),
586                               FI.InnerLoop->getHeader());
587     OptimizationRemarkEmitter ORE(F);
588     Remark << "Flattened into outer loop";
589     ORE.emit(Remark);
590   }
591 
592   Value *NewTripCount = BinaryOperator::CreateMul(
593       FI.InnerTripCount, FI.OuterTripCount, "flatten.tripcount",
594       FI.OuterLoop->getLoopPreheader()->getTerminator());
595   LLVM_DEBUG(dbgs() << "Created new trip count in preheader: ";
596              NewTripCount->dump());
597 
598   // Fix up PHI nodes that take values from the inner loop back-edge, which
599   // we are about to remove.
600   FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
601 
602   // The old Phi will be optimised away later, but for now we can't leave
603   // leave it in an invalid state, so are updating them too.
604   for (PHINode *PHI : FI.InnerPHIsToTransform)
605     PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
606 
607   // Modify the trip count of the outer loop to be the product of the two
608   // trip counts.
609   cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount);
610 
611   // Replace the inner loop backedge with an unconditional branch to the exit.
612   BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock();
613   BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock();
614   InnerExitingBlock->getTerminator()->eraseFromParent();
615   BranchInst::Create(InnerExitBlock, InnerExitingBlock);
616   DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
617 
618   // Replace all uses of the polynomial calculated from the two induction
619   // variables with the one new one.
620   IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator());
621   for (Value *V : FI.LinearIVUses) {
622     Value *OuterValue = FI.OuterInductionPHI;
623     if (FI.Widened)
624       OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(),
625                                        "flatten.trunciv");
626 
627     LLVM_DEBUG(dbgs() << "Replacing: "; V->dump();
628                dbgs() << "with:      "; OuterValue->dump());
629     V->replaceAllUsesWith(OuterValue);
630   }
631 
632   // Tell LoopInfo, SCEV and the pass manager that the inner loop has been
633   // deleted, and any information that have about the outer loop invalidated.
634   SE->forgetLoop(FI.OuterLoop);
635   SE->forgetLoop(FI.InnerLoop);
636   LI->erase(FI.InnerLoop);
637 
638   // Increment statistic value.
639   NumFlattened++;
640 
641   return true;
642 }
643 
644 static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
645                        ScalarEvolution *SE, AssumptionCache *AC,
646                        const TargetTransformInfo *TTI) {
647   if (!WidenIV) {
648     LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n");
649     return false;
650   }
651 
652   LLVM_DEBUG(dbgs() << "Try widening the IVs\n");
653   Module *M = FI.InnerLoop->getHeader()->getParent()->getParent();
654   auto &DL = M->getDataLayout();
655   auto *InnerType = FI.InnerInductionPHI->getType();
656   auto *OuterType = FI.OuterInductionPHI->getType();
657   unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits();
658   auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext());
659 
660   // If both induction types are less than the maximum legal integer width,
661   // promote both to the widest type available so we know calculating
662   // (OuterTripCount * InnerTripCount) as the new trip count is safe.
663   if (InnerType != OuterType ||
664       InnerType->getScalarSizeInBits() >= MaxLegalSize ||
665       MaxLegalType->getScalarSizeInBits() < InnerType->getScalarSizeInBits() * 2) {
666     LLVM_DEBUG(dbgs() << "Can't widen the IV\n");
667     return false;
668   }
669 
670   SCEVExpander Rewriter(*SE, DL, "loopflatten");
671   SmallVector<WideIVInfo, 2> WideIVs;
672   SmallVector<WeakTrackingVH, 4> DeadInsts;
673   WideIVs.push_back( {FI.InnerInductionPHI, MaxLegalType, false });
674   WideIVs.push_back( {FI.OuterInductionPHI, MaxLegalType, false });
675   unsigned ElimExt = 0;
676   unsigned Widened = 0;
677 
678   for (const auto &WideIV : WideIVs) {
679     PHINode *WidePhi = createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts,
680                                     ElimExt, Widened, true /* HasGuards */,
681                                     true /* UsePostIncrementRanges */);
682     if (!WidePhi)
683       return false;
684     LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump());
685     LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump());
686     RecursivelyDeleteDeadPHINode(WideIV.NarrowIV);
687   }
688   // After widening, rediscover all the loop components.
689   assert(Widened && "Widened IV expected");
690   FI.Widened = true;
691   return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
692 }
693 
694 static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
695                             ScalarEvolution *SE, AssumptionCache *AC,
696                             const TargetTransformInfo *TTI) {
697   LLVM_DEBUG(
698       dbgs() << "Loop flattening running on outer loop "
699              << FI.OuterLoop->getHeader()->getName() << " and inner loop "
700              << FI.InnerLoop->getHeader()->getName() << " in "
701              << FI.OuterLoop->getHeader()->getParent()->getName() << "\n");
702 
703   if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI))
704     return false;
705 
706   // Check if we can widen the induction variables to avoid overflow checks.
707   if (CanWidenIV(FI, DT, LI, SE, AC, TTI))
708     return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
709 
710   // Check if the new iteration variable might overflow. In this case, we
711   // need to version the loop, and select the original version at runtime if
712   // the iteration space is too large.
713   // TODO: We currently don't version the loop.
714   OverflowResult OR = checkOverflow(FI, DT, AC);
715   if (OR == OverflowResult::AlwaysOverflowsHigh ||
716       OR == OverflowResult::AlwaysOverflowsLow) {
717     LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n");
718     return false;
719   } else if (OR == OverflowResult::MayOverflow) {
720     LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n");
721     return false;
722   }
723 
724   LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n");
725   return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
726 }
727 
728 bool Flatten(LoopNest &LN, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE,
729              AssumptionCache *AC, TargetTransformInfo *TTI) {
730   bool Changed = false;
731   for (Loop *InnerLoop : LN.getLoops()) {
732     auto *OuterLoop = InnerLoop->getParentLoop();
733     if (!OuterLoop)
734       continue;
735     FlattenInfo FI(OuterLoop, InnerLoop);
736     Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI);
737   }
738   return Changed;
739 }
740 
741 PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM,
742                                        LoopStandardAnalysisResults &AR,
743                                        LPMUpdater &U) {
744 
745   bool Changed = false;
746 
747   // The loop flattening pass requires loops to be
748   // in simplified form, and also needs LCSSA. Running
749   // this pass will simplify all loops that contain inner loops,
750   // regardless of whether anything ends up being flattened.
751   Changed |= Flatten(LN, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI);
752 
753   if (!Changed)
754     return PreservedAnalyses::all();
755 
756   return PreservedAnalyses::none();
757 }
758 
759 namespace {
760 class LoopFlattenLegacyPass : public FunctionPass {
761 public:
762   static char ID; // Pass ID, replacement for typeid
763   LoopFlattenLegacyPass() : FunctionPass(ID) {
764     initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry());
765   }
766 
767   // Possibly flatten loop L into its child.
768   bool runOnFunction(Function &F) override;
769 
770   void getAnalysisUsage(AnalysisUsage &AU) const override {
771     getLoopAnalysisUsage(AU);
772     AU.addRequired<TargetTransformInfoWrapperPass>();
773     AU.addPreserved<TargetTransformInfoWrapperPass>();
774     AU.addRequired<AssumptionCacheTracker>();
775     AU.addPreserved<AssumptionCacheTracker>();
776   }
777 };
778 } // namespace
779 
780 char LoopFlattenLegacyPass::ID = 0;
781 INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
782                       false, false)
783 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
784 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
785 INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
786                     false, false)
787 
788 FunctionPass *llvm::createLoopFlattenPass() { return new LoopFlattenLegacyPass(); }
789 
790 bool LoopFlattenLegacyPass::runOnFunction(Function &F) {
791   ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
792   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
793   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
794   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
795   auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>();
796   auto *TTI = &TTIP.getTTI(F);
797   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
798   bool Changed = false;
799   for (Loop *L : *LI) {
800     auto LN = LoopNest::getLoopNest(*L, *SE);
801     Changed |= Flatten(*LN, DT, LI, SE, AC, TTI);
802   }
803   return Changed;
804 }
805