1 //===- LoopFlatten.cpp - Loop flattening pass------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass flattens pairs nested loops into a single loop. 10 // 11 // The intention is to optimise loop nests like this, which together access an 12 // array linearly: 13 // for (int i = 0; i < N; ++i) 14 // for (int j = 0; j < M; ++j) 15 // f(A[i*M+j]); 16 // into one loop: 17 // for (int i = 0; i < (N*M); ++i) 18 // f(A[i]); 19 // 20 // It can also flatten loops where the induction variables are not used in the 21 // loop. This is only worth doing if the induction variables are only used in an 22 // expression like i*M+j. If they had any other uses, we would have to insert a 23 // div/mod to reconstruct the original values, so this wouldn't be profitable. 24 // 25 // We also need to prove that N*M will not overflow. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/Transforms/Scalar/LoopFlatten.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/LoopPass.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/ScalarEvolution.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/IR/Verifier.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Utils/LoopUtils.h" 48 49 #define DEBUG_TYPE "loop-flatten" 50 51 using namespace llvm; 52 using namespace llvm::PatternMatch; 53 54 static cl::opt<unsigned> RepeatedInstructionThreshold( 55 "loop-flatten-cost-threshold", cl::Hidden, cl::init(2), 56 cl::desc("Limit on the cost of instructions that can be repeated due to " 57 "loop flattening")); 58 59 static cl::opt<bool> 60 AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden, 61 cl::init(false), 62 cl::desc("Assume that the product of the two iteration " 63 "limits will never overflow")); 64 65 // Finds the induction variable, increment and limit for a simple loop that we 66 // can flatten. 67 static bool findLoopComponents( 68 Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions, 69 PHINode *&InductionPHI, Value *&Limit, BinaryOperator *&Increment, 70 BranchInst *&BackBranch, ScalarEvolution *SE) { 71 LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n"); 72 73 if (!L->isLoopSimplifyForm()) { 74 LLVM_DEBUG(dbgs() << "Loop is not in normal form\n"); 75 return false; 76 } 77 78 // There must be exactly one exiting block, and it must be the same at the 79 // latch. 80 BasicBlock *Latch = L->getLoopLatch(); 81 if (L->getExitingBlock() != Latch) { 82 LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n"); 83 return false; 84 } 85 // Latch block must end in a conditional branch. 86 BackBranch = dyn_cast<BranchInst>(Latch->getTerminator()); 87 if (!BackBranch || !BackBranch->isConditional()) { 88 LLVM_DEBUG(dbgs() << "Could not find back-branch\n"); 89 return false; 90 } 91 IterationInstructions.insert(BackBranch); 92 LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump()); 93 bool ContinueOnTrue = L->contains(BackBranch->getSuccessor(0)); 94 95 // Find the induction PHI. If there is no induction PHI, we can't do the 96 // transformation. TODO: could other variables trigger this? Do we have to 97 // search for the best one? 98 InductionPHI = nullptr; 99 for (PHINode &PHI : L->getHeader()->phis()) { 100 InductionDescriptor ID; 101 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) { 102 InductionPHI = &PHI; 103 LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump()); 104 break; 105 } 106 } 107 if (!InductionPHI) { 108 LLVM_DEBUG(dbgs() << "Could not find induction PHI\n"); 109 return false; 110 } 111 112 auto IsValidPredicate = [&](ICmpInst::Predicate Pred) { 113 if (ContinueOnTrue) 114 return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT; 115 else 116 return Pred == CmpInst::ICMP_EQ; 117 }; 118 119 // Find Compare and make sure it is valid 120 ICmpInst *Compare = dyn_cast<ICmpInst>(BackBranch->getCondition()); 121 if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) || 122 Compare->hasNUsesOrMore(2)) { 123 LLVM_DEBUG(dbgs() << "Could not find valid comparison\n"); 124 return false; 125 } 126 IterationInstructions.insert(Compare); 127 LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump()); 128 129 // Find increment and limit from the compare 130 Increment = nullptr; 131 if (match(Compare->getOperand(0), 132 m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) { 133 Increment = dyn_cast<BinaryOperator>(Compare->getOperand(0)); 134 Limit = Compare->getOperand(1); 135 } else if (Compare->getUnsignedPredicate() == CmpInst::ICMP_NE && 136 match(Compare->getOperand(1), 137 m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) { 138 Increment = dyn_cast<BinaryOperator>(Compare->getOperand(1)); 139 Limit = Compare->getOperand(0); 140 } 141 if (!Increment || Increment->hasNUsesOrMore(3)) { 142 LLVM_DEBUG(dbgs() << "Cound not find valid increment\n"); 143 return false; 144 } 145 IterationInstructions.insert(Increment); 146 LLVM_DEBUG(dbgs() << "Found increment: "; Increment->dump()); 147 LLVM_DEBUG(dbgs() << "Found limit: "; Limit->dump()); 148 149 assert(InductionPHI->getNumIncomingValues() == 2); 150 assert(InductionPHI->getIncomingValueForBlock(Latch) == Increment && 151 "PHI value is not increment inst"); 152 153 auto *CI = dyn_cast<ConstantInt>( 154 InductionPHI->getIncomingValueForBlock(L->getLoopPreheader())); 155 if (!CI || !CI->isZero()) { 156 LLVM_DEBUG(dbgs() << "PHI value is not zero: "; CI->dump()); 157 return false; 158 } 159 160 LLVM_DEBUG(dbgs() << "Successfully found all loop components\n"); 161 return true; 162 } 163 164 static bool checkPHIs(Loop *OuterLoop, Loop *InnerLoop, 165 SmallPtrSetImpl<PHINode *> &InnerPHIsToTransform, 166 PHINode *InnerInductionPHI, PHINode *OuterInductionPHI, 167 TargetTransformInfo *TTI) { 168 // All PHIs in the inner and outer headers must either be: 169 // - The induction PHI, which we are going to rewrite as one induction in 170 // the new loop. This is already checked by findLoopComponents. 171 // - An outer header PHI with all incoming values from outside the loop. 172 // LoopSimplify guarantees we have a pre-header, so we don't need to 173 // worry about that here. 174 // - Pairs of PHIs in the inner and outer headers, which implement a 175 // loop-carried dependency that will still be valid in the new loop. To 176 // be valid, this variable must be modified only in the inner loop. 177 178 // The set of PHI nodes in the outer loop header that we know will still be 179 // valid after the transformation. These will not need to be modified (with 180 // the exception of the induction variable), but we do need to check that 181 // there are no unsafe PHI nodes. 182 SmallPtrSet<PHINode *, 4> SafeOuterPHIs; 183 SafeOuterPHIs.insert(OuterInductionPHI); 184 185 // Check that all PHI nodes in the inner loop header match one of the valid 186 // patterns. 187 for (PHINode &InnerPHI : InnerLoop->getHeader()->phis()) { 188 // The induction PHIs break these rules, and that's OK because we treat 189 // them specially when doing the transformation. 190 if (&InnerPHI == InnerInductionPHI) 191 continue; 192 193 // Each inner loop PHI node must have two incoming values/blocks - one 194 // from the pre-header, and one from the latch. 195 assert(InnerPHI.getNumIncomingValues() == 2); 196 Value *PreHeaderValue = 197 InnerPHI.getIncomingValueForBlock(InnerLoop->getLoopPreheader()); 198 Value *LatchValue = 199 InnerPHI.getIncomingValueForBlock(InnerLoop->getLoopLatch()); 200 201 // The incoming value from the outer loop must be the PHI node in the 202 // outer loop header, with no modifications made in the top of the outer 203 // loop. 204 PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue); 205 if (!OuterPHI || OuterPHI->getParent() != OuterLoop->getHeader()) { 206 LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n"); 207 return false; 208 } 209 210 // The other incoming value must come from the inner loop, without any 211 // modifications in the tail end of the outer loop. We are in LCSSA form, 212 // so this will actually be a PHI in the inner loop's exit block, which 213 // only uses values from inside the inner loop. 214 PHINode *LCSSAPHI = dyn_cast<PHINode>( 215 OuterPHI->getIncomingValueForBlock(OuterLoop->getLoopLatch())); 216 if (!LCSSAPHI) { 217 LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n"); 218 return false; 219 } 220 221 // The value used by the LCSSA PHI must be the same one that the inner 222 // loop's PHI uses. 223 if (LCSSAPHI->hasConstantValue() != LatchValue) { 224 LLVM_DEBUG( 225 dbgs() << "LCSSA PHI incoming value does not match latch value\n"); 226 return false; 227 } 228 229 LLVM_DEBUG(dbgs() << "PHI pair is safe:\n"); 230 LLVM_DEBUG(dbgs() << " Inner: "; InnerPHI.dump()); 231 LLVM_DEBUG(dbgs() << " Outer: "; OuterPHI->dump()); 232 SafeOuterPHIs.insert(OuterPHI); 233 InnerPHIsToTransform.insert(&InnerPHI); 234 } 235 236 for (PHINode &OuterPHI : OuterLoop->getHeader()->phis()) { 237 if (!SafeOuterPHIs.count(&OuterPHI)) { 238 LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump()); 239 return false; 240 } 241 } 242 243 return true; 244 } 245 246 static bool 247 checkOuterLoopInsts(Loop *OuterLoop, Loop *InnerLoop, 248 SmallPtrSetImpl<Instruction *> &IterationInstructions, 249 Value *InnerLimit, PHINode *OuterPHI, 250 TargetTransformInfo *TTI) { 251 // Check for instructions in the outer but not inner loop. If any of these 252 // have side-effects then this transformation is not legal, and if there is 253 // a significant amount of code here which can't be optimised out that it's 254 // not profitable (as these instructions would get executed for each 255 // iteration of the inner loop). 256 unsigned RepeatedInstrCost = 0; 257 for (auto *B : OuterLoop->getBlocks()) { 258 if (InnerLoop->contains(B)) 259 continue; 260 261 for (auto &I : *B) { 262 if (!isa<PHINode>(&I) && !I.isTerminator() && 263 !isSafeToSpeculativelyExecute(&I)) { 264 LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have " 265 "side effects: "; 266 I.dump()); 267 return false; 268 } 269 // The execution count of the outer loop's iteration instructions 270 // (increment, compare and branch) will be increased, but the 271 // equivalent instructions will be removed from the inner loop, so 272 // they make a net difference of zero. 273 if (IterationInstructions.count(&I)) 274 continue; 275 // The uncoditional branch to the inner loop's header will turn into 276 // a fall-through, so adds no cost. 277 BranchInst *Br = dyn_cast<BranchInst>(&I); 278 if (Br && Br->isUnconditional() && 279 Br->getSuccessor(0) == InnerLoop->getHeader()) 280 continue; 281 // Multiplies of the outer iteration variable and inner iteration 282 // count will be optimised out. 283 if (match(&I, m_c_Mul(m_Specific(OuterPHI), m_Specific(InnerLimit)))) 284 continue; 285 int Cost = TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 286 LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump()); 287 RepeatedInstrCost += Cost; 288 } 289 } 290 291 LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: " 292 << RepeatedInstrCost << "\n"); 293 // Bail out if flattening the loops would cause instructions in the outer 294 // loop but not in the inner loop to be executed extra times. 295 if (RepeatedInstrCost > RepeatedInstructionThreshold) 296 return false; 297 298 return true; 299 } 300 301 static bool checkIVUsers(PHINode *InnerPHI, PHINode *OuterPHI, 302 BinaryOperator *InnerIncrement, 303 BinaryOperator *OuterIncrement, Value *InnerLimit, 304 SmallPtrSetImpl<Value *> &LinearIVUses) { 305 // We require all uses of both induction variables to match this pattern: 306 // 307 // (OuterPHI * InnerLimit) + InnerPHI 308 // 309 // Any uses of the induction variables not matching that pattern would 310 // require a div/mod to reconstruct in the flattened loop, so the 311 // transformation wouldn't be profitable. 312 313 // Check that all uses of the inner loop's induction variable match the 314 // expected pattern, recording the uses of the outer IV. 315 SmallPtrSet<Value *, 4> ValidOuterPHIUses; 316 for (User *U : InnerPHI->users()) { 317 if (U == InnerIncrement) 318 continue; 319 320 LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump()); 321 322 Value *MatchedMul, *MatchedItCount; 323 if (match(U, m_c_Add(m_Specific(InnerPHI), m_Value(MatchedMul))) && 324 match(MatchedMul, 325 m_c_Mul(m_Specific(OuterPHI), m_Value(MatchedItCount))) && 326 MatchedItCount == InnerLimit) { 327 LLVM_DEBUG(dbgs() << "Use is optimisable\n"); 328 ValidOuterPHIUses.insert(MatchedMul); 329 LinearIVUses.insert(U); 330 } else { 331 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 332 return false; 333 } 334 } 335 336 // Check that there are no uses of the outer IV other than the ones found 337 // as part of the pattern above. 338 for (User *U : OuterPHI->users()) { 339 if (U == OuterIncrement) 340 continue; 341 342 LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump()); 343 344 if (!ValidOuterPHIUses.count(U)) { 345 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 346 return false; 347 } else { 348 LLVM_DEBUG(dbgs() << "Use is optimisable\n"); 349 } 350 } 351 352 LLVM_DEBUG(dbgs() << "Found " << LinearIVUses.size() 353 << " value(s) that can be replaced:\n"; 354 for (Value *V : LinearIVUses) { 355 dbgs() << " "; 356 V->dump(); 357 }); 358 359 return true; 360 } 361 362 // Return an OverflowResult dependant on if overflow of the multiplication of 363 // InnerLimit and OuterLimit can be assumed not to happen. 364 static OverflowResult checkOverflow(Loop *OuterLoop, Value *InnerLimit, 365 Value *OuterLimit, 366 SmallPtrSetImpl<Value *> &LinearIVUses, 367 DominatorTree *DT, AssumptionCache *AC) { 368 Function *F = OuterLoop->getHeader()->getParent(); 369 const DataLayout &DL = F->getParent()->getDataLayout(); 370 371 // For debugging/testing. 372 if (AssumeNoOverflow) 373 return OverflowResult::NeverOverflows; 374 375 // Check if the multiply could not overflow due to known ranges of the 376 // input values. 377 OverflowResult OR = computeOverflowForUnsignedMul( 378 InnerLimit, OuterLimit, DL, AC, 379 OuterLoop->getLoopPreheader()->getTerminator(), DT); 380 if (OR != OverflowResult::MayOverflow) 381 return OR; 382 383 for (Value *V : LinearIVUses) { 384 for (Value *U : V->users()) { 385 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) { 386 // The IV is used as the operand of a GEP, and the IV is at least as 387 // wide as the address space of the GEP. In this case, the GEP would 388 // wrap around the address space before the IV increment wraps, which 389 // would be UB. 390 if (GEP->isInBounds() && 391 V->getType()->getIntegerBitWidth() >= 392 DL.getPointerTypeSizeInBits(GEP->getType())) { 393 LLVM_DEBUG( 394 dbgs() << "use of linear IV would be UB if overflow occurred: "; 395 GEP->dump()); 396 return OverflowResult::NeverOverflows; 397 } 398 } 399 } 400 } 401 402 return OverflowResult::MayOverflow; 403 } 404 405 static bool FlattenLoopPair(Loop *OuterLoop, Loop *InnerLoop, DominatorTree *DT, 406 LoopInfo *LI, ScalarEvolution *SE, 407 AssumptionCache *AC, TargetTransformInfo *TTI, 408 std::function<void(Loop *)> markLoopAsDeleted) { 409 Function *F = OuterLoop->getHeader()->getParent(); 410 411 LLVM_DEBUG(dbgs() << "Loop flattening running on outer loop " 412 << OuterLoop->getHeader()->getName() << " and inner loop " 413 << InnerLoop->getHeader()->getName() << " in " 414 << F->getName() << "\n"); 415 416 SmallPtrSet<Instruction *, 8> IterationInstructions; 417 418 PHINode *InnerInductionPHI, *OuterInductionPHI; 419 Value *InnerLimit, *OuterLimit; 420 BinaryOperator *InnerIncrement, *OuterIncrement; 421 BranchInst *InnerBranch, *OuterBranch; 422 423 if (!findLoopComponents(InnerLoop, IterationInstructions, InnerInductionPHI, 424 InnerLimit, InnerIncrement, InnerBranch, SE)) 425 return false; 426 if (!findLoopComponents(OuterLoop, IterationInstructions, OuterInductionPHI, 427 OuterLimit, OuterIncrement, OuterBranch, SE)) 428 return false; 429 430 // Both of the loop limit values must be invariant in the outer loop 431 // (non-instructions are all inherently invariant). 432 if (!OuterLoop->isLoopInvariant(InnerLimit)) { 433 LLVM_DEBUG(dbgs() << "inner loop limit not invariant\n"); 434 return false; 435 } 436 if (!OuterLoop->isLoopInvariant(OuterLimit)) { 437 LLVM_DEBUG(dbgs() << "outer loop limit not invariant\n"); 438 return false; 439 } 440 441 SmallPtrSet<PHINode *, 4> InnerPHIsToTransform; 442 if (!checkPHIs(OuterLoop, InnerLoop, InnerPHIsToTransform, InnerInductionPHI, 443 OuterInductionPHI, TTI)) 444 return false; 445 446 // FIXME: it should be possible to handle different types correctly. 447 if (InnerInductionPHI->getType() != OuterInductionPHI->getType()) 448 return false; 449 450 if (!checkOuterLoopInsts(OuterLoop, InnerLoop, IterationInstructions, 451 InnerLimit, OuterInductionPHI, TTI)) 452 return false; 453 454 // Find the values in the loop that can be replaced with the linearized 455 // induction variable, and check that there are no other uses of the inner 456 // or outer induction variable. If there were, we could still do this 457 // transformation, but we'd have to insert a div/mod to calculate the 458 // original IVs, so it wouldn't be profitable. 459 SmallPtrSet<Value *, 4> LinearIVUses; 460 if (!checkIVUsers(InnerInductionPHI, OuterInductionPHI, InnerIncrement, 461 OuterIncrement, InnerLimit, LinearIVUses)) 462 return false; 463 464 // Check if the new iteration variable might overflow. In this case, we 465 // need to version the loop, and select the original version at runtime if 466 // the iteration space is too large. 467 // TODO: We currently don't version the loop. 468 // TODO: it might be worth using a wider iteration variable rather than 469 // versioning the loop, if a wide enough type is legal. 470 bool MustVersionLoop = true; 471 OverflowResult OR = 472 checkOverflow(OuterLoop, InnerLimit, OuterLimit, LinearIVUses, DT, AC); 473 if (OR == OverflowResult::AlwaysOverflowsHigh || 474 OR == OverflowResult::AlwaysOverflowsLow) { 475 LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n"); 476 return false; 477 } else if (OR == OverflowResult::MayOverflow) { 478 LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n"); 479 } else { 480 LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n"); 481 MustVersionLoop = false; 482 } 483 484 // We cannot safely flatten the loop. Exit now. 485 if (MustVersionLoop) 486 return false; 487 488 // Do the actual transformation. 489 LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n"); 490 491 { 492 using namespace ore; 493 OptimizationRemark Remark(DEBUG_TYPE, "Flattened", InnerLoop->getStartLoc(), 494 InnerLoop->getHeader()); 495 OptimizationRemarkEmitter ORE(F); 496 Remark << "Flattened into outer loop"; 497 ORE.emit(Remark); 498 } 499 500 Value *NewTripCount = 501 BinaryOperator::CreateMul(InnerLimit, OuterLimit, "flatten.tripcount", 502 OuterLoop->getLoopPreheader()->getTerminator()); 503 LLVM_DEBUG(dbgs() << "Created new trip count in preheader: "; 504 NewTripCount->dump()); 505 506 // Fix up PHI nodes that take values from the inner loop back-edge, which 507 // we are about to remove. 508 InnerInductionPHI->removeIncomingValue(InnerLoop->getLoopLatch()); 509 for (PHINode *PHI : InnerPHIsToTransform) 510 PHI->removeIncomingValue(InnerLoop->getLoopLatch()); 511 512 // Modify the trip count of the outer loop to be the product of the two 513 // trip counts. 514 cast<User>(OuterBranch->getCondition())->setOperand(1, NewTripCount); 515 516 // Replace the inner loop backedge with an unconditional branch to the exit. 517 BasicBlock *InnerExitBlock = InnerLoop->getExitBlock(); 518 BasicBlock *InnerExitingBlock = InnerLoop->getExitingBlock(); 519 InnerExitingBlock->getTerminator()->eraseFromParent(); 520 BranchInst::Create(InnerExitBlock, InnerExitingBlock); 521 DT->deleteEdge(InnerExitingBlock, InnerLoop->getHeader()); 522 523 // Replace all uses of the polynomial calculated from the two induction 524 // variables with the one new one. 525 for (Value *V : LinearIVUses) 526 V->replaceAllUsesWith(OuterInductionPHI); 527 528 // Tell LoopInfo, SCEV and the pass manager that the inner loop has been 529 // deleted, and any information that have about the outer loop invalidated. 530 markLoopAsDeleted(InnerLoop); 531 SE->forgetLoop(OuterLoop); 532 SE->forgetLoop(InnerLoop); 533 LI->erase(InnerLoop); 534 535 return true; 536 } 537 538 PreservedAnalyses LoopFlattenPass::run(Loop &L, LoopAnalysisManager &AM, 539 LoopStandardAnalysisResults &AR, 540 LPMUpdater &Updater) { 541 if (L.getSubLoops().size() != 1) 542 return PreservedAnalyses::all(); 543 544 Loop *InnerLoop = *L.begin(); 545 std::string LoopName(InnerLoop->getName()); 546 if (!FlattenLoopPair( 547 &L, InnerLoop, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI, 548 [&](Loop *L) { Updater.markLoopAsDeleted(*L, LoopName); })) 549 return PreservedAnalyses::all(); 550 return getLoopPassPreservedAnalyses(); 551 } 552 553 namespace { 554 class LoopFlattenLegacyPass : public LoopPass { 555 public: 556 static char ID; // Pass ID, replacement for typeid 557 LoopFlattenLegacyPass() : LoopPass(ID) { 558 initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry()); 559 } 560 561 // Possibly flatten loop L into its child. 562 bool runOnLoop(Loop *L, LPPassManager &) override; 563 564 void getAnalysisUsage(AnalysisUsage &AU) const override { 565 getLoopAnalysisUsage(AU); 566 AU.addRequired<TargetTransformInfoWrapperPass>(); 567 AU.addPreserved<TargetTransformInfoWrapperPass>(); 568 AU.addRequired<AssumptionCacheTracker>(); 569 AU.addPreserved<AssumptionCacheTracker>(); 570 } 571 }; 572 } // namespace 573 574 char LoopFlattenLegacyPass::ID = 0; 575 INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops", 576 false, false) 577 INITIALIZE_PASS_DEPENDENCY(LoopPass) 578 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 579 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 580 INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops", 581 false, false) 582 583 Pass *llvm::createLoopFlattenPass() { return new LoopFlattenLegacyPass(); } 584 585 bool LoopFlattenLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 586 if (skipLoop(L)) 587 return false; 588 589 if (L->getSubLoops().size() != 1) 590 return false; 591 592 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 593 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 594 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 595 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 596 auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>(); 597 TargetTransformInfo *TTI = &TTIP.getTTI(*L->getHeader()->getParent()); 598 AssumptionCache *AC = 599 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 600 *L->getHeader()->getParent()); 601 602 Loop *InnerLoop = *L->begin(); 603 return FlattenLoopPair(L, InnerLoop, DT, LI, SE, AC, TTI, 604 [&](Loop *L) { LPM.markLoopAsDeleted(*L); }); 605 } 606