1 //===- LoopFlatten.cpp - Loop flattening pass------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass flattens pairs nested loops into a single loop. 10 // 11 // The intention is to optimise loop nests like this, which together access an 12 // array linearly: 13 // for (int i = 0; i < N; ++i) 14 // for (int j = 0; j < M; ++j) 15 // f(A[i*M+j]); 16 // into one loop: 17 // for (int i = 0; i < (N*M); ++i) 18 // f(A[i]); 19 // 20 // It can also flatten loops where the induction variables are not used in the 21 // loop. This is only worth doing if the induction variables are only used in an 22 // expression like i*M+j. If they had any other uses, we would have to insert a 23 // div/mod to reconstruct the original values, so this wouldn't be profitable. 24 // 25 // We also need to prove that N*M will not overflow. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/Transforms/Scalar/LoopFlatten.h" 30 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AssumptionCache.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/Analysis/TargetTransformInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/IRBuilder.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/IR/PatternMatch.h" 43 #include "llvm/IR/Verifier.h" 44 #include "llvm/InitializePasses.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Transforms/Scalar.h" 49 #include "llvm/Transforms/Utils/Local.h" 50 #include "llvm/Transforms/Utils/LoopUtils.h" 51 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 52 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 53 54 using namespace llvm; 55 using namespace llvm::PatternMatch; 56 57 #define DEBUG_TYPE "loop-flatten" 58 59 STATISTIC(NumFlattened, "Number of loops flattened"); 60 61 static cl::opt<unsigned> RepeatedInstructionThreshold( 62 "loop-flatten-cost-threshold", cl::Hidden, cl::init(2), 63 cl::desc("Limit on the cost of instructions that can be repeated due to " 64 "loop flattening")); 65 66 static cl::opt<bool> 67 AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden, 68 cl::init(false), 69 cl::desc("Assume that the product of the two iteration " 70 "trip counts will never overflow")); 71 72 static cl::opt<bool> 73 WidenIV("loop-flatten-widen-iv", cl::Hidden, 74 cl::init(true), 75 cl::desc("Widen the loop induction variables, if possible, so " 76 "overflow checks won't reject flattening")); 77 78 struct FlattenInfo { 79 Loop *OuterLoop = nullptr; 80 Loop *InnerLoop = nullptr; 81 // These PHINodes correspond to loop induction variables, which are expected 82 // to start at zero and increment by one on each loop. 83 PHINode *InnerInductionPHI = nullptr; 84 PHINode *OuterInductionPHI = nullptr; 85 Value *InnerTripCount = nullptr; 86 Value *OuterTripCount = nullptr; 87 BinaryOperator *InnerIncrement = nullptr; 88 BinaryOperator *OuterIncrement = nullptr; 89 BranchInst *InnerBranch = nullptr; 90 BranchInst *OuterBranch = nullptr; 91 SmallPtrSet<Value *, 4> LinearIVUses; 92 SmallPtrSet<PHINode *, 4> InnerPHIsToTransform; 93 94 // Whether this holds the flatten info before or after widening. 95 bool Widened = false; 96 97 // Holds the old/narrow induction phis, i.e. the Phis before IV widening has 98 // been applied. This bookkeeping is used so we can skip some checks on these 99 // phi nodes. 100 PHINode *NarrowInnerInductionPHI = nullptr; 101 PHINode *NarrowOuterInductionPHI = nullptr; 102 103 FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL) {}; 104 105 bool isNarrowInductionPhi(PHINode *Phi) { 106 // This can't be the narrow phi if we haven't widened the IV first. 107 if (!Widened) 108 return false; 109 return NarrowInnerInductionPHI == Phi || NarrowOuterInductionPHI == Phi; 110 } 111 }; 112 113 static bool 114 setLoopComponents(Value *&TC, Value *&TripCount, BinaryOperator *&Increment, 115 SmallPtrSetImpl<Instruction *> &IterationInstructions) { 116 TripCount = TC; 117 IterationInstructions.insert(Increment); 118 LLVM_DEBUG(dbgs() << "Found Increment: "; Increment->dump()); 119 LLVM_DEBUG(dbgs() << "Found trip count: "; TripCount->dump()); 120 LLVM_DEBUG(dbgs() << "Successfully found all loop components\n"); 121 return true; 122 } 123 124 // Finds the induction variable, increment and trip count for a simple loop that 125 // we can flatten. 126 static bool findLoopComponents( 127 Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions, 128 PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment, 129 BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) { 130 LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n"); 131 132 if (!L->isLoopSimplifyForm()) { 133 LLVM_DEBUG(dbgs() << "Loop is not in normal form\n"); 134 return false; 135 } 136 137 // Currently, to simplify the implementation, the Loop induction variable must 138 // start at zero and increment with a step size of one. 139 if (!L->isCanonical(*SE)) { 140 LLVM_DEBUG(dbgs() << "Loop is not canonical\n"); 141 return false; 142 } 143 144 // There must be exactly one exiting block, and it must be the same at the 145 // latch. 146 BasicBlock *Latch = L->getLoopLatch(); 147 if (L->getExitingBlock() != Latch) { 148 LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n"); 149 return false; 150 } 151 152 // Find the induction PHI. If there is no induction PHI, we can't do the 153 // transformation. TODO: could other variables trigger this? Do we have to 154 // search for the best one? 155 InductionPHI = L->getInductionVariable(*SE); 156 if (!InductionPHI) { 157 LLVM_DEBUG(dbgs() << "Could not find induction PHI\n"); 158 return false; 159 } 160 LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump()); 161 162 bool ContinueOnTrue = L->contains(Latch->getTerminator()->getSuccessor(0)); 163 auto IsValidPredicate = [&](ICmpInst::Predicate Pred) { 164 if (ContinueOnTrue) 165 return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT; 166 else 167 return Pred == CmpInst::ICMP_EQ; 168 }; 169 170 // Find Compare and make sure it is valid. getLatchCmpInst checks that the 171 // back branch of the latch is conditional. 172 ICmpInst *Compare = L->getLatchCmpInst(); 173 if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) || 174 Compare->hasNUsesOrMore(2)) { 175 LLVM_DEBUG(dbgs() << "Could not find valid comparison\n"); 176 return false; 177 } 178 BackBranch = cast<BranchInst>(Latch->getTerminator()); 179 IterationInstructions.insert(BackBranch); 180 LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump()); 181 IterationInstructions.insert(Compare); 182 LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump()); 183 184 // Find increment and trip count. 185 // There are exactly 2 incoming values to the induction phi; one from the 186 // pre-header and one from the latch. The incoming latch value is the 187 // increment variable. 188 Increment = 189 dyn_cast<BinaryOperator>(InductionPHI->getIncomingValueForBlock(Latch)); 190 if (Increment->hasNUsesOrMore(3)) { 191 LLVM_DEBUG(dbgs() << "Could not find valid increment\n"); 192 return false; 193 } 194 // The trip count is the RHS of the compare. If this doesn't match the trip 195 // count computed by SCEV then this is because the trip count variable 196 // has been widened so the types don't match, or because it is a constant and 197 // another transformation has changed the compare (e.g. icmp ult %inc, 198 // tripcount -> icmp ult %j, tripcount-1), or both. 199 Value *RHS = Compare->getOperand(1); 200 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 201 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 202 LLVM_DEBUG(dbgs() << "Backedge-taken count is not predictable\n"); 203 return false; 204 } 205 const SCEV *SCEVTripCount = SE->getTripCountFromExitCount(BackedgeTakenCount); 206 const SCEV *SCEVRHS = SE->getSCEV(RHS); 207 if (SCEVRHS == SCEVTripCount) 208 return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 209 ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(RHS); 210 if (ConstantRHS) { 211 const SCEV *BackedgeTCExt = nullptr; 212 if (IsWidened) { 213 const SCEV *SCEVTripCountExt; 214 // Find the extended backedge taken count and extended trip count using 215 // SCEV. One of these should now match the RHS of the compare. 216 BackedgeTCExt = SE->getZeroExtendExpr(BackedgeTakenCount, RHS->getType()); 217 SCEVTripCountExt = SE->getTripCountFromExitCount(BackedgeTCExt); 218 if (SCEVRHS != BackedgeTCExt && SCEVRHS != SCEVTripCountExt) { 219 LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 220 return false; 221 } 222 } 223 // If the RHS of the compare is equal to the backedge taken count we need 224 // to add one to get the trip count. 225 if (SCEVRHS == BackedgeTCExt || SCEVRHS == BackedgeTakenCount) { 226 ConstantInt *One = ConstantInt::get(ConstantRHS->getType(), 1); 227 Value *NewRHS = ConstantInt::get( 228 ConstantRHS->getContext(), ConstantRHS->getValue() + One->getValue()); 229 return setLoopComponents(NewRHS, TripCount, Increment, 230 IterationInstructions); 231 } 232 return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 233 } 234 // If the RHS isn't a constant then check that the reason it doesn't match 235 // the SCEV trip count is because the RHS is a ZExt or SExt instruction 236 // (and take the trip count to be the RHS). 237 if (!IsWidened) { 238 LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 239 return false; 240 } 241 auto *TripCountInst = dyn_cast<Instruction>(RHS); 242 if (!TripCountInst) { 243 LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 244 return false; 245 } 246 if ((!isa<ZExtInst>(TripCountInst) && !isa<SExtInst>(TripCountInst)) || 247 SE->getSCEV(TripCountInst->getOperand(0)) != SCEVTripCount) { 248 LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n"); 249 return false; 250 } 251 return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 252 } 253 254 static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) { 255 // All PHIs in the inner and outer headers must either be: 256 // - The induction PHI, which we are going to rewrite as one induction in 257 // the new loop. This is already checked by findLoopComponents. 258 // - An outer header PHI with all incoming values from outside the loop. 259 // LoopSimplify guarantees we have a pre-header, so we don't need to 260 // worry about that here. 261 // - Pairs of PHIs in the inner and outer headers, which implement a 262 // loop-carried dependency that will still be valid in the new loop. To 263 // be valid, this variable must be modified only in the inner loop. 264 265 // The set of PHI nodes in the outer loop header that we know will still be 266 // valid after the transformation. These will not need to be modified (with 267 // the exception of the induction variable), but we do need to check that 268 // there are no unsafe PHI nodes. 269 SmallPtrSet<PHINode *, 4> SafeOuterPHIs; 270 SafeOuterPHIs.insert(FI.OuterInductionPHI); 271 272 // Check that all PHI nodes in the inner loop header match one of the valid 273 // patterns. 274 for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) { 275 // The induction PHIs break these rules, and that's OK because we treat 276 // them specially when doing the transformation. 277 if (&InnerPHI == FI.InnerInductionPHI) 278 continue; 279 if (FI.isNarrowInductionPhi(&InnerPHI)) 280 continue; 281 282 // Each inner loop PHI node must have two incoming values/blocks - one 283 // from the pre-header, and one from the latch. 284 assert(InnerPHI.getNumIncomingValues() == 2); 285 Value *PreHeaderValue = 286 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader()); 287 Value *LatchValue = 288 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch()); 289 290 // The incoming value from the outer loop must be the PHI node in the 291 // outer loop header, with no modifications made in the top of the outer 292 // loop. 293 PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue); 294 if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) { 295 LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n"); 296 return false; 297 } 298 299 // The other incoming value must come from the inner loop, without any 300 // modifications in the tail end of the outer loop. We are in LCSSA form, 301 // so this will actually be a PHI in the inner loop's exit block, which 302 // only uses values from inside the inner loop. 303 PHINode *LCSSAPHI = dyn_cast<PHINode>( 304 OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch())); 305 if (!LCSSAPHI) { 306 LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n"); 307 return false; 308 } 309 310 // The value used by the LCSSA PHI must be the same one that the inner 311 // loop's PHI uses. 312 if (LCSSAPHI->hasConstantValue() != LatchValue) { 313 LLVM_DEBUG( 314 dbgs() << "LCSSA PHI incoming value does not match latch value\n"); 315 return false; 316 } 317 318 LLVM_DEBUG(dbgs() << "PHI pair is safe:\n"); 319 LLVM_DEBUG(dbgs() << " Inner: "; InnerPHI.dump()); 320 LLVM_DEBUG(dbgs() << " Outer: "; OuterPHI->dump()); 321 SafeOuterPHIs.insert(OuterPHI); 322 FI.InnerPHIsToTransform.insert(&InnerPHI); 323 } 324 325 for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) { 326 if (FI.isNarrowInductionPhi(&OuterPHI)) 327 continue; 328 if (!SafeOuterPHIs.count(&OuterPHI)) { 329 LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump()); 330 return false; 331 } 332 } 333 334 LLVM_DEBUG(dbgs() << "checkPHIs: OK\n"); 335 return true; 336 } 337 338 static bool 339 checkOuterLoopInsts(FlattenInfo &FI, 340 SmallPtrSetImpl<Instruction *> &IterationInstructions, 341 const TargetTransformInfo *TTI) { 342 // Check for instructions in the outer but not inner loop. If any of these 343 // have side-effects then this transformation is not legal, and if there is 344 // a significant amount of code here which can't be optimised out that it's 345 // not profitable (as these instructions would get executed for each 346 // iteration of the inner loop). 347 InstructionCost RepeatedInstrCost = 0; 348 for (auto *B : FI.OuterLoop->getBlocks()) { 349 if (FI.InnerLoop->contains(B)) 350 continue; 351 352 for (auto &I : *B) { 353 if (!isa<PHINode>(&I) && !I.isTerminator() && 354 !isSafeToSpeculativelyExecute(&I)) { 355 LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have " 356 "side effects: "; 357 I.dump()); 358 return false; 359 } 360 // The execution count of the outer loop's iteration instructions 361 // (increment, compare and branch) will be increased, but the 362 // equivalent instructions will be removed from the inner loop, so 363 // they make a net difference of zero. 364 if (IterationInstructions.count(&I)) 365 continue; 366 // The uncoditional branch to the inner loop's header will turn into 367 // a fall-through, so adds no cost. 368 BranchInst *Br = dyn_cast<BranchInst>(&I); 369 if (Br && Br->isUnconditional() && 370 Br->getSuccessor(0) == FI.InnerLoop->getHeader()) 371 continue; 372 // Multiplies of the outer iteration variable and inner iteration 373 // count will be optimised out. 374 if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI), 375 m_Specific(FI.InnerTripCount)))) 376 continue; 377 InstructionCost Cost = 378 TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 379 LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump()); 380 RepeatedInstrCost += Cost; 381 } 382 } 383 384 LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: " 385 << RepeatedInstrCost << "\n"); 386 // Bail out if flattening the loops would cause instructions in the outer 387 // loop but not in the inner loop to be executed extra times. 388 if (RepeatedInstrCost > RepeatedInstructionThreshold) { 389 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n"); 390 return false; 391 } 392 393 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n"); 394 return true; 395 } 396 397 static bool checkIVUsers(FlattenInfo &FI) { 398 // We require all uses of both induction variables to match this pattern: 399 // 400 // (OuterPHI * InnerTripCount) + InnerPHI 401 // 402 // Any uses of the induction variables not matching that pattern would 403 // require a div/mod to reconstruct in the flattened loop, so the 404 // transformation wouldn't be profitable. 405 406 Value *InnerTripCount = FI.InnerTripCount; 407 if (FI.Widened && 408 (isa<SExtInst>(InnerTripCount) || isa<ZExtInst>(InnerTripCount))) 409 InnerTripCount = cast<Instruction>(InnerTripCount)->getOperand(0); 410 411 // Check that all uses of the inner loop's induction variable match the 412 // expected pattern, recording the uses of the outer IV. 413 SmallPtrSet<Value *, 4> ValidOuterPHIUses; 414 for (User *U : FI.InnerInductionPHI->users()) { 415 if (U == FI.InnerIncrement) 416 continue; 417 418 // After widening the IVs, a trunc instruction might have been introduced, 419 // so look through truncs. 420 if (isa<TruncInst>(U)) { 421 if (!U->hasOneUse()) 422 return false; 423 U = *U->user_begin(); 424 } 425 426 // If the use is in the compare (which is also the condition of the inner 427 // branch) then the compare has been altered by another transformation e.g 428 // icmp ult %inc, tripcount -> icmp ult %j, tripcount-1, where tripcount is 429 // a constant. Ignore this use as the compare gets removed later anyway. 430 if (U == FI.InnerBranch->getCondition()) 431 continue; 432 433 LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump()); 434 435 Value *MatchedMul = nullptr; 436 Value *MatchedItCount = nullptr; 437 bool IsAdd = match(U, m_c_Add(m_Specific(FI.InnerInductionPHI), 438 m_Value(MatchedMul))) && 439 match(MatchedMul, m_c_Mul(m_Specific(FI.OuterInductionPHI), 440 m_Value(MatchedItCount))); 441 442 // Matches the same pattern as above, except it also looks for truncs 443 // on the phi, which can be the result of widening the induction variables. 444 bool IsAddTrunc = 445 match(U, m_c_Add(m_Trunc(m_Specific(FI.InnerInductionPHI)), 446 m_Value(MatchedMul))) && 447 match(MatchedMul, m_c_Mul(m_Trunc(m_Specific(FI.OuterInductionPHI)), 448 m_Value(MatchedItCount))); 449 450 if (!MatchedItCount) 451 return false; 452 // Look through extends if the IV has been widened. 453 if (FI.Widened && 454 (isa<SExtInst>(MatchedItCount) || isa<ZExtInst>(MatchedItCount))) { 455 assert(MatchedItCount->getType() == FI.InnerInductionPHI->getType() && 456 "Unexpected type mismatch in types after widening"); 457 MatchedItCount = isa<SExtInst>(MatchedItCount) 458 ? dyn_cast<SExtInst>(MatchedItCount)->getOperand(0) 459 : dyn_cast<ZExtInst>(MatchedItCount)->getOperand(0); 460 } 461 462 if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerTripCount) { 463 LLVM_DEBUG(dbgs() << "Use is optimisable\n"); 464 ValidOuterPHIUses.insert(MatchedMul); 465 FI.LinearIVUses.insert(U); 466 } else { 467 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 468 return false; 469 } 470 } 471 472 // Check that there are no uses of the outer IV other than the ones found 473 // as part of the pattern above. 474 for (User *U : FI.OuterInductionPHI->users()) { 475 if (U == FI.OuterIncrement) 476 continue; 477 478 auto IsValidOuterPHIUses = [&] (User *U) -> bool { 479 LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump()); 480 if (!ValidOuterPHIUses.count(U)) { 481 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 482 return false; 483 } 484 LLVM_DEBUG(dbgs() << "Use is optimisable\n"); 485 return true; 486 }; 487 488 if (auto *V = dyn_cast<TruncInst>(U)) { 489 for (auto *K : V->users()) { 490 if (!IsValidOuterPHIUses(K)) 491 return false; 492 } 493 continue; 494 } 495 496 if (!IsValidOuterPHIUses(U)) 497 return false; 498 } 499 500 LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n"; 501 dbgs() << "Found " << FI.LinearIVUses.size() 502 << " value(s) that can be replaced:\n"; 503 for (Value *V : FI.LinearIVUses) { 504 dbgs() << " "; 505 V->dump(); 506 }); 507 return true; 508 } 509 510 // Return an OverflowResult dependant on if overflow of the multiplication of 511 // InnerTripCount and OuterTripCount can be assumed not to happen. 512 static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT, 513 AssumptionCache *AC) { 514 Function *F = FI.OuterLoop->getHeader()->getParent(); 515 const DataLayout &DL = F->getParent()->getDataLayout(); 516 517 // For debugging/testing. 518 if (AssumeNoOverflow) 519 return OverflowResult::NeverOverflows; 520 521 // Check if the multiply could not overflow due to known ranges of the 522 // input values. 523 OverflowResult OR = computeOverflowForUnsignedMul( 524 FI.InnerTripCount, FI.OuterTripCount, DL, AC, 525 FI.OuterLoop->getLoopPreheader()->getTerminator(), DT); 526 if (OR != OverflowResult::MayOverflow) 527 return OR; 528 529 for (Value *V : FI.LinearIVUses) { 530 for (Value *U : V->users()) { 531 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) { 532 for (Value *GEPUser : U->users()) { 533 Instruction *GEPUserInst = dyn_cast<Instruction>(GEPUser); 534 if (!isa<LoadInst>(GEPUserInst) && 535 !(isa<StoreInst>(GEPUserInst) && 536 GEP == GEPUserInst->getOperand(1))) 537 continue; 538 if (!isGuaranteedToExecuteForEveryIteration(GEPUserInst, 539 FI.InnerLoop)) 540 continue; 541 // The IV is used as the operand of a GEP which dominates the loop 542 // latch, and the IV is at least as wide as the address space of the 543 // GEP. In this case, the GEP would wrap around the address space 544 // before the IV increment wraps, which would be UB. 545 if (GEP->isInBounds() && 546 V->getType()->getIntegerBitWidth() >= 547 DL.getPointerTypeSizeInBits(GEP->getType())) { 548 LLVM_DEBUG( 549 dbgs() << "use of linear IV would be UB if overflow occurred: "; 550 GEP->dump()); 551 return OverflowResult::NeverOverflows; 552 } 553 } 554 } 555 } 556 } 557 558 return OverflowResult::MayOverflow; 559 } 560 561 static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 562 ScalarEvolution *SE, AssumptionCache *AC, 563 const TargetTransformInfo *TTI) { 564 SmallPtrSet<Instruction *, 8> IterationInstructions; 565 if (!findLoopComponents(FI.InnerLoop, IterationInstructions, 566 FI.InnerInductionPHI, FI.InnerTripCount, 567 FI.InnerIncrement, FI.InnerBranch, SE, FI.Widened)) 568 return false; 569 if (!findLoopComponents(FI.OuterLoop, IterationInstructions, 570 FI.OuterInductionPHI, FI.OuterTripCount, 571 FI.OuterIncrement, FI.OuterBranch, SE, FI.Widened)) 572 return false; 573 574 // Both of the loop trip count values must be invariant in the outer loop 575 // (non-instructions are all inherently invariant). 576 if (!FI.OuterLoop->isLoopInvariant(FI.InnerTripCount)) { 577 LLVM_DEBUG(dbgs() << "inner loop trip count not invariant\n"); 578 return false; 579 } 580 if (!FI.OuterLoop->isLoopInvariant(FI.OuterTripCount)) { 581 LLVM_DEBUG(dbgs() << "outer loop trip count not invariant\n"); 582 return false; 583 } 584 585 if (!checkPHIs(FI, TTI)) 586 return false; 587 588 // FIXME: it should be possible to handle different types correctly. 589 if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType()) 590 return false; 591 592 if (!checkOuterLoopInsts(FI, IterationInstructions, TTI)) 593 return false; 594 595 // Find the values in the loop that can be replaced with the linearized 596 // induction variable, and check that there are no other uses of the inner 597 // or outer induction variable. If there were, we could still do this 598 // transformation, but we'd have to insert a div/mod to calculate the 599 // original IVs, so it wouldn't be profitable. 600 if (!checkIVUsers(FI)) 601 return false; 602 603 LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n"); 604 return true; 605 } 606 607 static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 608 ScalarEvolution *SE, AssumptionCache *AC, 609 const TargetTransformInfo *TTI) { 610 Function *F = FI.OuterLoop->getHeader()->getParent(); 611 LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n"); 612 { 613 using namespace ore; 614 OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(), 615 FI.InnerLoop->getHeader()); 616 OptimizationRemarkEmitter ORE(F); 617 Remark << "Flattened into outer loop"; 618 ORE.emit(Remark); 619 } 620 621 Value *NewTripCount = BinaryOperator::CreateMul( 622 FI.InnerTripCount, FI.OuterTripCount, "flatten.tripcount", 623 FI.OuterLoop->getLoopPreheader()->getTerminator()); 624 LLVM_DEBUG(dbgs() << "Created new trip count in preheader: "; 625 NewTripCount->dump()); 626 627 // Fix up PHI nodes that take values from the inner loop back-edge, which 628 // we are about to remove. 629 FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 630 631 // The old Phi will be optimised away later, but for now we can't leave 632 // leave it in an invalid state, so are updating them too. 633 for (PHINode *PHI : FI.InnerPHIsToTransform) 634 PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 635 636 // Modify the trip count of the outer loop to be the product of the two 637 // trip counts. 638 cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount); 639 640 // Replace the inner loop backedge with an unconditional branch to the exit. 641 BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock(); 642 BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock(); 643 InnerExitingBlock->getTerminator()->eraseFromParent(); 644 BranchInst::Create(InnerExitBlock, InnerExitingBlock); 645 DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader()); 646 647 // Replace all uses of the polynomial calculated from the two induction 648 // variables with the one new one. 649 IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator()); 650 for (Value *V : FI.LinearIVUses) { 651 Value *OuterValue = FI.OuterInductionPHI; 652 if (FI.Widened) 653 OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(), 654 "flatten.trunciv"); 655 656 LLVM_DEBUG(dbgs() << "Replacing: "; V->dump(); 657 dbgs() << "with: "; OuterValue->dump()); 658 V->replaceAllUsesWith(OuterValue); 659 } 660 661 // Tell LoopInfo, SCEV and the pass manager that the inner loop has been 662 // deleted, and any information that have about the outer loop invalidated. 663 SE->forgetLoop(FI.OuterLoop); 664 SE->forgetLoop(FI.InnerLoop); 665 LI->erase(FI.InnerLoop); 666 667 // Increment statistic value. 668 NumFlattened++; 669 670 return true; 671 } 672 673 static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 674 ScalarEvolution *SE, AssumptionCache *AC, 675 const TargetTransformInfo *TTI) { 676 if (!WidenIV) { 677 LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n"); 678 return false; 679 } 680 681 LLVM_DEBUG(dbgs() << "Try widening the IVs\n"); 682 Module *M = FI.InnerLoop->getHeader()->getParent()->getParent(); 683 auto &DL = M->getDataLayout(); 684 auto *InnerType = FI.InnerInductionPHI->getType(); 685 auto *OuterType = FI.OuterInductionPHI->getType(); 686 unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits(); 687 auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext()); 688 689 // If both induction types are less than the maximum legal integer width, 690 // promote both to the widest type available so we know calculating 691 // (OuterTripCount * InnerTripCount) as the new trip count is safe. 692 if (InnerType != OuterType || 693 InnerType->getScalarSizeInBits() >= MaxLegalSize || 694 MaxLegalType->getScalarSizeInBits() < InnerType->getScalarSizeInBits() * 2) { 695 LLVM_DEBUG(dbgs() << "Can't widen the IV\n"); 696 return false; 697 } 698 699 SCEVExpander Rewriter(*SE, DL, "loopflatten"); 700 SmallVector<WeakTrackingVH, 4> DeadInsts; 701 unsigned ElimExt = 0; 702 unsigned Widened = 0; 703 704 auto CreateWideIV = [&] (WideIVInfo WideIV, bool &Deleted) -> bool { 705 PHINode *WidePhi = createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts, 706 ElimExt, Widened, true /* HasGuards */, 707 true /* UsePostIncrementRanges */); 708 if (!WidePhi) 709 return false; 710 LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump()); 711 LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump()); 712 Deleted = RecursivelyDeleteDeadPHINode(WideIV.NarrowIV); 713 return true; 714 }; 715 716 bool Deleted; 717 if (!CreateWideIV({FI.InnerInductionPHI, MaxLegalType, false }, Deleted)) 718 return false; 719 // Add the narrow phi to list, so that it will be adjusted later when the 720 // the transformation is performed. 721 if (!Deleted) 722 FI.InnerPHIsToTransform.insert(FI.InnerInductionPHI); 723 724 if (!CreateWideIV({FI.OuterInductionPHI, MaxLegalType, false }, Deleted)) 725 return false; 726 727 assert(Widened && "Widened IV expected"); 728 FI.Widened = true; 729 730 // Save the old/narrow induction phis, which we need to ignore in CheckPHIs. 731 FI.NarrowInnerInductionPHI = FI.InnerInductionPHI; 732 FI.NarrowOuterInductionPHI = FI.OuterInductionPHI; 733 734 // After widening, rediscover all the loop components. 735 return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI); 736 } 737 738 static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 739 ScalarEvolution *SE, AssumptionCache *AC, 740 const TargetTransformInfo *TTI) { 741 LLVM_DEBUG( 742 dbgs() << "Loop flattening running on outer loop " 743 << FI.OuterLoop->getHeader()->getName() << " and inner loop " 744 << FI.InnerLoop->getHeader()->getName() << " in " 745 << FI.OuterLoop->getHeader()->getParent()->getName() << "\n"); 746 747 if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI)) 748 return false; 749 750 // Check if we can widen the induction variables to avoid overflow checks. 751 bool CanFlatten = CanWidenIV(FI, DT, LI, SE, AC, TTI); 752 753 // It can happen that after widening of the IV, flattening may not be 754 // possible/happening, e.g. when it is deemed unprofitable. So bail here if 755 // that is the case. 756 // TODO: IV widening without performing the actual flattening transformation 757 // is not ideal. While this codegen change should not matter much, it is an 758 // unnecessary change which is better to avoid. It's unlikely this happens 759 // often, because if it's unprofitibale after widening, it should be 760 // unprofitabe before widening as checked in the first round of checks. But 761 // 'RepeatedInstructionThreshold' is set to only 2, which can probably be 762 // relaxed. Because this is making a code change (the IV widening, but not 763 // the flattening), we return true here. 764 if (FI.Widened && !CanFlatten) 765 return true; 766 767 // If we have widened and can perform the transformation, do that here. 768 if (CanFlatten) 769 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI); 770 771 // Otherwise, if we haven't widened the IV, check if the new iteration 772 // variable might overflow. In this case, we need to version the loop, and 773 // select the original version at runtime if the iteration space is too 774 // large. 775 // TODO: We currently don't version the loop. 776 OverflowResult OR = checkOverflow(FI, DT, AC); 777 if (OR == OverflowResult::AlwaysOverflowsHigh || 778 OR == OverflowResult::AlwaysOverflowsLow) { 779 LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n"); 780 return false; 781 } else if (OR == OverflowResult::MayOverflow) { 782 LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n"); 783 return false; 784 } 785 786 LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n"); 787 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI); 788 } 789 790 bool Flatten(LoopNest &LN, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, 791 AssumptionCache *AC, TargetTransformInfo *TTI) { 792 bool Changed = false; 793 for (Loop *InnerLoop : LN.getLoops()) { 794 auto *OuterLoop = InnerLoop->getParentLoop(); 795 if (!OuterLoop) 796 continue; 797 FlattenInfo FI(OuterLoop, InnerLoop); 798 Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI); 799 } 800 return Changed; 801 } 802 803 PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM, 804 LoopStandardAnalysisResults &AR, 805 LPMUpdater &U) { 806 807 bool Changed = false; 808 809 // The loop flattening pass requires loops to be 810 // in simplified form, and also needs LCSSA. Running 811 // this pass will simplify all loops that contain inner loops, 812 // regardless of whether anything ends up being flattened. 813 Changed |= Flatten(LN, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI); 814 815 if (!Changed) 816 return PreservedAnalyses::all(); 817 818 return getLoopPassPreservedAnalyses(); 819 } 820 821 namespace { 822 class LoopFlattenLegacyPass : public FunctionPass { 823 public: 824 static char ID; // Pass ID, replacement for typeid 825 LoopFlattenLegacyPass() : FunctionPass(ID) { 826 initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry()); 827 } 828 829 // Possibly flatten loop L into its child. 830 bool runOnFunction(Function &F) override; 831 832 void getAnalysisUsage(AnalysisUsage &AU) const override { 833 getLoopAnalysisUsage(AU); 834 AU.addRequired<TargetTransformInfoWrapperPass>(); 835 AU.addPreserved<TargetTransformInfoWrapperPass>(); 836 AU.addRequired<AssumptionCacheTracker>(); 837 AU.addPreserved<AssumptionCacheTracker>(); 838 } 839 }; 840 } // namespace 841 842 char LoopFlattenLegacyPass::ID = 0; 843 INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops", 844 false, false) 845 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 846 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 847 INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops", 848 false, false) 849 850 FunctionPass *llvm::createLoopFlattenPass() { return new LoopFlattenLegacyPass(); } 851 852 bool LoopFlattenLegacyPass::runOnFunction(Function &F) { 853 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 854 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 855 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 856 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 857 auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>(); 858 auto *TTI = &TTIP.getTTI(F); 859 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 860 bool Changed = false; 861 for (Loop *L : *LI) { 862 auto LN = LoopNest::getLoopNest(*L, *SE); 863 Changed |= Flatten(*LN, DT, LI, SE, AC, TTI); 864 } 865 return Changed; 866 } 867