xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopFlatten.cpp (revision b8aba76a4eab8e39008e243ebc2a3d0b56c1bd0c)
1 //===- LoopFlatten.cpp - Loop flattening pass------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass flattens pairs nested loops into a single loop.
10 //
11 // The intention is to optimise loop nests like this, which together access an
12 // array linearly:
13 //   for (int i = 0; i < N; ++i)
14 //     for (int j = 0; j < M; ++j)
15 //       f(A[i*M+j]);
16 // into one loop:
17 //   for (int i = 0; i < (N*M); ++i)
18 //     f(A[i]);
19 //
20 // It can also flatten loops where the induction variables are not used in the
21 // loop. This is only worth doing if the induction variables are only used in an
22 // expression like i*M+j. If they had any other uses, we would have to insert a
23 // div/mod to reconstruct the original values, so this wouldn't be profitable.
24 //
25 // We also need to prove that N*M will not overflow.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/Transforms/Scalar/LoopFlatten.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/ScalarEvolution.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/IRBuilder.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/PatternMatch.h"
41 #include "llvm/IR/Verifier.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Scalar.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/Transforms/Utils/LoopUtils.h"
49 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
50 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
51 
52 #define DEBUG_TYPE "loop-flatten"
53 
54 using namespace llvm;
55 using namespace llvm::PatternMatch;
56 
57 static cl::opt<unsigned> RepeatedInstructionThreshold(
58     "loop-flatten-cost-threshold", cl::Hidden, cl::init(2),
59     cl::desc("Limit on the cost of instructions that can be repeated due to "
60              "loop flattening"));
61 
62 static cl::opt<bool>
63     AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden,
64                      cl::init(false),
65                      cl::desc("Assume that the product of the two iteration "
66                               "limits will never overflow"));
67 
68 static cl::opt<bool>
69     WidenIV("loop-flatten-widen-iv", cl::Hidden,
70             cl::init(true),
71             cl::desc("Widen the loop induction variables, if possible, so "
72                      "overflow checks won't reject flattening"));
73 
74 struct FlattenInfo {
75   Loop *OuterLoop = nullptr;
76   Loop *InnerLoop = nullptr;
77   PHINode *InnerInductionPHI = nullptr;
78   PHINode *OuterInductionPHI = nullptr;
79   Value *InnerLimit = nullptr;
80   Value *OuterLimit = nullptr;
81   BinaryOperator *InnerIncrement = nullptr;
82   BinaryOperator *OuterIncrement = nullptr;
83   BranchInst *InnerBranch = nullptr;
84   BranchInst *OuterBranch = nullptr;
85   SmallPtrSet<Value *, 4> LinearIVUses;
86   SmallPtrSet<PHINode *, 4> InnerPHIsToTransform;
87 
88   // Whether this holds the flatten info before or after widening.
89   bool Widened = false;
90 
91   FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL) {};
92 };
93 
94 // Finds the induction variable, increment and limit for a simple loop that we
95 // can flatten.
96 static bool findLoopComponents(
97     Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions,
98     PHINode *&InductionPHI, Value *&Limit, BinaryOperator *&Increment,
99     BranchInst *&BackBranch, ScalarEvolution *SE) {
100   LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n");
101 
102   if (!L->isLoopSimplifyForm()) {
103     LLVM_DEBUG(dbgs() << "Loop is not in normal form\n");
104     return false;
105   }
106 
107   // There must be exactly one exiting block, and it must be the same at the
108   // latch.
109   BasicBlock *Latch = L->getLoopLatch();
110   if (L->getExitingBlock() != Latch) {
111     LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n");
112     return false;
113   }
114   // Latch block must end in a conditional branch.
115   BackBranch = dyn_cast<BranchInst>(Latch->getTerminator());
116   if (!BackBranch || !BackBranch->isConditional()) {
117     LLVM_DEBUG(dbgs() << "Could not find back-branch\n");
118     return false;
119   }
120   IterationInstructions.insert(BackBranch);
121   LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump());
122   bool ContinueOnTrue = L->contains(BackBranch->getSuccessor(0));
123 
124   // Find the induction PHI. If there is no induction PHI, we can't do the
125   // transformation. TODO: could other variables trigger this? Do we have to
126   // search for the best one?
127   InductionPHI = nullptr;
128   for (PHINode &PHI : L->getHeader()->phis()) {
129     InductionDescriptor ID;
130     if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) {
131       InductionPHI = &PHI;
132       LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump());
133       break;
134     }
135   }
136   if (!InductionPHI) {
137     LLVM_DEBUG(dbgs() << "Could not find induction PHI\n");
138     return false;
139   }
140 
141   auto IsValidPredicate = [&](ICmpInst::Predicate Pred) {
142     if (ContinueOnTrue)
143       return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT;
144     else
145       return Pred == CmpInst::ICMP_EQ;
146   };
147 
148   // Find Compare and make sure it is valid
149   ICmpInst *Compare = dyn_cast<ICmpInst>(BackBranch->getCondition());
150   if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) ||
151       Compare->hasNUsesOrMore(2)) {
152     LLVM_DEBUG(dbgs() << "Could not find valid comparison\n");
153     return false;
154   }
155   IterationInstructions.insert(Compare);
156   LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump());
157 
158   // Find increment and limit from the compare
159   Increment = nullptr;
160   if (match(Compare->getOperand(0),
161             m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) {
162     Increment = dyn_cast<BinaryOperator>(Compare->getOperand(0));
163     Limit = Compare->getOperand(1);
164   } else if (Compare->getUnsignedPredicate() == CmpInst::ICMP_NE &&
165              match(Compare->getOperand(1),
166                    m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) {
167     Increment = dyn_cast<BinaryOperator>(Compare->getOperand(1));
168     Limit = Compare->getOperand(0);
169   }
170   if (!Increment || Increment->hasNUsesOrMore(3)) {
171     LLVM_DEBUG(dbgs() << "Cound not find valid increment\n");
172     return false;
173   }
174   IterationInstructions.insert(Increment);
175   LLVM_DEBUG(dbgs() << "Found increment: "; Increment->dump());
176   LLVM_DEBUG(dbgs() << "Found limit: "; Limit->dump());
177 
178   assert(InductionPHI->getNumIncomingValues() == 2);
179 
180   if (InductionPHI->getIncomingValueForBlock(Latch) != Increment) {
181     LLVM_DEBUG(
182         dbgs() << "Incoming value from latch is not the increment inst\n");
183     return false;
184   }
185 
186   auto *CI = dyn_cast<ConstantInt>(
187       InductionPHI->getIncomingValueForBlock(L->getLoopPreheader()));
188   if (!CI || !CI->isZero()) {
189     LLVM_DEBUG(dbgs() << "PHI value is not zero: "; CI->dump());
190     return false;
191   }
192 
193   LLVM_DEBUG(dbgs() << "Successfully found all loop components\n");
194   return true;
195 }
196 
197 static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) {
198   // All PHIs in the inner and outer headers must either be:
199   // - The induction PHI, which we are going to rewrite as one induction in
200   //   the new loop. This is already checked by findLoopComponents.
201   // - An outer header PHI with all incoming values from outside the loop.
202   //   LoopSimplify guarantees we have a pre-header, so we don't need to
203   //   worry about that here.
204   // - Pairs of PHIs in the inner and outer headers, which implement a
205   //   loop-carried dependency that will still be valid in the new loop. To
206   //   be valid, this variable must be modified only in the inner loop.
207 
208   // The set of PHI nodes in the outer loop header that we know will still be
209   // valid after the transformation. These will not need to be modified (with
210   // the exception of the induction variable), but we do need to check that
211   // there are no unsafe PHI nodes.
212   SmallPtrSet<PHINode *, 4> SafeOuterPHIs;
213   SafeOuterPHIs.insert(FI.OuterInductionPHI);
214 
215   // Check that all PHI nodes in the inner loop header match one of the valid
216   // patterns.
217   for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) {
218     // The induction PHIs break these rules, and that's OK because we treat
219     // them specially when doing the transformation.
220     if (&InnerPHI == FI.InnerInductionPHI)
221       continue;
222 
223     // Each inner loop PHI node must have two incoming values/blocks - one
224     // from the pre-header, and one from the latch.
225     assert(InnerPHI.getNumIncomingValues() == 2);
226     Value *PreHeaderValue =
227         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader());
228     Value *LatchValue =
229         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch());
230 
231     // The incoming value from the outer loop must be the PHI node in the
232     // outer loop header, with no modifications made in the top of the outer
233     // loop.
234     PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue);
235     if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) {
236       LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n");
237       return false;
238     }
239 
240     // The other incoming value must come from the inner loop, without any
241     // modifications in the tail end of the outer loop. We are in LCSSA form,
242     // so this will actually be a PHI in the inner loop's exit block, which
243     // only uses values from inside the inner loop.
244     PHINode *LCSSAPHI = dyn_cast<PHINode>(
245         OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch()));
246     if (!LCSSAPHI) {
247       LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n");
248       return false;
249     }
250 
251     // The value used by the LCSSA PHI must be the same one that the inner
252     // loop's PHI uses.
253     if (LCSSAPHI->hasConstantValue() != LatchValue) {
254       LLVM_DEBUG(
255           dbgs() << "LCSSA PHI incoming value does not match latch value\n");
256       return false;
257     }
258 
259     LLVM_DEBUG(dbgs() << "PHI pair is safe:\n");
260     LLVM_DEBUG(dbgs() << "  Inner: "; InnerPHI.dump());
261     LLVM_DEBUG(dbgs() << "  Outer: "; OuterPHI->dump());
262     SafeOuterPHIs.insert(OuterPHI);
263     FI.InnerPHIsToTransform.insert(&InnerPHI);
264   }
265 
266   for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) {
267     if (!SafeOuterPHIs.count(&OuterPHI)) {
268       LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump());
269       return false;
270     }
271   }
272 
273   LLVM_DEBUG(dbgs() << "checkPHIs: OK\n");
274   return true;
275 }
276 
277 static bool
278 checkOuterLoopInsts(FlattenInfo &FI,
279                     SmallPtrSetImpl<Instruction *> &IterationInstructions,
280                     const TargetTransformInfo *TTI) {
281   // Check for instructions in the outer but not inner loop. If any of these
282   // have side-effects then this transformation is not legal, and if there is
283   // a significant amount of code here which can't be optimised out that it's
284   // not profitable (as these instructions would get executed for each
285   // iteration of the inner loop).
286   InstructionCost RepeatedInstrCost = 0;
287   for (auto *B : FI.OuterLoop->getBlocks()) {
288     if (FI.InnerLoop->contains(B))
289       continue;
290 
291     for (auto &I : *B) {
292       if (!isa<PHINode>(&I) && !I.isTerminator() &&
293           !isSafeToSpeculativelyExecute(&I)) {
294         LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have "
295                              "side effects: ";
296                    I.dump());
297         return false;
298       }
299       // The execution count of the outer loop's iteration instructions
300       // (increment, compare and branch) will be increased, but the
301       // equivalent instructions will be removed from the inner loop, so
302       // they make a net difference of zero.
303       if (IterationInstructions.count(&I))
304         continue;
305       // The uncoditional branch to the inner loop's header will turn into
306       // a fall-through, so adds no cost.
307       BranchInst *Br = dyn_cast<BranchInst>(&I);
308       if (Br && Br->isUnconditional() &&
309           Br->getSuccessor(0) == FI.InnerLoop->getHeader())
310         continue;
311       // Multiplies of the outer iteration variable and inner iteration
312       // count will be optimised out.
313       if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI),
314                             m_Specific(FI.InnerLimit))))
315         continue;
316       InstructionCost Cost =
317           TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
318       LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump());
319       RepeatedInstrCost += Cost;
320     }
321   }
322 
323   LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: "
324                     << RepeatedInstrCost << "\n");
325   // Bail out if flattening the loops would cause instructions in the outer
326   // loop but not in the inner loop to be executed extra times.
327   if (RepeatedInstrCost > RepeatedInstructionThreshold) {
328     LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n");
329     return false;
330   }
331 
332   LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n");
333   return true;
334 }
335 
336 static bool checkIVUsers(FlattenInfo &FI) {
337   // We require all uses of both induction variables to match this pattern:
338   //
339   //   (OuterPHI * InnerLimit) + InnerPHI
340   //
341   // Any uses of the induction variables not matching that pattern would
342   // require a div/mod to reconstruct in the flattened loop, so the
343   // transformation wouldn't be profitable.
344 
345   Value *InnerLimit = FI.InnerLimit;
346   if (FI.Widened &&
347       (isa<SExtInst>(InnerLimit) || isa<ZExtInst>(InnerLimit)))
348     InnerLimit = cast<Instruction>(InnerLimit)->getOperand(0);
349 
350   // Check that all uses of the inner loop's induction variable match the
351   // expected pattern, recording the uses of the outer IV.
352   SmallPtrSet<Value *, 4> ValidOuterPHIUses;
353   for (User *U : FI.InnerInductionPHI->users()) {
354     if (U == FI.InnerIncrement)
355       continue;
356 
357     // After widening the IVs, a trunc instruction might have been introduced, so
358     // look through truncs.
359     if (isa<TruncInst>(U)) {
360       if (!U->hasOneUse())
361         return false;
362       U = *U->user_begin();
363     }
364 
365     LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump());
366 
367     Value *MatchedMul;
368     Value *MatchedItCount;
369     bool IsAdd = match(U, m_c_Add(m_Specific(FI.InnerInductionPHI),
370                                   m_Value(MatchedMul))) &&
371                  match(MatchedMul, m_c_Mul(m_Specific(FI.OuterInductionPHI),
372                                            m_Value(MatchedItCount)));
373 
374     // Matches the same pattern as above, except it also looks for truncs
375     // on the phi, which can be the result of widening the induction variables.
376     bool IsAddTrunc = match(U, m_c_Add(m_Trunc(m_Specific(FI.InnerInductionPHI)),
377                                        m_Value(MatchedMul))) &&
378                       match(MatchedMul,
379                             m_c_Mul(m_Trunc(m_Specific(FI.OuterInductionPHI)),
380                             m_Value(MatchedItCount)));
381 
382     if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerLimit) {
383       LLVM_DEBUG(dbgs() << "Use is optimisable\n");
384       ValidOuterPHIUses.insert(MatchedMul);
385       FI.LinearIVUses.insert(U);
386     } else {
387       LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
388       return false;
389     }
390   }
391 
392   // Check that there are no uses of the outer IV other than the ones found
393   // as part of the pattern above.
394   for (User *U : FI.OuterInductionPHI->users()) {
395     if (U == FI.OuterIncrement)
396       continue;
397 
398     auto IsValidOuterPHIUses = [&] (User *U) -> bool {
399       LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump());
400       if (!ValidOuterPHIUses.count(U)) {
401         LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
402         return false;
403       }
404       LLVM_DEBUG(dbgs() << "Use is optimisable\n");
405       return true;
406     };
407 
408     if (auto *V = dyn_cast<TruncInst>(U)) {
409       for (auto *K : V->users()) {
410         if (!IsValidOuterPHIUses(K))
411           return false;
412       }
413       continue;
414     }
415 
416     if (!IsValidOuterPHIUses(U))
417       return false;
418   }
419 
420   LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n";
421              dbgs() << "Found " << FI.LinearIVUses.size()
422                     << " value(s) that can be replaced:\n";
423              for (Value *V : FI.LinearIVUses) {
424                dbgs() << "  ";
425                V->dump();
426              });
427   return true;
428 }
429 
430 // Return an OverflowResult dependant on if overflow of the multiplication of
431 // InnerLimit and OuterLimit can be assumed not to happen.
432 static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT,
433                                     AssumptionCache *AC) {
434   Function *F = FI.OuterLoop->getHeader()->getParent();
435   const DataLayout &DL = F->getParent()->getDataLayout();
436 
437   // For debugging/testing.
438   if (AssumeNoOverflow)
439     return OverflowResult::NeverOverflows;
440 
441   // Check if the multiply could not overflow due to known ranges of the
442   // input values.
443   OverflowResult OR = computeOverflowForUnsignedMul(
444       FI.InnerLimit, FI.OuterLimit, DL, AC,
445       FI.OuterLoop->getLoopPreheader()->getTerminator(), DT);
446   if (OR != OverflowResult::MayOverflow)
447     return OR;
448 
449   for (Value *V : FI.LinearIVUses) {
450     for (Value *U : V->users()) {
451       if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
452         // The IV is used as the operand of a GEP, and the IV is at least as
453         // wide as the address space of the GEP. In this case, the GEP would
454         // wrap around the address space before the IV increment wraps, which
455         // would be UB.
456         if (GEP->isInBounds() &&
457             V->getType()->getIntegerBitWidth() >=
458                 DL.getPointerTypeSizeInBits(GEP->getType())) {
459           LLVM_DEBUG(
460               dbgs() << "use of linear IV would be UB if overflow occurred: ";
461               GEP->dump());
462           return OverflowResult::NeverOverflows;
463         }
464       }
465     }
466   }
467 
468   return OverflowResult::MayOverflow;
469 }
470 
471 static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
472                                ScalarEvolution *SE, AssumptionCache *AC,
473                                const TargetTransformInfo *TTI) {
474   SmallPtrSet<Instruction *, 8> IterationInstructions;
475   if (!findLoopComponents(FI.InnerLoop, IterationInstructions, FI.InnerInductionPHI,
476                           FI.InnerLimit, FI.InnerIncrement, FI.InnerBranch, SE))
477     return false;
478   if (!findLoopComponents(FI.OuterLoop, IterationInstructions, FI.OuterInductionPHI,
479                           FI.OuterLimit, FI.OuterIncrement, FI.OuterBranch, SE))
480     return false;
481 
482   // Both of the loop limit values must be invariant in the outer loop
483   // (non-instructions are all inherently invariant).
484   if (!FI.OuterLoop->isLoopInvariant(FI.InnerLimit)) {
485     LLVM_DEBUG(dbgs() << "inner loop limit not invariant\n");
486     return false;
487   }
488   if (!FI.OuterLoop->isLoopInvariant(FI.OuterLimit)) {
489     LLVM_DEBUG(dbgs() << "outer loop limit not invariant\n");
490     return false;
491   }
492 
493   if (!checkPHIs(FI, TTI))
494     return false;
495 
496   // FIXME: it should be possible to handle different types correctly.
497   if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType())
498     return false;
499 
500   if (!checkOuterLoopInsts(FI, IterationInstructions, TTI))
501     return false;
502 
503   // Find the values in the loop that can be replaced with the linearized
504   // induction variable, and check that there are no other uses of the inner
505   // or outer induction variable. If there were, we could still do this
506   // transformation, but we'd have to insert a div/mod to calculate the
507   // original IVs, so it wouldn't be profitable.
508   if (!checkIVUsers(FI))
509     return false;
510 
511   LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n");
512   return true;
513 }
514 
515 static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
516                               ScalarEvolution *SE, AssumptionCache *AC,
517                               const TargetTransformInfo *TTI) {
518   Function *F = FI.OuterLoop->getHeader()->getParent();
519   LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n");
520   {
521     using namespace ore;
522     OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(),
523                               FI.InnerLoop->getHeader());
524     OptimizationRemarkEmitter ORE(F);
525     Remark << "Flattened into outer loop";
526     ORE.emit(Remark);
527   }
528 
529   Value *NewTripCount =
530       BinaryOperator::CreateMul(FI.InnerLimit, FI.OuterLimit, "flatten.tripcount",
531                                 FI.OuterLoop->getLoopPreheader()->getTerminator());
532   LLVM_DEBUG(dbgs() << "Created new trip count in preheader: ";
533              NewTripCount->dump());
534 
535   // Fix up PHI nodes that take values from the inner loop back-edge, which
536   // we are about to remove.
537   FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
538 
539   // The old Phi will be optimised away later, but for now we can't leave
540   // leave it in an invalid state, so are updating them too.
541   for (PHINode *PHI : FI.InnerPHIsToTransform)
542     PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
543 
544   // Modify the trip count of the outer loop to be the product of the two
545   // trip counts.
546   cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount);
547 
548   // Replace the inner loop backedge with an unconditional branch to the exit.
549   BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock();
550   BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock();
551   InnerExitingBlock->getTerminator()->eraseFromParent();
552   BranchInst::Create(InnerExitBlock, InnerExitingBlock);
553   DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
554 
555   // Replace all uses of the polynomial calculated from the two induction
556   // variables with the one new one.
557   IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator());
558   for (Value *V : FI.LinearIVUses) {
559     Value *OuterValue = FI.OuterInductionPHI;
560     if (FI.Widened)
561       OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(),
562                                        "flatten.trunciv");
563 
564     LLVM_DEBUG(dbgs() << "Replacing: "; V->dump();
565                dbgs() << "with:      "; OuterValue->dump());
566     V->replaceAllUsesWith(OuterValue);
567   }
568 
569   // Tell LoopInfo, SCEV and the pass manager that the inner loop has been
570   // deleted, and any information that have about the outer loop invalidated.
571   SE->forgetLoop(FI.OuterLoop);
572   SE->forgetLoop(FI.InnerLoop);
573   LI->erase(FI.InnerLoop);
574   return true;
575 }
576 
577 static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
578                        ScalarEvolution *SE, AssumptionCache *AC,
579                        const TargetTransformInfo *TTI) {
580   if (!WidenIV) {
581     LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n");
582     return false;
583   }
584 
585   LLVM_DEBUG(dbgs() << "Try widening the IVs\n");
586   Module *M = FI.InnerLoop->getHeader()->getParent()->getParent();
587   auto &DL = M->getDataLayout();
588   auto *InnerType = FI.InnerInductionPHI->getType();
589   auto *OuterType = FI.OuterInductionPHI->getType();
590   unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits();
591   auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext());
592 
593   // If both induction types are less than the maximum legal integer width,
594   // promote both to the widest type available so we know calculating
595   // (OuterLimit * InnerLimit) as the new trip count is safe.
596   if (InnerType != OuterType ||
597       InnerType->getScalarSizeInBits() >= MaxLegalSize ||
598       MaxLegalType->getScalarSizeInBits() < InnerType->getScalarSizeInBits() * 2) {
599     LLVM_DEBUG(dbgs() << "Can't widen the IV\n");
600     return false;
601   }
602 
603   SCEVExpander Rewriter(*SE, DL, "loopflatten");
604   SmallVector<WideIVInfo, 2> WideIVs;
605   SmallVector<WeakTrackingVH, 4> DeadInsts;
606   WideIVs.push_back( {FI.InnerInductionPHI, MaxLegalType, false });
607   WideIVs.push_back( {FI.OuterInductionPHI, MaxLegalType, false });
608   unsigned ElimExt = 0;
609   unsigned Widened = 0;
610 
611   for (const auto &WideIV : WideIVs) {
612     PHINode *WidePhi = createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts,
613                                     ElimExt, Widened, true /* HasGuards */,
614                                     true /* UsePostIncrementRanges */);
615     if (!WidePhi)
616       return false;
617     LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump());
618     LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump());
619     RecursivelyDeleteDeadPHINode(WideIV.NarrowIV);
620   }
621   // After widening, rediscover all the loop components.
622   assert(Widened && "Widened IV expected");
623   FI.Widened = true;
624   return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
625 }
626 
627 static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
628                             ScalarEvolution *SE, AssumptionCache *AC,
629                             const TargetTransformInfo *TTI) {
630   LLVM_DEBUG(
631       dbgs() << "Loop flattening running on outer loop "
632              << FI.OuterLoop->getHeader()->getName() << " and inner loop "
633              << FI.InnerLoop->getHeader()->getName() << " in "
634              << FI.OuterLoop->getHeader()->getParent()->getName() << "\n");
635 
636   if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI))
637     return false;
638 
639   // Check if we can widen the induction variables to avoid overflow checks.
640   if (CanWidenIV(FI, DT, LI, SE, AC, TTI))
641     return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
642 
643   // Check if the new iteration variable might overflow. In this case, we
644   // need to version the loop, and select the original version at runtime if
645   // the iteration space is too large.
646   // TODO: We currently don't version the loop.
647   OverflowResult OR = checkOverflow(FI, DT, AC);
648   if (OR == OverflowResult::AlwaysOverflowsHigh ||
649       OR == OverflowResult::AlwaysOverflowsLow) {
650     LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n");
651     return false;
652   } else if (OR == OverflowResult::MayOverflow) {
653     LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n");
654     return false;
655   }
656 
657   LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n");
658   return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
659 }
660 
661 bool Flatten(DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE,
662              AssumptionCache *AC, TargetTransformInfo *TTI) {
663   bool Changed = false;
664   for (auto *InnerLoop : LI->getLoopsInPreorder()) {
665     auto *OuterLoop = InnerLoop->getParentLoop();
666     if (!OuterLoop)
667       continue;
668     FlattenInfo FI(OuterLoop, InnerLoop);
669     Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI);
670   }
671   return Changed;
672 }
673 
674 PreservedAnalyses LoopFlattenPass::run(Function &F,
675                                        FunctionAnalysisManager &AM) {
676   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
677   auto *LI = &AM.getResult<LoopAnalysis>(F);
678   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
679   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
680   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
681 
682   if (!Flatten(DT, LI, SE, AC, TTI))
683     return PreservedAnalyses::all();
684 
685   return PreservedAnalyses::none();
686 }
687 
688 namespace {
689 class LoopFlattenLegacyPass : public FunctionPass {
690 public:
691   static char ID; // Pass ID, replacement for typeid
692   LoopFlattenLegacyPass() : FunctionPass(ID) {
693     initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry());
694   }
695 
696   // Possibly flatten loop L into its child.
697   bool runOnFunction(Function &F) override;
698 
699   void getAnalysisUsage(AnalysisUsage &AU) const override {
700     getLoopAnalysisUsage(AU);
701     AU.addRequired<TargetTransformInfoWrapperPass>();
702     AU.addPreserved<TargetTransformInfoWrapperPass>();
703     AU.addRequired<AssumptionCacheTracker>();
704     AU.addPreserved<AssumptionCacheTracker>();
705   }
706 };
707 } // namespace
708 
709 char LoopFlattenLegacyPass::ID = 0;
710 INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
711                       false, false)
712 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
713 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
714 INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
715                     false, false)
716 
717 FunctionPass *llvm::createLoopFlattenPass() { return new LoopFlattenLegacyPass(); }
718 
719 bool LoopFlattenLegacyPass::runOnFunction(Function &F) {
720   ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
721   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
722   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
723   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
724   auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>();
725   auto *TTI = &TTIP.getTTI(F);
726   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
727   return Flatten(DT, LI, SE, AC, TTI);
728 }
729