1 //===- LoopFlatten.cpp - Loop flattening pass------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass flattens pairs nested loops into a single loop. 10 // 11 // The intention is to optimise loop nests like this, which together access an 12 // array linearly: 13 // for (int i = 0; i < N; ++i) 14 // for (int j = 0; j < M; ++j) 15 // f(A[i*M+j]); 16 // into one loop: 17 // for (int i = 0; i < (N*M); ++i) 18 // f(A[i]); 19 // 20 // It can also flatten loops where the induction variables are not used in the 21 // loop. This is only worth doing if the induction variables are only used in an 22 // expression like i*M+j. If they had any other uses, we would have to insert a 23 // div/mod to reconstruct the original values, so this wouldn't be profitable. 24 // 25 // We also need to prove that N*M will not overflow. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/Transforms/Scalar/LoopFlatten.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/ScalarEvolution.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/IR/Verifier.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/Transforms/Utils/LoopUtils.h" 49 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 50 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 51 52 #define DEBUG_TYPE "loop-flatten" 53 54 using namespace llvm; 55 using namespace llvm::PatternMatch; 56 57 static cl::opt<unsigned> RepeatedInstructionThreshold( 58 "loop-flatten-cost-threshold", cl::Hidden, cl::init(2), 59 cl::desc("Limit on the cost of instructions that can be repeated due to " 60 "loop flattening")); 61 62 static cl::opt<bool> 63 AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden, 64 cl::init(false), 65 cl::desc("Assume that the product of the two iteration " 66 "limits will never overflow")); 67 68 static cl::opt<bool> 69 WidenIV("loop-flatten-widen-iv", cl::Hidden, 70 cl::init(true), 71 cl::desc("Widen the loop induction variables, if possible, so " 72 "overflow checks won't reject flattening")); 73 74 struct FlattenInfo { 75 Loop *OuterLoop = nullptr; 76 Loop *InnerLoop = nullptr; 77 PHINode *InnerInductionPHI = nullptr; 78 PHINode *OuterInductionPHI = nullptr; 79 Value *InnerLimit = nullptr; 80 Value *OuterLimit = nullptr; 81 BinaryOperator *InnerIncrement = nullptr; 82 BinaryOperator *OuterIncrement = nullptr; 83 BranchInst *InnerBranch = nullptr; 84 BranchInst *OuterBranch = nullptr; 85 SmallPtrSet<Value *, 4> LinearIVUses; 86 SmallPtrSet<PHINode *, 4> InnerPHIsToTransform; 87 88 // Whether this holds the flatten info before or after widening. 89 bool Widened = false; 90 91 FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL) {}; 92 }; 93 94 // Finds the induction variable, increment and limit for a simple loop that we 95 // can flatten. 96 static bool findLoopComponents( 97 Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions, 98 PHINode *&InductionPHI, Value *&Limit, BinaryOperator *&Increment, 99 BranchInst *&BackBranch, ScalarEvolution *SE) { 100 LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n"); 101 102 if (!L->isLoopSimplifyForm()) { 103 LLVM_DEBUG(dbgs() << "Loop is not in normal form\n"); 104 return false; 105 } 106 107 // There must be exactly one exiting block, and it must be the same at the 108 // latch. 109 BasicBlock *Latch = L->getLoopLatch(); 110 if (L->getExitingBlock() != Latch) { 111 LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n"); 112 return false; 113 } 114 // Latch block must end in a conditional branch. 115 BackBranch = dyn_cast<BranchInst>(Latch->getTerminator()); 116 if (!BackBranch || !BackBranch->isConditional()) { 117 LLVM_DEBUG(dbgs() << "Could not find back-branch\n"); 118 return false; 119 } 120 IterationInstructions.insert(BackBranch); 121 LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump()); 122 bool ContinueOnTrue = L->contains(BackBranch->getSuccessor(0)); 123 124 // Find the induction PHI. If there is no induction PHI, we can't do the 125 // transformation. TODO: could other variables trigger this? Do we have to 126 // search for the best one? 127 InductionPHI = nullptr; 128 for (PHINode &PHI : L->getHeader()->phis()) { 129 InductionDescriptor ID; 130 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) { 131 InductionPHI = &PHI; 132 LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump()); 133 break; 134 } 135 } 136 if (!InductionPHI) { 137 LLVM_DEBUG(dbgs() << "Could not find induction PHI\n"); 138 return false; 139 } 140 141 auto IsValidPredicate = [&](ICmpInst::Predicate Pred) { 142 if (ContinueOnTrue) 143 return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT; 144 else 145 return Pred == CmpInst::ICMP_EQ; 146 }; 147 148 // Find Compare and make sure it is valid 149 ICmpInst *Compare = dyn_cast<ICmpInst>(BackBranch->getCondition()); 150 if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) || 151 Compare->hasNUsesOrMore(2)) { 152 LLVM_DEBUG(dbgs() << "Could not find valid comparison\n"); 153 return false; 154 } 155 IterationInstructions.insert(Compare); 156 LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump()); 157 158 // Find increment and limit from the compare 159 Increment = nullptr; 160 if (match(Compare->getOperand(0), 161 m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) { 162 Increment = dyn_cast<BinaryOperator>(Compare->getOperand(0)); 163 Limit = Compare->getOperand(1); 164 } else if (Compare->getUnsignedPredicate() == CmpInst::ICMP_NE && 165 match(Compare->getOperand(1), 166 m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) { 167 Increment = dyn_cast<BinaryOperator>(Compare->getOperand(1)); 168 Limit = Compare->getOperand(0); 169 } 170 if (!Increment || Increment->hasNUsesOrMore(3)) { 171 LLVM_DEBUG(dbgs() << "Cound not find valid increment\n"); 172 return false; 173 } 174 IterationInstructions.insert(Increment); 175 LLVM_DEBUG(dbgs() << "Found increment: "; Increment->dump()); 176 LLVM_DEBUG(dbgs() << "Found limit: "; Limit->dump()); 177 178 assert(InductionPHI->getNumIncomingValues() == 2); 179 180 if (InductionPHI->getIncomingValueForBlock(Latch) != Increment) { 181 LLVM_DEBUG( 182 dbgs() << "Incoming value from latch is not the increment inst\n"); 183 return false; 184 } 185 186 auto *CI = dyn_cast<ConstantInt>( 187 InductionPHI->getIncomingValueForBlock(L->getLoopPreheader())); 188 if (!CI || !CI->isZero()) { 189 LLVM_DEBUG(dbgs() << "PHI value is not zero: "; CI->dump()); 190 return false; 191 } 192 193 LLVM_DEBUG(dbgs() << "Successfully found all loop components\n"); 194 return true; 195 } 196 197 static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) { 198 // All PHIs in the inner and outer headers must either be: 199 // - The induction PHI, which we are going to rewrite as one induction in 200 // the new loop. This is already checked by findLoopComponents. 201 // - An outer header PHI with all incoming values from outside the loop. 202 // LoopSimplify guarantees we have a pre-header, so we don't need to 203 // worry about that here. 204 // - Pairs of PHIs in the inner and outer headers, which implement a 205 // loop-carried dependency that will still be valid in the new loop. To 206 // be valid, this variable must be modified only in the inner loop. 207 208 // The set of PHI nodes in the outer loop header that we know will still be 209 // valid after the transformation. These will not need to be modified (with 210 // the exception of the induction variable), but we do need to check that 211 // there are no unsafe PHI nodes. 212 SmallPtrSet<PHINode *, 4> SafeOuterPHIs; 213 SafeOuterPHIs.insert(FI.OuterInductionPHI); 214 215 // Check that all PHI nodes in the inner loop header match one of the valid 216 // patterns. 217 for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) { 218 // The induction PHIs break these rules, and that's OK because we treat 219 // them specially when doing the transformation. 220 if (&InnerPHI == FI.InnerInductionPHI) 221 continue; 222 223 // Each inner loop PHI node must have two incoming values/blocks - one 224 // from the pre-header, and one from the latch. 225 assert(InnerPHI.getNumIncomingValues() == 2); 226 Value *PreHeaderValue = 227 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader()); 228 Value *LatchValue = 229 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch()); 230 231 // The incoming value from the outer loop must be the PHI node in the 232 // outer loop header, with no modifications made in the top of the outer 233 // loop. 234 PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue); 235 if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) { 236 LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n"); 237 return false; 238 } 239 240 // The other incoming value must come from the inner loop, without any 241 // modifications in the tail end of the outer loop. We are in LCSSA form, 242 // so this will actually be a PHI in the inner loop's exit block, which 243 // only uses values from inside the inner loop. 244 PHINode *LCSSAPHI = dyn_cast<PHINode>( 245 OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch())); 246 if (!LCSSAPHI) { 247 LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n"); 248 return false; 249 } 250 251 // The value used by the LCSSA PHI must be the same one that the inner 252 // loop's PHI uses. 253 if (LCSSAPHI->hasConstantValue() != LatchValue) { 254 LLVM_DEBUG( 255 dbgs() << "LCSSA PHI incoming value does not match latch value\n"); 256 return false; 257 } 258 259 LLVM_DEBUG(dbgs() << "PHI pair is safe:\n"); 260 LLVM_DEBUG(dbgs() << " Inner: "; InnerPHI.dump()); 261 LLVM_DEBUG(dbgs() << " Outer: "; OuterPHI->dump()); 262 SafeOuterPHIs.insert(OuterPHI); 263 FI.InnerPHIsToTransform.insert(&InnerPHI); 264 } 265 266 for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) { 267 if (!SafeOuterPHIs.count(&OuterPHI)) { 268 LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump()); 269 return false; 270 } 271 } 272 273 LLVM_DEBUG(dbgs() << "checkPHIs: OK\n"); 274 return true; 275 } 276 277 static bool 278 checkOuterLoopInsts(FlattenInfo &FI, 279 SmallPtrSetImpl<Instruction *> &IterationInstructions, 280 const TargetTransformInfo *TTI) { 281 // Check for instructions in the outer but not inner loop. If any of these 282 // have side-effects then this transformation is not legal, and if there is 283 // a significant amount of code here which can't be optimised out that it's 284 // not profitable (as these instructions would get executed for each 285 // iteration of the inner loop). 286 InstructionCost RepeatedInstrCost = 0; 287 for (auto *B : FI.OuterLoop->getBlocks()) { 288 if (FI.InnerLoop->contains(B)) 289 continue; 290 291 for (auto &I : *B) { 292 if (!isa<PHINode>(&I) && !I.isTerminator() && 293 !isSafeToSpeculativelyExecute(&I)) { 294 LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have " 295 "side effects: "; 296 I.dump()); 297 return false; 298 } 299 // The execution count of the outer loop's iteration instructions 300 // (increment, compare and branch) will be increased, but the 301 // equivalent instructions will be removed from the inner loop, so 302 // they make a net difference of zero. 303 if (IterationInstructions.count(&I)) 304 continue; 305 // The uncoditional branch to the inner loop's header will turn into 306 // a fall-through, so adds no cost. 307 BranchInst *Br = dyn_cast<BranchInst>(&I); 308 if (Br && Br->isUnconditional() && 309 Br->getSuccessor(0) == FI.InnerLoop->getHeader()) 310 continue; 311 // Multiplies of the outer iteration variable and inner iteration 312 // count will be optimised out. 313 if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI), 314 m_Specific(FI.InnerLimit)))) 315 continue; 316 InstructionCost Cost = 317 TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 318 LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump()); 319 RepeatedInstrCost += Cost; 320 } 321 } 322 323 LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: " 324 << RepeatedInstrCost << "\n"); 325 // Bail out if flattening the loops would cause instructions in the outer 326 // loop but not in the inner loop to be executed extra times. 327 if (RepeatedInstrCost > RepeatedInstructionThreshold) { 328 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n"); 329 return false; 330 } 331 332 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n"); 333 return true; 334 } 335 336 static bool checkIVUsers(FlattenInfo &FI) { 337 // We require all uses of both induction variables to match this pattern: 338 // 339 // (OuterPHI * InnerLimit) + InnerPHI 340 // 341 // Any uses of the induction variables not matching that pattern would 342 // require a div/mod to reconstruct in the flattened loop, so the 343 // transformation wouldn't be profitable. 344 345 Value *InnerLimit = FI.InnerLimit; 346 if (FI.Widened && 347 (isa<SExtInst>(InnerLimit) || isa<ZExtInst>(InnerLimit))) 348 InnerLimit = cast<Instruction>(InnerLimit)->getOperand(0); 349 350 // Check that all uses of the inner loop's induction variable match the 351 // expected pattern, recording the uses of the outer IV. 352 SmallPtrSet<Value *, 4> ValidOuterPHIUses; 353 for (User *U : FI.InnerInductionPHI->users()) { 354 if (U == FI.InnerIncrement) 355 continue; 356 357 // After widening the IVs, a trunc instruction might have been introduced, so 358 // look through truncs. 359 if (isa<TruncInst>(U)) { 360 if (!U->hasOneUse()) 361 return false; 362 U = *U->user_begin(); 363 } 364 365 LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump()); 366 367 Value *MatchedMul; 368 Value *MatchedItCount; 369 bool IsAdd = match(U, m_c_Add(m_Specific(FI.InnerInductionPHI), 370 m_Value(MatchedMul))) && 371 match(MatchedMul, m_c_Mul(m_Specific(FI.OuterInductionPHI), 372 m_Value(MatchedItCount))); 373 374 // Matches the same pattern as above, except it also looks for truncs 375 // on the phi, which can be the result of widening the induction variables. 376 bool IsAddTrunc = match(U, m_c_Add(m_Trunc(m_Specific(FI.InnerInductionPHI)), 377 m_Value(MatchedMul))) && 378 match(MatchedMul, 379 m_c_Mul(m_Trunc(m_Specific(FI.OuterInductionPHI)), 380 m_Value(MatchedItCount))); 381 382 if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerLimit) { 383 LLVM_DEBUG(dbgs() << "Use is optimisable\n"); 384 ValidOuterPHIUses.insert(MatchedMul); 385 FI.LinearIVUses.insert(U); 386 } else { 387 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 388 return false; 389 } 390 } 391 392 // Check that there are no uses of the outer IV other than the ones found 393 // as part of the pattern above. 394 for (User *U : FI.OuterInductionPHI->users()) { 395 if (U == FI.OuterIncrement) 396 continue; 397 398 auto IsValidOuterPHIUses = [&] (User *U) -> bool { 399 LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump()); 400 if (!ValidOuterPHIUses.count(U)) { 401 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 402 return false; 403 } 404 LLVM_DEBUG(dbgs() << "Use is optimisable\n"); 405 return true; 406 }; 407 408 if (auto *V = dyn_cast<TruncInst>(U)) { 409 for (auto *K : V->users()) { 410 if (!IsValidOuterPHIUses(K)) 411 return false; 412 } 413 continue; 414 } 415 416 if (!IsValidOuterPHIUses(U)) 417 return false; 418 } 419 420 LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n"; 421 dbgs() << "Found " << FI.LinearIVUses.size() 422 << " value(s) that can be replaced:\n"; 423 for (Value *V : FI.LinearIVUses) { 424 dbgs() << " "; 425 V->dump(); 426 }); 427 return true; 428 } 429 430 // Return an OverflowResult dependant on if overflow of the multiplication of 431 // InnerLimit and OuterLimit can be assumed not to happen. 432 static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT, 433 AssumptionCache *AC) { 434 Function *F = FI.OuterLoop->getHeader()->getParent(); 435 const DataLayout &DL = F->getParent()->getDataLayout(); 436 437 // For debugging/testing. 438 if (AssumeNoOverflow) 439 return OverflowResult::NeverOverflows; 440 441 // Check if the multiply could not overflow due to known ranges of the 442 // input values. 443 OverflowResult OR = computeOverflowForUnsignedMul( 444 FI.InnerLimit, FI.OuterLimit, DL, AC, 445 FI.OuterLoop->getLoopPreheader()->getTerminator(), DT); 446 if (OR != OverflowResult::MayOverflow) 447 return OR; 448 449 for (Value *V : FI.LinearIVUses) { 450 for (Value *U : V->users()) { 451 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) { 452 // The IV is used as the operand of a GEP, and the IV is at least as 453 // wide as the address space of the GEP. In this case, the GEP would 454 // wrap around the address space before the IV increment wraps, which 455 // would be UB. 456 if (GEP->isInBounds() && 457 V->getType()->getIntegerBitWidth() >= 458 DL.getPointerTypeSizeInBits(GEP->getType())) { 459 LLVM_DEBUG( 460 dbgs() << "use of linear IV would be UB if overflow occurred: "; 461 GEP->dump()); 462 return OverflowResult::NeverOverflows; 463 } 464 } 465 } 466 } 467 468 return OverflowResult::MayOverflow; 469 } 470 471 static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 472 ScalarEvolution *SE, AssumptionCache *AC, 473 const TargetTransformInfo *TTI) { 474 SmallPtrSet<Instruction *, 8> IterationInstructions; 475 if (!findLoopComponents(FI.InnerLoop, IterationInstructions, FI.InnerInductionPHI, 476 FI.InnerLimit, FI.InnerIncrement, FI.InnerBranch, SE)) 477 return false; 478 if (!findLoopComponents(FI.OuterLoop, IterationInstructions, FI.OuterInductionPHI, 479 FI.OuterLimit, FI.OuterIncrement, FI.OuterBranch, SE)) 480 return false; 481 482 // Both of the loop limit values must be invariant in the outer loop 483 // (non-instructions are all inherently invariant). 484 if (!FI.OuterLoop->isLoopInvariant(FI.InnerLimit)) { 485 LLVM_DEBUG(dbgs() << "inner loop limit not invariant\n"); 486 return false; 487 } 488 if (!FI.OuterLoop->isLoopInvariant(FI.OuterLimit)) { 489 LLVM_DEBUG(dbgs() << "outer loop limit not invariant\n"); 490 return false; 491 } 492 493 if (!checkPHIs(FI, TTI)) 494 return false; 495 496 // FIXME: it should be possible to handle different types correctly. 497 if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType()) 498 return false; 499 500 if (!checkOuterLoopInsts(FI, IterationInstructions, TTI)) 501 return false; 502 503 // Find the values in the loop that can be replaced with the linearized 504 // induction variable, and check that there are no other uses of the inner 505 // or outer induction variable. If there were, we could still do this 506 // transformation, but we'd have to insert a div/mod to calculate the 507 // original IVs, so it wouldn't be profitable. 508 if (!checkIVUsers(FI)) 509 return false; 510 511 LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n"); 512 return true; 513 } 514 515 static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 516 ScalarEvolution *SE, AssumptionCache *AC, 517 const TargetTransformInfo *TTI) { 518 Function *F = FI.OuterLoop->getHeader()->getParent(); 519 LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n"); 520 { 521 using namespace ore; 522 OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(), 523 FI.InnerLoop->getHeader()); 524 OptimizationRemarkEmitter ORE(F); 525 Remark << "Flattened into outer loop"; 526 ORE.emit(Remark); 527 } 528 529 Value *NewTripCount = 530 BinaryOperator::CreateMul(FI.InnerLimit, FI.OuterLimit, "flatten.tripcount", 531 FI.OuterLoop->getLoopPreheader()->getTerminator()); 532 LLVM_DEBUG(dbgs() << "Created new trip count in preheader: "; 533 NewTripCount->dump()); 534 535 // Fix up PHI nodes that take values from the inner loop back-edge, which 536 // we are about to remove. 537 FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 538 539 // The old Phi will be optimised away later, but for now we can't leave 540 // leave it in an invalid state, so are updating them too. 541 for (PHINode *PHI : FI.InnerPHIsToTransform) 542 PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 543 544 // Modify the trip count of the outer loop to be the product of the two 545 // trip counts. 546 cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount); 547 548 // Replace the inner loop backedge with an unconditional branch to the exit. 549 BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock(); 550 BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock(); 551 InnerExitingBlock->getTerminator()->eraseFromParent(); 552 BranchInst::Create(InnerExitBlock, InnerExitingBlock); 553 DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader()); 554 555 // Replace all uses of the polynomial calculated from the two induction 556 // variables with the one new one. 557 IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator()); 558 for (Value *V : FI.LinearIVUses) { 559 Value *OuterValue = FI.OuterInductionPHI; 560 if (FI.Widened) 561 OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(), 562 "flatten.trunciv"); 563 564 LLVM_DEBUG(dbgs() << "Replacing: "; V->dump(); 565 dbgs() << "with: "; OuterValue->dump()); 566 V->replaceAllUsesWith(OuterValue); 567 } 568 569 // Tell LoopInfo, SCEV and the pass manager that the inner loop has been 570 // deleted, and any information that have about the outer loop invalidated. 571 SE->forgetLoop(FI.OuterLoop); 572 SE->forgetLoop(FI.InnerLoop); 573 LI->erase(FI.InnerLoop); 574 return true; 575 } 576 577 static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 578 ScalarEvolution *SE, AssumptionCache *AC, 579 const TargetTransformInfo *TTI) { 580 if (!WidenIV) { 581 LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n"); 582 return false; 583 } 584 585 LLVM_DEBUG(dbgs() << "Try widening the IVs\n"); 586 Module *M = FI.InnerLoop->getHeader()->getParent()->getParent(); 587 auto &DL = M->getDataLayout(); 588 auto *InnerType = FI.InnerInductionPHI->getType(); 589 auto *OuterType = FI.OuterInductionPHI->getType(); 590 unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits(); 591 auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext()); 592 593 // If both induction types are less than the maximum legal integer width, 594 // promote both to the widest type available so we know calculating 595 // (OuterLimit * InnerLimit) as the new trip count is safe. 596 if (InnerType != OuterType || 597 InnerType->getScalarSizeInBits() >= MaxLegalSize || 598 MaxLegalType->getScalarSizeInBits() < InnerType->getScalarSizeInBits() * 2) { 599 LLVM_DEBUG(dbgs() << "Can't widen the IV\n"); 600 return false; 601 } 602 603 SCEVExpander Rewriter(*SE, DL, "loopflatten"); 604 SmallVector<WideIVInfo, 2> WideIVs; 605 SmallVector<WeakTrackingVH, 4> DeadInsts; 606 WideIVs.push_back( {FI.InnerInductionPHI, MaxLegalType, false }); 607 WideIVs.push_back( {FI.OuterInductionPHI, MaxLegalType, false }); 608 unsigned ElimExt = 0; 609 unsigned Widened = 0; 610 611 for (const auto &WideIV : WideIVs) { 612 PHINode *WidePhi = createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts, 613 ElimExt, Widened, true /* HasGuards */, 614 true /* UsePostIncrementRanges */); 615 if (!WidePhi) 616 return false; 617 LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump()); 618 LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump()); 619 RecursivelyDeleteDeadPHINode(WideIV.NarrowIV); 620 } 621 // After widening, rediscover all the loop components. 622 assert(Widened && "Widened IV expected"); 623 FI.Widened = true; 624 return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI); 625 } 626 627 static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 628 ScalarEvolution *SE, AssumptionCache *AC, 629 const TargetTransformInfo *TTI) { 630 LLVM_DEBUG( 631 dbgs() << "Loop flattening running on outer loop " 632 << FI.OuterLoop->getHeader()->getName() << " and inner loop " 633 << FI.InnerLoop->getHeader()->getName() << " in " 634 << FI.OuterLoop->getHeader()->getParent()->getName() << "\n"); 635 636 if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI)) 637 return false; 638 639 // Check if we can widen the induction variables to avoid overflow checks. 640 if (CanWidenIV(FI, DT, LI, SE, AC, TTI)) 641 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI); 642 643 // Check if the new iteration variable might overflow. In this case, we 644 // need to version the loop, and select the original version at runtime if 645 // the iteration space is too large. 646 // TODO: We currently don't version the loop. 647 OverflowResult OR = checkOverflow(FI, DT, AC); 648 if (OR == OverflowResult::AlwaysOverflowsHigh || 649 OR == OverflowResult::AlwaysOverflowsLow) { 650 LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n"); 651 return false; 652 } else if (OR == OverflowResult::MayOverflow) { 653 LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n"); 654 return false; 655 } 656 657 LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n"); 658 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI); 659 } 660 661 bool Flatten(DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, 662 AssumptionCache *AC, TargetTransformInfo *TTI) { 663 bool Changed = false; 664 for (auto *InnerLoop : LI->getLoopsInPreorder()) { 665 auto *OuterLoop = InnerLoop->getParentLoop(); 666 if (!OuterLoop) 667 continue; 668 FlattenInfo FI(OuterLoop, InnerLoop); 669 Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI); 670 } 671 return Changed; 672 } 673 674 PreservedAnalyses LoopFlattenPass::run(Function &F, 675 FunctionAnalysisManager &AM) { 676 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 677 auto *LI = &AM.getResult<LoopAnalysis>(F); 678 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 679 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 680 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 681 682 if (!Flatten(DT, LI, SE, AC, TTI)) 683 return PreservedAnalyses::all(); 684 685 return PreservedAnalyses::none(); 686 } 687 688 namespace { 689 class LoopFlattenLegacyPass : public FunctionPass { 690 public: 691 static char ID; // Pass ID, replacement for typeid 692 LoopFlattenLegacyPass() : FunctionPass(ID) { 693 initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry()); 694 } 695 696 // Possibly flatten loop L into its child. 697 bool runOnFunction(Function &F) override; 698 699 void getAnalysisUsage(AnalysisUsage &AU) const override { 700 getLoopAnalysisUsage(AU); 701 AU.addRequired<TargetTransformInfoWrapperPass>(); 702 AU.addPreserved<TargetTransformInfoWrapperPass>(); 703 AU.addRequired<AssumptionCacheTracker>(); 704 AU.addPreserved<AssumptionCacheTracker>(); 705 } 706 }; 707 } // namespace 708 709 char LoopFlattenLegacyPass::ID = 0; 710 INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops", 711 false, false) 712 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 713 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 714 INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops", 715 false, false) 716 717 FunctionPass *llvm::createLoopFlattenPass() { return new LoopFlattenLegacyPass(); } 718 719 bool LoopFlattenLegacyPass::runOnFunction(Function &F) { 720 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 721 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 722 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 723 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 724 auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>(); 725 auto *TTI = &TTIP.getTTI(F); 726 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 727 return Flatten(DT, LI, SE, AC, TTI); 728 } 729