xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopFlatten.cpp (revision 706ead0e875bf0a127c429ce507e8e79d330d731)
1 //===- LoopFlatten.cpp - Loop flattening pass------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass flattens pairs nested loops into a single loop.
10 //
11 // The intention is to optimise loop nests like this, which together access an
12 // array linearly:
13 //   for (int i = 0; i < N; ++i)
14 //     for (int j = 0; j < M; ++j)
15 //       f(A[i*M+j]);
16 // into one loop:
17 //   for (int i = 0; i < (N*M); ++i)
18 //     f(A[i]);
19 //
20 // It can also flatten loops where the induction variables are not used in the
21 // loop. This is only worth doing if the induction variables are only used in an
22 // expression like i*M+j. If they had any other uses, we would have to insert a
23 // div/mod to reconstruct the original values, so this wouldn't be profitable.
24 //
25 // We also need to prove that N*M will not overflow.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/Transforms/Scalar/LoopFlatten.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/ScalarEvolution.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/PatternMatch.h"
40 #include "llvm/IR/Verifier.h"
41 #include "llvm/InitializePasses.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Scalar.h"
46 #include "llvm/Transforms/Utils/LoopUtils.h"
47 
48 #define DEBUG_TYPE "loop-flatten"
49 
50 using namespace llvm;
51 using namespace llvm::PatternMatch;
52 
53 static cl::opt<unsigned> RepeatedInstructionThreshold(
54     "loop-flatten-cost-threshold", cl::Hidden, cl::init(2),
55     cl::desc("Limit on the cost of instructions that can be repeated due to "
56              "loop flattening"));
57 
58 static cl::opt<bool>
59     AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden,
60                      cl::init(false),
61                      cl::desc("Assume that the product of the two iteration "
62                               "limits will never overflow"));
63 
64 struct FlattenInfo {
65   Loop *OuterLoop = nullptr;
66   Loop *InnerLoop = nullptr;
67   PHINode *InnerInductionPHI = nullptr;
68   PHINode *OuterInductionPHI = nullptr;
69   Value *InnerLimit = nullptr;
70   Value *OuterLimit = nullptr;
71   BinaryOperator *InnerIncrement = nullptr;
72   BinaryOperator *OuterIncrement = nullptr;
73   BranchInst *InnerBranch = nullptr;
74   BranchInst *OuterBranch = nullptr;
75   SmallPtrSet<Value *, 4> LinearIVUses;
76   SmallPtrSet<PHINode *, 4> InnerPHIsToTransform;
77 
78   FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL) {};
79 };
80 
81 // Finds the induction variable, increment and limit for a simple loop that we
82 // can flatten.
83 static bool findLoopComponents(
84     Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions,
85     PHINode *&InductionPHI, Value *&Limit, BinaryOperator *&Increment,
86     BranchInst *&BackBranch, ScalarEvolution *SE) {
87   LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n");
88 
89   if (!L->isLoopSimplifyForm()) {
90     LLVM_DEBUG(dbgs() << "Loop is not in normal form\n");
91     return false;
92   }
93 
94   // There must be exactly one exiting block, and it must be the same at the
95   // latch.
96   BasicBlock *Latch = L->getLoopLatch();
97   if (L->getExitingBlock() != Latch) {
98     LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n");
99     return false;
100   }
101   // Latch block must end in a conditional branch.
102   BackBranch = dyn_cast<BranchInst>(Latch->getTerminator());
103   if (!BackBranch || !BackBranch->isConditional()) {
104     LLVM_DEBUG(dbgs() << "Could not find back-branch\n");
105     return false;
106   }
107   IterationInstructions.insert(BackBranch);
108   LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump());
109   bool ContinueOnTrue = L->contains(BackBranch->getSuccessor(0));
110 
111   // Find the induction PHI. If there is no induction PHI, we can't do the
112   // transformation. TODO: could other variables trigger this? Do we have to
113   // search for the best one?
114   InductionPHI = nullptr;
115   for (PHINode &PHI : L->getHeader()->phis()) {
116     InductionDescriptor ID;
117     if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) {
118       InductionPHI = &PHI;
119       LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump());
120       break;
121     }
122   }
123   if (!InductionPHI) {
124     LLVM_DEBUG(dbgs() << "Could not find induction PHI\n");
125     return false;
126   }
127 
128   auto IsValidPredicate = [&](ICmpInst::Predicate Pred) {
129     if (ContinueOnTrue)
130       return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT;
131     else
132       return Pred == CmpInst::ICMP_EQ;
133   };
134 
135   // Find Compare and make sure it is valid
136   ICmpInst *Compare = dyn_cast<ICmpInst>(BackBranch->getCondition());
137   if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) ||
138       Compare->hasNUsesOrMore(2)) {
139     LLVM_DEBUG(dbgs() << "Could not find valid comparison\n");
140     return false;
141   }
142   IterationInstructions.insert(Compare);
143   LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump());
144 
145   // Find increment and limit from the compare
146   Increment = nullptr;
147   if (match(Compare->getOperand(0),
148             m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) {
149     Increment = dyn_cast<BinaryOperator>(Compare->getOperand(0));
150     Limit = Compare->getOperand(1);
151   } else if (Compare->getUnsignedPredicate() == CmpInst::ICMP_NE &&
152              match(Compare->getOperand(1),
153                    m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) {
154     Increment = dyn_cast<BinaryOperator>(Compare->getOperand(1));
155     Limit = Compare->getOperand(0);
156   }
157   if (!Increment || Increment->hasNUsesOrMore(3)) {
158     LLVM_DEBUG(dbgs() << "Cound not find valid increment\n");
159     return false;
160   }
161   IterationInstructions.insert(Increment);
162   LLVM_DEBUG(dbgs() << "Found increment: "; Increment->dump());
163   LLVM_DEBUG(dbgs() << "Found limit: "; Limit->dump());
164 
165   assert(InductionPHI->getNumIncomingValues() == 2);
166   assert(InductionPHI->getIncomingValueForBlock(Latch) == Increment &&
167          "PHI value is not increment inst");
168 
169   auto *CI = dyn_cast<ConstantInt>(
170       InductionPHI->getIncomingValueForBlock(L->getLoopPreheader()));
171   if (!CI || !CI->isZero()) {
172     LLVM_DEBUG(dbgs() << "PHI value is not zero: "; CI->dump());
173     return false;
174   }
175 
176   LLVM_DEBUG(dbgs() << "Successfully found all loop components\n");
177   return true;
178 }
179 
180 static bool checkPHIs(struct FlattenInfo &FI,
181                       const TargetTransformInfo *TTI) {
182   // All PHIs in the inner and outer headers must either be:
183   // - The induction PHI, which we are going to rewrite as one induction in
184   //   the new loop. This is already checked by findLoopComponents.
185   // - An outer header PHI with all incoming values from outside the loop.
186   //   LoopSimplify guarantees we have a pre-header, so we don't need to
187   //   worry about that here.
188   // - Pairs of PHIs in the inner and outer headers, which implement a
189   //   loop-carried dependency that will still be valid in the new loop. To
190   //   be valid, this variable must be modified only in the inner loop.
191 
192   // The set of PHI nodes in the outer loop header that we know will still be
193   // valid after the transformation. These will not need to be modified (with
194   // the exception of the induction variable), but we do need to check that
195   // there are no unsafe PHI nodes.
196   SmallPtrSet<PHINode *, 4> SafeOuterPHIs;
197   SafeOuterPHIs.insert(FI.OuterInductionPHI);
198 
199   // Check that all PHI nodes in the inner loop header match one of the valid
200   // patterns.
201   for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) {
202     // The induction PHIs break these rules, and that's OK because we treat
203     // them specially when doing the transformation.
204     if (&InnerPHI == FI.InnerInductionPHI)
205       continue;
206 
207     // Each inner loop PHI node must have two incoming values/blocks - one
208     // from the pre-header, and one from the latch.
209     assert(InnerPHI.getNumIncomingValues() == 2);
210     Value *PreHeaderValue =
211         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader());
212     Value *LatchValue =
213         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch());
214 
215     // The incoming value from the outer loop must be the PHI node in the
216     // outer loop header, with no modifications made in the top of the outer
217     // loop.
218     PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue);
219     if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) {
220       LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n");
221       return false;
222     }
223 
224     // The other incoming value must come from the inner loop, without any
225     // modifications in the tail end of the outer loop. We are in LCSSA form,
226     // so this will actually be a PHI in the inner loop's exit block, which
227     // only uses values from inside the inner loop.
228     PHINode *LCSSAPHI = dyn_cast<PHINode>(
229         OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch()));
230     if (!LCSSAPHI) {
231       LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n");
232       return false;
233     }
234 
235     // The value used by the LCSSA PHI must be the same one that the inner
236     // loop's PHI uses.
237     if (LCSSAPHI->hasConstantValue() != LatchValue) {
238       LLVM_DEBUG(
239           dbgs() << "LCSSA PHI incoming value does not match latch value\n");
240       return false;
241     }
242 
243     LLVM_DEBUG(dbgs() << "PHI pair is safe:\n");
244     LLVM_DEBUG(dbgs() << "  Inner: "; InnerPHI.dump());
245     LLVM_DEBUG(dbgs() << "  Outer: "; OuterPHI->dump());
246     SafeOuterPHIs.insert(OuterPHI);
247     FI.InnerPHIsToTransform.insert(&InnerPHI);
248   }
249 
250   for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) {
251     if (!SafeOuterPHIs.count(&OuterPHI)) {
252       LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump());
253       return false;
254     }
255   }
256 
257   return true;
258 }
259 
260 static bool
261 checkOuterLoopInsts(struct FlattenInfo &FI,
262                     SmallPtrSetImpl<Instruction *> &IterationInstructions,
263                     const TargetTransformInfo *TTI) {
264   // Check for instructions in the outer but not inner loop. If any of these
265   // have side-effects then this transformation is not legal, and if there is
266   // a significant amount of code here which can't be optimised out that it's
267   // not profitable (as these instructions would get executed for each
268   // iteration of the inner loop).
269   unsigned RepeatedInstrCost = 0;
270   for (auto *B : FI.OuterLoop->getBlocks()) {
271     if (FI.InnerLoop->contains(B))
272       continue;
273 
274     for (auto &I : *B) {
275       if (!isa<PHINode>(&I) && !I.isTerminator() &&
276           !isSafeToSpeculativelyExecute(&I)) {
277         LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have "
278                              "side effects: ";
279                    I.dump());
280         return false;
281       }
282       // The execution count of the outer loop's iteration instructions
283       // (increment, compare and branch) will be increased, but the
284       // equivalent instructions will be removed from the inner loop, so
285       // they make a net difference of zero.
286       if (IterationInstructions.count(&I))
287         continue;
288       // The uncoditional branch to the inner loop's header will turn into
289       // a fall-through, so adds no cost.
290       BranchInst *Br = dyn_cast<BranchInst>(&I);
291       if (Br && Br->isUnconditional() &&
292           Br->getSuccessor(0) == FI.InnerLoop->getHeader())
293         continue;
294       // Multiplies of the outer iteration variable and inner iteration
295       // count will be optimised out.
296       if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI),
297                             m_Specific(FI.InnerLimit))))
298         continue;
299       int Cost = TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
300       LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump());
301       RepeatedInstrCost += Cost;
302     }
303   }
304 
305   LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: "
306                     << RepeatedInstrCost << "\n");
307   // Bail out if flattening the loops would cause instructions in the outer
308   // loop but not in the inner loop to be executed extra times.
309   if (RepeatedInstrCost > RepeatedInstructionThreshold)
310     return false;
311 
312   return true;
313 }
314 
315 static bool checkIVUsers(struct FlattenInfo &FI) {
316   // We require all uses of both induction variables to match this pattern:
317   //
318   //   (OuterPHI * InnerLimit) + InnerPHI
319   //
320   // Any uses of the induction variables not matching that pattern would
321   // require a div/mod to reconstruct in the flattened loop, so the
322   // transformation wouldn't be profitable.
323 
324   // Check that all uses of the inner loop's induction variable match the
325   // expected pattern, recording the uses of the outer IV.
326   SmallPtrSet<Value *, 4> ValidOuterPHIUses;
327   for (User *U : FI.InnerInductionPHI->users()) {
328     if (U == FI.InnerIncrement)
329       continue;
330 
331     LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump());
332 
333     Value *MatchedMul, *MatchedItCount;
334     if (match(U, m_c_Add(m_Specific(FI.InnerInductionPHI),
335                          m_Value(MatchedMul))) &&
336         match(MatchedMul,
337               m_c_Mul(m_Specific(FI.OuterInductionPHI),
338                       m_Value(MatchedItCount))) &&
339         MatchedItCount == FI.InnerLimit) {
340       LLVM_DEBUG(dbgs() << "Use is optimisable\n");
341       ValidOuterPHIUses.insert(MatchedMul);
342       FI.LinearIVUses.insert(U);
343     } else {
344       LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
345       return false;
346     }
347   }
348 
349   // Check that there are no uses of the outer IV other than the ones found
350   // as part of the pattern above.
351   for (User *U : FI.OuterInductionPHI->users()) {
352     if (U == FI.OuterIncrement)
353       continue;
354 
355     LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump());
356 
357     if (!ValidOuterPHIUses.count(U)) {
358       LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
359       return false;
360     } else {
361       LLVM_DEBUG(dbgs() << "Use is optimisable\n");
362     }
363   }
364 
365   LLVM_DEBUG(dbgs() << "Found " << FI.LinearIVUses.size()
366                     << " value(s) that can be replaced:\n";
367              for (Value *V : FI.LinearIVUses) {
368                dbgs() << "  ";
369                V->dump();
370              });
371 
372   return true;
373 }
374 
375 // Return an OverflowResult dependant on if overflow of the multiplication of
376 // InnerLimit and OuterLimit can be assumed not to happen.
377 static OverflowResult checkOverflow(struct FlattenInfo &FI,
378                                     DominatorTree *DT, AssumptionCache *AC) {
379   Function *F = FI.OuterLoop->getHeader()->getParent();
380   const DataLayout &DL = F->getParent()->getDataLayout();
381 
382   // For debugging/testing.
383   if (AssumeNoOverflow)
384     return OverflowResult::NeverOverflows;
385 
386   // Check if the multiply could not overflow due to known ranges of the
387   // input values.
388   OverflowResult OR = computeOverflowForUnsignedMul(
389       FI.InnerLimit, FI.OuterLimit, DL, AC,
390       FI.OuterLoop->getLoopPreheader()->getTerminator(), DT);
391   if (OR != OverflowResult::MayOverflow)
392     return OR;
393 
394   for (Value *V : FI.LinearIVUses) {
395     for (Value *U : V->users()) {
396       if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
397         // The IV is used as the operand of a GEP, and the IV is at least as
398         // wide as the address space of the GEP. In this case, the GEP would
399         // wrap around the address space before the IV increment wraps, which
400         // would be UB.
401         if (GEP->isInBounds() &&
402             V->getType()->getIntegerBitWidth() >=
403                 DL.getPointerTypeSizeInBits(GEP->getType())) {
404           LLVM_DEBUG(
405               dbgs() << "use of linear IV would be UB if overflow occurred: ";
406               GEP->dump());
407           return OverflowResult::NeverOverflows;
408         }
409       }
410     }
411   }
412 
413   return OverflowResult::MayOverflow;
414 }
415 
416 static bool FlattenLoopPair(struct FlattenInfo &FI, DominatorTree *DT,
417                             LoopInfo *LI, ScalarEvolution *SE,
418                             AssumptionCache *AC, TargetTransformInfo *TTI) {
419   Function *F = FI.OuterLoop->getHeader()->getParent();
420   LLVM_DEBUG(dbgs() << "Loop flattening running on outer loop "
421                     << FI.OuterLoop->getHeader()->getName() << " and inner loop "
422                     << FI.InnerLoop->getHeader()->getName() << " in "
423                     << F->getName() << "\n");
424 
425   SmallPtrSet<Instruction *, 8> IterationInstructions;
426   if (!findLoopComponents(FI.InnerLoop, IterationInstructions, FI.InnerInductionPHI,
427                           FI.InnerLimit, FI.InnerIncrement, FI.InnerBranch, SE))
428     return false;
429   if (!findLoopComponents(FI.OuterLoop, IterationInstructions, FI.OuterInductionPHI,
430                           FI.OuterLimit, FI.OuterIncrement, FI.OuterBranch, SE))
431     return false;
432 
433   // Both of the loop limit values must be invariant in the outer loop
434   // (non-instructions are all inherently invariant).
435   if (!FI.OuterLoop->isLoopInvariant(FI.InnerLimit)) {
436     LLVM_DEBUG(dbgs() << "inner loop limit not invariant\n");
437     return false;
438   }
439   if (!FI.OuterLoop->isLoopInvariant(FI.OuterLimit)) {
440     LLVM_DEBUG(dbgs() << "outer loop limit not invariant\n");
441     return false;
442   }
443 
444   if (!checkPHIs(FI, TTI))
445     return false;
446 
447   // FIXME: it should be possible to handle different types correctly.
448   if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType())
449     return false;
450 
451   if (!checkOuterLoopInsts(FI, IterationInstructions, TTI))
452     return false;
453 
454   // Find the values in the loop that can be replaced with the linearized
455   // induction variable, and check that there are no other uses of the inner
456   // or outer induction variable. If there were, we could still do this
457   // transformation, but we'd have to insert a div/mod to calculate the
458   // original IVs, so it wouldn't be profitable.
459   if (!checkIVUsers(FI))
460     return false;
461 
462   // Check if the new iteration variable might overflow. In this case, we
463   // need to version the loop, and select the original version at runtime if
464   // the iteration space is too large.
465   // TODO: We currently don't version the loop.
466   // TODO: it might be worth using a wider iteration variable rather than
467   // versioning the loop, if a wide enough type is legal.
468   bool MustVersionLoop = true;
469   OverflowResult OR = checkOverflow(FI, DT, AC);
470   if (OR == OverflowResult::AlwaysOverflowsHigh ||
471       OR == OverflowResult::AlwaysOverflowsLow) {
472     LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n");
473     return false;
474   } else if (OR == OverflowResult::MayOverflow) {
475     LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n");
476   } else {
477     LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n");
478     MustVersionLoop = false;
479   }
480 
481   // We cannot safely flatten the loop. Exit now.
482   if (MustVersionLoop)
483     return false;
484 
485   // Do the actual transformation.
486   LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n");
487 
488   {
489     using namespace ore;
490     OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(),
491                               FI.InnerLoop->getHeader());
492     OptimizationRemarkEmitter ORE(F);
493     Remark << "Flattened into outer loop";
494     ORE.emit(Remark);
495   }
496 
497   Value *NewTripCount =
498       BinaryOperator::CreateMul(FI.InnerLimit, FI.OuterLimit, "flatten.tripcount",
499                                 FI.OuterLoop->getLoopPreheader()->getTerminator());
500   LLVM_DEBUG(dbgs() << "Created new trip count in preheader: ";
501              NewTripCount->dump());
502 
503   // Fix up PHI nodes that take values from the inner loop back-edge, which
504   // we are about to remove.
505   FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
506   for (PHINode *PHI : FI.InnerPHIsToTransform)
507     PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
508 
509   // Modify the trip count of the outer loop to be the product of the two
510   // trip counts.
511   cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount);
512 
513   // Replace the inner loop backedge with an unconditional branch to the exit.
514   BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock();
515   BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock();
516   InnerExitingBlock->getTerminator()->eraseFromParent();
517   BranchInst::Create(InnerExitBlock, InnerExitingBlock);
518   DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
519 
520   // Replace all uses of the polynomial calculated from the two induction
521   // variables with the one new one.
522   for (Value *V : FI.LinearIVUses)
523     V->replaceAllUsesWith(FI.OuterInductionPHI);
524 
525   // Tell LoopInfo, SCEV and the pass manager that the inner loop has been
526   // deleted, and any information that have about the outer loop invalidated.
527   SE->forgetLoop(FI.OuterLoop);
528   SE->forgetLoop(FI.InnerLoop);
529   LI->erase(FI.InnerLoop);
530   return true;
531 }
532 
533 bool Flatten(DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE,
534              AssumptionCache *AC, TargetTransformInfo *TTI) {
535   bool Changed = false;
536   for (auto *InnerLoop : LI->getLoopsInPreorder()) {
537     auto *OuterLoop = InnerLoop->getParentLoop();
538     if (!OuterLoop)
539       continue;
540     struct FlattenInfo FI(OuterLoop, InnerLoop);
541     Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI);
542   }
543   return Changed;
544 }
545 
546 PreservedAnalyses LoopFlattenPass::run(Function &F,
547                                        FunctionAnalysisManager &AM) {
548   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
549   auto *LI = &AM.getResult<LoopAnalysis>(F);
550   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
551   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
552   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
553 
554   if (!Flatten(DT, LI, SE, AC, TTI))
555     return PreservedAnalyses::all();
556 
557   PreservedAnalyses PA;
558   PA.preserveSet<CFGAnalyses>();
559   return PA;
560 }
561 
562 namespace {
563 class LoopFlattenLegacyPass : public FunctionPass {
564 public:
565   static char ID; // Pass ID, replacement for typeid
566   LoopFlattenLegacyPass() : FunctionPass(ID) {
567     initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry());
568   }
569 
570   // Possibly flatten loop L into its child.
571   bool runOnFunction(Function &F) override;
572 
573   void getAnalysisUsage(AnalysisUsage &AU) const override {
574     getLoopAnalysisUsage(AU);
575     AU.addRequired<TargetTransformInfoWrapperPass>();
576     AU.addPreserved<TargetTransformInfoWrapperPass>();
577     AU.addRequired<AssumptionCacheTracker>();
578     AU.addPreserved<AssumptionCacheTracker>();
579   }
580 };
581 } // namespace
582 
583 char LoopFlattenLegacyPass::ID = 0;
584 INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
585                       false, false)
586 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
587 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
588 INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
589                     false, false)
590 
591 FunctionPass *llvm::createLoopFlattenPass() { return new LoopFlattenLegacyPass(); }
592 
593 bool LoopFlattenLegacyPass::runOnFunction(Function &F) {
594   ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
595   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
596   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
597   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
598   auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>();
599   auto *TTI = &TTIP.getTTI(F);
600   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
601   return Flatten(DT, LI, SE, AC, TTI);
602 }
603