xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopFlatten.cpp (revision 59630917d6cc7c4a273f617f92bf6190ee2992e1)
1 //===- LoopFlatten.cpp - Loop flattening pass------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass flattens pairs nested loops into a single loop.
10 //
11 // The intention is to optimise loop nests like this, which together access an
12 // array linearly:
13 //
14 //   for (int i = 0; i < N; ++i)
15 //     for (int j = 0; j < M; ++j)
16 //       f(A[i*M+j]);
17 //
18 // into one loop:
19 //
20 //   for (int i = 0; i < (N*M); ++i)
21 //     f(A[i]);
22 //
23 // It can also flatten loops where the induction variables are not used in the
24 // loop. This is only worth doing if the induction variables are only used in an
25 // expression like i*M+j. If they had any other uses, we would have to insert a
26 // div/mod to reconstruct the original values, so this wouldn't be profitable.
27 //
28 // We also need to prove that N*M will not overflow. The preferred solution is
29 // to widen the IV, which avoids overflow checks, so that is tried first. If
30 // the IV cannot be widened, then we try to determine that this new tripcount
31 // expression won't overflow.
32 //
33 // Q: Does LoopFlatten use SCEV?
34 // Short answer: Yes and no.
35 //
36 // Long answer:
37 // For this transformation to be valid, we require all uses of the induction
38 // variables to be linear expressions of the form i*M+j. The different Loop
39 // APIs are used to get some loop components like the induction variable,
40 // compare statement, etc. In addition, we do some pattern matching to find the
41 // linear expressions and other loop components like the loop increment. The
42 // latter are examples of expressions that do use the induction variable, but
43 // are safe to ignore when we check all uses to be of the form i*M+j. We keep
44 // track of all of this in bookkeeping struct FlattenInfo.
45 // We assume the loops to be canonical, i.e. starting at 0 and increment with
46 // 1. This makes RHS of the compare the loop tripcount (with the right
47 // predicate). We use SCEV to then sanity check that this tripcount matches
48 // with the tripcount as computed by SCEV.
49 //
50 //===----------------------------------------------------------------------===//
51 
52 #include "llvm/Transforms/Scalar/LoopFlatten.h"
53 
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/AssumptionCache.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/LoopNestAnalysis.h"
58 #include "llvm/Analysis/MemorySSAUpdater.h"
59 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/Analysis/TargetTransformInfo.h"
62 #include "llvm/Analysis/ValueTracking.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/IRBuilder.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/InitializePasses.h"
69 #include "llvm/Pass.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Transforms/Scalar.h"
73 #include "llvm/Transforms/Scalar/LoopPassManager.h"
74 #include "llvm/Transforms/Utils/Local.h"
75 #include "llvm/Transforms/Utils/LoopUtils.h"
76 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
77 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
78 
79 using namespace llvm;
80 using namespace llvm::PatternMatch;
81 
82 #define DEBUG_TYPE "loop-flatten"
83 
84 STATISTIC(NumFlattened, "Number of loops flattened");
85 
86 static cl::opt<unsigned> RepeatedInstructionThreshold(
87     "loop-flatten-cost-threshold", cl::Hidden, cl::init(2),
88     cl::desc("Limit on the cost of instructions that can be repeated due to "
89              "loop flattening"));
90 
91 static cl::opt<bool>
92     AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden,
93                      cl::init(false),
94                      cl::desc("Assume that the product of the two iteration "
95                               "trip counts will never overflow"));
96 
97 static cl::opt<bool>
98     WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true),
99             cl::desc("Widen the loop induction variables, if possible, so "
100                      "overflow checks won't reject flattening"));
101 
102 // We require all uses of both induction variables to match this pattern:
103 //
104 //   (OuterPHI * InnerTripCount) + InnerPHI
105 //
106 // I.e., it needs to be a linear expression of the induction variables and the
107 // inner loop trip count. We keep track of all different expressions on which
108 // checks will be performed in this bookkeeping struct.
109 //
110 struct FlattenInfo {
111   Loop *OuterLoop = nullptr;  // The loop pair to be flattened.
112   Loop *InnerLoop = nullptr;
113 
114   PHINode *InnerInductionPHI = nullptr; // These PHINodes correspond to loop
115   PHINode *OuterInductionPHI = nullptr; // induction variables, which are
116                                         // expected to start at zero and
117                                         // increment by one on each loop.
118 
119   Value *InnerTripCount = nullptr; // The product of these two tripcounts
120   Value *OuterTripCount = nullptr; // will be the new flattened loop
121                                    // tripcount. Also used to recognise a
122                                    // linear expression that will be replaced.
123 
124   SmallPtrSet<Value *, 4> LinearIVUses;  // Contains the linear expressions
125                                          // of the form i*M+j that will be
126                                          // replaced.
127 
128   BinaryOperator *InnerIncrement = nullptr;  // Uses of induction variables in
129   BinaryOperator *OuterIncrement = nullptr;  // loop control statements that
130   BranchInst *InnerBranch = nullptr;         // are safe to ignore.
131 
132   BranchInst *OuterBranch = nullptr; // The instruction that needs to be
133                                      // updated with new tripcount.
134 
135   SmallPtrSet<PHINode *, 4> InnerPHIsToTransform;
136 
137   bool Widened = false; // Whether this holds the flatten info before or after
138                         // widening.
139 
140   PHINode *NarrowInnerInductionPHI = nullptr; // Holds the old/narrow induction
141   PHINode *NarrowOuterInductionPHI = nullptr; // phis, i.e. the Phis before IV
142                                               // has been apllied. Used to skip
143                                               // checks on phi nodes.
144 
145   FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL){};
146 
147   bool isNarrowInductionPhi(PHINode *Phi) {
148     // This can't be the narrow phi if we haven't widened the IV first.
149     if (!Widened)
150       return false;
151     return NarrowInnerInductionPHI == Phi || NarrowOuterInductionPHI == Phi;
152   }
153   bool isInnerLoopIncrement(User *U) {
154     return InnerIncrement == U;
155   }
156   bool isOuterLoopIncrement(User *U) {
157     return OuterIncrement == U;
158   }
159   bool isInnerLoopTest(User *U) {
160     return InnerBranch->getCondition() == U;
161   }
162 
163   bool checkOuterInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
164     for (User *U : OuterInductionPHI->users()) {
165       if (isOuterLoopIncrement(U))
166         continue;
167 
168       auto IsValidOuterPHIUses = [&] (User *U) -> bool {
169         LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump());
170         if (!ValidOuterPHIUses.count(U)) {
171           LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
172           return false;
173         }
174         LLVM_DEBUG(dbgs() << "Use is optimisable\n");
175         return true;
176       };
177 
178       if (auto *V = dyn_cast<TruncInst>(U)) {
179         for (auto *K : V->users()) {
180           if (!IsValidOuterPHIUses(K))
181             return false;
182         }
183         continue;
184       }
185 
186       if (!IsValidOuterPHIUses(U))
187         return false;
188     }
189     return true;
190   }
191 
192   bool matchLinearIVUser(User *U, Value *InnerTripCount,
193                          SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
194     LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump());
195     Value *MatchedMul = nullptr;
196     Value *MatchedItCount = nullptr;
197 
198     bool IsAdd = match(U, m_c_Add(m_Specific(InnerInductionPHI),
199                                   m_Value(MatchedMul))) &&
200                  match(MatchedMul, m_c_Mul(m_Specific(OuterInductionPHI),
201                                            m_Value(MatchedItCount)));
202 
203     // Matches the same pattern as above, except it also looks for truncs
204     // on the phi, which can be the result of widening the induction variables.
205     bool IsAddTrunc =
206         match(U, m_c_Add(m_Trunc(m_Specific(InnerInductionPHI)),
207                          m_Value(MatchedMul))) &&
208         match(MatchedMul, m_c_Mul(m_Trunc(m_Specific(OuterInductionPHI)),
209                                   m_Value(MatchedItCount)));
210 
211     if (!MatchedItCount)
212       return false;
213 
214     // Look through extends if the IV has been widened.
215     if (Widened &&
216         (isa<SExtInst>(MatchedItCount) || isa<ZExtInst>(MatchedItCount))) {
217       assert(MatchedItCount->getType() == InnerInductionPHI->getType() &&
218              "Unexpected type mismatch in types after widening");
219       MatchedItCount = isa<SExtInst>(MatchedItCount)
220                            ? dyn_cast<SExtInst>(MatchedItCount)->getOperand(0)
221                            : dyn_cast<ZExtInst>(MatchedItCount)->getOperand(0);
222     }
223 
224     if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerTripCount) {
225       LLVM_DEBUG(dbgs() << "Use is optimisable\n");
226       ValidOuterPHIUses.insert(MatchedMul);
227       LinearIVUses.insert(U);
228       return true;
229     }
230 
231     LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
232     return false;
233   }
234 
235   bool checkInnerInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
236     Value *SExtInnerTripCount = InnerTripCount;
237     if (Widened &&
238         (isa<SExtInst>(InnerTripCount) || isa<ZExtInst>(InnerTripCount)))
239       SExtInnerTripCount = cast<Instruction>(InnerTripCount)->getOperand(0);
240 
241     for (User *U : InnerInductionPHI->users()) {
242       if (isInnerLoopIncrement(U))
243         continue;
244 
245       // After widening the IVs, a trunc instruction might have been introduced,
246       // so look through truncs.
247       if (isa<TruncInst>(U)) {
248         if (!U->hasOneUse())
249           return false;
250         U = *U->user_begin();
251       }
252 
253       // If the use is in the compare (which is also the condition of the inner
254       // branch) then the compare has been altered by another transformation e.g
255       // icmp ult %inc, tripcount -> icmp ult %j, tripcount-1, where tripcount is
256       // a constant. Ignore this use as the compare gets removed later anyway.
257       if (isInnerLoopTest(U))
258         continue;
259 
260       if (!matchLinearIVUser(U, SExtInnerTripCount, ValidOuterPHIUses))
261         return false;
262     }
263     return true;
264   }
265 };
266 
267 static bool
268 setLoopComponents(Value *&TC, Value *&TripCount, BinaryOperator *&Increment,
269                   SmallPtrSetImpl<Instruction *> &IterationInstructions) {
270   TripCount = TC;
271   IterationInstructions.insert(Increment);
272   LLVM_DEBUG(dbgs() << "Found Increment: "; Increment->dump());
273   LLVM_DEBUG(dbgs() << "Found trip count: "; TripCount->dump());
274   LLVM_DEBUG(dbgs() << "Successfully found all loop components\n");
275   return true;
276 }
277 
278 // Given the RHS of the loop latch compare instruction, verify with SCEV
279 // that this is indeed the loop tripcount.
280 // TODO: This used to be a straightforward check but has grown to be quite
281 // complicated now. It is therefore worth revisiting what the additional
282 // benefits are of this (compared to relying on canonical loops and pattern
283 // matching).
284 static bool verifyTripCount(Value *RHS, Loop *L,
285      SmallPtrSetImpl<Instruction *> &IterationInstructions,
286     PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment,
287     BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) {
288   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
289   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
290     LLVM_DEBUG(dbgs() << "Backedge-taken count is not predictable\n");
291     return false;
292   }
293 
294   // The Extend=false flag is used for getTripCountFromExitCount as we want
295   // to verify and match it with the pattern matched tripcount. Please note
296   // that overflow checks are performed in checkOverflow, but are first tried
297   // to avoid by widening the IV.
298   const SCEV *SCEVTripCount =
299       SE->getTripCountFromExitCount(BackedgeTakenCount, /*Extend=*/false);
300 
301   const SCEV *SCEVRHS = SE->getSCEV(RHS);
302   if (SCEVRHS == SCEVTripCount)
303     return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
304   ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(RHS);
305   if (ConstantRHS) {
306     const SCEV *BackedgeTCExt = nullptr;
307     if (IsWidened) {
308       const SCEV *SCEVTripCountExt;
309       // Find the extended backedge taken count and extended trip count using
310       // SCEV. One of these should now match the RHS of the compare.
311       BackedgeTCExt = SE->getZeroExtendExpr(BackedgeTakenCount, RHS->getType());
312       SCEVTripCountExt = SE->getTripCountFromExitCount(BackedgeTCExt, false);
313       if (SCEVRHS != BackedgeTCExt && SCEVRHS != SCEVTripCountExt) {
314         LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
315         return false;
316       }
317     }
318     // If the RHS of the compare is equal to the backedge taken count we need
319     // to add one to get the trip count.
320     if (SCEVRHS == BackedgeTCExt || SCEVRHS == BackedgeTakenCount) {
321       ConstantInt *One = ConstantInt::get(ConstantRHS->getType(), 1);
322       Value *NewRHS = ConstantInt::get(
323           ConstantRHS->getContext(), ConstantRHS->getValue() + One->getValue());
324       return setLoopComponents(NewRHS, TripCount, Increment,
325                                IterationInstructions);
326     }
327     return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
328   }
329   // If the RHS isn't a constant then check that the reason it doesn't match
330   // the SCEV trip count is because the RHS is a ZExt or SExt instruction
331   // (and take the trip count to be the RHS).
332   if (!IsWidened) {
333     LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
334     return false;
335   }
336   auto *TripCountInst = dyn_cast<Instruction>(RHS);
337   if (!TripCountInst) {
338     LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
339     return false;
340   }
341   if ((!isa<ZExtInst>(TripCountInst) && !isa<SExtInst>(TripCountInst)) ||
342       SE->getSCEV(TripCountInst->getOperand(0)) != SCEVTripCount) {
343     LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n");
344     return false;
345   }
346   return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
347 }
348 
349 // Finds the induction variable, increment and trip count for a simple loop that
350 // we can flatten.
351 static bool findLoopComponents(
352     Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions,
353     PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment,
354     BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) {
355   LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n");
356 
357   if (!L->isLoopSimplifyForm()) {
358     LLVM_DEBUG(dbgs() << "Loop is not in normal form\n");
359     return false;
360   }
361 
362   // Currently, to simplify the implementation, the Loop induction variable must
363   // start at zero and increment with a step size of one.
364   if (!L->isCanonical(*SE)) {
365     LLVM_DEBUG(dbgs() << "Loop is not canonical\n");
366     return false;
367   }
368 
369   // There must be exactly one exiting block, and it must be the same at the
370   // latch.
371   BasicBlock *Latch = L->getLoopLatch();
372   if (L->getExitingBlock() != Latch) {
373     LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n");
374     return false;
375   }
376 
377   // Find the induction PHI. If there is no induction PHI, we can't do the
378   // transformation. TODO: could other variables trigger this? Do we have to
379   // search for the best one?
380   InductionPHI = L->getInductionVariable(*SE);
381   if (!InductionPHI) {
382     LLVM_DEBUG(dbgs() << "Could not find induction PHI\n");
383     return false;
384   }
385   LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump());
386 
387   bool ContinueOnTrue = L->contains(Latch->getTerminator()->getSuccessor(0));
388   auto IsValidPredicate = [&](ICmpInst::Predicate Pred) {
389     if (ContinueOnTrue)
390       return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT;
391     else
392       return Pred == CmpInst::ICMP_EQ;
393   };
394 
395   // Find Compare and make sure it is valid. getLatchCmpInst checks that the
396   // back branch of the latch is conditional.
397   ICmpInst *Compare = L->getLatchCmpInst();
398   if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) ||
399       Compare->hasNUsesOrMore(2)) {
400     LLVM_DEBUG(dbgs() << "Could not find valid comparison\n");
401     return false;
402   }
403   BackBranch = cast<BranchInst>(Latch->getTerminator());
404   IterationInstructions.insert(BackBranch);
405   LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump());
406   IterationInstructions.insert(Compare);
407   LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump());
408 
409   // Find increment and trip count.
410   // There are exactly 2 incoming values to the induction phi; one from the
411   // pre-header and one from the latch. The incoming latch value is the
412   // increment variable.
413   Increment =
414       dyn_cast<BinaryOperator>(InductionPHI->getIncomingValueForBlock(Latch));
415   if (Increment->hasNUsesOrMore(3)) {
416     LLVM_DEBUG(dbgs() << "Could not find valid increment\n");
417     return false;
418   }
419   // The trip count is the RHS of the compare. If this doesn't match the trip
420   // count computed by SCEV then this is because the trip count variable
421   // has been widened so the types don't match, or because it is a constant and
422   // another transformation has changed the compare (e.g. icmp ult %inc,
423   // tripcount -> icmp ult %j, tripcount-1), or both.
424   Value *RHS = Compare->getOperand(1);
425 
426   return verifyTripCount(RHS, L, IterationInstructions, InductionPHI, TripCount,
427                          Increment, BackBranch, SE, IsWidened);
428 }
429 
430 static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) {
431   // All PHIs in the inner and outer headers must either be:
432   // - The induction PHI, which we are going to rewrite as one induction in
433   //   the new loop. This is already checked by findLoopComponents.
434   // - An outer header PHI with all incoming values from outside the loop.
435   //   LoopSimplify guarantees we have a pre-header, so we don't need to
436   //   worry about that here.
437   // - Pairs of PHIs in the inner and outer headers, which implement a
438   //   loop-carried dependency that will still be valid in the new loop. To
439   //   be valid, this variable must be modified only in the inner loop.
440 
441   // The set of PHI nodes in the outer loop header that we know will still be
442   // valid after the transformation. These will not need to be modified (with
443   // the exception of the induction variable), but we do need to check that
444   // there are no unsafe PHI nodes.
445   SmallPtrSet<PHINode *, 4> SafeOuterPHIs;
446   SafeOuterPHIs.insert(FI.OuterInductionPHI);
447 
448   // Check that all PHI nodes in the inner loop header match one of the valid
449   // patterns.
450   for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) {
451     // The induction PHIs break these rules, and that's OK because we treat
452     // them specially when doing the transformation.
453     if (&InnerPHI == FI.InnerInductionPHI)
454       continue;
455     if (FI.isNarrowInductionPhi(&InnerPHI))
456       continue;
457 
458     // Each inner loop PHI node must have two incoming values/blocks - one
459     // from the pre-header, and one from the latch.
460     assert(InnerPHI.getNumIncomingValues() == 2);
461     Value *PreHeaderValue =
462         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader());
463     Value *LatchValue =
464         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch());
465 
466     // The incoming value from the outer loop must be the PHI node in the
467     // outer loop header, with no modifications made in the top of the outer
468     // loop.
469     PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue);
470     if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) {
471       LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n");
472       return false;
473     }
474 
475     // The other incoming value must come from the inner loop, without any
476     // modifications in the tail end of the outer loop. We are in LCSSA form,
477     // so this will actually be a PHI in the inner loop's exit block, which
478     // only uses values from inside the inner loop.
479     PHINode *LCSSAPHI = dyn_cast<PHINode>(
480         OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch()));
481     if (!LCSSAPHI) {
482       LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n");
483       return false;
484     }
485 
486     // The value used by the LCSSA PHI must be the same one that the inner
487     // loop's PHI uses.
488     if (LCSSAPHI->hasConstantValue() != LatchValue) {
489       LLVM_DEBUG(
490           dbgs() << "LCSSA PHI incoming value does not match latch value\n");
491       return false;
492     }
493 
494     LLVM_DEBUG(dbgs() << "PHI pair is safe:\n");
495     LLVM_DEBUG(dbgs() << "  Inner: "; InnerPHI.dump());
496     LLVM_DEBUG(dbgs() << "  Outer: "; OuterPHI->dump());
497     SafeOuterPHIs.insert(OuterPHI);
498     FI.InnerPHIsToTransform.insert(&InnerPHI);
499   }
500 
501   for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) {
502     if (FI.isNarrowInductionPhi(&OuterPHI))
503       continue;
504     if (!SafeOuterPHIs.count(&OuterPHI)) {
505       LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump());
506       return false;
507     }
508   }
509 
510   LLVM_DEBUG(dbgs() << "checkPHIs: OK\n");
511   return true;
512 }
513 
514 static bool
515 checkOuterLoopInsts(FlattenInfo &FI,
516                     SmallPtrSetImpl<Instruction *> &IterationInstructions,
517                     const TargetTransformInfo *TTI) {
518   // Check for instructions in the outer but not inner loop. If any of these
519   // have side-effects then this transformation is not legal, and if there is
520   // a significant amount of code here which can't be optimised out that it's
521   // not profitable (as these instructions would get executed for each
522   // iteration of the inner loop).
523   InstructionCost RepeatedInstrCost = 0;
524   for (auto *B : FI.OuterLoop->getBlocks()) {
525     if (FI.InnerLoop->contains(B))
526       continue;
527 
528     for (auto &I : *B) {
529       if (!isa<PHINode>(&I) && !I.isTerminator() &&
530           !isSafeToSpeculativelyExecute(&I)) {
531         LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have "
532                              "side effects: ";
533                    I.dump());
534         return false;
535       }
536       // The execution count of the outer loop's iteration instructions
537       // (increment, compare and branch) will be increased, but the
538       // equivalent instructions will be removed from the inner loop, so
539       // they make a net difference of zero.
540       if (IterationInstructions.count(&I))
541         continue;
542       // The uncoditional branch to the inner loop's header will turn into
543       // a fall-through, so adds no cost.
544       BranchInst *Br = dyn_cast<BranchInst>(&I);
545       if (Br && Br->isUnconditional() &&
546           Br->getSuccessor(0) == FI.InnerLoop->getHeader())
547         continue;
548       // Multiplies of the outer iteration variable and inner iteration
549       // count will be optimised out.
550       if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI),
551                             m_Specific(FI.InnerTripCount))))
552         continue;
553       InstructionCost Cost =
554           TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
555       LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump());
556       RepeatedInstrCost += Cost;
557     }
558   }
559 
560   LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: "
561                     << RepeatedInstrCost << "\n");
562   // Bail out if flattening the loops would cause instructions in the outer
563   // loop but not in the inner loop to be executed extra times.
564   if (RepeatedInstrCost > RepeatedInstructionThreshold) {
565     LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n");
566     return false;
567   }
568 
569   LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n");
570   return true;
571 }
572 
573 
574 
575 // We require all uses of both induction variables to match this pattern:
576 //
577 //   (OuterPHI * InnerTripCount) + InnerPHI
578 //
579 // Any uses of the induction variables not matching that pattern would
580 // require a div/mod to reconstruct in the flattened loop, so the
581 // transformation wouldn't be profitable.
582 static bool checkIVUsers(FlattenInfo &FI) {
583   // Check that all uses of the inner loop's induction variable match the
584   // expected pattern, recording the uses of the outer IV.
585   SmallPtrSet<Value *, 4> ValidOuterPHIUses;
586   if (!FI.checkInnerInductionPhiUsers(ValidOuterPHIUses))
587     return false;
588 
589   // Check that there are no uses of the outer IV other than the ones found
590   // as part of the pattern above.
591   if (!FI.checkOuterInductionPhiUsers(ValidOuterPHIUses))
592     return false;
593 
594   LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n";
595              dbgs() << "Found " << FI.LinearIVUses.size()
596                     << " value(s) that can be replaced:\n";
597              for (Value *V : FI.LinearIVUses) {
598                dbgs() << "  ";
599                V->dump();
600              });
601   return true;
602 }
603 
604 // Return an OverflowResult dependant on if overflow of the multiplication of
605 // InnerTripCount and OuterTripCount can be assumed not to happen.
606 static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT,
607                                     AssumptionCache *AC) {
608   Function *F = FI.OuterLoop->getHeader()->getParent();
609   const DataLayout &DL = F->getParent()->getDataLayout();
610 
611   // For debugging/testing.
612   if (AssumeNoOverflow)
613     return OverflowResult::NeverOverflows;
614 
615   // Check if the multiply could not overflow due to known ranges of the
616   // input values.
617   OverflowResult OR = computeOverflowForUnsignedMul(
618       FI.InnerTripCount, FI.OuterTripCount, DL, AC,
619       FI.OuterLoop->getLoopPreheader()->getTerminator(), DT);
620   if (OR != OverflowResult::MayOverflow)
621     return OR;
622 
623   for (Value *V : FI.LinearIVUses) {
624     for (Value *U : V->users()) {
625       if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
626         for (Value *GEPUser : U->users()) {
627           auto *GEPUserInst = cast<Instruction>(GEPUser);
628           if (!isa<LoadInst>(GEPUserInst) &&
629               !(isa<StoreInst>(GEPUserInst) &&
630                 GEP == GEPUserInst->getOperand(1)))
631             continue;
632           if (!isGuaranteedToExecuteForEveryIteration(GEPUserInst,
633                                                       FI.InnerLoop))
634             continue;
635           // The IV is used as the operand of a GEP which dominates the loop
636           // latch, and the IV is at least as wide as the address space of the
637           // GEP. In this case, the GEP would wrap around the address space
638           // before the IV increment wraps, which would be UB.
639           if (GEP->isInBounds() &&
640               V->getType()->getIntegerBitWidth() >=
641                   DL.getPointerTypeSizeInBits(GEP->getType())) {
642             LLVM_DEBUG(
643                 dbgs() << "use of linear IV would be UB if overflow occurred: ";
644                 GEP->dump());
645             return OverflowResult::NeverOverflows;
646           }
647         }
648       }
649     }
650   }
651 
652   return OverflowResult::MayOverflow;
653 }
654 
655 static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
656                                ScalarEvolution *SE, AssumptionCache *AC,
657                                const TargetTransformInfo *TTI) {
658   SmallPtrSet<Instruction *, 8> IterationInstructions;
659   if (!findLoopComponents(FI.InnerLoop, IterationInstructions,
660                           FI.InnerInductionPHI, FI.InnerTripCount,
661                           FI.InnerIncrement, FI.InnerBranch, SE, FI.Widened))
662     return false;
663   if (!findLoopComponents(FI.OuterLoop, IterationInstructions,
664                           FI.OuterInductionPHI, FI.OuterTripCount,
665                           FI.OuterIncrement, FI.OuterBranch, SE, FI.Widened))
666     return false;
667 
668   // Both of the loop trip count values must be invariant in the outer loop
669   // (non-instructions are all inherently invariant).
670   if (!FI.OuterLoop->isLoopInvariant(FI.InnerTripCount)) {
671     LLVM_DEBUG(dbgs() << "inner loop trip count not invariant\n");
672     return false;
673   }
674   if (!FI.OuterLoop->isLoopInvariant(FI.OuterTripCount)) {
675     LLVM_DEBUG(dbgs() << "outer loop trip count not invariant\n");
676     return false;
677   }
678 
679   if (!checkPHIs(FI, TTI))
680     return false;
681 
682   // FIXME: it should be possible to handle different types correctly.
683   if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType())
684     return false;
685 
686   if (!checkOuterLoopInsts(FI, IterationInstructions, TTI))
687     return false;
688 
689   // Find the values in the loop that can be replaced with the linearized
690   // induction variable, and check that there are no other uses of the inner
691   // or outer induction variable. If there were, we could still do this
692   // transformation, but we'd have to insert a div/mod to calculate the
693   // original IVs, so it wouldn't be profitable.
694   if (!checkIVUsers(FI))
695     return false;
696 
697   LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n");
698   return true;
699 }
700 
701 static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
702                               ScalarEvolution *SE, AssumptionCache *AC,
703                               const TargetTransformInfo *TTI, LPMUpdater *U,
704                               MemorySSAUpdater *MSSAU) {
705   Function *F = FI.OuterLoop->getHeader()->getParent();
706   LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n");
707   {
708     using namespace ore;
709     OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(),
710                               FI.InnerLoop->getHeader());
711     OptimizationRemarkEmitter ORE(F);
712     Remark << "Flattened into outer loop";
713     ORE.emit(Remark);
714   }
715 
716   Value *NewTripCount = BinaryOperator::CreateMul(
717       FI.InnerTripCount, FI.OuterTripCount, "flatten.tripcount",
718       FI.OuterLoop->getLoopPreheader()->getTerminator());
719   LLVM_DEBUG(dbgs() << "Created new trip count in preheader: ";
720              NewTripCount->dump());
721 
722   // Fix up PHI nodes that take values from the inner loop back-edge, which
723   // we are about to remove.
724   FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
725 
726   // The old Phi will be optimised away later, but for now we can't leave
727   // leave it in an invalid state, so are updating them too.
728   for (PHINode *PHI : FI.InnerPHIsToTransform)
729     PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
730 
731   // Modify the trip count of the outer loop to be the product of the two
732   // trip counts.
733   cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount);
734 
735   // Replace the inner loop backedge with an unconditional branch to the exit.
736   BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock();
737   BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock();
738   InnerExitingBlock->getTerminator()->eraseFromParent();
739   BranchInst::Create(InnerExitBlock, InnerExitingBlock);
740 
741   // Update the DomTree and MemorySSA.
742   DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
743   if (MSSAU)
744     MSSAU->removeEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
745 
746   // Replace all uses of the polynomial calculated from the two induction
747   // variables with the one new one.
748   IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator());
749   for (Value *V : FI.LinearIVUses) {
750     Value *OuterValue = FI.OuterInductionPHI;
751     if (FI.Widened)
752       OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(),
753                                        "flatten.trunciv");
754 
755     LLVM_DEBUG(dbgs() << "Replacing: "; V->dump(); dbgs() << "with:      ";
756                OuterValue->dump());
757     V->replaceAllUsesWith(OuterValue);
758   }
759 
760   // Tell LoopInfo, SCEV and the pass manager that the inner loop has been
761   // deleted, and any information that have about the outer loop invalidated.
762   SE->forgetLoop(FI.OuterLoop);
763   SE->forgetLoop(FI.InnerLoop);
764   if (U)
765     U->markLoopAsDeleted(*FI.InnerLoop, FI.InnerLoop->getName());
766   LI->erase(FI.InnerLoop);
767 
768   // Increment statistic value.
769   NumFlattened++;
770 
771   return true;
772 }
773 
774 static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
775                        ScalarEvolution *SE, AssumptionCache *AC,
776                        const TargetTransformInfo *TTI) {
777   if (!WidenIV) {
778     LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n");
779     return false;
780   }
781 
782   LLVM_DEBUG(dbgs() << "Try widening the IVs\n");
783   Module *M = FI.InnerLoop->getHeader()->getParent()->getParent();
784   auto &DL = M->getDataLayout();
785   auto *InnerType = FI.InnerInductionPHI->getType();
786   auto *OuterType = FI.OuterInductionPHI->getType();
787   unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits();
788   auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext());
789 
790   // If both induction types are less than the maximum legal integer width,
791   // promote both to the widest type available so we know calculating
792   // (OuterTripCount * InnerTripCount) as the new trip count is safe.
793   if (InnerType != OuterType ||
794       InnerType->getScalarSizeInBits() >= MaxLegalSize ||
795       MaxLegalType->getScalarSizeInBits() <
796           InnerType->getScalarSizeInBits() * 2) {
797     LLVM_DEBUG(dbgs() << "Can't widen the IV\n");
798     return false;
799   }
800 
801   SCEVExpander Rewriter(*SE, DL, "loopflatten");
802   SmallVector<WeakTrackingVH, 4> DeadInsts;
803   unsigned ElimExt = 0;
804   unsigned Widened = 0;
805 
806   auto CreateWideIV = [&](WideIVInfo WideIV, bool &Deleted) -> bool {
807     PHINode *WidePhi =
808         createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts, ElimExt, Widened,
809                      true /* HasGuards */, true /* UsePostIncrementRanges */);
810     if (!WidePhi)
811       return false;
812     LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump());
813     LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump());
814     Deleted = RecursivelyDeleteDeadPHINode(WideIV.NarrowIV);
815     return true;
816   };
817 
818   bool Deleted;
819   if (!CreateWideIV({FI.InnerInductionPHI, MaxLegalType, false}, Deleted))
820     return false;
821   // Add the narrow phi to list, so that it will be adjusted later when the
822   // the transformation is performed.
823   if (!Deleted)
824     FI.InnerPHIsToTransform.insert(FI.InnerInductionPHI);
825 
826   if (!CreateWideIV({FI.OuterInductionPHI, MaxLegalType, false}, Deleted))
827     return false;
828 
829   assert(Widened && "Widened IV expected");
830   FI.Widened = true;
831 
832   // Save the old/narrow induction phis, which we need to ignore in CheckPHIs.
833   FI.NarrowInnerInductionPHI = FI.InnerInductionPHI;
834   FI.NarrowOuterInductionPHI = FI.OuterInductionPHI;
835 
836   // After widening, rediscover all the loop components.
837   return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
838 }
839 
840 static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
841                             ScalarEvolution *SE, AssumptionCache *AC,
842                             const TargetTransformInfo *TTI, LPMUpdater *U,
843                             MemorySSAUpdater *MSSAU) {
844   LLVM_DEBUG(
845       dbgs() << "Loop flattening running on outer loop "
846              << FI.OuterLoop->getHeader()->getName() << " and inner loop "
847              << FI.InnerLoop->getHeader()->getName() << " in "
848              << FI.OuterLoop->getHeader()->getParent()->getName() << "\n");
849 
850   if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI))
851     return false;
852 
853   // Check if we can widen the induction variables to avoid overflow checks.
854   bool CanFlatten = CanWidenIV(FI, DT, LI, SE, AC, TTI);
855 
856   // It can happen that after widening of the IV, flattening may not be
857   // possible/happening, e.g. when it is deemed unprofitable. So bail here if
858   // that is the case.
859   // TODO: IV widening without performing the actual flattening transformation
860   // is not ideal. While this codegen change should not matter much, it is an
861   // unnecessary change which is better to avoid. It's unlikely this happens
862   // often, because if it's unprofitibale after widening, it should be
863   // unprofitabe before widening as checked in the first round of checks. But
864   // 'RepeatedInstructionThreshold' is set to only 2, which can probably be
865   // relaxed. Because this is making a code change (the IV widening, but not
866   // the flattening), we return true here.
867   if (FI.Widened && !CanFlatten)
868     return true;
869 
870   // If we have widened and can perform the transformation, do that here.
871   if (CanFlatten)
872     return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU);
873 
874   // Otherwise, if we haven't widened the IV, check if the new iteration
875   // variable might overflow. In this case, we need to version the loop, and
876   // select the original version at runtime if the iteration space is too
877   // large.
878   // TODO: We currently don't version the loop.
879   OverflowResult OR = checkOverflow(FI, DT, AC);
880   if (OR == OverflowResult::AlwaysOverflowsHigh ||
881       OR == OverflowResult::AlwaysOverflowsLow) {
882     LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n");
883     return false;
884   } else if (OR == OverflowResult::MayOverflow) {
885     LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n");
886     return false;
887   }
888 
889   LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n");
890   return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU);
891 }
892 
893 bool Flatten(LoopNest &LN, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE,
894              AssumptionCache *AC, TargetTransformInfo *TTI, LPMUpdater *U,
895              MemorySSAUpdater *MSSAU) {
896   bool Changed = false;
897   for (Loop *InnerLoop : LN.getLoops()) {
898     auto *OuterLoop = InnerLoop->getParentLoop();
899     if (!OuterLoop)
900       continue;
901     FlattenInfo FI(OuterLoop, InnerLoop);
902     Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU);
903   }
904   return Changed;
905 }
906 
907 PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM,
908                                        LoopStandardAnalysisResults &AR,
909                                        LPMUpdater &U) {
910 
911   bool Changed = false;
912 
913   Optional<MemorySSAUpdater> MSSAU;
914   if (AR.MSSA) {
915     MSSAU = MemorySSAUpdater(AR.MSSA);
916     if (VerifyMemorySSA)
917       AR.MSSA->verifyMemorySSA();
918   }
919 
920   // The loop flattening pass requires loops to be
921   // in simplified form, and also needs LCSSA. Running
922   // this pass will simplify all loops that contain inner loops,
923   // regardless of whether anything ends up being flattened.
924   Changed |= Flatten(LN, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI, &U,
925                      MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);
926 
927   if (!Changed)
928     return PreservedAnalyses::all();
929 
930   if (AR.MSSA && VerifyMemorySSA)
931     AR.MSSA->verifyMemorySSA();
932 
933   auto PA = getLoopPassPreservedAnalyses();
934   if (AR.MSSA)
935     PA.preserve<MemorySSAAnalysis>();
936   return PA;
937 }
938 
939 namespace {
940 class LoopFlattenLegacyPass : public FunctionPass {
941 public:
942   static char ID; // Pass ID, replacement for typeid
943   LoopFlattenLegacyPass() : FunctionPass(ID) {
944     initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry());
945   }
946 
947   // Possibly flatten loop L into its child.
948   bool runOnFunction(Function &F) override;
949 
950   void getAnalysisUsage(AnalysisUsage &AU) const override {
951     getLoopAnalysisUsage(AU);
952     AU.addRequired<TargetTransformInfoWrapperPass>();
953     AU.addPreserved<TargetTransformInfoWrapperPass>();
954     AU.addRequired<AssumptionCacheTracker>();
955     AU.addPreserved<AssumptionCacheTracker>();
956     AU.addPreserved<MemorySSAWrapperPass>();
957   }
958 };
959 } // namespace
960 
961 char LoopFlattenLegacyPass::ID = 0;
962 INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
963                       false, false)
964 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
965 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
966 INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
967                     false, false)
968 
969 FunctionPass *llvm::createLoopFlattenPass() {
970   return new LoopFlattenLegacyPass();
971 }
972 
973 bool LoopFlattenLegacyPass::runOnFunction(Function &F) {
974   ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
975   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
976   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
977   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
978   auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>();
979   auto *TTI = &TTIP.getTTI(F);
980   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
981   auto *MSSA = getAnalysisIfAvailable<MemorySSAWrapperPass>();
982 
983   Optional<MemorySSAUpdater> MSSAU;
984   if (MSSA)
985     MSSAU = MemorySSAUpdater(&MSSA->getMSSA());
986 
987   bool Changed = false;
988   for (Loop *L : *LI) {
989     auto LN = LoopNest::getLoopNest(*L, *SE);
990     Changed |= Flatten(*LN, DT, LI, SE, AC, TTI, nullptr,
991                        MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);
992   }
993   return Changed;
994 }
995