1 //===- LoopFlatten.cpp - Loop flattening pass------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass flattens pairs nested loops into a single loop. 10 // 11 // The intention is to optimise loop nests like this, which together access an 12 // array linearly: 13 // for (int i = 0; i < N; ++i) 14 // for (int j = 0; j < M; ++j) 15 // f(A[i*M+j]); 16 // into one loop: 17 // for (int i = 0; i < (N*M); ++i) 18 // f(A[i]); 19 // 20 // It can also flatten loops where the induction variables are not used in the 21 // loop. This is only worth doing if the induction variables are only used in an 22 // expression like i*M+j. If they had any other uses, we would have to insert a 23 // div/mod to reconstruct the original values, so this wouldn't be profitable. 24 // 25 // We also need to prove that N*M will not overflow. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/Transforms/Scalar/LoopFlatten.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/ScalarEvolution.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/IR/Verifier.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/Transforms/Utils/LoopUtils.h" 49 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 50 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 51 52 #define DEBUG_TYPE "loop-flatten" 53 54 using namespace llvm; 55 using namespace llvm::PatternMatch; 56 57 static cl::opt<unsigned> RepeatedInstructionThreshold( 58 "loop-flatten-cost-threshold", cl::Hidden, cl::init(2), 59 cl::desc("Limit on the cost of instructions that can be repeated due to " 60 "loop flattening")); 61 62 static cl::opt<bool> 63 AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden, 64 cl::init(false), 65 cl::desc("Assume that the product of the two iteration " 66 "limits will never overflow")); 67 68 static cl::opt<bool> 69 WidenIV("loop-flatten-widen-iv", cl::Hidden, 70 cl::init(true), 71 cl::desc("Widen the loop induction variables, if possible, so " 72 "overflow checks won't reject flattening")); 73 74 struct FlattenInfo { 75 Loop *OuterLoop = nullptr; 76 Loop *InnerLoop = nullptr; 77 PHINode *InnerInductionPHI = nullptr; 78 PHINode *OuterInductionPHI = nullptr; 79 Value *InnerLimit = nullptr; 80 Value *OuterLimit = nullptr; 81 BinaryOperator *InnerIncrement = nullptr; 82 BinaryOperator *OuterIncrement = nullptr; 83 BranchInst *InnerBranch = nullptr; 84 BranchInst *OuterBranch = nullptr; 85 SmallPtrSet<Value *, 4> LinearIVUses; 86 SmallPtrSet<PHINode *, 4> InnerPHIsToTransform; 87 88 // Whether this holds the flatten info before or after widening. 89 bool Widened = false; 90 91 FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL) {}; 92 }; 93 94 // Finds the induction variable, increment and limit for a simple loop that we 95 // can flatten. 96 static bool findLoopComponents( 97 Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions, 98 PHINode *&InductionPHI, Value *&Limit, BinaryOperator *&Increment, 99 BranchInst *&BackBranch, ScalarEvolution *SE) { 100 LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n"); 101 102 if (!L->isLoopSimplifyForm()) { 103 LLVM_DEBUG(dbgs() << "Loop is not in normal form\n"); 104 return false; 105 } 106 107 // There must be exactly one exiting block, and it must be the same at the 108 // latch. 109 BasicBlock *Latch = L->getLoopLatch(); 110 if (L->getExitingBlock() != Latch) { 111 LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n"); 112 return false; 113 } 114 // Latch block must end in a conditional branch. 115 BackBranch = dyn_cast<BranchInst>(Latch->getTerminator()); 116 if (!BackBranch || !BackBranch->isConditional()) { 117 LLVM_DEBUG(dbgs() << "Could not find back-branch\n"); 118 return false; 119 } 120 IterationInstructions.insert(BackBranch); 121 LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump()); 122 bool ContinueOnTrue = L->contains(BackBranch->getSuccessor(0)); 123 124 // Find the induction PHI. If there is no induction PHI, we can't do the 125 // transformation. TODO: could other variables trigger this? Do we have to 126 // search for the best one? 127 InductionPHI = nullptr; 128 for (PHINode &PHI : L->getHeader()->phis()) { 129 InductionDescriptor ID; 130 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) { 131 InductionPHI = &PHI; 132 LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump()); 133 break; 134 } 135 } 136 if (!InductionPHI) { 137 LLVM_DEBUG(dbgs() << "Could not find induction PHI\n"); 138 return false; 139 } 140 141 auto IsValidPredicate = [&](ICmpInst::Predicate Pred) { 142 if (ContinueOnTrue) 143 return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT; 144 else 145 return Pred == CmpInst::ICMP_EQ; 146 }; 147 148 // Find Compare and make sure it is valid 149 ICmpInst *Compare = dyn_cast<ICmpInst>(BackBranch->getCondition()); 150 if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) || 151 Compare->hasNUsesOrMore(2)) { 152 LLVM_DEBUG(dbgs() << "Could not find valid comparison\n"); 153 return false; 154 } 155 IterationInstructions.insert(Compare); 156 LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump()); 157 158 // Find increment and limit from the compare 159 Increment = nullptr; 160 if (match(Compare->getOperand(0), 161 m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) { 162 Increment = dyn_cast<BinaryOperator>(Compare->getOperand(0)); 163 Limit = Compare->getOperand(1); 164 } else if (Compare->getUnsignedPredicate() == CmpInst::ICMP_NE && 165 match(Compare->getOperand(1), 166 m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) { 167 Increment = dyn_cast<BinaryOperator>(Compare->getOperand(1)); 168 Limit = Compare->getOperand(0); 169 } 170 if (!Increment || Increment->hasNUsesOrMore(3)) { 171 LLVM_DEBUG(dbgs() << "Cound not find valid increment\n"); 172 return false; 173 } 174 IterationInstructions.insert(Increment); 175 LLVM_DEBUG(dbgs() << "Found increment: "; Increment->dump()); 176 LLVM_DEBUG(dbgs() << "Found limit: "; Limit->dump()); 177 178 assert(InductionPHI->getNumIncomingValues() == 2); 179 180 if (InductionPHI->getIncomingValueForBlock(Latch) != Increment) { 181 LLVM_DEBUG(dbgs() << "PHI value is not increment inst"); 182 return false; 183 } 184 185 auto *CI = dyn_cast<ConstantInt>( 186 InductionPHI->getIncomingValueForBlock(L->getLoopPreheader())); 187 if (!CI || !CI->isZero()) { 188 LLVM_DEBUG(dbgs() << "PHI value is not zero: "; CI->dump()); 189 return false; 190 } 191 192 LLVM_DEBUG(dbgs() << "Successfully found all loop components\n"); 193 return true; 194 } 195 196 static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) { 197 // All PHIs in the inner and outer headers must either be: 198 // - The induction PHI, which we are going to rewrite as one induction in 199 // the new loop. This is already checked by findLoopComponents. 200 // - An outer header PHI with all incoming values from outside the loop. 201 // LoopSimplify guarantees we have a pre-header, so we don't need to 202 // worry about that here. 203 // - Pairs of PHIs in the inner and outer headers, which implement a 204 // loop-carried dependency that will still be valid in the new loop. To 205 // be valid, this variable must be modified only in the inner loop. 206 207 // The set of PHI nodes in the outer loop header that we know will still be 208 // valid after the transformation. These will not need to be modified (with 209 // the exception of the induction variable), but we do need to check that 210 // there are no unsafe PHI nodes. 211 SmallPtrSet<PHINode *, 4> SafeOuterPHIs; 212 SafeOuterPHIs.insert(FI.OuterInductionPHI); 213 214 // Check that all PHI nodes in the inner loop header match one of the valid 215 // patterns. 216 for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) { 217 // The induction PHIs break these rules, and that's OK because we treat 218 // them specially when doing the transformation. 219 if (&InnerPHI == FI.InnerInductionPHI) 220 continue; 221 222 // Each inner loop PHI node must have two incoming values/blocks - one 223 // from the pre-header, and one from the latch. 224 assert(InnerPHI.getNumIncomingValues() == 2); 225 Value *PreHeaderValue = 226 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader()); 227 Value *LatchValue = 228 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch()); 229 230 // The incoming value from the outer loop must be the PHI node in the 231 // outer loop header, with no modifications made in the top of the outer 232 // loop. 233 PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue); 234 if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) { 235 LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n"); 236 return false; 237 } 238 239 // The other incoming value must come from the inner loop, without any 240 // modifications in the tail end of the outer loop. We are in LCSSA form, 241 // so this will actually be a PHI in the inner loop's exit block, which 242 // only uses values from inside the inner loop. 243 PHINode *LCSSAPHI = dyn_cast<PHINode>( 244 OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch())); 245 if (!LCSSAPHI) { 246 LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n"); 247 return false; 248 } 249 250 // The value used by the LCSSA PHI must be the same one that the inner 251 // loop's PHI uses. 252 if (LCSSAPHI->hasConstantValue() != LatchValue) { 253 LLVM_DEBUG( 254 dbgs() << "LCSSA PHI incoming value does not match latch value\n"); 255 return false; 256 } 257 258 LLVM_DEBUG(dbgs() << "PHI pair is safe:\n"); 259 LLVM_DEBUG(dbgs() << " Inner: "; InnerPHI.dump()); 260 LLVM_DEBUG(dbgs() << " Outer: "; OuterPHI->dump()); 261 SafeOuterPHIs.insert(OuterPHI); 262 FI.InnerPHIsToTransform.insert(&InnerPHI); 263 } 264 265 for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) { 266 if (!SafeOuterPHIs.count(&OuterPHI)) { 267 LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump()); 268 return false; 269 } 270 } 271 272 LLVM_DEBUG(dbgs() << "checkPHIs: OK\n"); 273 return true; 274 } 275 276 static bool 277 checkOuterLoopInsts(FlattenInfo &FI, 278 SmallPtrSetImpl<Instruction *> &IterationInstructions, 279 const TargetTransformInfo *TTI) { 280 // Check for instructions in the outer but not inner loop. If any of these 281 // have side-effects then this transformation is not legal, and if there is 282 // a significant amount of code here which can't be optimised out that it's 283 // not profitable (as these instructions would get executed for each 284 // iteration of the inner loop). 285 InstructionCost RepeatedInstrCost = 0; 286 for (auto *B : FI.OuterLoop->getBlocks()) { 287 if (FI.InnerLoop->contains(B)) 288 continue; 289 290 for (auto &I : *B) { 291 if (!isa<PHINode>(&I) && !I.isTerminator() && 292 !isSafeToSpeculativelyExecute(&I)) { 293 LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have " 294 "side effects: "; 295 I.dump()); 296 return false; 297 } 298 // The execution count of the outer loop's iteration instructions 299 // (increment, compare and branch) will be increased, but the 300 // equivalent instructions will be removed from the inner loop, so 301 // they make a net difference of zero. 302 if (IterationInstructions.count(&I)) 303 continue; 304 // The uncoditional branch to the inner loop's header will turn into 305 // a fall-through, so adds no cost. 306 BranchInst *Br = dyn_cast<BranchInst>(&I); 307 if (Br && Br->isUnconditional() && 308 Br->getSuccessor(0) == FI.InnerLoop->getHeader()) 309 continue; 310 // Multiplies of the outer iteration variable and inner iteration 311 // count will be optimised out. 312 if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI), 313 m_Specific(FI.InnerLimit)))) 314 continue; 315 InstructionCost Cost = 316 TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 317 LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump()); 318 RepeatedInstrCost += Cost; 319 } 320 } 321 322 LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: " 323 << RepeatedInstrCost << "\n"); 324 // Bail out if flattening the loops would cause instructions in the outer 325 // loop but not in the inner loop to be executed extra times. 326 if (RepeatedInstrCost > RepeatedInstructionThreshold) { 327 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n"); 328 return false; 329 } 330 331 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n"); 332 return true; 333 } 334 335 static bool checkIVUsers(FlattenInfo &FI) { 336 // We require all uses of both induction variables to match this pattern: 337 // 338 // (OuterPHI * InnerLimit) + InnerPHI 339 // 340 // Any uses of the induction variables not matching that pattern would 341 // require a div/mod to reconstruct in the flattened loop, so the 342 // transformation wouldn't be profitable. 343 344 Value *InnerLimit = FI.InnerLimit; 345 if (FI.Widened && 346 (isa<SExtInst>(InnerLimit) || isa<ZExtInst>(InnerLimit))) 347 InnerLimit = cast<Instruction>(InnerLimit)->getOperand(0); 348 349 // Check that all uses of the inner loop's induction variable match the 350 // expected pattern, recording the uses of the outer IV. 351 SmallPtrSet<Value *, 4> ValidOuterPHIUses; 352 for (User *U : FI.InnerInductionPHI->users()) { 353 if (U == FI.InnerIncrement) 354 continue; 355 356 // After widening the IVs, a trunc instruction might have been introduced, so 357 // look through truncs. 358 if (isa<TruncInst>(U)) { 359 if (!U->hasOneUse()) 360 return false; 361 U = *U->user_begin(); 362 } 363 364 LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump()); 365 366 Value *MatchedMul; 367 Value *MatchedItCount; 368 bool IsAdd = match(U, m_c_Add(m_Specific(FI.InnerInductionPHI), 369 m_Value(MatchedMul))) && 370 match(MatchedMul, m_c_Mul(m_Specific(FI.OuterInductionPHI), 371 m_Value(MatchedItCount))); 372 373 // Matches the same pattern as above, except it also looks for truncs 374 // on the phi, which can be the result of widening the induction variables. 375 bool IsAddTrunc = match(U, m_c_Add(m_Trunc(m_Specific(FI.InnerInductionPHI)), 376 m_Value(MatchedMul))) && 377 match(MatchedMul, 378 m_c_Mul(m_Trunc(m_Specific(FI.OuterInductionPHI)), 379 m_Value(MatchedItCount))); 380 381 if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerLimit) { 382 LLVM_DEBUG(dbgs() << "Use is optimisable\n"); 383 ValidOuterPHIUses.insert(MatchedMul); 384 FI.LinearIVUses.insert(U); 385 } else { 386 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 387 return false; 388 } 389 } 390 391 // Check that there are no uses of the outer IV other than the ones found 392 // as part of the pattern above. 393 for (User *U : FI.OuterInductionPHI->users()) { 394 if (U == FI.OuterIncrement) 395 continue; 396 397 auto IsValidOuterPHIUses = [&] (User *U) -> bool { 398 LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump()); 399 if (!ValidOuterPHIUses.count(U)) { 400 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 401 return false; 402 } 403 LLVM_DEBUG(dbgs() << "Use is optimisable\n"); 404 return true; 405 }; 406 407 if (auto *V = dyn_cast<TruncInst>(U)) { 408 for (auto *K : V->users()) { 409 if (!IsValidOuterPHIUses(K)) 410 return false; 411 } 412 continue; 413 } 414 415 if (!IsValidOuterPHIUses(U)) 416 return false; 417 } 418 419 LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n"; 420 dbgs() << "Found " << FI.LinearIVUses.size() 421 << " value(s) that can be replaced:\n"; 422 for (Value *V : FI.LinearIVUses) { 423 dbgs() << " "; 424 V->dump(); 425 }); 426 return true; 427 } 428 429 // Return an OverflowResult dependant on if overflow of the multiplication of 430 // InnerLimit and OuterLimit can be assumed not to happen. 431 static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT, 432 AssumptionCache *AC) { 433 Function *F = FI.OuterLoop->getHeader()->getParent(); 434 const DataLayout &DL = F->getParent()->getDataLayout(); 435 436 // For debugging/testing. 437 if (AssumeNoOverflow) 438 return OverflowResult::NeverOverflows; 439 440 // Check if the multiply could not overflow due to known ranges of the 441 // input values. 442 OverflowResult OR = computeOverflowForUnsignedMul( 443 FI.InnerLimit, FI.OuterLimit, DL, AC, 444 FI.OuterLoop->getLoopPreheader()->getTerminator(), DT); 445 if (OR != OverflowResult::MayOverflow) 446 return OR; 447 448 for (Value *V : FI.LinearIVUses) { 449 for (Value *U : V->users()) { 450 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) { 451 // The IV is used as the operand of a GEP, and the IV is at least as 452 // wide as the address space of the GEP. In this case, the GEP would 453 // wrap around the address space before the IV increment wraps, which 454 // would be UB. 455 if (GEP->isInBounds() && 456 V->getType()->getIntegerBitWidth() >= 457 DL.getPointerTypeSizeInBits(GEP->getType())) { 458 LLVM_DEBUG( 459 dbgs() << "use of linear IV would be UB if overflow occurred: "; 460 GEP->dump()); 461 return OverflowResult::NeverOverflows; 462 } 463 } 464 } 465 } 466 467 return OverflowResult::MayOverflow; 468 } 469 470 static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 471 ScalarEvolution *SE, AssumptionCache *AC, 472 const TargetTransformInfo *TTI) { 473 SmallPtrSet<Instruction *, 8> IterationInstructions; 474 if (!findLoopComponents(FI.InnerLoop, IterationInstructions, FI.InnerInductionPHI, 475 FI.InnerLimit, FI.InnerIncrement, FI.InnerBranch, SE)) 476 return false; 477 if (!findLoopComponents(FI.OuterLoop, IterationInstructions, FI.OuterInductionPHI, 478 FI.OuterLimit, FI.OuterIncrement, FI.OuterBranch, SE)) 479 return false; 480 481 // Both of the loop limit values must be invariant in the outer loop 482 // (non-instructions are all inherently invariant). 483 if (!FI.OuterLoop->isLoopInvariant(FI.InnerLimit)) { 484 LLVM_DEBUG(dbgs() << "inner loop limit not invariant\n"); 485 return false; 486 } 487 if (!FI.OuterLoop->isLoopInvariant(FI.OuterLimit)) { 488 LLVM_DEBUG(dbgs() << "outer loop limit not invariant\n"); 489 return false; 490 } 491 492 if (!checkPHIs(FI, TTI)) 493 return false; 494 495 // FIXME: it should be possible to handle different types correctly. 496 if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType()) 497 return false; 498 499 if (!checkOuterLoopInsts(FI, IterationInstructions, TTI)) 500 return false; 501 502 // Find the values in the loop that can be replaced with the linearized 503 // induction variable, and check that there are no other uses of the inner 504 // or outer induction variable. If there were, we could still do this 505 // transformation, but we'd have to insert a div/mod to calculate the 506 // original IVs, so it wouldn't be profitable. 507 if (!checkIVUsers(FI)) 508 return false; 509 510 LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n"); 511 return true; 512 } 513 514 static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 515 ScalarEvolution *SE, AssumptionCache *AC, 516 const TargetTransformInfo *TTI) { 517 Function *F = FI.OuterLoop->getHeader()->getParent(); 518 LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n"); 519 { 520 using namespace ore; 521 OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(), 522 FI.InnerLoop->getHeader()); 523 OptimizationRemarkEmitter ORE(F); 524 Remark << "Flattened into outer loop"; 525 ORE.emit(Remark); 526 } 527 528 Value *NewTripCount = 529 BinaryOperator::CreateMul(FI.InnerLimit, FI.OuterLimit, "flatten.tripcount", 530 FI.OuterLoop->getLoopPreheader()->getTerminator()); 531 LLVM_DEBUG(dbgs() << "Created new trip count in preheader: "; 532 NewTripCount->dump()); 533 534 // Fix up PHI nodes that take values from the inner loop back-edge, which 535 // we are about to remove. 536 FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 537 538 // The old Phi will be optimised away later, but for now we can't leave 539 // leave it in an invalid state, so are updating them too. 540 for (PHINode *PHI : FI.InnerPHIsToTransform) 541 PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 542 543 // Modify the trip count of the outer loop to be the product of the two 544 // trip counts. 545 cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount); 546 547 // Replace the inner loop backedge with an unconditional branch to the exit. 548 BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock(); 549 BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock(); 550 InnerExitingBlock->getTerminator()->eraseFromParent(); 551 BranchInst::Create(InnerExitBlock, InnerExitingBlock); 552 DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader()); 553 554 // Replace all uses of the polynomial calculated from the two induction 555 // variables with the one new one. 556 IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator()); 557 for (Value *V : FI.LinearIVUses) { 558 Value *OuterValue = FI.OuterInductionPHI; 559 if (FI.Widened) 560 OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(), 561 "flatten.trunciv"); 562 563 LLVM_DEBUG(dbgs() << "Replacing: "; V->dump(); 564 dbgs() << "with: "; OuterValue->dump()); 565 V->replaceAllUsesWith(OuterValue); 566 } 567 568 // Tell LoopInfo, SCEV and the pass manager that the inner loop has been 569 // deleted, and any information that have about the outer loop invalidated. 570 SE->forgetLoop(FI.OuterLoop); 571 SE->forgetLoop(FI.InnerLoop); 572 LI->erase(FI.InnerLoop); 573 return true; 574 } 575 576 static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 577 ScalarEvolution *SE, AssumptionCache *AC, 578 const TargetTransformInfo *TTI) { 579 if (!WidenIV) { 580 LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n"); 581 return false; 582 } 583 584 LLVM_DEBUG(dbgs() << "Try widening the IVs\n"); 585 Module *M = FI.InnerLoop->getHeader()->getParent()->getParent(); 586 auto &DL = M->getDataLayout(); 587 auto *InnerType = FI.InnerInductionPHI->getType(); 588 auto *OuterType = FI.OuterInductionPHI->getType(); 589 unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits(); 590 auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext()); 591 592 // If both induction types are less than the maximum legal integer width, 593 // promote both to the widest type available so we know calculating 594 // (OuterLimit * InnerLimit) as the new trip count is safe. 595 if (InnerType != OuterType || 596 InnerType->getScalarSizeInBits() >= MaxLegalSize || 597 MaxLegalType->getScalarSizeInBits() < InnerType->getScalarSizeInBits() * 2) { 598 LLVM_DEBUG(dbgs() << "Can't widen the IV\n"); 599 return false; 600 } 601 602 SCEVExpander Rewriter(*SE, DL, "loopflatten"); 603 SmallVector<WideIVInfo, 2> WideIVs; 604 SmallVector<WeakTrackingVH, 4> DeadInsts; 605 WideIVs.push_back( {FI.InnerInductionPHI, MaxLegalType, false }); 606 WideIVs.push_back( {FI.OuterInductionPHI, MaxLegalType, false }); 607 unsigned ElimExt; 608 unsigned Widened; 609 610 for (unsigned i = 0; i < WideIVs.size(); i++) { 611 PHINode *WidePhi = createWideIV(WideIVs[i], LI, SE, Rewriter, DT, DeadInsts, 612 ElimExt, Widened, true /* HasGuards */, 613 true /* UsePostIncrementRanges */); 614 if (!WidePhi) 615 return false; 616 LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump()); 617 LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIVs[i].NarrowIV->dump()); 618 RecursivelyDeleteDeadPHINode(WideIVs[i].NarrowIV); 619 } 620 // After widening, rediscover all the loop components. 621 assert(Widened && "Widenend IV expected"); 622 FI.Widened = true; 623 return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI); 624 } 625 626 static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 627 ScalarEvolution *SE, AssumptionCache *AC, 628 const TargetTransformInfo *TTI) { 629 LLVM_DEBUG( 630 dbgs() << "Loop flattening running on outer loop " 631 << FI.OuterLoop->getHeader()->getName() << " and inner loop " 632 << FI.InnerLoop->getHeader()->getName() << " in " 633 << FI.OuterLoop->getHeader()->getParent()->getName() << "\n"); 634 635 if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI)) 636 return false; 637 638 // Check if we can widen the induction variables to avoid overflow checks. 639 if (CanWidenIV(FI, DT, LI, SE, AC, TTI)) 640 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI); 641 642 // Check if the new iteration variable might overflow. In this case, we 643 // need to version the loop, and select the original version at runtime if 644 // the iteration space is too large. 645 // TODO: We currently don't version the loop. 646 OverflowResult OR = checkOverflow(FI, DT, AC); 647 if (OR == OverflowResult::AlwaysOverflowsHigh || 648 OR == OverflowResult::AlwaysOverflowsLow) { 649 LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n"); 650 return false; 651 } else if (OR == OverflowResult::MayOverflow) { 652 LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n"); 653 return false; 654 } 655 656 LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n"); 657 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI); 658 } 659 660 bool Flatten(DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, 661 AssumptionCache *AC, TargetTransformInfo *TTI) { 662 bool Changed = false; 663 for (auto *InnerLoop : LI->getLoopsInPreorder()) { 664 auto *OuterLoop = InnerLoop->getParentLoop(); 665 if (!OuterLoop) 666 continue; 667 FlattenInfo FI(OuterLoop, InnerLoop); 668 Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI); 669 } 670 return Changed; 671 } 672 673 PreservedAnalyses LoopFlattenPass::run(Function &F, 674 FunctionAnalysisManager &AM) { 675 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 676 auto *LI = &AM.getResult<LoopAnalysis>(F); 677 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 678 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 679 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 680 681 if (!Flatten(DT, LI, SE, AC, TTI)) 682 return PreservedAnalyses::all(); 683 684 PreservedAnalyses PA; 685 PA.preserveSet<CFGAnalyses>(); 686 return PA; 687 } 688 689 namespace { 690 class LoopFlattenLegacyPass : public FunctionPass { 691 public: 692 static char ID; // Pass ID, replacement for typeid 693 LoopFlattenLegacyPass() : FunctionPass(ID) { 694 initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry()); 695 } 696 697 // Possibly flatten loop L into its child. 698 bool runOnFunction(Function &F) override; 699 700 void getAnalysisUsage(AnalysisUsage &AU) const override { 701 getLoopAnalysisUsage(AU); 702 AU.addRequired<TargetTransformInfoWrapperPass>(); 703 AU.addPreserved<TargetTransformInfoWrapperPass>(); 704 AU.addRequired<AssumptionCacheTracker>(); 705 AU.addPreserved<AssumptionCacheTracker>(); 706 } 707 }; 708 } // namespace 709 710 char LoopFlattenLegacyPass::ID = 0; 711 INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops", 712 false, false) 713 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 714 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 715 INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops", 716 false, false) 717 718 FunctionPass *llvm::createLoopFlattenPass() { return new LoopFlattenLegacyPass(); } 719 720 bool LoopFlattenLegacyPass::runOnFunction(Function &F) { 721 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 722 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 723 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 724 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 725 auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>(); 726 auto *TTI = &TTIP.getTTI(F); 727 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 728 return Flatten(DT, LI, SE, AC, TTI); 729 } 730