1 //===- LoopFlatten.cpp - Loop flattening pass------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass flattens pairs nested loops into a single loop. 10 // 11 // The intention is to optimise loop nests like this, which together access an 12 // array linearly: 13 // for (int i = 0; i < N; ++i) 14 // for (int j = 0; j < M; ++j) 15 // f(A[i*M+j]); 16 // into one loop: 17 // for (int i = 0; i < (N*M); ++i) 18 // f(A[i]); 19 // 20 // It can also flatten loops where the induction variables are not used in the 21 // loop. This is only worth doing if the induction variables are only used in an 22 // expression like i*M+j. If they had any other uses, we would have to insert a 23 // div/mod to reconstruct the original values, so this wouldn't be profitable. 24 // 25 // We also need to prove that N*M will not overflow. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/Transforms/Scalar/LoopFlatten.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/ScalarEvolution.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/IR/Verifier.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/Transforms/Utils/LoopUtils.h" 49 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 50 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 51 52 #define DEBUG_TYPE "loop-flatten" 53 54 using namespace llvm; 55 using namespace llvm::PatternMatch; 56 57 static cl::opt<unsigned> RepeatedInstructionThreshold( 58 "loop-flatten-cost-threshold", cl::Hidden, cl::init(2), 59 cl::desc("Limit on the cost of instructions that can be repeated due to " 60 "loop flattening")); 61 62 static cl::opt<bool> 63 AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden, 64 cl::init(false), 65 cl::desc("Assume that the product of the two iteration " 66 "limits will never overflow")); 67 68 static cl::opt<bool> 69 WidenIV("loop-flatten-widen-iv", cl::Hidden, 70 cl::init(true), 71 cl::desc("Widen the loop induction variables, if possible, so " 72 "overflow checks won't reject flattening")); 73 74 struct FlattenInfo { 75 Loop *OuterLoop = nullptr; 76 Loop *InnerLoop = nullptr; 77 PHINode *InnerInductionPHI = nullptr; 78 PHINode *OuterInductionPHI = nullptr; 79 Value *InnerLimit = nullptr; 80 Value *OuterLimit = nullptr; 81 BinaryOperator *InnerIncrement = nullptr; 82 BinaryOperator *OuterIncrement = nullptr; 83 BranchInst *InnerBranch = nullptr; 84 BranchInst *OuterBranch = nullptr; 85 SmallPtrSet<Value *, 4> LinearIVUses; 86 SmallPtrSet<PHINode *, 4> InnerPHIsToTransform; 87 88 // Whether this holds the flatten info before or after widening. 89 bool Widened = false; 90 91 FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL) {}; 92 }; 93 94 // Finds the induction variable, increment and limit for a simple loop that we 95 // can flatten. 96 static bool findLoopComponents( 97 Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions, 98 PHINode *&InductionPHI, Value *&Limit, BinaryOperator *&Increment, 99 BranchInst *&BackBranch, ScalarEvolution *SE) { 100 LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n"); 101 102 if (!L->isLoopSimplifyForm()) { 103 LLVM_DEBUG(dbgs() << "Loop is not in normal form\n"); 104 return false; 105 } 106 107 // There must be exactly one exiting block, and it must be the same at the 108 // latch. 109 BasicBlock *Latch = L->getLoopLatch(); 110 if (L->getExitingBlock() != Latch) { 111 LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n"); 112 return false; 113 } 114 115 // Find the induction PHI. If there is no induction PHI, we can't do the 116 // transformation. TODO: could other variables trigger this? Do we have to 117 // search for the best one? 118 InductionPHI = L->getInductionVariable(*SE); 119 if (!InductionPHI) { 120 LLVM_DEBUG(dbgs() << "Could not find induction PHI\n"); 121 return false; 122 } 123 LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump()); 124 125 bool ContinueOnTrue = L->contains(Latch->getTerminator()->getSuccessor(0)); 126 auto IsValidPredicate = [&](ICmpInst::Predicate Pred) { 127 if (ContinueOnTrue) 128 return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT; 129 else 130 return Pred == CmpInst::ICMP_EQ; 131 }; 132 133 // Find Compare and make sure it is valid. getLatchCmpInst checks that the 134 // back branch of the latch is conditional. 135 ICmpInst *Compare = L->getLatchCmpInst(); 136 if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) || 137 Compare->hasNUsesOrMore(2)) { 138 LLVM_DEBUG(dbgs() << "Could not find valid comparison\n"); 139 return false; 140 } 141 BackBranch = cast<BranchInst>(Latch->getTerminator()); 142 IterationInstructions.insert(BackBranch); 143 LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump()); 144 IterationInstructions.insert(Compare); 145 LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump()); 146 147 // Find increment and limit from the compare 148 Increment = nullptr; 149 if (match(Compare->getOperand(0), 150 m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) { 151 Increment = dyn_cast<BinaryOperator>(Compare->getOperand(0)); 152 Limit = Compare->getOperand(1); 153 } else if (Compare->getUnsignedPredicate() == CmpInst::ICMP_NE && 154 match(Compare->getOperand(1), 155 m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) { 156 Increment = dyn_cast<BinaryOperator>(Compare->getOperand(1)); 157 Limit = Compare->getOperand(0); 158 } 159 if (!Increment || Increment->hasNUsesOrMore(3)) { 160 LLVM_DEBUG(dbgs() << "Cound not find valid increment\n"); 161 return false; 162 } 163 IterationInstructions.insert(Increment); 164 LLVM_DEBUG(dbgs() << "Found increment: "; Increment->dump()); 165 LLVM_DEBUG(dbgs() << "Found limit: "; Limit->dump()); 166 167 assert(InductionPHI->getNumIncomingValues() == 2); 168 169 if (InductionPHI->getIncomingValueForBlock(Latch) != Increment) { 170 LLVM_DEBUG( 171 dbgs() << "Incoming value from latch is not the increment inst\n"); 172 return false; 173 } 174 175 auto *CI = dyn_cast<ConstantInt>( 176 InductionPHI->getIncomingValueForBlock(L->getLoopPreheader())); 177 if (!CI || !CI->isZero()) { 178 LLVM_DEBUG(dbgs() << "PHI value is not zero: "; CI->dump()); 179 return false; 180 } 181 182 LLVM_DEBUG(dbgs() << "Successfully found all loop components\n"); 183 return true; 184 } 185 186 static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) { 187 // All PHIs in the inner and outer headers must either be: 188 // - The induction PHI, which we are going to rewrite as one induction in 189 // the new loop. This is already checked by findLoopComponents. 190 // - An outer header PHI with all incoming values from outside the loop. 191 // LoopSimplify guarantees we have a pre-header, so we don't need to 192 // worry about that here. 193 // - Pairs of PHIs in the inner and outer headers, which implement a 194 // loop-carried dependency that will still be valid in the new loop. To 195 // be valid, this variable must be modified only in the inner loop. 196 197 // The set of PHI nodes in the outer loop header that we know will still be 198 // valid after the transformation. These will not need to be modified (with 199 // the exception of the induction variable), but we do need to check that 200 // there are no unsafe PHI nodes. 201 SmallPtrSet<PHINode *, 4> SafeOuterPHIs; 202 SafeOuterPHIs.insert(FI.OuterInductionPHI); 203 204 // Check that all PHI nodes in the inner loop header match one of the valid 205 // patterns. 206 for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) { 207 // The induction PHIs break these rules, and that's OK because we treat 208 // them specially when doing the transformation. 209 if (&InnerPHI == FI.InnerInductionPHI) 210 continue; 211 212 // Each inner loop PHI node must have two incoming values/blocks - one 213 // from the pre-header, and one from the latch. 214 assert(InnerPHI.getNumIncomingValues() == 2); 215 Value *PreHeaderValue = 216 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader()); 217 Value *LatchValue = 218 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch()); 219 220 // The incoming value from the outer loop must be the PHI node in the 221 // outer loop header, with no modifications made in the top of the outer 222 // loop. 223 PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue); 224 if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) { 225 LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n"); 226 return false; 227 } 228 229 // The other incoming value must come from the inner loop, without any 230 // modifications in the tail end of the outer loop. We are in LCSSA form, 231 // so this will actually be a PHI in the inner loop's exit block, which 232 // only uses values from inside the inner loop. 233 PHINode *LCSSAPHI = dyn_cast<PHINode>( 234 OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch())); 235 if (!LCSSAPHI) { 236 LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n"); 237 return false; 238 } 239 240 // The value used by the LCSSA PHI must be the same one that the inner 241 // loop's PHI uses. 242 if (LCSSAPHI->hasConstantValue() != LatchValue) { 243 LLVM_DEBUG( 244 dbgs() << "LCSSA PHI incoming value does not match latch value\n"); 245 return false; 246 } 247 248 LLVM_DEBUG(dbgs() << "PHI pair is safe:\n"); 249 LLVM_DEBUG(dbgs() << " Inner: "; InnerPHI.dump()); 250 LLVM_DEBUG(dbgs() << " Outer: "; OuterPHI->dump()); 251 SafeOuterPHIs.insert(OuterPHI); 252 FI.InnerPHIsToTransform.insert(&InnerPHI); 253 } 254 255 for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) { 256 if (!SafeOuterPHIs.count(&OuterPHI)) { 257 LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump()); 258 return false; 259 } 260 } 261 262 LLVM_DEBUG(dbgs() << "checkPHIs: OK\n"); 263 return true; 264 } 265 266 static bool 267 checkOuterLoopInsts(FlattenInfo &FI, 268 SmallPtrSetImpl<Instruction *> &IterationInstructions, 269 const TargetTransformInfo *TTI) { 270 // Check for instructions in the outer but not inner loop. If any of these 271 // have side-effects then this transformation is not legal, and if there is 272 // a significant amount of code here which can't be optimised out that it's 273 // not profitable (as these instructions would get executed for each 274 // iteration of the inner loop). 275 InstructionCost RepeatedInstrCost = 0; 276 for (auto *B : FI.OuterLoop->getBlocks()) { 277 if (FI.InnerLoop->contains(B)) 278 continue; 279 280 for (auto &I : *B) { 281 if (!isa<PHINode>(&I) && !I.isTerminator() && 282 !isSafeToSpeculativelyExecute(&I)) { 283 LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have " 284 "side effects: "; 285 I.dump()); 286 return false; 287 } 288 // The execution count of the outer loop's iteration instructions 289 // (increment, compare and branch) will be increased, but the 290 // equivalent instructions will be removed from the inner loop, so 291 // they make a net difference of zero. 292 if (IterationInstructions.count(&I)) 293 continue; 294 // The uncoditional branch to the inner loop's header will turn into 295 // a fall-through, so adds no cost. 296 BranchInst *Br = dyn_cast<BranchInst>(&I); 297 if (Br && Br->isUnconditional() && 298 Br->getSuccessor(0) == FI.InnerLoop->getHeader()) 299 continue; 300 // Multiplies of the outer iteration variable and inner iteration 301 // count will be optimised out. 302 if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI), 303 m_Specific(FI.InnerLimit)))) 304 continue; 305 InstructionCost Cost = 306 TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 307 LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump()); 308 RepeatedInstrCost += Cost; 309 } 310 } 311 312 LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: " 313 << RepeatedInstrCost << "\n"); 314 // Bail out if flattening the loops would cause instructions in the outer 315 // loop but not in the inner loop to be executed extra times. 316 if (RepeatedInstrCost > RepeatedInstructionThreshold) { 317 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n"); 318 return false; 319 } 320 321 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n"); 322 return true; 323 } 324 325 static bool checkIVUsers(FlattenInfo &FI) { 326 // We require all uses of both induction variables to match this pattern: 327 // 328 // (OuterPHI * InnerLimit) + InnerPHI 329 // 330 // Any uses of the induction variables not matching that pattern would 331 // require a div/mod to reconstruct in the flattened loop, so the 332 // transformation wouldn't be profitable. 333 334 Value *InnerLimit = FI.InnerLimit; 335 if (FI.Widened && 336 (isa<SExtInst>(InnerLimit) || isa<ZExtInst>(InnerLimit))) 337 InnerLimit = cast<Instruction>(InnerLimit)->getOperand(0); 338 339 // Check that all uses of the inner loop's induction variable match the 340 // expected pattern, recording the uses of the outer IV. 341 SmallPtrSet<Value *, 4> ValidOuterPHIUses; 342 for (User *U : FI.InnerInductionPHI->users()) { 343 if (U == FI.InnerIncrement) 344 continue; 345 346 // After widening the IVs, a trunc instruction might have been introduced, so 347 // look through truncs. 348 if (isa<TruncInst>(U)) { 349 if (!U->hasOneUse()) 350 return false; 351 U = *U->user_begin(); 352 } 353 354 LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump()); 355 356 Value *MatchedMul; 357 Value *MatchedItCount; 358 bool IsAdd = match(U, m_c_Add(m_Specific(FI.InnerInductionPHI), 359 m_Value(MatchedMul))) && 360 match(MatchedMul, m_c_Mul(m_Specific(FI.OuterInductionPHI), 361 m_Value(MatchedItCount))); 362 363 // Matches the same pattern as above, except it also looks for truncs 364 // on the phi, which can be the result of widening the induction variables. 365 bool IsAddTrunc = match(U, m_c_Add(m_Trunc(m_Specific(FI.InnerInductionPHI)), 366 m_Value(MatchedMul))) && 367 match(MatchedMul, 368 m_c_Mul(m_Trunc(m_Specific(FI.OuterInductionPHI)), 369 m_Value(MatchedItCount))); 370 371 if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerLimit) { 372 LLVM_DEBUG(dbgs() << "Use is optimisable\n"); 373 ValidOuterPHIUses.insert(MatchedMul); 374 FI.LinearIVUses.insert(U); 375 } else { 376 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 377 return false; 378 } 379 } 380 381 // Check that there are no uses of the outer IV other than the ones found 382 // as part of the pattern above. 383 for (User *U : FI.OuterInductionPHI->users()) { 384 if (U == FI.OuterIncrement) 385 continue; 386 387 auto IsValidOuterPHIUses = [&] (User *U) -> bool { 388 LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump()); 389 if (!ValidOuterPHIUses.count(U)) { 390 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 391 return false; 392 } 393 LLVM_DEBUG(dbgs() << "Use is optimisable\n"); 394 return true; 395 }; 396 397 if (auto *V = dyn_cast<TruncInst>(U)) { 398 for (auto *K : V->users()) { 399 if (!IsValidOuterPHIUses(K)) 400 return false; 401 } 402 continue; 403 } 404 405 if (!IsValidOuterPHIUses(U)) 406 return false; 407 } 408 409 LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n"; 410 dbgs() << "Found " << FI.LinearIVUses.size() 411 << " value(s) that can be replaced:\n"; 412 for (Value *V : FI.LinearIVUses) { 413 dbgs() << " "; 414 V->dump(); 415 }); 416 return true; 417 } 418 419 // Return an OverflowResult dependant on if overflow of the multiplication of 420 // InnerLimit and OuterLimit can be assumed not to happen. 421 static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT, 422 AssumptionCache *AC) { 423 Function *F = FI.OuterLoop->getHeader()->getParent(); 424 const DataLayout &DL = F->getParent()->getDataLayout(); 425 426 // For debugging/testing. 427 if (AssumeNoOverflow) 428 return OverflowResult::NeverOverflows; 429 430 // Check if the multiply could not overflow due to known ranges of the 431 // input values. 432 OverflowResult OR = computeOverflowForUnsignedMul( 433 FI.InnerLimit, FI.OuterLimit, DL, AC, 434 FI.OuterLoop->getLoopPreheader()->getTerminator(), DT); 435 if (OR != OverflowResult::MayOverflow) 436 return OR; 437 438 for (Value *V : FI.LinearIVUses) { 439 for (Value *U : V->users()) { 440 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) { 441 // The IV is used as the operand of a GEP, and the IV is at least as 442 // wide as the address space of the GEP. In this case, the GEP would 443 // wrap around the address space before the IV increment wraps, which 444 // would be UB. 445 if (GEP->isInBounds() && 446 V->getType()->getIntegerBitWidth() >= 447 DL.getPointerTypeSizeInBits(GEP->getType())) { 448 LLVM_DEBUG( 449 dbgs() << "use of linear IV would be UB if overflow occurred: "; 450 GEP->dump()); 451 return OverflowResult::NeverOverflows; 452 } 453 } 454 } 455 } 456 457 return OverflowResult::MayOverflow; 458 } 459 460 static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 461 ScalarEvolution *SE, AssumptionCache *AC, 462 const TargetTransformInfo *TTI) { 463 SmallPtrSet<Instruction *, 8> IterationInstructions; 464 if (!findLoopComponents(FI.InnerLoop, IterationInstructions, FI.InnerInductionPHI, 465 FI.InnerLimit, FI.InnerIncrement, FI.InnerBranch, SE)) 466 return false; 467 if (!findLoopComponents(FI.OuterLoop, IterationInstructions, FI.OuterInductionPHI, 468 FI.OuterLimit, FI.OuterIncrement, FI.OuterBranch, SE)) 469 return false; 470 471 // Both of the loop limit values must be invariant in the outer loop 472 // (non-instructions are all inherently invariant). 473 if (!FI.OuterLoop->isLoopInvariant(FI.InnerLimit)) { 474 LLVM_DEBUG(dbgs() << "inner loop limit not invariant\n"); 475 return false; 476 } 477 if (!FI.OuterLoop->isLoopInvariant(FI.OuterLimit)) { 478 LLVM_DEBUG(dbgs() << "outer loop limit not invariant\n"); 479 return false; 480 } 481 482 if (!checkPHIs(FI, TTI)) 483 return false; 484 485 // FIXME: it should be possible to handle different types correctly. 486 if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType()) 487 return false; 488 489 if (!checkOuterLoopInsts(FI, IterationInstructions, TTI)) 490 return false; 491 492 // Find the values in the loop that can be replaced with the linearized 493 // induction variable, and check that there are no other uses of the inner 494 // or outer induction variable. If there were, we could still do this 495 // transformation, but we'd have to insert a div/mod to calculate the 496 // original IVs, so it wouldn't be profitable. 497 if (!checkIVUsers(FI)) 498 return false; 499 500 LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n"); 501 return true; 502 } 503 504 static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 505 ScalarEvolution *SE, AssumptionCache *AC, 506 const TargetTransformInfo *TTI) { 507 Function *F = FI.OuterLoop->getHeader()->getParent(); 508 LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n"); 509 { 510 using namespace ore; 511 OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(), 512 FI.InnerLoop->getHeader()); 513 OptimizationRemarkEmitter ORE(F); 514 Remark << "Flattened into outer loop"; 515 ORE.emit(Remark); 516 } 517 518 Value *NewTripCount = 519 BinaryOperator::CreateMul(FI.InnerLimit, FI.OuterLimit, "flatten.tripcount", 520 FI.OuterLoop->getLoopPreheader()->getTerminator()); 521 LLVM_DEBUG(dbgs() << "Created new trip count in preheader: "; 522 NewTripCount->dump()); 523 524 // Fix up PHI nodes that take values from the inner loop back-edge, which 525 // we are about to remove. 526 FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 527 528 // The old Phi will be optimised away later, but for now we can't leave 529 // leave it in an invalid state, so are updating them too. 530 for (PHINode *PHI : FI.InnerPHIsToTransform) 531 PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 532 533 // Modify the trip count of the outer loop to be the product of the two 534 // trip counts. 535 cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount); 536 537 // Replace the inner loop backedge with an unconditional branch to the exit. 538 BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock(); 539 BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock(); 540 InnerExitingBlock->getTerminator()->eraseFromParent(); 541 BranchInst::Create(InnerExitBlock, InnerExitingBlock); 542 DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader()); 543 544 // Replace all uses of the polynomial calculated from the two induction 545 // variables with the one new one. 546 IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator()); 547 for (Value *V : FI.LinearIVUses) { 548 Value *OuterValue = FI.OuterInductionPHI; 549 if (FI.Widened) 550 OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(), 551 "flatten.trunciv"); 552 553 LLVM_DEBUG(dbgs() << "Replacing: "; V->dump(); 554 dbgs() << "with: "; OuterValue->dump()); 555 V->replaceAllUsesWith(OuterValue); 556 } 557 558 // Tell LoopInfo, SCEV and the pass manager that the inner loop has been 559 // deleted, and any information that have about the outer loop invalidated. 560 SE->forgetLoop(FI.OuterLoop); 561 SE->forgetLoop(FI.InnerLoop); 562 LI->erase(FI.InnerLoop); 563 return true; 564 } 565 566 static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 567 ScalarEvolution *SE, AssumptionCache *AC, 568 const TargetTransformInfo *TTI) { 569 if (!WidenIV) { 570 LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n"); 571 return false; 572 } 573 574 LLVM_DEBUG(dbgs() << "Try widening the IVs\n"); 575 Module *M = FI.InnerLoop->getHeader()->getParent()->getParent(); 576 auto &DL = M->getDataLayout(); 577 auto *InnerType = FI.InnerInductionPHI->getType(); 578 auto *OuterType = FI.OuterInductionPHI->getType(); 579 unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits(); 580 auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext()); 581 582 // If both induction types are less than the maximum legal integer width, 583 // promote both to the widest type available so we know calculating 584 // (OuterLimit * InnerLimit) as the new trip count is safe. 585 if (InnerType != OuterType || 586 InnerType->getScalarSizeInBits() >= MaxLegalSize || 587 MaxLegalType->getScalarSizeInBits() < InnerType->getScalarSizeInBits() * 2) { 588 LLVM_DEBUG(dbgs() << "Can't widen the IV\n"); 589 return false; 590 } 591 592 SCEVExpander Rewriter(*SE, DL, "loopflatten"); 593 SmallVector<WideIVInfo, 2> WideIVs; 594 SmallVector<WeakTrackingVH, 4> DeadInsts; 595 WideIVs.push_back( {FI.InnerInductionPHI, MaxLegalType, false }); 596 WideIVs.push_back( {FI.OuterInductionPHI, MaxLegalType, false }); 597 unsigned ElimExt = 0; 598 unsigned Widened = 0; 599 600 for (const auto &WideIV : WideIVs) { 601 PHINode *WidePhi = createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts, 602 ElimExt, Widened, true /* HasGuards */, 603 true /* UsePostIncrementRanges */); 604 if (!WidePhi) 605 return false; 606 LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump()); 607 LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump()); 608 RecursivelyDeleteDeadPHINode(WideIV.NarrowIV); 609 } 610 // After widening, rediscover all the loop components. 611 assert(Widened && "Widened IV expected"); 612 FI.Widened = true; 613 return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI); 614 } 615 616 static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 617 ScalarEvolution *SE, AssumptionCache *AC, 618 const TargetTransformInfo *TTI) { 619 LLVM_DEBUG( 620 dbgs() << "Loop flattening running on outer loop " 621 << FI.OuterLoop->getHeader()->getName() << " and inner loop " 622 << FI.InnerLoop->getHeader()->getName() << " in " 623 << FI.OuterLoop->getHeader()->getParent()->getName() << "\n"); 624 625 if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI)) 626 return false; 627 628 // Check if we can widen the induction variables to avoid overflow checks. 629 if (CanWidenIV(FI, DT, LI, SE, AC, TTI)) 630 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI); 631 632 // Check if the new iteration variable might overflow. In this case, we 633 // need to version the loop, and select the original version at runtime if 634 // the iteration space is too large. 635 // TODO: We currently don't version the loop. 636 OverflowResult OR = checkOverflow(FI, DT, AC); 637 if (OR == OverflowResult::AlwaysOverflowsHigh || 638 OR == OverflowResult::AlwaysOverflowsLow) { 639 LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n"); 640 return false; 641 } else if (OR == OverflowResult::MayOverflow) { 642 LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n"); 643 return false; 644 } 645 646 LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n"); 647 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI); 648 } 649 650 bool Flatten(LoopNest &LN, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, 651 AssumptionCache *AC, TargetTransformInfo *TTI) { 652 bool Changed = false; 653 for (Loop *InnerLoop : LN.getLoops()) { 654 auto *OuterLoop = InnerLoop->getParentLoop(); 655 if (!OuterLoop) 656 continue; 657 FlattenInfo FI(OuterLoop, InnerLoop); 658 Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI); 659 } 660 return Changed; 661 } 662 663 PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM, 664 LoopStandardAnalysisResults &AR, 665 LPMUpdater &U) { 666 667 bool Changed = false; 668 669 // The loop flattening pass requires loops to be 670 // in simplified form, and also needs LCSSA. Running 671 // this pass will simplify all loops that contain inner loops, 672 // regardless of whether anything ends up being flattened. 673 Changed |= Flatten(LN, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI); 674 675 if (!Changed) 676 return PreservedAnalyses::all(); 677 678 return PreservedAnalyses::none(); 679 } 680 681 namespace { 682 class LoopFlattenLegacyPass : public FunctionPass { 683 public: 684 static char ID; // Pass ID, replacement for typeid 685 LoopFlattenLegacyPass() : FunctionPass(ID) { 686 initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry()); 687 } 688 689 // Possibly flatten loop L into its child. 690 bool runOnFunction(Function &F) override; 691 692 void getAnalysisUsage(AnalysisUsage &AU) const override { 693 getLoopAnalysisUsage(AU); 694 AU.addRequired<TargetTransformInfoWrapperPass>(); 695 AU.addPreserved<TargetTransformInfoWrapperPass>(); 696 AU.addRequired<AssumptionCacheTracker>(); 697 AU.addPreserved<AssumptionCacheTracker>(); 698 } 699 }; 700 } // namespace 701 702 char LoopFlattenLegacyPass::ID = 0; 703 INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops", 704 false, false) 705 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 706 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 707 INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops", 708 false, false) 709 710 FunctionPass *llvm::createLoopFlattenPass() { return new LoopFlattenLegacyPass(); } 711 712 bool LoopFlattenLegacyPass::runOnFunction(Function &F) { 713 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 714 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 715 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 716 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 717 auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>(); 718 auto *TTI = &TTIP.getTTI(F); 719 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 720 bool Changed = false; 721 for (Loop *L : *LI) { 722 auto LN = LoopNest::getLoopNest(*L, *SE); 723 Changed |= Flatten(*LN, DT, LI, SE, AC, TTI); 724 } 725 return Changed; 726 } 727