xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopFlatten.cpp (revision 34d6820551c6ee7e76199407b3c1ba6fecf4398f)
1 //===- LoopFlatten.cpp - Loop flattening pass------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass flattens pairs nested loops into a single loop.
10 //
11 // The intention is to optimise loop nests like this, which together access an
12 // array linearly:
13 //   for (int i = 0; i < N; ++i)
14 //     for (int j = 0; j < M; ++j)
15 //       f(A[i*M+j]);
16 // into one loop:
17 //   for (int i = 0; i < (N*M); ++i)
18 //     f(A[i]);
19 //
20 // It can also flatten loops where the induction variables are not used in the
21 // loop. This is only worth doing if the induction variables are only used in an
22 // expression like i*M+j. If they had any other uses, we would have to insert a
23 // div/mod to reconstruct the original values, so this wouldn't be profitable.
24 //
25 // We also need to prove that N*M will not overflow.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/Transforms/Scalar/LoopFlatten.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/ScalarEvolution.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/IRBuilder.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/PatternMatch.h"
41 #include "llvm/IR/Verifier.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Scalar.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/Transforms/Utils/LoopUtils.h"
49 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
50 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
51 
52 #define DEBUG_TYPE "loop-flatten"
53 
54 using namespace llvm;
55 using namespace llvm::PatternMatch;
56 
57 static cl::opt<unsigned> RepeatedInstructionThreshold(
58     "loop-flatten-cost-threshold", cl::Hidden, cl::init(2),
59     cl::desc("Limit on the cost of instructions that can be repeated due to "
60              "loop flattening"));
61 
62 static cl::opt<bool>
63     AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden,
64                      cl::init(false),
65                      cl::desc("Assume that the product of the two iteration "
66                               "limits will never overflow"));
67 
68 static cl::opt<bool>
69     WidenIV("loop-flatten-widen-iv", cl::Hidden,
70             cl::init(true),
71             cl::desc("Widen the loop induction variables, if possible, so "
72                      "overflow checks won't reject flattening"));
73 
74 struct FlattenInfo {
75   Loop *OuterLoop = nullptr;
76   Loop *InnerLoop = nullptr;
77   PHINode *InnerInductionPHI = nullptr;
78   PHINode *OuterInductionPHI = nullptr;
79   Value *InnerLimit = nullptr;
80   Value *OuterLimit = nullptr;
81   BinaryOperator *InnerIncrement = nullptr;
82   BinaryOperator *OuterIncrement = nullptr;
83   BranchInst *InnerBranch = nullptr;
84   BranchInst *OuterBranch = nullptr;
85   SmallPtrSet<Value *, 4> LinearIVUses;
86   SmallPtrSet<PHINode *, 4> InnerPHIsToTransform;
87 
88   // Whether this holds the flatten info before or after widening.
89   bool Widened = false;
90 
91   FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL) {};
92 };
93 
94 // Finds the induction variable, increment and limit for a simple loop that we
95 // can flatten.
96 static bool findLoopComponents(
97     Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions,
98     PHINode *&InductionPHI, Value *&Limit, BinaryOperator *&Increment,
99     BranchInst *&BackBranch, ScalarEvolution *SE) {
100   LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n");
101 
102   if (!L->isLoopSimplifyForm()) {
103     LLVM_DEBUG(dbgs() << "Loop is not in normal form\n");
104     return false;
105   }
106 
107   // There must be exactly one exiting block, and it must be the same at the
108   // latch.
109   BasicBlock *Latch = L->getLoopLatch();
110   if (L->getExitingBlock() != Latch) {
111     LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n");
112     return false;
113   }
114   // Latch block must end in a conditional branch.
115   BackBranch = dyn_cast<BranchInst>(Latch->getTerminator());
116   if (!BackBranch || !BackBranch->isConditional()) {
117     LLVM_DEBUG(dbgs() << "Could not find back-branch\n");
118     return false;
119   }
120   IterationInstructions.insert(BackBranch);
121   LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump());
122   bool ContinueOnTrue = L->contains(BackBranch->getSuccessor(0));
123 
124   // Find the induction PHI. If there is no induction PHI, we can't do the
125   // transformation. TODO: could other variables trigger this? Do we have to
126   // search for the best one?
127   InductionPHI = L->getInductionVariable(*SE);
128   if (!InductionPHI) {
129     LLVM_DEBUG(dbgs() << "Could not find induction PHI\n");
130     return false;
131   }
132   LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump());
133 
134   auto IsValidPredicate = [&](ICmpInst::Predicate Pred) {
135     if (ContinueOnTrue)
136       return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT;
137     else
138       return Pred == CmpInst::ICMP_EQ;
139   };
140 
141   // Find Compare and make sure it is valid
142   ICmpInst *Compare = dyn_cast<ICmpInst>(BackBranch->getCondition());
143   if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) ||
144       Compare->hasNUsesOrMore(2)) {
145     LLVM_DEBUG(dbgs() << "Could not find valid comparison\n");
146     return false;
147   }
148   IterationInstructions.insert(Compare);
149   LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump());
150 
151   // Find increment and limit from the compare
152   Increment = nullptr;
153   if (match(Compare->getOperand(0),
154             m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) {
155     Increment = dyn_cast<BinaryOperator>(Compare->getOperand(0));
156     Limit = Compare->getOperand(1);
157   } else if (Compare->getUnsignedPredicate() == CmpInst::ICMP_NE &&
158              match(Compare->getOperand(1),
159                    m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) {
160     Increment = dyn_cast<BinaryOperator>(Compare->getOperand(1));
161     Limit = Compare->getOperand(0);
162   }
163   if (!Increment || Increment->hasNUsesOrMore(3)) {
164     LLVM_DEBUG(dbgs() << "Cound not find valid increment\n");
165     return false;
166   }
167   IterationInstructions.insert(Increment);
168   LLVM_DEBUG(dbgs() << "Found increment: "; Increment->dump());
169   LLVM_DEBUG(dbgs() << "Found limit: "; Limit->dump());
170 
171   assert(InductionPHI->getNumIncomingValues() == 2);
172 
173   if (InductionPHI->getIncomingValueForBlock(Latch) != Increment) {
174     LLVM_DEBUG(
175         dbgs() << "Incoming value from latch is not the increment inst\n");
176     return false;
177   }
178 
179   auto *CI = dyn_cast<ConstantInt>(
180       InductionPHI->getIncomingValueForBlock(L->getLoopPreheader()));
181   if (!CI || !CI->isZero()) {
182     LLVM_DEBUG(dbgs() << "PHI value is not zero: "; CI->dump());
183     return false;
184   }
185 
186   LLVM_DEBUG(dbgs() << "Successfully found all loop components\n");
187   return true;
188 }
189 
190 static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) {
191   // All PHIs in the inner and outer headers must either be:
192   // - The induction PHI, which we are going to rewrite as one induction in
193   //   the new loop. This is already checked by findLoopComponents.
194   // - An outer header PHI with all incoming values from outside the loop.
195   //   LoopSimplify guarantees we have a pre-header, so we don't need to
196   //   worry about that here.
197   // - Pairs of PHIs in the inner and outer headers, which implement a
198   //   loop-carried dependency that will still be valid in the new loop. To
199   //   be valid, this variable must be modified only in the inner loop.
200 
201   // The set of PHI nodes in the outer loop header that we know will still be
202   // valid after the transformation. These will not need to be modified (with
203   // the exception of the induction variable), but we do need to check that
204   // there are no unsafe PHI nodes.
205   SmallPtrSet<PHINode *, 4> SafeOuterPHIs;
206   SafeOuterPHIs.insert(FI.OuterInductionPHI);
207 
208   // Check that all PHI nodes in the inner loop header match one of the valid
209   // patterns.
210   for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) {
211     // The induction PHIs break these rules, and that's OK because we treat
212     // them specially when doing the transformation.
213     if (&InnerPHI == FI.InnerInductionPHI)
214       continue;
215 
216     // Each inner loop PHI node must have two incoming values/blocks - one
217     // from the pre-header, and one from the latch.
218     assert(InnerPHI.getNumIncomingValues() == 2);
219     Value *PreHeaderValue =
220         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader());
221     Value *LatchValue =
222         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch());
223 
224     // The incoming value from the outer loop must be the PHI node in the
225     // outer loop header, with no modifications made in the top of the outer
226     // loop.
227     PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue);
228     if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) {
229       LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n");
230       return false;
231     }
232 
233     // The other incoming value must come from the inner loop, without any
234     // modifications in the tail end of the outer loop. We are in LCSSA form,
235     // so this will actually be a PHI in the inner loop's exit block, which
236     // only uses values from inside the inner loop.
237     PHINode *LCSSAPHI = dyn_cast<PHINode>(
238         OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch()));
239     if (!LCSSAPHI) {
240       LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n");
241       return false;
242     }
243 
244     // The value used by the LCSSA PHI must be the same one that the inner
245     // loop's PHI uses.
246     if (LCSSAPHI->hasConstantValue() != LatchValue) {
247       LLVM_DEBUG(
248           dbgs() << "LCSSA PHI incoming value does not match latch value\n");
249       return false;
250     }
251 
252     LLVM_DEBUG(dbgs() << "PHI pair is safe:\n");
253     LLVM_DEBUG(dbgs() << "  Inner: "; InnerPHI.dump());
254     LLVM_DEBUG(dbgs() << "  Outer: "; OuterPHI->dump());
255     SafeOuterPHIs.insert(OuterPHI);
256     FI.InnerPHIsToTransform.insert(&InnerPHI);
257   }
258 
259   for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) {
260     if (!SafeOuterPHIs.count(&OuterPHI)) {
261       LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump());
262       return false;
263     }
264   }
265 
266   LLVM_DEBUG(dbgs() << "checkPHIs: OK\n");
267   return true;
268 }
269 
270 static bool
271 checkOuterLoopInsts(FlattenInfo &FI,
272                     SmallPtrSetImpl<Instruction *> &IterationInstructions,
273                     const TargetTransformInfo *TTI) {
274   // Check for instructions in the outer but not inner loop. If any of these
275   // have side-effects then this transformation is not legal, and if there is
276   // a significant amount of code here which can't be optimised out that it's
277   // not profitable (as these instructions would get executed for each
278   // iteration of the inner loop).
279   InstructionCost RepeatedInstrCost = 0;
280   for (auto *B : FI.OuterLoop->getBlocks()) {
281     if (FI.InnerLoop->contains(B))
282       continue;
283 
284     for (auto &I : *B) {
285       if (!isa<PHINode>(&I) && !I.isTerminator() &&
286           !isSafeToSpeculativelyExecute(&I)) {
287         LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have "
288                              "side effects: ";
289                    I.dump());
290         return false;
291       }
292       // The execution count of the outer loop's iteration instructions
293       // (increment, compare and branch) will be increased, but the
294       // equivalent instructions will be removed from the inner loop, so
295       // they make a net difference of zero.
296       if (IterationInstructions.count(&I))
297         continue;
298       // The uncoditional branch to the inner loop's header will turn into
299       // a fall-through, so adds no cost.
300       BranchInst *Br = dyn_cast<BranchInst>(&I);
301       if (Br && Br->isUnconditional() &&
302           Br->getSuccessor(0) == FI.InnerLoop->getHeader())
303         continue;
304       // Multiplies of the outer iteration variable and inner iteration
305       // count will be optimised out.
306       if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI),
307                             m_Specific(FI.InnerLimit))))
308         continue;
309       InstructionCost Cost =
310           TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
311       LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump());
312       RepeatedInstrCost += Cost;
313     }
314   }
315 
316   LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: "
317                     << RepeatedInstrCost << "\n");
318   // Bail out if flattening the loops would cause instructions in the outer
319   // loop but not in the inner loop to be executed extra times.
320   if (RepeatedInstrCost > RepeatedInstructionThreshold) {
321     LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n");
322     return false;
323   }
324 
325   LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n");
326   return true;
327 }
328 
329 static bool checkIVUsers(FlattenInfo &FI) {
330   // We require all uses of both induction variables to match this pattern:
331   //
332   //   (OuterPHI * InnerLimit) + InnerPHI
333   //
334   // Any uses of the induction variables not matching that pattern would
335   // require a div/mod to reconstruct in the flattened loop, so the
336   // transformation wouldn't be profitable.
337 
338   Value *InnerLimit = FI.InnerLimit;
339   if (FI.Widened &&
340       (isa<SExtInst>(InnerLimit) || isa<ZExtInst>(InnerLimit)))
341     InnerLimit = cast<Instruction>(InnerLimit)->getOperand(0);
342 
343   // Check that all uses of the inner loop's induction variable match the
344   // expected pattern, recording the uses of the outer IV.
345   SmallPtrSet<Value *, 4> ValidOuterPHIUses;
346   for (User *U : FI.InnerInductionPHI->users()) {
347     if (U == FI.InnerIncrement)
348       continue;
349 
350     // After widening the IVs, a trunc instruction might have been introduced, so
351     // look through truncs.
352     if (isa<TruncInst>(U)) {
353       if (!U->hasOneUse())
354         return false;
355       U = *U->user_begin();
356     }
357 
358     LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump());
359 
360     Value *MatchedMul;
361     Value *MatchedItCount;
362     bool IsAdd = match(U, m_c_Add(m_Specific(FI.InnerInductionPHI),
363                                   m_Value(MatchedMul))) &&
364                  match(MatchedMul, m_c_Mul(m_Specific(FI.OuterInductionPHI),
365                                            m_Value(MatchedItCount)));
366 
367     // Matches the same pattern as above, except it also looks for truncs
368     // on the phi, which can be the result of widening the induction variables.
369     bool IsAddTrunc = match(U, m_c_Add(m_Trunc(m_Specific(FI.InnerInductionPHI)),
370                                        m_Value(MatchedMul))) &&
371                       match(MatchedMul,
372                             m_c_Mul(m_Trunc(m_Specific(FI.OuterInductionPHI)),
373                             m_Value(MatchedItCount)));
374 
375     if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerLimit) {
376       LLVM_DEBUG(dbgs() << "Use is optimisable\n");
377       ValidOuterPHIUses.insert(MatchedMul);
378       FI.LinearIVUses.insert(U);
379     } else {
380       LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
381       return false;
382     }
383   }
384 
385   // Check that there are no uses of the outer IV other than the ones found
386   // as part of the pattern above.
387   for (User *U : FI.OuterInductionPHI->users()) {
388     if (U == FI.OuterIncrement)
389       continue;
390 
391     auto IsValidOuterPHIUses = [&] (User *U) -> bool {
392       LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump());
393       if (!ValidOuterPHIUses.count(U)) {
394         LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
395         return false;
396       }
397       LLVM_DEBUG(dbgs() << "Use is optimisable\n");
398       return true;
399     };
400 
401     if (auto *V = dyn_cast<TruncInst>(U)) {
402       for (auto *K : V->users()) {
403         if (!IsValidOuterPHIUses(K))
404           return false;
405       }
406       continue;
407     }
408 
409     if (!IsValidOuterPHIUses(U))
410       return false;
411   }
412 
413   LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n";
414              dbgs() << "Found " << FI.LinearIVUses.size()
415                     << " value(s) that can be replaced:\n";
416              for (Value *V : FI.LinearIVUses) {
417                dbgs() << "  ";
418                V->dump();
419              });
420   return true;
421 }
422 
423 // Return an OverflowResult dependant on if overflow of the multiplication of
424 // InnerLimit and OuterLimit can be assumed not to happen.
425 static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT,
426                                     AssumptionCache *AC) {
427   Function *F = FI.OuterLoop->getHeader()->getParent();
428   const DataLayout &DL = F->getParent()->getDataLayout();
429 
430   // For debugging/testing.
431   if (AssumeNoOverflow)
432     return OverflowResult::NeverOverflows;
433 
434   // Check if the multiply could not overflow due to known ranges of the
435   // input values.
436   OverflowResult OR = computeOverflowForUnsignedMul(
437       FI.InnerLimit, FI.OuterLimit, DL, AC,
438       FI.OuterLoop->getLoopPreheader()->getTerminator(), DT);
439   if (OR != OverflowResult::MayOverflow)
440     return OR;
441 
442   for (Value *V : FI.LinearIVUses) {
443     for (Value *U : V->users()) {
444       if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
445         // The IV is used as the operand of a GEP, and the IV is at least as
446         // wide as the address space of the GEP. In this case, the GEP would
447         // wrap around the address space before the IV increment wraps, which
448         // would be UB.
449         if (GEP->isInBounds() &&
450             V->getType()->getIntegerBitWidth() >=
451                 DL.getPointerTypeSizeInBits(GEP->getType())) {
452           LLVM_DEBUG(
453               dbgs() << "use of linear IV would be UB if overflow occurred: ";
454               GEP->dump());
455           return OverflowResult::NeverOverflows;
456         }
457       }
458     }
459   }
460 
461   return OverflowResult::MayOverflow;
462 }
463 
464 static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
465                                ScalarEvolution *SE, AssumptionCache *AC,
466                                const TargetTransformInfo *TTI) {
467   SmallPtrSet<Instruction *, 8> IterationInstructions;
468   if (!findLoopComponents(FI.InnerLoop, IterationInstructions, FI.InnerInductionPHI,
469                           FI.InnerLimit, FI.InnerIncrement, FI.InnerBranch, SE))
470     return false;
471   if (!findLoopComponents(FI.OuterLoop, IterationInstructions, FI.OuterInductionPHI,
472                           FI.OuterLimit, FI.OuterIncrement, FI.OuterBranch, SE))
473     return false;
474 
475   // Both of the loop limit values must be invariant in the outer loop
476   // (non-instructions are all inherently invariant).
477   if (!FI.OuterLoop->isLoopInvariant(FI.InnerLimit)) {
478     LLVM_DEBUG(dbgs() << "inner loop limit not invariant\n");
479     return false;
480   }
481   if (!FI.OuterLoop->isLoopInvariant(FI.OuterLimit)) {
482     LLVM_DEBUG(dbgs() << "outer loop limit not invariant\n");
483     return false;
484   }
485 
486   if (!checkPHIs(FI, TTI))
487     return false;
488 
489   // FIXME: it should be possible to handle different types correctly.
490   if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType())
491     return false;
492 
493   if (!checkOuterLoopInsts(FI, IterationInstructions, TTI))
494     return false;
495 
496   // Find the values in the loop that can be replaced with the linearized
497   // induction variable, and check that there are no other uses of the inner
498   // or outer induction variable. If there were, we could still do this
499   // transformation, but we'd have to insert a div/mod to calculate the
500   // original IVs, so it wouldn't be profitable.
501   if (!checkIVUsers(FI))
502     return false;
503 
504   LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n");
505   return true;
506 }
507 
508 static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
509                               ScalarEvolution *SE, AssumptionCache *AC,
510                               const TargetTransformInfo *TTI) {
511   Function *F = FI.OuterLoop->getHeader()->getParent();
512   LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n");
513   {
514     using namespace ore;
515     OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(),
516                               FI.InnerLoop->getHeader());
517     OptimizationRemarkEmitter ORE(F);
518     Remark << "Flattened into outer loop";
519     ORE.emit(Remark);
520   }
521 
522   Value *NewTripCount =
523       BinaryOperator::CreateMul(FI.InnerLimit, FI.OuterLimit, "flatten.tripcount",
524                                 FI.OuterLoop->getLoopPreheader()->getTerminator());
525   LLVM_DEBUG(dbgs() << "Created new trip count in preheader: ";
526              NewTripCount->dump());
527 
528   // Fix up PHI nodes that take values from the inner loop back-edge, which
529   // we are about to remove.
530   FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
531 
532   // The old Phi will be optimised away later, but for now we can't leave
533   // leave it in an invalid state, so are updating them too.
534   for (PHINode *PHI : FI.InnerPHIsToTransform)
535     PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
536 
537   // Modify the trip count of the outer loop to be the product of the two
538   // trip counts.
539   cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount);
540 
541   // Replace the inner loop backedge with an unconditional branch to the exit.
542   BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock();
543   BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock();
544   InnerExitingBlock->getTerminator()->eraseFromParent();
545   BranchInst::Create(InnerExitBlock, InnerExitingBlock);
546   DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
547 
548   // Replace all uses of the polynomial calculated from the two induction
549   // variables with the one new one.
550   IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator());
551   for (Value *V : FI.LinearIVUses) {
552     Value *OuterValue = FI.OuterInductionPHI;
553     if (FI.Widened)
554       OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(),
555                                        "flatten.trunciv");
556 
557     LLVM_DEBUG(dbgs() << "Replacing: "; V->dump();
558                dbgs() << "with:      "; OuterValue->dump());
559     V->replaceAllUsesWith(OuterValue);
560   }
561 
562   // Tell LoopInfo, SCEV and the pass manager that the inner loop has been
563   // deleted, and any information that have about the outer loop invalidated.
564   SE->forgetLoop(FI.OuterLoop);
565   SE->forgetLoop(FI.InnerLoop);
566   LI->erase(FI.InnerLoop);
567   return true;
568 }
569 
570 static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
571                        ScalarEvolution *SE, AssumptionCache *AC,
572                        const TargetTransformInfo *TTI) {
573   if (!WidenIV) {
574     LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n");
575     return false;
576   }
577 
578   LLVM_DEBUG(dbgs() << "Try widening the IVs\n");
579   Module *M = FI.InnerLoop->getHeader()->getParent()->getParent();
580   auto &DL = M->getDataLayout();
581   auto *InnerType = FI.InnerInductionPHI->getType();
582   auto *OuterType = FI.OuterInductionPHI->getType();
583   unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits();
584   auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext());
585 
586   // If both induction types are less than the maximum legal integer width,
587   // promote both to the widest type available so we know calculating
588   // (OuterLimit * InnerLimit) as the new trip count is safe.
589   if (InnerType != OuterType ||
590       InnerType->getScalarSizeInBits() >= MaxLegalSize ||
591       MaxLegalType->getScalarSizeInBits() < InnerType->getScalarSizeInBits() * 2) {
592     LLVM_DEBUG(dbgs() << "Can't widen the IV\n");
593     return false;
594   }
595 
596   SCEVExpander Rewriter(*SE, DL, "loopflatten");
597   SmallVector<WideIVInfo, 2> WideIVs;
598   SmallVector<WeakTrackingVH, 4> DeadInsts;
599   WideIVs.push_back( {FI.InnerInductionPHI, MaxLegalType, false });
600   WideIVs.push_back( {FI.OuterInductionPHI, MaxLegalType, false });
601   unsigned ElimExt = 0;
602   unsigned Widened = 0;
603 
604   for (const auto &WideIV : WideIVs) {
605     PHINode *WidePhi = createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts,
606                                     ElimExt, Widened, true /* HasGuards */,
607                                     true /* UsePostIncrementRanges */);
608     if (!WidePhi)
609       return false;
610     LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump());
611     LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump());
612     RecursivelyDeleteDeadPHINode(WideIV.NarrowIV);
613   }
614   // After widening, rediscover all the loop components.
615   assert(Widened && "Widened IV expected");
616   FI.Widened = true;
617   return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
618 }
619 
620 static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
621                             ScalarEvolution *SE, AssumptionCache *AC,
622                             const TargetTransformInfo *TTI) {
623   LLVM_DEBUG(
624       dbgs() << "Loop flattening running on outer loop "
625              << FI.OuterLoop->getHeader()->getName() << " and inner loop "
626              << FI.InnerLoop->getHeader()->getName() << " in "
627              << FI.OuterLoop->getHeader()->getParent()->getName() << "\n");
628 
629   if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI))
630     return false;
631 
632   // Check if we can widen the induction variables to avoid overflow checks.
633   if (CanWidenIV(FI, DT, LI, SE, AC, TTI))
634     return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
635 
636   // Check if the new iteration variable might overflow. In this case, we
637   // need to version the loop, and select the original version at runtime if
638   // the iteration space is too large.
639   // TODO: We currently don't version the loop.
640   OverflowResult OR = checkOverflow(FI, DT, AC);
641   if (OR == OverflowResult::AlwaysOverflowsHigh ||
642       OR == OverflowResult::AlwaysOverflowsLow) {
643     LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n");
644     return false;
645   } else if (OR == OverflowResult::MayOverflow) {
646     LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n");
647     return false;
648   }
649 
650   LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n");
651   return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
652 }
653 
654 bool Flatten(LoopNest &LN, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE,
655              AssumptionCache *AC, TargetTransformInfo *TTI) {
656   bool Changed = false;
657   for (Loop *InnerLoop : LN.getLoops()) {
658     auto *OuterLoop = InnerLoop->getParentLoop();
659     if (!OuterLoop)
660       continue;
661     FlattenInfo FI(OuterLoop, InnerLoop);
662     Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI);
663   }
664   return Changed;
665 }
666 
667 PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM,
668                                        LoopStandardAnalysisResults &AR,
669                                        LPMUpdater &U) {
670 
671   bool Changed = false;
672 
673   // The loop flattening pass requires loops to be
674   // in simplified form, and also needs LCSSA. Running
675   // this pass will simplify all loops that contain inner loops,
676   // regardless of whether anything ends up being flattened.
677   Changed |= Flatten(LN, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI);
678 
679   if (!Changed)
680     return PreservedAnalyses::all();
681 
682   return PreservedAnalyses::none();
683 }
684 
685 namespace {
686 class LoopFlattenLegacyPass : public FunctionPass {
687 public:
688   static char ID; // Pass ID, replacement for typeid
689   LoopFlattenLegacyPass() : FunctionPass(ID) {
690     initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry());
691   }
692 
693   // Possibly flatten loop L into its child.
694   bool runOnFunction(Function &F) override;
695 
696   void getAnalysisUsage(AnalysisUsage &AU) const override {
697     getLoopAnalysisUsage(AU);
698     AU.addRequired<TargetTransformInfoWrapperPass>();
699     AU.addPreserved<TargetTransformInfoWrapperPass>();
700     AU.addRequired<AssumptionCacheTracker>();
701     AU.addPreserved<AssumptionCacheTracker>();
702   }
703 };
704 } // namespace
705 
706 char LoopFlattenLegacyPass::ID = 0;
707 INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
708                       false, false)
709 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
710 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
711 INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
712                     false, false)
713 
714 FunctionPass *llvm::createLoopFlattenPass() { return new LoopFlattenLegacyPass(); }
715 
716 bool LoopFlattenLegacyPass::runOnFunction(Function &F) {
717   ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
718   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
719   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
720   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
721   auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>();
722   auto *TTI = &TTIP.getTTI(F);
723   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
724   bool Changed = false;
725   for (Loop *L : *LI) {
726     auto LN = LoopNest::getLoopNest(*L, *SE);
727     Changed |= Flatten(*LN, DT, LI, SE, AC, TTI);
728   }
729   return Changed;
730 }
731