xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopFlatten.cpp (revision 2d26a72f825c7d8b50da49dda917e85897c8a746)
1 //===- LoopFlatten.cpp - Loop flattening pass------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass flattens pairs nested loops into a single loop.
10 //
11 // The intention is to optimise loop nests like this, which together access an
12 // array linearly:
13 //   for (int i = 0; i < N; ++i)
14 //     for (int j = 0; j < M; ++j)
15 //       f(A[i*M+j]);
16 // into one loop:
17 //   for (int i = 0; i < (N*M); ++i)
18 //     f(A[i]);
19 //
20 // It can also flatten loops where the induction variables are not used in the
21 // loop. This is only worth doing if the induction variables are only used in an
22 // expression like i*M+j. If they had any other uses, we would have to insert a
23 // div/mod to reconstruct the original values, so this wouldn't be profitable.
24 //
25 // We also need to prove that N*M will not overflow.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/Transforms/Scalar/LoopFlatten.h"
30 
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AssumptionCache.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/IRBuilder.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/IR/PatternMatch.h"
43 #include "llvm/IR/Verifier.h"
44 #include "llvm/InitializePasses.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Transforms/Scalar.h"
49 #include "llvm/Transforms/Utils/Local.h"
50 #include "llvm/Transforms/Utils/LoopUtils.h"
51 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
52 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
53 
54 using namespace llvm;
55 using namespace llvm::PatternMatch;
56 
57 #define DEBUG_TYPE "loop-flatten"
58 
59 STATISTIC(NumFlattened, "Number of loops flattened");
60 
61 static cl::opt<unsigned> RepeatedInstructionThreshold(
62     "loop-flatten-cost-threshold", cl::Hidden, cl::init(2),
63     cl::desc("Limit on the cost of instructions that can be repeated due to "
64              "loop flattening"));
65 
66 static cl::opt<bool>
67     AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden,
68                      cl::init(false),
69                      cl::desc("Assume that the product of the two iteration "
70                               "trip counts will never overflow"));
71 
72 static cl::opt<bool>
73     WidenIV("loop-flatten-widen-iv", cl::Hidden,
74             cl::init(true),
75             cl::desc("Widen the loop induction variables, if possible, so "
76                      "overflow checks won't reject flattening"));
77 
78 struct FlattenInfo {
79   Loop *OuterLoop = nullptr;
80   Loop *InnerLoop = nullptr;
81   // These PHINodes correspond to loop induction variables, which are expected
82   // to start at zero and increment by one on each loop.
83   PHINode *InnerInductionPHI = nullptr;
84   PHINode *OuterInductionPHI = nullptr;
85   Value *InnerTripCount = nullptr;
86   Value *OuterTripCount = nullptr;
87   BinaryOperator *InnerIncrement = nullptr;
88   BinaryOperator *OuterIncrement = nullptr;
89   BranchInst *InnerBranch = nullptr;
90   BranchInst *OuterBranch = nullptr;
91   SmallPtrSet<Value *, 4> LinearIVUses;
92   SmallPtrSet<PHINode *, 4> InnerPHIsToTransform;
93 
94   // Whether this holds the flatten info before or after widening.
95   bool Widened = false;
96 
97   // Holds the old/narrow induction phis, i.e. the Phis before IV widening has
98   // been applied. This bookkeeping is used so we can skip some checks on these
99   // phi nodes.
100   SmallPtrSet<PHINode *, 2> OldInductionPHIs;
101 
102   FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL) {};
103 };
104 
105 static bool
106 setLoopComponents(Value *&TC, Value *&TripCount, BinaryOperator *&Increment,
107                   SmallPtrSetImpl<Instruction *> &IterationInstructions) {
108   TripCount = TC;
109   IterationInstructions.insert(Increment);
110   LLVM_DEBUG(dbgs() << "Found Increment: "; Increment->dump());
111   LLVM_DEBUG(dbgs() << "Found trip count: "; TripCount->dump());
112   LLVM_DEBUG(dbgs() << "Successfully found all loop components\n");
113   return true;
114 }
115 
116 // Finds the induction variable, increment and trip count for a simple loop that
117 // we can flatten.
118 static bool findLoopComponents(
119     Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions,
120     PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment,
121     BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) {
122   LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n");
123 
124   if (!L->isLoopSimplifyForm()) {
125     LLVM_DEBUG(dbgs() << "Loop is not in normal form\n");
126     return false;
127   }
128 
129   // Currently, to simplify the implementation, the Loop induction variable must
130   // start at zero and increment with a step size of one.
131   if (!L->isCanonical(*SE)) {
132     LLVM_DEBUG(dbgs() << "Loop is not canonical\n");
133     return false;
134   }
135 
136   // There must be exactly one exiting block, and it must be the same at the
137   // latch.
138   BasicBlock *Latch = L->getLoopLatch();
139   if (L->getExitingBlock() != Latch) {
140     LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n");
141     return false;
142   }
143 
144   // Find the induction PHI. If there is no induction PHI, we can't do the
145   // transformation. TODO: could other variables trigger this? Do we have to
146   // search for the best one?
147   InductionPHI = L->getInductionVariable(*SE);
148   if (!InductionPHI) {
149     LLVM_DEBUG(dbgs() << "Could not find induction PHI\n");
150     return false;
151   }
152   LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump());
153 
154   bool ContinueOnTrue = L->contains(Latch->getTerminator()->getSuccessor(0));
155   auto IsValidPredicate = [&](ICmpInst::Predicate Pred) {
156     if (ContinueOnTrue)
157       return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT;
158     else
159       return Pred == CmpInst::ICMP_EQ;
160   };
161 
162   // Find Compare and make sure it is valid. getLatchCmpInst checks that the
163   // back branch of the latch is conditional.
164   ICmpInst *Compare = L->getLatchCmpInst();
165   if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) ||
166       Compare->hasNUsesOrMore(2)) {
167     LLVM_DEBUG(dbgs() << "Could not find valid comparison\n");
168     return false;
169   }
170   BackBranch = cast<BranchInst>(Latch->getTerminator());
171   IterationInstructions.insert(BackBranch);
172   LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump());
173   IterationInstructions.insert(Compare);
174   LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump());
175 
176   // Find increment and trip count.
177   // There are exactly 2 incoming values to the induction phi; one from the
178   // pre-header and one from the latch. The incoming latch value is the
179   // increment variable.
180   Increment =
181       dyn_cast<BinaryOperator>(InductionPHI->getIncomingValueForBlock(Latch));
182   if (Increment->hasNUsesOrMore(3)) {
183     LLVM_DEBUG(dbgs() << "Could not find valid increment\n");
184     return false;
185   }
186   // The trip count is the RHS of the compare. If this doesn't match the trip
187   // count computed by SCEV then this is because the trip count variable
188   // has been widened so the types don't match, or because it is a constant and
189   // another transformation has changed the compare (e.g. icmp ult %inc,
190   // tripcount -> icmp ult %j, tripcount-1), or both.
191   Value *RHS = Compare->getOperand(1);
192   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
193   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
194     LLVM_DEBUG(dbgs() << "Backedge-taken count is not predictable\n");
195     return false;
196   }
197   const SCEV *SCEVTripCount = SE->getTripCountFromExitCount(BackedgeTakenCount);
198   const SCEV *SCEVRHS = SE->getSCEV(RHS);
199   if (SCEVRHS == SCEVTripCount)
200     return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
201   ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(RHS);
202   if (ConstantRHS) {
203     const SCEV *BackedgeTCExt = nullptr;
204     if (IsWidened) {
205       const SCEV *SCEVTripCountExt;
206       // Find the extended backedge taken count and extended trip count using
207       // SCEV. One of these should now match the RHS of the compare.
208       BackedgeTCExt = SE->getZeroExtendExpr(BackedgeTakenCount, RHS->getType());
209       SCEVTripCountExt = SE->getTripCountFromExitCount(BackedgeTCExt);
210       if (SCEVRHS != BackedgeTCExt && SCEVRHS != SCEVTripCountExt) {
211         LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
212         return false;
213       }
214     }
215     // If the RHS of the compare is equal to the backedge taken count we need
216     // to add one to get the trip count.
217     if (SCEVRHS == BackedgeTCExt || SCEVRHS == BackedgeTakenCount) {
218       ConstantInt *One = ConstantInt::get(ConstantRHS->getType(), 1);
219       Value *NewRHS = ConstantInt::get(
220           ConstantRHS->getContext(), ConstantRHS->getValue() + One->getValue());
221       return setLoopComponents(NewRHS, TripCount, Increment,
222                                IterationInstructions);
223     }
224     return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
225   }
226   // If the RHS isn't a constant then check that the reason it doesn't match
227   // the SCEV trip count is because the RHS is a ZExt or SExt instruction
228   // (and take the trip count to be the RHS).
229   if (!IsWidened) {
230     LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
231     return false;
232   }
233   auto *TripCountInst = dyn_cast<Instruction>(RHS);
234   if (!TripCountInst) {
235     LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
236     return false;
237   }
238   if ((!isa<ZExtInst>(TripCountInst) && !isa<SExtInst>(TripCountInst)) ||
239       SE->getSCEV(TripCountInst->getOperand(0)) != SCEVTripCount) {
240     LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n");
241     return false;
242   }
243   return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
244 }
245 
246 static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) {
247   // All PHIs in the inner and outer headers must either be:
248   // - The induction PHI, which we are going to rewrite as one induction in
249   //   the new loop. This is already checked by findLoopComponents.
250   // - An outer header PHI with all incoming values from outside the loop.
251   //   LoopSimplify guarantees we have a pre-header, so we don't need to
252   //   worry about that here.
253   // - Pairs of PHIs in the inner and outer headers, which implement a
254   //   loop-carried dependency that will still be valid in the new loop. To
255   //   be valid, this variable must be modified only in the inner loop.
256 
257   // The set of PHI nodes in the outer loop header that we know will still be
258   // valid after the transformation. These will not need to be modified (with
259   // the exception of the induction variable), but we do need to check that
260   // there are no unsafe PHI nodes.
261   SmallPtrSet<PHINode *, 4> SafeOuterPHIs;
262   SafeOuterPHIs.insert(FI.OuterInductionPHI);
263 
264   // Check that all PHI nodes in the inner loop header match one of the valid
265   // patterns.
266   for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) {
267     // The induction PHIs break these rules, and that's OK because we treat
268     // them specially when doing the transformation.
269     if (&InnerPHI == FI.InnerInductionPHI)
270       continue;
271     if (FI.Widened && FI.OldInductionPHIs.count(&InnerPHI))
272       continue;
273 
274     // Each inner loop PHI node must have two incoming values/blocks - one
275     // from the pre-header, and one from the latch.
276     assert(InnerPHI.getNumIncomingValues() == 2);
277     Value *PreHeaderValue =
278         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader());
279     Value *LatchValue =
280         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch());
281 
282     // The incoming value from the outer loop must be the PHI node in the
283     // outer loop header, with no modifications made in the top of the outer
284     // loop.
285     PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue);
286     if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) {
287       LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n");
288       return false;
289     }
290 
291     // The other incoming value must come from the inner loop, without any
292     // modifications in the tail end of the outer loop. We are in LCSSA form,
293     // so this will actually be a PHI in the inner loop's exit block, which
294     // only uses values from inside the inner loop.
295     PHINode *LCSSAPHI = dyn_cast<PHINode>(
296         OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch()));
297     if (!LCSSAPHI) {
298       LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n");
299       return false;
300     }
301 
302     // The value used by the LCSSA PHI must be the same one that the inner
303     // loop's PHI uses.
304     if (LCSSAPHI->hasConstantValue() != LatchValue) {
305       LLVM_DEBUG(
306           dbgs() << "LCSSA PHI incoming value does not match latch value\n");
307       return false;
308     }
309 
310     LLVM_DEBUG(dbgs() << "PHI pair is safe:\n");
311     LLVM_DEBUG(dbgs() << "  Inner: "; InnerPHI.dump());
312     LLVM_DEBUG(dbgs() << "  Outer: "; OuterPHI->dump());
313     SafeOuterPHIs.insert(OuterPHI);
314     FI.InnerPHIsToTransform.insert(&InnerPHI);
315   }
316 
317   for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) {
318     if (FI.Widened && FI.OldInductionPHIs.count(&OuterPHI))
319       continue;
320     if (!SafeOuterPHIs.count(&OuterPHI)) {
321       LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump());
322       return false;
323     }
324   }
325 
326   LLVM_DEBUG(dbgs() << "checkPHIs: OK\n");
327   return true;
328 }
329 
330 static bool
331 checkOuterLoopInsts(FlattenInfo &FI,
332                     SmallPtrSetImpl<Instruction *> &IterationInstructions,
333                     const TargetTransformInfo *TTI) {
334   // Check for instructions in the outer but not inner loop. If any of these
335   // have side-effects then this transformation is not legal, and if there is
336   // a significant amount of code here which can't be optimised out that it's
337   // not profitable (as these instructions would get executed for each
338   // iteration of the inner loop).
339   InstructionCost RepeatedInstrCost = 0;
340   for (auto *B : FI.OuterLoop->getBlocks()) {
341     if (FI.InnerLoop->contains(B))
342       continue;
343 
344     for (auto &I : *B) {
345       if (!isa<PHINode>(&I) && !I.isTerminator() &&
346           !isSafeToSpeculativelyExecute(&I)) {
347         LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have "
348                              "side effects: ";
349                    I.dump());
350         return false;
351       }
352       // The execution count of the outer loop's iteration instructions
353       // (increment, compare and branch) will be increased, but the
354       // equivalent instructions will be removed from the inner loop, so
355       // they make a net difference of zero.
356       if (IterationInstructions.count(&I))
357         continue;
358       // The uncoditional branch to the inner loop's header will turn into
359       // a fall-through, so adds no cost.
360       BranchInst *Br = dyn_cast<BranchInst>(&I);
361       if (Br && Br->isUnconditional() &&
362           Br->getSuccessor(0) == FI.InnerLoop->getHeader())
363         continue;
364       // Multiplies of the outer iteration variable and inner iteration
365       // count will be optimised out.
366       if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI),
367                             m_Specific(FI.InnerTripCount))))
368         continue;
369       InstructionCost Cost =
370           TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
371       LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump());
372       RepeatedInstrCost += Cost;
373     }
374   }
375 
376   LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: "
377                     << RepeatedInstrCost << "\n");
378   // Bail out if flattening the loops would cause instructions in the outer
379   // loop but not in the inner loop to be executed extra times.
380   if (RepeatedInstrCost > RepeatedInstructionThreshold) {
381     LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n");
382     return false;
383   }
384 
385   LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n");
386   return true;
387 }
388 
389 static bool checkIVUsers(FlattenInfo &FI) {
390   // We require all uses of both induction variables to match this pattern:
391   //
392   //   (OuterPHI * InnerTripCount) + InnerPHI
393   //
394   // Any uses of the induction variables not matching that pattern would
395   // require a div/mod to reconstruct in the flattened loop, so the
396   // transformation wouldn't be profitable.
397 
398   Value *InnerTripCount = FI.InnerTripCount;
399   if (FI.Widened &&
400       (isa<SExtInst>(InnerTripCount) || isa<ZExtInst>(InnerTripCount)))
401     InnerTripCount = cast<Instruction>(InnerTripCount)->getOperand(0);
402 
403   // Check that all uses of the inner loop's induction variable match the
404   // expected pattern, recording the uses of the outer IV.
405   SmallPtrSet<Value *, 4> ValidOuterPHIUses;
406   for (User *U : FI.InnerInductionPHI->users()) {
407     if (U == FI.InnerIncrement)
408       continue;
409 
410     // After widening the IVs, a trunc instruction might have been introduced,
411     // so look through truncs.
412     if (isa<TruncInst>(U)) {
413       if (!U->hasOneUse())
414         return false;
415       U = *U->user_begin();
416     }
417 
418     // If the use is in the compare (which is also the condition of the inner
419     // branch) then the compare has been altered by another transformation e.g
420     // icmp ult %inc, tripcount -> icmp ult %j, tripcount-1, where tripcount is
421     // a constant. Ignore this use as the compare gets removed later anyway.
422     if (U == FI.InnerBranch->getCondition())
423       continue;
424 
425     LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump());
426 
427     Value *MatchedMul = nullptr;
428     Value *MatchedItCount = nullptr;
429     bool IsAdd = match(U, m_c_Add(m_Specific(FI.InnerInductionPHI),
430                                   m_Value(MatchedMul))) &&
431                  match(MatchedMul, m_c_Mul(m_Specific(FI.OuterInductionPHI),
432                                            m_Value(MatchedItCount)));
433 
434     // Matches the same pattern as above, except it also looks for truncs
435     // on the phi, which can be the result of widening the induction variables.
436     bool IsAddTrunc =
437         match(U, m_c_Add(m_Trunc(m_Specific(FI.InnerInductionPHI)),
438                          m_Value(MatchedMul))) &&
439         match(MatchedMul, m_c_Mul(m_Trunc(m_Specific(FI.OuterInductionPHI)),
440                                   m_Value(MatchedItCount)));
441 
442     if (!MatchedItCount)
443       return false;
444     // Look through extends if the IV has been widened.
445     if (FI.Widened &&
446         (isa<SExtInst>(MatchedItCount) || isa<ZExtInst>(MatchedItCount))) {
447       assert(MatchedItCount->getType() == FI.InnerInductionPHI->getType() &&
448              "Unexpected type mismatch in types after widening");
449       MatchedItCount = isa<SExtInst>(MatchedItCount)
450                            ? dyn_cast<SExtInst>(MatchedItCount)->getOperand(0)
451                            : dyn_cast<ZExtInst>(MatchedItCount)->getOperand(0);
452     }
453 
454     if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerTripCount) {
455       LLVM_DEBUG(dbgs() << "Use is optimisable\n");
456       ValidOuterPHIUses.insert(MatchedMul);
457       FI.LinearIVUses.insert(U);
458     } else {
459       LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
460       return false;
461     }
462   }
463 
464   // Check that there are no uses of the outer IV other than the ones found
465   // as part of the pattern above.
466   for (User *U : FI.OuterInductionPHI->users()) {
467     if (U == FI.OuterIncrement)
468       continue;
469 
470     auto IsValidOuterPHIUses = [&] (User *U) -> bool {
471       LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump());
472       if (!ValidOuterPHIUses.count(U)) {
473         LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
474         return false;
475       }
476       LLVM_DEBUG(dbgs() << "Use is optimisable\n");
477       return true;
478     };
479 
480     if (auto *V = dyn_cast<TruncInst>(U)) {
481       for (auto *K : V->users()) {
482         if (!IsValidOuterPHIUses(K))
483           return false;
484       }
485       continue;
486     }
487 
488     if (!IsValidOuterPHIUses(U))
489       return false;
490   }
491 
492   LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n";
493              dbgs() << "Found " << FI.LinearIVUses.size()
494                     << " value(s) that can be replaced:\n";
495              for (Value *V : FI.LinearIVUses) {
496                dbgs() << "  ";
497                V->dump();
498              });
499   return true;
500 }
501 
502 // Return an OverflowResult dependant on if overflow of the multiplication of
503 // InnerTripCount and OuterTripCount can be assumed not to happen.
504 static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT,
505                                     AssumptionCache *AC) {
506   Function *F = FI.OuterLoop->getHeader()->getParent();
507   const DataLayout &DL = F->getParent()->getDataLayout();
508 
509   // For debugging/testing.
510   if (AssumeNoOverflow)
511     return OverflowResult::NeverOverflows;
512 
513   // Check if the multiply could not overflow due to known ranges of the
514   // input values.
515   OverflowResult OR = computeOverflowForUnsignedMul(
516       FI.InnerTripCount, FI.OuterTripCount, DL, AC,
517       FI.OuterLoop->getLoopPreheader()->getTerminator(), DT);
518   if (OR != OverflowResult::MayOverflow)
519     return OR;
520 
521   for (Value *V : FI.LinearIVUses) {
522     for (Value *U : V->users()) {
523       if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
524         for (Value *GEPUser : U->users()) {
525           Instruction *GEPUserInst = dyn_cast<Instruction>(GEPUser);
526           if (!isa<LoadInst>(GEPUserInst) &&
527               !(isa<StoreInst>(GEPUserInst) &&
528                 GEP == GEPUserInst->getOperand(1)))
529             continue;
530           if (!isGuaranteedToExecuteForEveryIteration(GEPUserInst,
531                                                       FI.InnerLoop))
532             continue;
533           // The IV is used as the operand of a GEP which dominates the loop
534           // latch, and the IV is at least as wide as the address space of the
535           // GEP. In this case, the GEP would wrap around the address space
536           // before the IV increment wraps, which would be UB.
537           if (GEP->isInBounds() &&
538               V->getType()->getIntegerBitWidth() >=
539                   DL.getPointerTypeSizeInBits(GEP->getType())) {
540             LLVM_DEBUG(
541                 dbgs() << "use of linear IV would be UB if overflow occurred: ";
542                 GEP->dump());
543             return OverflowResult::NeverOverflows;
544           }
545         }
546       }
547     }
548   }
549 
550   return OverflowResult::MayOverflow;
551 }
552 
553 static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
554                                ScalarEvolution *SE, AssumptionCache *AC,
555                                const TargetTransformInfo *TTI) {
556   SmallPtrSet<Instruction *, 8> IterationInstructions;
557   if (!findLoopComponents(FI.InnerLoop, IterationInstructions,
558                           FI.InnerInductionPHI, FI.InnerTripCount,
559                           FI.InnerIncrement, FI.InnerBranch, SE, FI.Widened))
560     return false;
561   if (!findLoopComponents(FI.OuterLoop, IterationInstructions,
562                           FI.OuterInductionPHI, FI.OuterTripCount,
563                           FI.OuterIncrement, FI.OuterBranch, SE, FI.Widened))
564     return false;
565 
566   // Both of the loop trip count values must be invariant in the outer loop
567   // (non-instructions are all inherently invariant).
568   if (!FI.OuterLoop->isLoopInvariant(FI.InnerTripCount)) {
569     LLVM_DEBUG(dbgs() << "inner loop trip count not invariant\n");
570     return false;
571   }
572   if (!FI.OuterLoop->isLoopInvariant(FI.OuterTripCount)) {
573     LLVM_DEBUG(dbgs() << "outer loop trip count not invariant\n");
574     return false;
575   }
576 
577   if (!checkPHIs(FI, TTI))
578     return false;
579 
580   // FIXME: it should be possible to handle different types correctly.
581   if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType())
582     return false;
583 
584   if (!checkOuterLoopInsts(FI, IterationInstructions, TTI))
585     return false;
586 
587   // Find the values in the loop that can be replaced with the linearized
588   // induction variable, and check that there are no other uses of the inner
589   // or outer induction variable. If there were, we could still do this
590   // transformation, but we'd have to insert a div/mod to calculate the
591   // original IVs, so it wouldn't be profitable.
592   if (!checkIVUsers(FI))
593     return false;
594 
595   LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n");
596   return true;
597 }
598 
599 static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
600                               ScalarEvolution *SE, AssumptionCache *AC,
601                               const TargetTransformInfo *TTI) {
602   Function *F = FI.OuterLoop->getHeader()->getParent();
603   LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n");
604   {
605     using namespace ore;
606     OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(),
607                               FI.InnerLoop->getHeader());
608     OptimizationRemarkEmitter ORE(F);
609     Remark << "Flattened into outer loop";
610     ORE.emit(Remark);
611   }
612 
613   Value *NewTripCount = BinaryOperator::CreateMul(
614       FI.InnerTripCount, FI.OuterTripCount, "flatten.tripcount",
615       FI.OuterLoop->getLoopPreheader()->getTerminator());
616   LLVM_DEBUG(dbgs() << "Created new trip count in preheader: ";
617              NewTripCount->dump());
618 
619   // Fix up PHI nodes that take values from the inner loop back-edge, which
620   // we are about to remove.
621   FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
622 
623   // The old Phi will be optimised away later, but for now we can't leave
624   // leave it in an invalid state, so are updating them too.
625   for (PHINode *PHI : FI.InnerPHIsToTransform)
626     PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
627 
628   // Modify the trip count of the outer loop to be the product of the two
629   // trip counts.
630   cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount);
631 
632   // Replace the inner loop backedge with an unconditional branch to the exit.
633   BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock();
634   BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock();
635   InnerExitingBlock->getTerminator()->eraseFromParent();
636   BranchInst::Create(InnerExitBlock, InnerExitingBlock);
637   DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
638 
639   // Replace all uses of the polynomial calculated from the two induction
640   // variables with the one new one.
641   IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator());
642   for (Value *V : FI.LinearIVUses) {
643     Value *OuterValue = FI.OuterInductionPHI;
644     if (FI.Widened)
645       OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(),
646                                        "flatten.trunciv");
647 
648     LLVM_DEBUG(dbgs() << "Replacing: "; V->dump();
649                dbgs() << "with:      "; OuterValue->dump());
650     V->replaceAllUsesWith(OuterValue);
651   }
652 
653   // Tell LoopInfo, SCEV and the pass manager that the inner loop has been
654   // deleted, and any information that have about the outer loop invalidated.
655   SE->forgetLoop(FI.OuterLoop);
656   SE->forgetLoop(FI.InnerLoop);
657   LI->erase(FI.InnerLoop);
658 
659   // Increment statistic value.
660   NumFlattened++;
661 
662   return true;
663 }
664 
665 static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
666                        ScalarEvolution *SE, AssumptionCache *AC,
667                        const TargetTransformInfo *TTI) {
668   if (!WidenIV) {
669     LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n");
670     return false;
671   }
672 
673   LLVM_DEBUG(dbgs() << "Try widening the IVs\n");
674   Module *M = FI.InnerLoop->getHeader()->getParent()->getParent();
675   auto &DL = M->getDataLayout();
676   auto *InnerType = FI.InnerInductionPHI->getType();
677   auto *OuterType = FI.OuterInductionPHI->getType();
678   unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits();
679   auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext());
680 
681   // If both induction types are less than the maximum legal integer width,
682   // promote both to the widest type available so we know calculating
683   // (OuterTripCount * InnerTripCount) as the new trip count is safe.
684   if (InnerType != OuterType ||
685       InnerType->getScalarSizeInBits() >= MaxLegalSize ||
686       MaxLegalType->getScalarSizeInBits() < InnerType->getScalarSizeInBits() * 2) {
687     LLVM_DEBUG(dbgs() << "Can't widen the IV\n");
688     return false;
689   }
690 
691   SCEVExpander Rewriter(*SE, DL, "loopflatten");
692   SmallVector<WeakTrackingVH, 4> DeadInsts;
693   unsigned ElimExt = 0;
694   unsigned Widened = 0;
695 
696   auto CreateWideIV = [&] (WideIVInfo WideIV, bool &Deleted) -> bool {
697     PHINode *WidePhi = createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts,
698                                     ElimExt, Widened, true /* HasGuards */,
699                                     true /* UsePostIncrementRanges */);
700     if (!WidePhi)
701       return false;
702     LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump());
703     LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump());
704     Deleted = RecursivelyDeleteDeadPHINode(WideIV.NarrowIV);
705     return true;
706   };
707 
708   bool Deleted;
709   if (!CreateWideIV({FI.InnerInductionPHI, MaxLegalType, false }, Deleted))
710     return false;
711   // If the inner Phi node cannot be trivially deleted, we need to at least
712   // bring it in a consistent state.
713   if (!Deleted)
714     FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
715   if (!CreateWideIV({FI.OuterInductionPHI, MaxLegalType, false }, Deleted))
716     return false;
717 
718   assert(Widened && "Widened IV expected");
719   FI.Widened = true;
720 
721   // Save the old/narrow induction phis, which we need to ignore in CheckPHIs.
722   FI.OldInductionPHIs.insert(FI.InnerInductionPHI);
723   FI.OldInductionPHIs.insert(FI.OuterInductionPHI);
724 
725   // After widening, rediscover all the loop components.
726   return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
727 }
728 
729 static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
730                             ScalarEvolution *SE, AssumptionCache *AC,
731                             const TargetTransformInfo *TTI) {
732   LLVM_DEBUG(
733       dbgs() << "Loop flattening running on outer loop "
734              << FI.OuterLoop->getHeader()->getName() << " and inner loop "
735              << FI.InnerLoop->getHeader()->getName() << " in "
736              << FI.OuterLoop->getHeader()->getParent()->getName() << "\n");
737 
738   if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI))
739     return false;
740 
741   // Check if we can widen the induction variables to avoid overflow checks.
742   if (CanWidenIV(FI, DT, LI, SE, AC, TTI))
743     return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
744 
745   // Check if the new iteration variable might overflow. In this case, we
746   // need to version the loop, and select the original version at runtime if
747   // the iteration space is too large.
748   // TODO: We currently don't version the loop.
749   OverflowResult OR = checkOverflow(FI, DT, AC);
750   if (OR == OverflowResult::AlwaysOverflowsHigh ||
751       OR == OverflowResult::AlwaysOverflowsLow) {
752     LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n");
753     return false;
754   } else if (OR == OverflowResult::MayOverflow) {
755     LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n");
756     return false;
757   }
758 
759   LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n");
760   return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
761 }
762 
763 bool Flatten(LoopNest &LN, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE,
764              AssumptionCache *AC, TargetTransformInfo *TTI) {
765   bool Changed = false;
766   for (Loop *InnerLoop : LN.getLoops()) {
767     auto *OuterLoop = InnerLoop->getParentLoop();
768     if (!OuterLoop)
769       continue;
770     FlattenInfo FI(OuterLoop, InnerLoop);
771     Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI);
772   }
773   return Changed;
774 }
775 
776 PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM,
777                                        LoopStandardAnalysisResults &AR,
778                                        LPMUpdater &U) {
779 
780   bool Changed = false;
781 
782   // The loop flattening pass requires loops to be
783   // in simplified form, and also needs LCSSA. Running
784   // this pass will simplify all loops that contain inner loops,
785   // regardless of whether anything ends up being flattened.
786   Changed |= Flatten(LN, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI);
787 
788   if (!Changed)
789     return PreservedAnalyses::all();
790 
791   return PreservedAnalyses::none();
792 }
793 
794 namespace {
795 class LoopFlattenLegacyPass : public FunctionPass {
796 public:
797   static char ID; // Pass ID, replacement for typeid
798   LoopFlattenLegacyPass() : FunctionPass(ID) {
799     initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry());
800   }
801 
802   // Possibly flatten loop L into its child.
803   bool runOnFunction(Function &F) override;
804 
805   void getAnalysisUsage(AnalysisUsage &AU) const override {
806     getLoopAnalysisUsage(AU);
807     AU.addRequired<TargetTransformInfoWrapperPass>();
808     AU.addPreserved<TargetTransformInfoWrapperPass>();
809     AU.addRequired<AssumptionCacheTracker>();
810     AU.addPreserved<AssumptionCacheTracker>();
811   }
812 };
813 } // namespace
814 
815 char LoopFlattenLegacyPass::ID = 0;
816 INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
817                       false, false)
818 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
819 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
820 INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
821                     false, false)
822 
823 FunctionPass *llvm::createLoopFlattenPass() { return new LoopFlattenLegacyPass(); }
824 
825 bool LoopFlattenLegacyPass::runOnFunction(Function &F) {
826   ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
827   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
828   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
829   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
830   auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>();
831   auto *TTI = &TTIP.getTTI(F);
832   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
833   bool Changed = false;
834   for (Loop *L : *LI) {
835     auto LN = LoopNest::getLoopNest(*L, *SE);
836     Changed |= Flatten(*LN, DT, LI, SE, AC, TTI);
837   }
838   return Changed;
839 }
840