1 //===- LoopFlatten.cpp - Loop flattening pass------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass flattens pairs nested loops into a single loop. 10 // 11 // The intention is to optimise loop nests like this, which together access an 12 // array linearly: 13 // 14 // for (int i = 0; i < N; ++i) 15 // for (int j = 0; j < M; ++j) 16 // f(A[i*M+j]); 17 // 18 // into one loop: 19 // 20 // for (int i = 0; i < (N*M); ++i) 21 // f(A[i]); 22 // 23 // It can also flatten loops where the induction variables are not used in the 24 // loop. This is only worth doing if the induction variables are only used in an 25 // expression like i*M+j. If they had any other uses, we would have to insert a 26 // div/mod to reconstruct the original values, so this wouldn't be profitable. 27 // 28 // We also need to prove that N*M will not overflow. The preferred solution is 29 // to widen the IV, which avoids overflow checks, so that is tried first. If 30 // the IV cannot be widened, then we try to determine that this new tripcount 31 // expression won't overflow. 32 // 33 // Q: Does LoopFlatten use SCEV? 34 // Short answer: Yes and no. 35 // 36 // Long answer: 37 // For this transformation to be valid, we require all uses of the induction 38 // variables to be linear expressions of the form i*M+j. The different Loop 39 // APIs are used to get some loop components like the induction variable, 40 // compare statement, etc. In addition, we do some pattern matching to find the 41 // linear expressions and other loop components like the loop increment. The 42 // latter are examples of expressions that do use the induction variable, but 43 // are safe to ignore when we check all uses to be of the form i*M+j. We keep 44 // track of all of this in bookkeeping struct FlattenInfo. 45 // We assume the loops to be canonical, i.e. starting at 0 and increment with 46 // 1. This makes RHS of the compare the loop tripcount (with the right 47 // predicate). We use SCEV to then sanity check that this tripcount matches 48 // with the tripcount as computed by SCEV. 49 // 50 //===----------------------------------------------------------------------===// 51 52 #include "llvm/Transforms/Scalar/LoopFlatten.h" 53 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/Analysis/AssumptionCache.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/LoopNestAnalysis.h" 58 #include "llvm/Analysis/MemorySSAUpdater.h" 59 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/Analysis/TargetTransformInfo.h" 62 #include "llvm/Analysis/ValueTracking.h" 63 #include "llvm/IR/Dominators.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/IRBuilder.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/InitializePasses.h" 69 #include "llvm/Pass.h" 70 #include "llvm/Support/Debug.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Transforms/Scalar.h" 73 #include "llvm/Transforms/Scalar/LoopPassManager.h" 74 #include "llvm/Transforms/Utils/Local.h" 75 #include "llvm/Transforms/Utils/LoopUtils.h" 76 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 77 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 78 #include <optional> 79 80 using namespace llvm; 81 using namespace llvm::PatternMatch; 82 83 #define DEBUG_TYPE "loop-flatten" 84 85 STATISTIC(NumFlattened, "Number of loops flattened"); 86 87 static cl::opt<unsigned> RepeatedInstructionThreshold( 88 "loop-flatten-cost-threshold", cl::Hidden, cl::init(2), 89 cl::desc("Limit on the cost of instructions that can be repeated due to " 90 "loop flattening")); 91 92 static cl::opt<bool> 93 AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden, 94 cl::init(false), 95 cl::desc("Assume that the product of the two iteration " 96 "trip counts will never overflow")); 97 98 static cl::opt<bool> 99 WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true), 100 cl::desc("Widen the loop induction variables, if possible, so " 101 "overflow checks won't reject flattening")); 102 103 // We require all uses of both induction variables to match this pattern: 104 // 105 // (OuterPHI * InnerTripCount) + InnerPHI 106 // 107 // I.e., it needs to be a linear expression of the induction variables and the 108 // inner loop trip count. We keep track of all different expressions on which 109 // checks will be performed in this bookkeeping struct. 110 // 111 struct FlattenInfo { 112 Loop *OuterLoop = nullptr; // The loop pair to be flattened. 113 Loop *InnerLoop = nullptr; 114 115 PHINode *InnerInductionPHI = nullptr; // These PHINodes correspond to loop 116 PHINode *OuterInductionPHI = nullptr; // induction variables, which are 117 // expected to start at zero and 118 // increment by one on each loop. 119 120 Value *InnerTripCount = nullptr; // The product of these two tripcounts 121 Value *OuterTripCount = nullptr; // will be the new flattened loop 122 // tripcount. Also used to recognise a 123 // linear expression that will be replaced. 124 125 SmallPtrSet<Value *, 4> LinearIVUses; // Contains the linear expressions 126 // of the form i*M+j that will be 127 // replaced. 128 129 BinaryOperator *InnerIncrement = nullptr; // Uses of induction variables in 130 BinaryOperator *OuterIncrement = nullptr; // loop control statements that 131 BranchInst *InnerBranch = nullptr; // are safe to ignore. 132 133 BranchInst *OuterBranch = nullptr; // The instruction that needs to be 134 // updated with new tripcount. 135 136 SmallPtrSet<PHINode *, 4> InnerPHIsToTransform; 137 138 bool Widened = false; // Whether this holds the flatten info before or after 139 // widening. 140 141 PHINode *NarrowInnerInductionPHI = nullptr; // Holds the old/narrow induction 142 PHINode *NarrowOuterInductionPHI = nullptr; // phis, i.e. the Phis before IV 143 // has been applied. Used to skip 144 // checks on phi nodes. 145 146 FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL){}; 147 148 bool isNarrowInductionPhi(PHINode *Phi) { 149 // This can't be the narrow phi if we haven't widened the IV first. 150 if (!Widened) 151 return false; 152 return NarrowInnerInductionPHI == Phi || NarrowOuterInductionPHI == Phi; 153 } 154 bool isInnerLoopIncrement(User *U) { 155 return InnerIncrement == U; 156 } 157 bool isOuterLoopIncrement(User *U) { 158 return OuterIncrement == U; 159 } 160 bool isInnerLoopTest(User *U) { 161 return InnerBranch->getCondition() == U; 162 } 163 164 bool checkOuterInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) { 165 for (User *U : OuterInductionPHI->users()) { 166 if (isOuterLoopIncrement(U)) 167 continue; 168 169 auto IsValidOuterPHIUses = [&] (User *U) -> bool { 170 LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump()); 171 if (!ValidOuterPHIUses.count(U)) { 172 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 173 return false; 174 } 175 LLVM_DEBUG(dbgs() << "Use is optimisable\n"); 176 return true; 177 }; 178 179 if (auto *V = dyn_cast<TruncInst>(U)) { 180 for (auto *K : V->users()) { 181 if (!IsValidOuterPHIUses(K)) 182 return false; 183 } 184 continue; 185 } 186 187 if (!IsValidOuterPHIUses(U)) 188 return false; 189 } 190 return true; 191 } 192 193 bool matchLinearIVUser(User *U, Value *InnerTripCount, 194 SmallPtrSet<Value *, 4> &ValidOuterPHIUses) { 195 LLVM_DEBUG(dbgs() << "Checking linear i*M+j expression for: "; U->dump()); 196 Value *MatchedMul = nullptr; 197 Value *MatchedItCount = nullptr; 198 199 bool IsAdd = match(U, m_c_Add(m_Specific(InnerInductionPHI), 200 m_Value(MatchedMul))) && 201 match(MatchedMul, m_c_Mul(m_Specific(OuterInductionPHI), 202 m_Value(MatchedItCount))); 203 204 // Matches the same pattern as above, except it also looks for truncs 205 // on the phi, which can be the result of widening the induction variables. 206 bool IsAddTrunc = 207 match(U, m_c_Add(m_Trunc(m_Specific(InnerInductionPHI)), 208 m_Value(MatchedMul))) && 209 match(MatchedMul, m_c_Mul(m_Trunc(m_Specific(OuterInductionPHI)), 210 m_Value(MatchedItCount))); 211 212 if (!MatchedItCount) 213 return false; 214 215 LLVM_DEBUG(dbgs() << "Matched multiplication: "; MatchedMul->dump()); 216 LLVM_DEBUG(dbgs() << "Matched iteration count: "; MatchedItCount->dump()); 217 218 // Look through extends if the IV has been widened. Don't look through 219 // extends if we already looked through a trunc. 220 if (Widened && IsAdd && 221 (isa<SExtInst>(MatchedItCount) || isa<ZExtInst>(MatchedItCount))) { 222 assert(MatchedItCount->getType() == InnerInductionPHI->getType() && 223 "Unexpected type mismatch in types after widening"); 224 MatchedItCount = isa<SExtInst>(MatchedItCount) 225 ? dyn_cast<SExtInst>(MatchedItCount)->getOperand(0) 226 : dyn_cast<ZExtInst>(MatchedItCount)->getOperand(0); 227 } 228 229 LLVM_DEBUG(dbgs() << "Looking for inner trip count: "; 230 InnerTripCount->dump()); 231 232 if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerTripCount) { 233 LLVM_DEBUG(dbgs() << "Found. This sse is optimisable\n"); 234 ValidOuterPHIUses.insert(MatchedMul); 235 LinearIVUses.insert(U); 236 return true; 237 } 238 239 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 240 return false; 241 } 242 243 bool checkInnerInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) { 244 Value *SExtInnerTripCount = InnerTripCount; 245 if (Widened && 246 (isa<SExtInst>(InnerTripCount) || isa<ZExtInst>(InnerTripCount))) 247 SExtInnerTripCount = cast<Instruction>(InnerTripCount)->getOperand(0); 248 249 for (User *U : InnerInductionPHI->users()) { 250 LLVM_DEBUG(dbgs() << "Checking User: "; U->dump()); 251 if (isInnerLoopIncrement(U)) { 252 LLVM_DEBUG(dbgs() << "Use is inner loop increment, continuing\n"); 253 continue; 254 } 255 256 // After widening the IVs, a trunc instruction might have been introduced, 257 // so look through truncs. 258 if (isa<TruncInst>(U)) { 259 if (!U->hasOneUse()) 260 return false; 261 U = *U->user_begin(); 262 } 263 264 // If the use is in the compare (which is also the condition of the inner 265 // branch) then the compare has been altered by another transformation e.g 266 // icmp ult %inc, tripcount -> icmp ult %j, tripcount-1, where tripcount is 267 // a constant. Ignore this use as the compare gets removed later anyway. 268 if (isInnerLoopTest(U)) { 269 LLVM_DEBUG(dbgs() << "Use is the inner loop test, continuing\n"); 270 continue; 271 } 272 273 if (!matchLinearIVUser(U, SExtInnerTripCount, ValidOuterPHIUses)) { 274 LLVM_DEBUG(dbgs() << "Not a linear IV user\n"); 275 return false; 276 } 277 LLVM_DEBUG(dbgs() << "Linear IV users found!\n"); 278 } 279 return true; 280 } 281 }; 282 283 static bool 284 setLoopComponents(Value *&TC, Value *&TripCount, BinaryOperator *&Increment, 285 SmallPtrSetImpl<Instruction *> &IterationInstructions) { 286 TripCount = TC; 287 IterationInstructions.insert(Increment); 288 LLVM_DEBUG(dbgs() << "Found Increment: "; Increment->dump()); 289 LLVM_DEBUG(dbgs() << "Found trip count: "; TripCount->dump()); 290 LLVM_DEBUG(dbgs() << "Successfully found all loop components\n"); 291 return true; 292 } 293 294 // Given the RHS of the loop latch compare instruction, verify with SCEV 295 // that this is indeed the loop tripcount. 296 // TODO: This used to be a straightforward check but has grown to be quite 297 // complicated now. It is therefore worth revisiting what the additional 298 // benefits are of this (compared to relying on canonical loops and pattern 299 // matching). 300 static bool verifyTripCount(Value *RHS, Loop *L, 301 SmallPtrSetImpl<Instruction *> &IterationInstructions, 302 PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment, 303 BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) { 304 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 305 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 306 LLVM_DEBUG(dbgs() << "Backedge-taken count is not predictable\n"); 307 return false; 308 } 309 310 // The Extend=false flag is used for getTripCountFromExitCount as we want 311 // to verify and match it with the pattern matched tripcount. Please note 312 // that overflow checks are performed in checkOverflow, but are first tried 313 // to avoid by widening the IV. 314 const SCEV *SCEVTripCount = 315 SE->getTripCountFromExitCount(BackedgeTakenCount, /*Extend=*/false); 316 317 const SCEV *SCEVRHS = SE->getSCEV(RHS); 318 if (SCEVRHS == SCEVTripCount) 319 return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 320 ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(RHS); 321 if (ConstantRHS) { 322 const SCEV *BackedgeTCExt = nullptr; 323 if (IsWidened) { 324 const SCEV *SCEVTripCountExt; 325 // Find the extended backedge taken count and extended trip count using 326 // SCEV. One of these should now match the RHS of the compare. 327 BackedgeTCExt = SE->getZeroExtendExpr(BackedgeTakenCount, RHS->getType()); 328 SCEVTripCountExt = SE->getTripCountFromExitCount(BackedgeTCExt, false); 329 if (SCEVRHS != BackedgeTCExt && SCEVRHS != SCEVTripCountExt) { 330 LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 331 return false; 332 } 333 } 334 // If the RHS of the compare is equal to the backedge taken count we need 335 // to add one to get the trip count. 336 if (SCEVRHS == BackedgeTCExt || SCEVRHS == BackedgeTakenCount) { 337 ConstantInt *One = ConstantInt::get(ConstantRHS->getType(), 1); 338 Value *NewRHS = ConstantInt::get( 339 ConstantRHS->getContext(), ConstantRHS->getValue() + One->getValue()); 340 return setLoopComponents(NewRHS, TripCount, Increment, 341 IterationInstructions); 342 } 343 return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 344 } 345 // If the RHS isn't a constant then check that the reason it doesn't match 346 // the SCEV trip count is because the RHS is a ZExt or SExt instruction 347 // (and take the trip count to be the RHS). 348 if (!IsWidened) { 349 LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 350 return false; 351 } 352 auto *TripCountInst = dyn_cast<Instruction>(RHS); 353 if (!TripCountInst) { 354 LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 355 return false; 356 } 357 if ((!isa<ZExtInst>(TripCountInst) && !isa<SExtInst>(TripCountInst)) || 358 SE->getSCEV(TripCountInst->getOperand(0)) != SCEVTripCount) { 359 LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n"); 360 return false; 361 } 362 return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 363 } 364 365 // Finds the induction variable, increment and trip count for a simple loop that 366 // we can flatten. 367 static bool findLoopComponents( 368 Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions, 369 PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment, 370 BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) { 371 LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n"); 372 373 if (!L->isLoopSimplifyForm()) { 374 LLVM_DEBUG(dbgs() << "Loop is not in normal form\n"); 375 return false; 376 } 377 378 // Currently, to simplify the implementation, the Loop induction variable must 379 // start at zero and increment with a step size of one. 380 if (!L->isCanonical(*SE)) { 381 LLVM_DEBUG(dbgs() << "Loop is not canonical\n"); 382 return false; 383 } 384 385 // There must be exactly one exiting block, and it must be the same at the 386 // latch. 387 BasicBlock *Latch = L->getLoopLatch(); 388 if (L->getExitingBlock() != Latch) { 389 LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n"); 390 return false; 391 } 392 393 // Find the induction PHI. If there is no induction PHI, we can't do the 394 // transformation. TODO: could other variables trigger this? Do we have to 395 // search for the best one? 396 InductionPHI = L->getInductionVariable(*SE); 397 if (!InductionPHI) { 398 LLVM_DEBUG(dbgs() << "Could not find induction PHI\n"); 399 return false; 400 } 401 LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump()); 402 403 bool ContinueOnTrue = L->contains(Latch->getTerminator()->getSuccessor(0)); 404 auto IsValidPredicate = [&](ICmpInst::Predicate Pred) { 405 if (ContinueOnTrue) 406 return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT; 407 else 408 return Pred == CmpInst::ICMP_EQ; 409 }; 410 411 // Find Compare and make sure it is valid. getLatchCmpInst checks that the 412 // back branch of the latch is conditional. 413 ICmpInst *Compare = L->getLatchCmpInst(); 414 if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) || 415 Compare->hasNUsesOrMore(2)) { 416 LLVM_DEBUG(dbgs() << "Could not find valid comparison\n"); 417 return false; 418 } 419 BackBranch = cast<BranchInst>(Latch->getTerminator()); 420 IterationInstructions.insert(BackBranch); 421 LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump()); 422 IterationInstructions.insert(Compare); 423 LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump()); 424 425 // Find increment and trip count. 426 // There are exactly 2 incoming values to the induction phi; one from the 427 // pre-header and one from the latch. The incoming latch value is the 428 // increment variable. 429 Increment = 430 cast<BinaryOperator>(InductionPHI->getIncomingValueForBlock(Latch)); 431 if ((Compare->getOperand(0) != Increment || !Increment->hasNUses(2)) && 432 !Increment->hasNUses(1)) { 433 LLVM_DEBUG(dbgs() << "Could not find valid increment\n"); 434 return false; 435 } 436 // The trip count is the RHS of the compare. If this doesn't match the trip 437 // count computed by SCEV then this is because the trip count variable 438 // has been widened so the types don't match, or because it is a constant and 439 // another transformation has changed the compare (e.g. icmp ult %inc, 440 // tripcount -> icmp ult %j, tripcount-1), or both. 441 Value *RHS = Compare->getOperand(1); 442 443 return verifyTripCount(RHS, L, IterationInstructions, InductionPHI, TripCount, 444 Increment, BackBranch, SE, IsWidened); 445 } 446 447 static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) { 448 // All PHIs in the inner and outer headers must either be: 449 // - The induction PHI, which we are going to rewrite as one induction in 450 // the new loop. This is already checked by findLoopComponents. 451 // - An outer header PHI with all incoming values from outside the loop. 452 // LoopSimplify guarantees we have a pre-header, so we don't need to 453 // worry about that here. 454 // - Pairs of PHIs in the inner and outer headers, which implement a 455 // loop-carried dependency that will still be valid in the new loop. To 456 // be valid, this variable must be modified only in the inner loop. 457 458 // The set of PHI nodes in the outer loop header that we know will still be 459 // valid after the transformation. These will not need to be modified (with 460 // the exception of the induction variable), but we do need to check that 461 // there are no unsafe PHI nodes. 462 SmallPtrSet<PHINode *, 4> SafeOuterPHIs; 463 SafeOuterPHIs.insert(FI.OuterInductionPHI); 464 465 // Check that all PHI nodes in the inner loop header match one of the valid 466 // patterns. 467 for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) { 468 // The induction PHIs break these rules, and that's OK because we treat 469 // them specially when doing the transformation. 470 if (&InnerPHI == FI.InnerInductionPHI) 471 continue; 472 if (FI.isNarrowInductionPhi(&InnerPHI)) 473 continue; 474 475 // Each inner loop PHI node must have two incoming values/blocks - one 476 // from the pre-header, and one from the latch. 477 assert(InnerPHI.getNumIncomingValues() == 2); 478 Value *PreHeaderValue = 479 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader()); 480 Value *LatchValue = 481 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch()); 482 483 // The incoming value from the outer loop must be the PHI node in the 484 // outer loop header, with no modifications made in the top of the outer 485 // loop. 486 PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue); 487 if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) { 488 LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n"); 489 return false; 490 } 491 492 // The other incoming value must come from the inner loop, without any 493 // modifications in the tail end of the outer loop. We are in LCSSA form, 494 // so this will actually be a PHI in the inner loop's exit block, which 495 // only uses values from inside the inner loop. 496 PHINode *LCSSAPHI = dyn_cast<PHINode>( 497 OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch())); 498 if (!LCSSAPHI) { 499 LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n"); 500 return false; 501 } 502 503 // The value used by the LCSSA PHI must be the same one that the inner 504 // loop's PHI uses. 505 if (LCSSAPHI->hasConstantValue() != LatchValue) { 506 LLVM_DEBUG( 507 dbgs() << "LCSSA PHI incoming value does not match latch value\n"); 508 return false; 509 } 510 511 LLVM_DEBUG(dbgs() << "PHI pair is safe:\n"); 512 LLVM_DEBUG(dbgs() << " Inner: "; InnerPHI.dump()); 513 LLVM_DEBUG(dbgs() << " Outer: "; OuterPHI->dump()); 514 SafeOuterPHIs.insert(OuterPHI); 515 FI.InnerPHIsToTransform.insert(&InnerPHI); 516 } 517 518 for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) { 519 if (FI.isNarrowInductionPhi(&OuterPHI)) 520 continue; 521 if (!SafeOuterPHIs.count(&OuterPHI)) { 522 LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump()); 523 return false; 524 } 525 } 526 527 LLVM_DEBUG(dbgs() << "checkPHIs: OK\n"); 528 return true; 529 } 530 531 static bool 532 checkOuterLoopInsts(FlattenInfo &FI, 533 SmallPtrSetImpl<Instruction *> &IterationInstructions, 534 const TargetTransformInfo *TTI) { 535 // Check for instructions in the outer but not inner loop. If any of these 536 // have side-effects then this transformation is not legal, and if there is 537 // a significant amount of code here which can't be optimised out that it's 538 // not profitable (as these instructions would get executed for each 539 // iteration of the inner loop). 540 InstructionCost RepeatedInstrCost = 0; 541 for (auto *B : FI.OuterLoop->getBlocks()) { 542 if (FI.InnerLoop->contains(B)) 543 continue; 544 545 for (auto &I : *B) { 546 if (!isa<PHINode>(&I) && !I.isTerminator() && 547 !isSafeToSpeculativelyExecute(&I)) { 548 LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have " 549 "side effects: "; 550 I.dump()); 551 return false; 552 } 553 // The execution count of the outer loop's iteration instructions 554 // (increment, compare and branch) will be increased, but the 555 // equivalent instructions will be removed from the inner loop, so 556 // they make a net difference of zero. 557 if (IterationInstructions.count(&I)) 558 continue; 559 // The unconditional branch to the inner loop's header will turn into 560 // a fall-through, so adds no cost. 561 BranchInst *Br = dyn_cast<BranchInst>(&I); 562 if (Br && Br->isUnconditional() && 563 Br->getSuccessor(0) == FI.InnerLoop->getHeader()) 564 continue; 565 // Multiplies of the outer iteration variable and inner iteration 566 // count will be optimised out. 567 if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI), 568 m_Specific(FI.InnerTripCount)))) 569 continue; 570 InstructionCost Cost = 571 TTI->getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 572 LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump()); 573 RepeatedInstrCost += Cost; 574 } 575 } 576 577 LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: " 578 << RepeatedInstrCost << "\n"); 579 // Bail out if flattening the loops would cause instructions in the outer 580 // loop but not in the inner loop to be executed extra times. 581 if (RepeatedInstrCost > RepeatedInstructionThreshold) { 582 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n"); 583 return false; 584 } 585 586 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n"); 587 return true; 588 } 589 590 591 592 // We require all uses of both induction variables to match this pattern: 593 // 594 // (OuterPHI * InnerTripCount) + InnerPHI 595 // 596 // Any uses of the induction variables not matching that pattern would 597 // require a div/mod to reconstruct in the flattened loop, so the 598 // transformation wouldn't be profitable. 599 static bool checkIVUsers(FlattenInfo &FI) { 600 // Check that all uses of the inner loop's induction variable match the 601 // expected pattern, recording the uses of the outer IV. 602 SmallPtrSet<Value *, 4> ValidOuterPHIUses; 603 if (!FI.checkInnerInductionPhiUsers(ValidOuterPHIUses)) 604 return false; 605 606 // Check that there are no uses of the outer IV other than the ones found 607 // as part of the pattern above. 608 if (!FI.checkOuterInductionPhiUsers(ValidOuterPHIUses)) 609 return false; 610 611 LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n"; 612 dbgs() << "Found " << FI.LinearIVUses.size() 613 << " value(s) that can be replaced:\n"; 614 for (Value *V : FI.LinearIVUses) { 615 dbgs() << " "; 616 V->dump(); 617 }); 618 return true; 619 } 620 621 // Return an OverflowResult dependant on if overflow of the multiplication of 622 // InnerTripCount and OuterTripCount can be assumed not to happen. 623 static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT, 624 AssumptionCache *AC) { 625 Function *F = FI.OuterLoop->getHeader()->getParent(); 626 const DataLayout &DL = F->getParent()->getDataLayout(); 627 628 // For debugging/testing. 629 if (AssumeNoOverflow) 630 return OverflowResult::NeverOverflows; 631 632 // Check if the multiply could not overflow due to known ranges of the 633 // input values. 634 OverflowResult OR = computeOverflowForUnsignedMul( 635 FI.InnerTripCount, FI.OuterTripCount, DL, AC, 636 FI.OuterLoop->getLoopPreheader()->getTerminator(), DT); 637 if (OR != OverflowResult::MayOverflow) 638 return OR; 639 640 for (Value *V : FI.LinearIVUses) { 641 for (Value *U : V->users()) { 642 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) { 643 for (Value *GEPUser : U->users()) { 644 auto *GEPUserInst = cast<Instruction>(GEPUser); 645 if (!isa<LoadInst>(GEPUserInst) && 646 !(isa<StoreInst>(GEPUserInst) && 647 GEP == GEPUserInst->getOperand(1))) 648 continue; 649 if (!isGuaranteedToExecuteForEveryIteration(GEPUserInst, 650 FI.InnerLoop)) 651 continue; 652 // The IV is used as the operand of a GEP which dominates the loop 653 // latch, and the IV is at least as wide as the address space of the 654 // GEP. In this case, the GEP would wrap around the address space 655 // before the IV increment wraps, which would be UB. 656 if (GEP->isInBounds() && 657 V->getType()->getIntegerBitWidth() >= 658 DL.getPointerTypeSizeInBits(GEP->getType())) { 659 LLVM_DEBUG( 660 dbgs() << "use of linear IV would be UB if overflow occurred: "; 661 GEP->dump()); 662 return OverflowResult::NeverOverflows; 663 } 664 } 665 } 666 } 667 } 668 669 return OverflowResult::MayOverflow; 670 } 671 672 static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 673 ScalarEvolution *SE, AssumptionCache *AC, 674 const TargetTransformInfo *TTI) { 675 SmallPtrSet<Instruction *, 8> IterationInstructions; 676 if (!findLoopComponents(FI.InnerLoop, IterationInstructions, 677 FI.InnerInductionPHI, FI.InnerTripCount, 678 FI.InnerIncrement, FI.InnerBranch, SE, FI.Widened)) 679 return false; 680 if (!findLoopComponents(FI.OuterLoop, IterationInstructions, 681 FI.OuterInductionPHI, FI.OuterTripCount, 682 FI.OuterIncrement, FI.OuterBranch, SE, FI.Widened)) 683 return false; 684 685 // Both of the loop trip count values must be invariant in the outer loop 686 // (non-instructions are all inherently invariant). 687 if (!FI.OuterLoop->isLoopInvariant(FI.InnerTripCount)) { 688 LLVM_DEBUG(dbgs() << "inner loop trip count not invariant\n"); 689 return false; 690 } 691 if (!FI.OuterLoop->isLoopInvariant(FI.OuterTripCount)) { 692 LLVM_DEBUG(dbgs() << "outer loop trip count not invariant\n"); 693 return false; 694 } 695 696 if (!checkPHIs(FI, TTI)) 697 return false; 698 699 // FIXME: it should be possible to handle different types correctly. 700 if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType()) 701 return false; 702 703 if (!checkOuterLoopInsts(FI, IterationInstructions, TTI)) 704 return false; 705 706 // Find the values in the loop that can be replaced with the linearized 707 // induction variable, and check that there are no other uses of the inner 708 // or outer induction variable. If there were, we could still do this 709 // transformation, but we'd have to insert a div/mod to calculate the 710 // original IVs, so it wouldn't be profitable. 711 if (!checkIVUsers(FI)) 712 return false; 713 714 LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n"); 715 return true; 716 } 717 718 static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 719 ScalarEvolution *SE, AssumptionCache *AC, 720 const TargetTransformInfo *TTI, LPMUpdater *U, 721 MemorySSAUpdater *MSSAU) { 722 Function *F = FI.OuterLoop->getHeader()->getParent(); 723 LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n"); 724 { 725 using namespace ore; 726 OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(), 727 FI.InnerLoop->getHeader()); 728 OptimizationRemarkEmitter ORE(F); 729 Remark << "Flattened into outer loop"; 730 ORE.emit(Remark); 731 } 732 733 Value *NewTripCount = BinaryOperator::CreateMul( 734 FI.InnerTripCount, FI.OuterTripCount, "flatten.tripcount", 735 FI.OuterLoop->getLoopPreheader()->getTerminator()); 736 LLVM_DEBUG(dbgs() << "Created new trip count in preheader: "; 737 NewTripCount->dump()); 738 739 // Fix up PHI nodes that take values from the inner loop back-edge, which 740 // we are about to remove. 741 FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 742 743 // The old Phi will be optimised away later, but for now we can't leave 744 // leave it in an invalid state, so are updating them too. 745 for (PHINode *PHI : FI.InnerPHIsToTransform) 746 PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 747 748 // Modify the trip count of the outer loop to be the product of the two 749 // trip counts. 750 cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount); 751 752 // Replace the inner loop backedge with an unconditional branch to the exit. 753 BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock(); 754 BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock(); 755 InnerExitingBlock->getTerminator()->eraseFromParent(); 756 BranchInst::Create(InnerExitBlock, InnerExitingBlock); 757 758 // Update the DomTree and MemorySSA. 759 DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader()); 760 if (MSSAU) 761 MSSAU->removeEdge(InnerExitingBlock, FI.InnerLoop->getHeader()); 762 763 // Replace all uses of the polynomial calculated from the two induction 764 // variables with the one new one. 765 IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator()); 766 for (Value *V : FI.LinearIVUses) { 767 Value *OuterValue = FI.OuterInductionPHI; 768 if (FI.Widened) 769 OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(), 770 "flatten.trunciv"); 771 772 LLVM_DEBUG(dbgs() << "Replacing: "; V->dump(); dbgs() << "with: "; 773 OuterValue->dump()); 774 V->replaceAllUsesWith(OuterValue); 775 } 776 777 // Tell LoopInfo, SCEV and the pass manager that the inner loop has been 778 // deleted, and any information that have about the outer loop invalidated. 779 SE->forgetLoop(FI.OuterLoop); 780 SE->forgetLoop(FI.InnerLoop); 781 SE->forgetBlockAndLoopDispositions(); 782 if (U) 783 U->markLoopAsDeleted(*FI.InnerLoop, FI.InnerLoop->getName()); 784 LI->erase(FI.InnerLoop); 785 786 // Increment statistic value. 787 NumFlattened++; 788 789 return true; 790 } 791 792 static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 793 ScalarEvolution *SE, AssumptionCache *AC, 794 const TargetTransformInfo *TTI) { 795 if (!WidenIV) { 796 LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n"); 797 return false; 798 } 799 800 LLVM_DEBUG(dbgs() << "Try widening the IVs\n"); 801 Module *M = FI.InnerLoop->getHeader()->getParent()->getParent(); 802 auto &DL = M->getDataLayout(); 803 auto *InnerType = FI.InnerInductionPHI->getType(); 804 auto *OuterType = FI.OuterInductionPHI->getType(); 805 unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits(); 806 auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext()); 807 808 // If both induction types are less than the maximum legal integer width, 809 // promote both to the widest type available so we know calculating 810 // (OuterTripCount * InnerTripCount) as the new trip count is safe. 811 if (InnerType != OuterType || 812 InnerType->getScalarSizeInBits() >= MaxLegalSize || 813 MaxLegalType->getScalarSizeInBits() < 814 InnerType->getScalarSizeInBits() * 2) { 815 LLVM_DEBUG(dbgs() << "Can't widen the IV\n"); 816 return false; 817 } 818 819 SCEVExpander Rewriter(*SE, DL, "loopflatten"); 820 SmallVector<WeakTrackingVH, 4> DeadInsts; 821 unsigned ElimExt = 0; 822 unsigned Widened = 0; 823 824 auto CreateWideIV = [&](WideIVInfo WideIV, bool &Deleted) -> bool { 825 PHINode *WidePhi = 826 createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts, ElimExt, Widened, 827 true /* HasGuards */, true /* UsePostIncrementRanges */); 828 if (!WidePhi) 829 return false; 830 LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump()); 831 LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump()); 832 Deleted = RecursivelyDeleteDeadPHINode(WideIV.NarrowIV); 833 return true; 834 }; 835 836 bool Deleted; 837 if (!CreateWideIV({FI.InnerInductionPHI, MaxLegalType, false}, Deleted)) 838 return false; 839 // Add the narrow phi to list, so that it will be adjusted later when the 840 // the transformation is performed. 841 if (!Deleted) 842 FI.InnerPHIsToTransform.insert(FI.InnerInductionPHI); 843 844 if (!CreateWideIV({FI.OuterInductionPHI, MaxLegalType, false}, Deleted)) 845 return false; 846 847 assert(Widened && "Widened IV expected"); 848 FI.Widened = true; 849 850 // Save the old/narrow induction phis, which we need to ignore in CheckPHIs. 851 FI.NarrowInnerInductionPHI = FI.InnerInductionPHI; 852 FI.NarrowOuterInductionPHI = FI.OuterInductionPHI; 853 854 // After widening, rediscover all the loop components. 855 return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI); 856 } 857 858 static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 859 ScalarEvolution *SE, AssumptionCache *AC, 860 const TargetTransformInfo *TTI, LPMUpdater *U, 861 MemorySSAUpdater *MSSAU) { 862 LLVM_DEBUG( 863 dbgs() << "Loop flattening running on outer loop " 864 << FI.OuterLoop->getHeader()->getName() << " and inner loop " 865 << FI.InnerLoop->getHeader()->getName() << " in " 866 << FI.OuterLoop->getHeader()->getParent()->getName() << "\n"); 867 868 if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI)) 869 return false; 870 871 // Check if we can widen the induction variables to avoid overflow checks. 872 bool CanFlatten = CanWidenIV(FI, DT, LI, SE, AC, TTI); 873 874 // It can happen that after widening of the IV, flattening may not be 875 // possible/happening, e.g. when it is deemed unprofitable. So bail here if 876 // that is the case. 877 // TODO: IV widening without performing the actual flattening transformation 878 // is not ideal. While this codegen change should not matter much, it is an 879 // unnecessary change which is better to avoid. It's unlikely this happens 880 // often, because if it's unprofitibale after widening, it should be 881 // unprofitabe before widening as checked in the first round of checks. But 882 // 'RepeatedInstructionThreshold' is set to only 2, which can probably be 883 // relaxed. Because this is making a code change (the IV widening, but not 884 // the flattening), we return true here. 885 if (FI.Widened && !CanFlatten) 886 return true; 887 888 // If we have widened and can perform the transformation, do that here. 889 if (CanFlatten) 890 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU); 891 892 // Otherwise, if we haven't widened the IV, check if the new iteration 893 // variable might overflow. In this case, we need to version the loop, and 894 // select the original version at runtime if the iteration space is too 895 // large. 896 // TODO: We currently don't version the loop. 897 OverflowResult OR = checkOverflow(FI, DT, AC); 898 if (OR == OverflowResult::AlwaysOverflowsHigh || 899 OR == OverflowResult::AlwaysOverflowsLow) { 900 LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n"); 901 return false; 902 } else if (OR == OverflowResult::MayOverflow) { 903 LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n"); 904 return false; 905 } 906 907 LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n"); 908 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU); 909 } 910 911 bool Flatten(LoopNest &LN, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, 912 AssumptionCache *AC, TargetTransformInfo *TTI, LPMUpdater *U, 913 MemorySSAUpdater *MSSAU) { 914 bool Changed = false; 915 for (Loop *InnerLoop : LN.getLoops()) { 916 auto *OuterLoop = InnerLoop->getParentLoop(); 917 if (!OuterLoop) 918 continue; 919 FlattenInfo FI(OuterLoop, InnerLoop); 920 Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU); 921 } 922 return Changed; 923 } 924 925 PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM, 926 LoopStandardAnalysisResults &AR, 927 LPMUpdater &U) { 928 929 bool Changed = false; 930 931 std::optional<MemorySSAUpdater> MSSAU; 932 if (AR.MSSA) { 933 MSSAU = MemorySSAUpdater(AR.MSSA); 934 if (VerifyMemorySSA) 935 AR.MSSA->verifyMemorySSA(); 936 } 937 938 // The loop flattening pass requires loops to be 939 // in simplified form, and also needs LCSSA. Running 940 // this pass will simplify all loops that contain inner loops, 941 // regardless of whether anything ends up being flattened. 942 Changed |= Flatten(LN, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI, &U, 943 MSSAU ? &*MSSAU : nullptr); 944 945 if (!Changed) 946 return PreservedAnalyses::all(); 947 948 if (AR.MSSA && VerifyMemorySSA) 949 AR.MSSA->verifyMemorySSA(); 950 951 auto PA = getLoopPassPreservedAnalyses(); 952 if (AR.MSSA) 953 PA.preserve<MemorySSAAnalysis>(); 954 return PA; 955 } 956 957 namespace { 958 class LoopFlattenLegacyPass : public FunctionPass { 959 public: 960 static char ID; // Pass ID, replacement for typeid 961 LoopFlattenLegacyPass() : FunctionPass(ID) { 962 initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry()); 963 } 964 965 // Possibly flatten loop L into its child. 966 bool runOnFunction(Function &F) override; 967 968 void getAnalysisUsage(AnalysisUsage &AU) const override { 969 getLoopAnalysisUsage(AU); 970 AU.addRequired<TargetTransformInfoWrapperPass>(); 971 AU.addPreserved<TargetTransformInfoWrapperPass>(); 972 AU.addRequired<AssumptionCacheTracker>(); 973 AU.addPreserved<AssumptionCacheTracker>(); 974 AU.addPreserved<MemorySSAWrapperPass>(); 975 } 976 }; 977 } // namespace 978 979 char LoopFlattenLegacyPass::ID = 0; 980 INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops", 981 false, false) 982 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 983 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 984 INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops", 985 false, false) 986 987 FunctionPass *llvm::createLoopFlattenPass() { 988 return new LoopFlattenLegacyPass(); 989 } 990 991 bool LoopFlattenLegacyPass::runOnFunction(Function &F) { 992 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 993 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 994 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 995 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 996 auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>(); 997 auto *TTI = &TTIP.getTTI(F); 998 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 999 auto *MSSA = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 1000 1001 std::optional<MemorySSAUpdater> MSSAU; 1002 if (MSSA) 1003 MSSAU = MemorySSAUpdater(&MSSA->getMSSA()); 1004 1005 bool Changed = false; 1006 for (Loop *L : *LI) { 1007 auto LN = LoopNest::getLoopNest(*L, *SE); 1008 Changed |= 1009 Flatten(*LN, DT, LI, SE, AC, TTI, nullptr, MSSAU ? &*MSSAU : nullptr); 1010 } 1011 return Changed; 1012 } 1013