1 //===- LoopFlatten.cpp - Loop flattening pass------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass flattens pairs nested loops into a single loop. 10 // 11 // The intention is to optimise loop nests like this, which together access an 12 // array linearly: 13 // 14 // for (int i = 0; i < N; ++i) 15 // for (int j = 0; j < M; ++j) 16 // f(A[i*M+j]); 17 // 18 // into one loop: 19 // 20 // for (int i = 0; i < (N*M); ++i) 21 // f(A[i]); 22 // 23 // It can also flatten loops where the induction variables are not used in the 24 // loop. This is only worth doing if the induction variables are only used in an 25 // expression like i*M+j. If they had any other uses, we would have to insert a 26 // div/mod to reconstruct the original values, so this wouldn't be profitable. 27 // 28 // We also need to prove that N*M will not overflow. The preferred solution is 29 // to widen the IV, which avoids overflow checks, so that is tried first. If 30 // the IV cannot be widened, then we try to determine that this new tripcount 31 // expression won't overflow. 32 // 33 // Q: Does LoopFlatten use SCEV? 34 // Short answer: Yes and no. 35 // 36 // Long answer: 37 // For this transformation to be valid, we require all uses of the induction 38 // variables to be linear expressions of the form i*M+j. The different Loop 39 // APIs are used to get some loop components like the induction variable, 40 // compare statement, etc. In addition, we do some pattern matching to find the 41 // linear expressions and other loop components like the loop increment. The 42 // latter are examples of expressions that do use the induction variable, but 43 // are safe to ignore when we check all uses to be of the form i*M+j. We keep 44 // track of all of this in bookkeeping struct FlattenInfo. 45 // We assume the loops to be canonical, i.e. starting at 0 and increment with 46 // 1. This makes RHS of the compare the loop tripcount (with the right 47 // predicate). We use SCEV to then sanity check that this tripcount matches 48 // with the tripcount as computed by SCEV. 49 // 50 //===----------------------------------------------------------------------===// 51 52 #include "llvm/Transforms/Scalar/LoopFlatten.h" 53 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/Analysis/AssumptionCache.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/LoopNestAnalysis.h" 58 #include "llvm/Analysis/MemorySSAUpdater.h" 59 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/Analysis/TargetTransformInfo.h" 62 #include "llvm/Analysis/ValueTracking.h" 63 #include "llvm/IR/Dominators.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/IRBuilder.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/InitializePasses.h" 69 #include "llvm/Pass.h" 70 #include "llvm/Support/Debug.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Transforms/Scalar.h" 73 #include "llvm/Transforms/Scalar/LoopPassManager.h" 74 #include "llvm/Transforms/Utils/Local.h" 75 #include "llvm/Transforms/Utils/LoopUtils.h" 76 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 77 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 78 #include <optional> 79 80 using namespace llvm; 81 using namespace llvm::PatternMatch; 82 83 #define DEBUG_TYPE "loop-flatten" 84 85 STATISTIC(NumFlattened, "Number of loops flattened"); 86 87 static cl::opt<unsigned> RepeatedInstructionThreshold( 88 "loop-flatten-cost-threshold", cl::Hidden, cl::init(2), 89 cl::desc("Limit on the cost of instructions that can be repeated due to " 90 "loop flattening")); 91 92 static cl::opt<bool> 93 AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden, 94 cl::init(false), 95 cl::desc("Assume that the product of the two iteration " 96 "trip counts will never overflow")); 97 98 static cl::opt<bool> 99 WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true), 100 cl::desc("Widen the loop induction variables, if possible, so " 101 "overflow checks won't reject flattening")); 102 103 // We require all uses of both induction variables to match this pattern: 104 // 105 // (OuterPHI * InnerTripCount) + InnerPHI 106 // 107 // I.e., it needs to be a linear expression of the induction variables and the 108 // inner loop trip count. We keep track of all different expressions on which 109 // checks will be performed in this bookkeeping struct. 110 // 111 struct FlattenInfo { 112 Loop *OuterLoop = nullptr; // The loop pair to be flattened. 113 Loop *InnerLoop = nullptr; 114 115 PHINode *InnerInductionPHI = nullptr; // These PHINodes correspond to loop 116 PHINode *OuterInductionPHI = nullptr; // induction variables, which are 117 // expected to start at zero and 118 // increment by one on each loop. 119 120 Value *InnerTripCount = nullptr; // The product of these two tripcounts 121 Value *OuterTripCount = nullptr; // will be the new flattened loop 122 // tripcount. Also used to recognise a 123 // linear expression that will be replaced. 124 125 SmallPtrSet<Value *, 4> LinearIVUses; // Contains the linear expressions 126 // of the form i*M+j that will be 127 // replaced. 128 129 BinaryOperator *InnerIncrement = nullptr; // Uses of induction variables in 130 BinaryOperator *OuterIncrement = nullptr; // loop control statements that 131 BranchInst *InnerBranch = nullptr; // are safe to ignore. 132 133 BranchInst *OuterBranch = nullptr; // The instruction that needs to be 134 // updated with new tripcount. 135 136 SmallPtrSet<PHINode *, 4> InnerPHIsToTransform; 137 138 bool Widened = false; // Whether this holds the flatten info before or after 139 // widening. 140 141 PHINode *NarrowInnerInductionPHI = nullptr; // Holds the old/narrow induction 142 PHINode *NarrowOuterInductionPHI = nullptr; // phis, i.e. the Phis before IV 143 // has been applied. Used to skip 144 // checks on phi nodes. 145 146 FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL){}; 147 148 bool isNarrowInductionPhi(PHINode *Phi) { 149 // This can't be the narrow phi if we haven't widened the IV first. 150 if (!Widened) 151 return false; 152 return NarrowInnerInductionPHI == Phi || NarrowOuterInductionPHI == Phi; 153 } 154 bool isInnerLoopIncrement(User *U) { 155 return InnerIncrement == U; 156 } 157 bool isOuterLoopIncrement(User *U) { 158 return OuterIncrement == U; 159 } 160 bool isInnerLoopTest(User *U) { 161 return InnerBranch->getCondition() == U; 162 } 163 164 bool checkOuterInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) { 165 for (User *U : OuterInductionPHI->users()) { 166 if (isOuterLoopIncrement(U)) 167 continue; 168 169 auto IsValidOuterPHIUses = [&] (User *U) -> bool { 170 LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump()); 171 if (!ValidOuterPHIUses.count(U)) { 172 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 173 return false; 174 } 175 LLVM_DEBUG(dbgs() << "Use is optimisable\n"); 176 return true; 177 }; 178 179 if (auto *V = dyn_cast<TruncInst>(U)) { 180 for (auto *K : V->users()) { 181 if (!IsValidOuterPHIUses(K)) 182 return false; 183 } 184 continue; 185 } 186 187 if (!IsValidOuterPHIUses(U)) 188 return false; 189 } 190 return true; 191 } 192 193 bool matchLinearIVUser(User *U, Value *InnerTripCount, 194 SmallPtrSet<Value *, 4> &ValidOuterPHIUses) { 195 LLVM_DEBUG(dbgs() << "Checking linear i*M+j expression for: "; U->dump()); 196 Value *MatchedMul = nullptr; 197 Value *MatchedItCount = nullptr; 198 199 bool IsAdd = match(U, m_c_Add(m_Specific(InnerInductionPHI), 200 m_Value(MatchedMul))) && 201 match(MatchedMul, m_c_Mul(m_Specific(OuterInductionPHI), 202 m_Value(MatchedItCount))); 203 204 // Matches the same pattern as above, except it also looks for truncs 205 // on the phi, which can be the result of widening the induction variables. 206 bool IsAddTrunc = 207 match(U, m_c_Add(m_Trunc(m_Specific(InnerInductionPHI)), 208 m_Value(MatchedMul))) && 209 match(MatchedMul, m_c_Mul(m_Trunc(m_Specific(OuterInductionPHI)), 210 m_Value(MatchedItCount))); 211 212 if (!MatchedItCount) 213 return false; 214 215 LLVM_DEBUG(dbgs() << "Matched multiplication: "; MatchedMul->dump()); 216 LLVM_DEBUG(dbgs() << "Matched iteration count: "; MatchedItCount->dump()); 217 218 // The mul should not have any other uses. Widening may leave trivially dead 219 // uses, which can be ignored. 220 if (count_if(MatchedMul->users(), [](User *U) { 221 return !isInstructionTriviallyDead(cast<Instruction>(U)); 222 }) > 1) { 223 LLVM_DEBUG(dbgs() << "Multiply has more than one use\n"); 224 return false; 225 } 226 227 // Look through extends if the IV has been widened. Don't look through 228 // extends if we already looked through a trunc. 229 if (Widened && IsAdd && 230 (isa<SExtInst>(MatchedItCount) || isa<ZExtInst>(MatchedItCount))) { 231 assert(MatchedItCount->getType() == InnerInductionPHI->getType() && 232 "Unexpected type mismatch in types after widening"); 233 MatchedItCount = isa<SExtInst>(MatchedItCount) 234 ? dyn_cast<SExtInst>(MatchedItCount)->getOperand(0) 235 : dyn_cast<ZExtInst>(MatchedItCount)->getOperand(0); 236 } 237 238 LLVM_DEBUG(dbgs() << "Looking for inner trip count: "; 239 InnerTripCount->dump()); 240 241 if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerTripCount) { 242 LLVM_DEBUG(dbgs() << "Found. This sse is optimisable\n"); 243 ValidOuterPHIUses.insert(MatchedMul); 244 LinearIVUses.insert(U); 245 return true; 246 } 247 248 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 249 return false; 250 } 251 252 bool checkInnerInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) { 253 Value *SExtInnerTripCount = InnerTripCount; 254 if (Widened && 255 (isa<SExtInst>(InnerTripCount) || isa<ZExtInst>(InnerTripCount))) 256 SExtInnerTripCount = cast<Instruction>(InnerTripCount)->getOperand(0); 257 258 for (User *U : InnerInductionPHI->users()) { 259 LLVM_DEBUG(dbgs() << "Checking User: "; U->dump()); 260 if (isInnerLoopIncrement(U)) { 261 LLVM_DEBUG(dbgs() << "Use is inner loop increment, continuing\n"); 262 continue; 263 } 264 265 // After widening the IVs, a trunc instruction might have been introduced, 266 // so look through truncs. 267 if (isa<TruncInst>(U)) { 268 if (!U->hasOneUse()) 269 return false; 270 U = *U->user_begin(); 271 } 272 273 // If the use is in the compare (which is also the condition of the inner 274 // branch) then the compare has been altered by another transformation e.g 275 // icmp ult %inc, tripcount -> icmp ult %j, tripcount-1, where tripcount is 276 // a constant. Ignore this use as the compare gets removed later anyway. 277 if (isInnerLoopTest(U)) { 278 LLVM_DEBUG(dbgs() << "Use is the inner loop test, continuing\n"); 279 continue; 280 } 281 282 if (!matchLinearIVUser(U, SExtInnerTripCount, ValidOuterPHIUses)) { 283 LLVM_DEBUG(dbgs() << "Not a linear IV user\n"); 284 return false; 285 } 286 LLVM_DEBUG(dbgs() << "Linear IV users found!\n"); 287 } 288 return true; 289 } 290 }; 291 292 static bool 293 setLoopComponents(Value *&TC, Value *&TripCount, BinaryOperator *&Increment, 294 SmallPtrSetImpl<Instruction *> &IterationInstructions) { 295 TripCount = TC; 296 IterationInstructions.insert(Increment); 297 LLVM_DEBUG(dbgs() << "Found Increment: "; Increment->dump()); 298 LLVM_DEBUG(dbgs() << "Found trip count: "; TripCount->dump()); 299 LLVM_DEBUG(dbgs() << "Successfully found all loop components\n"); 300 return true; 301 } 302 303 // Given the RHS of the loop latch compare instruction, verify with SCEV 304 // that this is indeed the loop tripcount. 305 // TODO: This used to be a straightforward check but has grown to be quite 306 // complicated now. It is therefore worth revisiting what the additional 307 // benefits are of this (compared to relying on canonical loops and pattern 308 // matching). 309 static bool verifyTripCount(Value *RHS, Loop *L, 310 SmallPtrSetImpl<Instruction *> &IterationInstructions, 311 PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment, 312 BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) { 313 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 314 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 315 LLVM_DEBUG(dbgs() << "Backedge-taken count is not predictable\n"); 316 return false; 317 } 318 319 // The Extend=false flag is used for getTripCountFromExitCount as we want 320 // to verify and match it with the pattern matched tripcount. Please note 321 // that overflow checks are performed in checkOverflow, but are first tried 322 // to avoid by widening the IV. 323 const SCEV *SCEVTripCount = 324 SE->getTripCountFromExitCount(BackedgeTakenCount, /*Extend=*/false); 325 326 const SCEV *SCEVRHS = SE->getSCEV(RHS); 327 if (SCEVRHS == SCEVTripCount) 328 return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 329 ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(RHS); 330 if (ConstantRHS) { 331 const SCEV *BackedgeTCExt = nullptr; 332 if (IsWidened) { 333 const SCEV *SCEVTripCountExt; 334 // Find the extended backedge taken count and extended trip count using 335 // SCEV. One of these should now match the RHS of the compare. 336 BackedgeTCExt = SE->getZeroExtendExpr(BackedgeTakenCount, RHS->getType()); 337 SCEVTripCountExt = SE->getTripCountFromExitCount(BackedgeTCExt, false); 338 if (SCEVRHS != BackedgeTCExt && SCEVRHS != SCEVTripCountExt) { 339 LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 340 return false; 341 } 342 } 343 // If the RHS of the compare is equal to the backedge taken count we need 344 // to add one to get the trip count. 345 if (SCEVRHS == BackedgeTCExt || SCEVRHS == BackedgeTakenCount) { 346 ConstantInt *One = ConstantInt::get(ConstantRHS->getType(), 1); 347 Value *NewRHS = ConstantInt::get( 348 ConstantRHS->getContext(), ConstantRHS->getValue() + One->getValue()); 349 return setLoopComponents(NewRHS, TripCount, Increment, 350 IterationInstructions); 351 } 352 return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 353 } 354 // If the RHS isn't a constant then check that the reason it doesn't match 355 // the SCEV trip count is because the RHS is a ZExt or SExt instruction 356 // (and take the trip count to be the RHS). 357 if (!IsWidened) { 358 LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 359 return false; 360 } 361 auto *TripCountInst = dyn_cast<Instruction>(RHS); 362 if (!TripCountInst) { 363 LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 364 return false; 365 } 366 if ((!isa<ZExtInst>(TripCountInst) && !isa<SExtInst>(TripCountInst)) || 367 SE->getSCEV(TripCountInst->getOperand(0)) != SCEVTripCount) { 368 LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n"); 369 return false; 370 } 371 return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 372 } 373 374 // Finds the induction variable, increment and trip count for a simple loop that 375 // we can flatten. 376 static bool findLoopComponents( 377 Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions, 378 PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment, 379 BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) { 380 LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n"); 381 382 if (!L->isLoopSimplifyForm()) { 383 LLVM_DEBUG(dbgs() << "Loop is not in normal form\n"); 384 return false; 385 } 386 387 // Currently, to simplify the implementation, the Loop induction variable must 388 // start at zero and increment with a step size of one. 389 if (!L->isCanonical(*SE)) { 390 LLVM_DEBUG(dbgs() << "Loop is not canonical\n"); 391 return false; 392 } 393 394 // There must be exactly one exiting block, and it must be the same at the 395 // latch. 396 BasicBlock *Latch = L->getLoopLatch(); 397 if (L->getExitingBlock() != Latch) { 398 LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n"); 399 return false; 400 } 401 402 // Find the induction PHI. If there is no induction PHI, we can't do the 403 // transformation. TODO: could other variables trigger this? Do we have to 404 // search for the best one? 405 InductionPHI = L->getInductionVariable(*SE); 406 if (!InductionPHI) { 407 LLVM_DEBUG(dbgs() << "Could not find induction PHI\n"); 408 return false; 409 } 410 LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump()); 411 412 bool ContinueOnTrue = L->contains(Latch->getTerminator()->getSuccessor(0)); 413 auto IsValidPredicate = [&](ICmpInst::Predicate Pred) { 414 if (ContinueOnTrue) 415 return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT; 416 else 417 return Pred == CmpInst::ICMP_EQ; 418 }; 419 420 // Find Compare and make sure it is valid. getLatchCmpInst checks that the 421 // back branch of the latch is conditional. 422 ICmpInst *Compare = L->getLatchCmpInst(); 423 if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) || 424 Compare->hasNUsesOrMore(2)) { 425 LLVM_DEBUG(dbgs() << "Could not find valid comparison\n"); 426 return false; 427 } 428 BackBranch = cast<BranchInst>(Latch->getTerminator()); 429 IterationInstructions.insert(BackBranch); 430 LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump()); 431 IterationInstructions.insert(Compare); 432 LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump()); 433 434 // Find increment and trip count. 435 // There are exactly 2 incoming values to the induction phi; one from the 436 // pre-header and one from the latch. The incoming latch value is the 437 // increment variable. 438 Increment = 439 cast<BinaryOperator>(InductionPHI->getIncomingValueForBlock(Latch)); 440 if ((Compare->getOperand(0) != Increment || !Increment->hasNUses(2)) && 441 !Increment->hasNUses(1)) { 442 LLVM_DEBUG(dbgs() << "Could not find valid increment\n"); 443 return false; 444 } 445 // The trip count is the RHS of the compare. If this doesn't match the trip 446 // count computed by SCEV then this is because the trip count variable 447 // has been widened so the types don't match, or because it is a constant and 448 // another transformation has changed the compare (e.g. icmp ult %inc, 449 // tripcount -> icmp ult %j, tripcount-1), or both. 450 Value *RHS = Compare->getOperand(1); 451 452 return verifyTripCount(RHS, L, IterationInstructions, InductionPHI, TripCount, 453 Increment, BackBranch, SE, IsWidened); 454 } 455 456 static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) { 457 // All PHIs in the inner and outer headers must either be: 458 // - The induction PHI, which we are going to rewrite as one induction in 459 // the new loop. This is already checked by findLoopComponents. 460 // - An outer header PHI with all incoming values from outside the loop. 461 // LoopSimplify guarantees we have a pre-header, so we don't need to 462 // worry about that here. 463 // - Pairs of PHIs in the inner and outer headers, which implement a 464 // loop-carried dependency that will still be valid in the new loop. To 465 // be valid, this variable must be modified only in the inner loop. 466 467 // The set of PHI nodes in the outer loop header that we know will still be 468 // valid after the transformation. These will not need to be modified (with 469 // the exception of the induction variable), but we do need to check that 470 // there are no unsafe PHI nodes. 471 SmallPtrSet<PHINode *, 4> SafeOuterPHIs; 472 SafeOuterPHIs.insert(FI.OuterInductionPHI); 473 474 // Check that all PHI nodes in the inner loop header match one of the valid 475 // patterns. 476 for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) { 477 // The induction PHIs break these rules, and that's OK because we treat 478 // them specially when doing the transformation. 479 if (&InnerPHI == FI.InnerInductionPHI) 480 continue; 481 if (FI.isNarrowInductionPhi(&InnerPHI)) 482 continue; 483 484 // Each inner loop PHI node must have two incoming values/blocks - one 485 // from the pre-header, and one from the latch. 486 assert(InnerPHI.getNumIncomingValues() == 2); 487 Value *PreHeaderValue = 488 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader()); 489 Value *LatchValue = 490 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch()); 491 492 // The incoming value from the outer loop must be the PHI node in the 493 // outer loop header, with no modifications made in the top of the outer 494 // loop. 495 PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue); 496 if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) { 497 LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n"); 498 return false; 499 } 500 501 // The other incoming value must come from the inner loop, without any 502 // modifications in the tail end of the outer loop. We are in LCSSA form, 503 // so this will actually be a PHI in the inner loop's exit block, which 504 // only uses values from inside the inner loop. 505 PHINode *LCSSAPHI = dyn_cast<PHINode>( 506 OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch())); 507 if (!LCSSAPHI) { 508 LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n"); 509 return false; 510 } 511 512 // The value used by the LCSSA PHI must be the same one that the inner 513 // loop's PHI uses. 514 if (LCSSAPHI->hasConstantValue() != LatchValue) { 515 LLVM_DEBUG( 516 dbgs() << "LCSSA PHI incoming value does not match latch value\n"); 517 return false; 518 } 519 520 LLVM_DEBUG(dbgs() << "PHI pair is safe:\n"); 521 LLVM_DEBUG(dbgs() << " Inner: "; InnerPHI.dump()); 522 LLVM_DEBUG(dbgs() << " Outer: "; OuterPHI->dump()); 523 SafeOuterPHIs.insert(OuterPHI); 524 FI.InnerPHIsToTransform.insert(&InnerPHI); 525 } 526 527 for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) { 528 if (FI.isNarrowInductionPhi(&OuterPHI)) 529 continue; 530 if (!SafeOuterPHIs.count(&OuterPHI)) { 531 LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump()); 532 return false; 533 } 534 } 535 536 LLVM_DEBUG(dbgs() << "checkPHIs: OK\n"); 537 return true; 538 } 539 540 static bool 541 checkOuterLoopInsts(FlattenInfo &FI, 542 SmallPtrSetImpl<Instruction *> &IterationInstructions, 543 const TargetTransformInfo *TTI) { 544 // Check for instructions in the outer but not inner loop. If any of these 545 // have side-effects then this transformation is not legal, and if there is 546 // a significant amount of code here which can't be optimised out that it's 547 // not profitable (as these instructions would get executed for each 548 // iteration of the inner loop). 549 InstructionCost RepeatedInstrCost = 0; 550 for (auto *B : FI.OuterLoop->getBlocks()) { 551 if (FI.InnerLoop->contains(B)) 552 continue; 553 554 for (auto &I : *B) { 555 if (!isa<PHINode>(&I) && !I.isTerminator() && 556 !isSafeToSpeculativelyExecute(&I)) { 557 LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have " 558 "side effects: "; 559 I.dump()); 560 return false; 561 } 562 // The execution count of the outer loop's iteration instructions 563 // (increment, compare and branch) will be increased, but the 564 // equivalent instructions will be removed from the inner loop, so 565 // they make a net difference of zero. 566 if (IterationInstructions.count(&I)) 567 continue; 568 // The unconditional branch to the inner loop's header will turn into 569 // a fall-through, so adds no cost. 570 BranchInst *Br = dyn_cast<BranchInst>(&I); 571 if (Br && Br->isUnconditional() && 572 Br->getSuccessor(0) == FI.InnerLoop->getHeader()) 573 continue; 574 // Multiplies of the outer iteration variable and inner iteration 575 // count will be optimised out. 576 if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI), 577 m_Specific(FI.InnerTripCount)))) 578 continue; 579 InstructionCost Cost = 580 TTI->getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 581 LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump()); 582 RepeatedInstrCost += Cost; 583 } 584 } 585 586 LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: " 587 << RepeatedInstrCost << "\n"); 588 // Bail out if flattening the loops would cause instructions in the outer 589 // loop but not in the inner loop to be executed extra times. 590 if (RepeatedInstrCost > RepeatedInstructionThreshold) { 591 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n"); 592 return false; 593 } 594 595 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n"); 596 return true; 597 } 598 599 600 601 // We require all uses of both induction variables to match this pattern: 602 // 603 // (OuterPHI * InnerTripCount) + InnerPHI 604 // 605 // Any uses of the induction variables not matching that pattern would 606 // require a div/mod to reconstruct in the flattened loop, so the 607 // transformation wouldn't be profitable. 608 static bool checkIVUsers(FlattenInfo &FI) { 609 // Check that all uses of the inner loop's induction variable match the 610 // expected pattern, recording the uses of the outer IV. 611 SmallPtrSet<Value *, 4> ValidOuterPHIUses; 612 if (!FI.checkInnerInductionPhiUsers(ValidOuterPHIUses)) 613 return false; 614 615 // Check that there are no uses of the outer IV other than the ones found 616 // as part of the pattern above. 617 if (!FI.checkOuterInductionPhiUsers(ValidOuterPHIUses)) 618 return false; 619 620 LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n"; 621 dbgs() << "Found " << FI.LinearIVUses.size() 622 << " value(s) that can be replaced:\n"; 623 for (Value *V : FI.LinearIVUses) { 624 dbgs() << " "; 625 V->dump(); 626 }); 627 return true; 628 } 629 630 // Return an OverflowResult dependant on if overflow of the multiplication of 631 // InnerTripCount and OuterTripCount can be assumed not to happen. 632 static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT, 633 AssumptionCache *AC) { 634 Function *F = FI.OuterLoop->getHeader()->getParent(); 635 const DataLayout &DL = F->getParent()->getDataLayout(); 636 637 // For debugging/testing. 638 if (AssumeNoOverflow) 639 return OverflowResult::NeverOverflows; 640 641 // Check if the multiply could not overflow due to known ranges of the 642 // input values. 643 OverflowResult OR = computeOverflowForUnsignedMul( 644 FI.InnerTripCount, FI.OuterTripCount, DL, AC, 645 FI.OuterLoop->getLoopPreheader()->getTerminator(), DT); 646 if (OR != OverflowResult::MayOverflow) 647 return OR; 648 649 for (Value *V : FI.LinearIVUses) { 650 for (Value *U : V->users()) { 651 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) { 652 for (Value *GEPUser : U->users()) { 653 auto *GEPUserInst = cast<Instruction>(GEPUser); 654 if (!isa<LoadInst>(GEPUserInst) && 655 !(isa<StoreInst>(GEPUserInst) && 656 GEP == GEPUserInst->getOperand(1))) 657 continue; 658 if (!isGuaranteedToExecuteForEveryIteration(GEPUserInst, 659 FI.InnerLoop)) 660 continue; 661 // The IV is used as the operand of a GEP which dominates the loop 662 // latch, and the IV is at least as wide as the address space of the 663 // GEP. In this case, the GEP would wrap around the address space 664 // before the IV increment wraps, which would be UB. 665 if (GEP->isInBounds() && 666 V->getType()->getIntegerBitWidth() >= 667 DL.getPointerTypeSizeInBits(GEP->getType())) { 668 LLVM_DEBUG( 669 dbgs() << "use of linear IV would be UB if overflow occurred: "; 670 GEP->dump()); 671 return OverflowResult::NeverOverflows; 672 } 673 } 674 } 675 } 676 } 677 678 return OverflowResult::MayOverflow; 679 } 680 681 static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 682 ScalarEvolution *SE, AssumptionCache *AC, 683 const TargetTransformInfo *TTI) { 684 SmallPtrSet<Instruction *, 8> IterationInstructions; 685 if (!findLoopComponents(FI.InnerLoop, IterationInstructions, 686 FI.InnerInductionPHI, FI.InnerTripCount, 687 FI.InnerIncrement, FI.InnerBranch, SE, FI.Widened)) 688 return false; 689 if (!findLoopComponents(FI.OuterLoop, IterationInstructions, 690 FI.OuterInductionPHI, FI.OuterTripCount, 691 FI.OuterIncrement, FI.OuterBranch, SE, FI.Widened)) 692 return false; 693 694 // Both of the loop trip count values must be invariant in the outer loop 695 // (non-instructions are all inherently invariant). 696 if (!FI.OuterLoop->isLoopInvariant(FI.InnerTripCount)) { 697 LLVM_DEBUG(dbgs() << "inner loop trip count not invariant\n"); 698 return false; 699 } 700 if (!FI.OuterLoop->isLoopInvariant(FI.OuterTripCount)) { 701 LLVM_DEBUG(dbgs() << "outer loop trip count not invariant\n"); 702 return false; 703 } 704 705 if (!checkPHIs(FI, TTI)) 706 return false; 707 708 // FIXME: it should be possible to handle different types correctly. 709 if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType()) 710 return false; 711 712 if (!checkOuterLoopInsts(FI, IterationInstructions, TTI)) 713 return false; 714 715 // Find the values in the loop that can be replaced with the linearized 716 // induction variable, and check that there are no other uses of the inner 717 // or outer induction variable. If there were, we could still do this 718 // transformation, but we'd have to insert a div/mod to calculate the 719 // original IVs, so it wouldn't be profitable. 720 if (!checkIVUsers(FI)) 721 return false; 722 723 LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n"); 724 return true; 725 } 726 727 static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 728 ScalarEvolution *SE, AssumptionCache *AC, 729 const TargetTransformInfo *TTI, LPMUpdater *U, 730 MemorySSAUpdater *MSSAU) { 731 Function *F = FI.OuterLoop->getHeader()->getParent(); 732 LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n"); 733 { 734 using namespace ore; 735 OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(), 736 FI.InnerLoop->getHeader()); 737 OptimizationRemarkEmitter ORE(F); 738 Remark << "Flattened into outer loop"; 739 ORE.emit(Remark); 740 } 741 742 Value *NewTripCount = BinaryOperator::CreateMul( 743 FI.InnerTripCount, FI.OuterTripCount, "flatten.tripcount", 744 FI.OuterLoop->getLoopPreheader()->getTerminator()); 745 LLVM_DEBUG(dbgs() << "Created new trip count in preheader: "; 746 NewTripCount->dump()); 747 748 // Fix up PHI nodes that take values from the inner loop back-edge, which 749 // we are about to remove. 750 FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 751 752 // The old Phi will be optimised away later, but for now we can't leave 753 // leave it in an invalid state, so are updating them too. 754 for (PHINode *PHI : FI.InnerPHIsToTransform) 755 PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 756 757 // Modify the trip count of the outer loop to be the product of the two 758 // trip counts. 759 cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount); 760 761 // Replace the inner loop backedge with an unconditional branch to the exit. 762 BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock(); 763 BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock(); 764 InnerExitingBlock->getTerminator()->eraseFromParent(); 765 BranchInst::Create(InnerExitBlock, InnerExitingBlock); 766 767 // Update the DomTree and MemorySSA. 768 DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader()); 769 if (MSSAU) 770 MSSAU->removeEdge(InnerExitingBlock, FI.InnerLoop->getHeader()); 771 772 // Replace all uses of the polynomial calculated from the two induction 773 // variables with the one new one. 774 IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator()); 775 for (Value *V : FI.LinearIVUses) { 776 Value *OuterValue = FI.OuterInductionPHI; 777 if (FI.Widened) 778 OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(), 779 "flatten.trunciv"); 780 781 LLVM_DEBUG(dbgs() << "Replacing: "; V->dump(); dbgs() << "with: "; 782 OuterValue->dump()); 783 V->replaceAllUsesWith(OuterValue); 784 } 785 786 // Tell LoopInfo, SCEV and the pass manager that the inner loop has been 787 // deleted, and any information that have about the outer loop invalidated. 788 SE->forgetLoop(FI.OuterLoop); 789 SE->forgetLoop(FI.InnerLoop); 790 SE->forgetBlockAndLoopDispositions(); 791 if (U) 792 U->markLoopAsDeleted(*FI.InnerLoop, FI.InnerLoop->getName()); 793 LI->erase(FI.InnerLoop); 794 795 // Increment statistic value. 796 NumFlattened++; 797 798 return true; 799 } 800 801 static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 802 ScalarEvolution *SE, AssumptionCache *AC, 803 const TargetTransformInfo *TTI) { 804 if (!WidenIV) { 805 LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n"); 806 return false; 807 } 808 809 LLVM_DEBUG(dbgs() << "Try widening the IVs\n"); 810 Module *M = FI.InnerLoop->getHeader()->getParent()->getParent(); 811 auto &DL = M->getDataLayout(); 812 auto *InnerType = FI.InnerInductionPHI->getType(); 813 auto *OuterType = FI.OuterInductionPHI->getType(); 814 unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits(); 815 auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext()); 816 817 // If both induction types are less than the maximum legal integer width, 818 // promote both to the widest type available so we know calculating 819 // (OuterTripCount * InnerTripCount) as the new trip count is safe. 820 if (InnerType != OuterType || 821 InnerType->getScalarSizeInBits() >= MaxLegalSize || 822 MaxLegalType->getScalarSizeInBits() < 823 InnerType->getScalarSizeInBits() * 2) { 824 LLVM_DEBUG(dbgs() << "Can't widen the IV\n"); 825 return false; 826 } 827 828 SCEVExpander Rewriter(*SE, DL, "loopflatten"); 829 SmallVector<WeakTrackingVH, 4> DeadInsts; 830 unsigned ElimExt = 0; 831 unsigned Widened = 0; 832 833 auto CreateWideIV = [&](WideIVInfo WideIV, bool &Deleted) -> bool { 834 PHINode *WidePhi = 835 createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts, ElimExt, Widened, 836 true /* HasGuards */, true /* UsePostIncrementRanges */); 837 if (!WidePhi) 838 return false; 839 LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump()); 840 LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump()); 841 Deleted = RecursivelyDeleteDeadPHINode(WideIV.NarrowIV); 842 return true; 843 }; 844 845 bool Deleted; 846 if (!CreateWideIV({FI.InnerInductionPHI, MaxLegalType, false}, Deleted)) 847 return false; 848 // Add the narrow phi to list, so that it will be adjusted later when the 849 // the transformation is performed. 850 if (!Deleted) 851 FI.InnerPHIsToTransform.insert(FI.InnerInductionPHI); 852 853 if (!CreateWideIV({FI.OuterInductionPHI, MaxLegalType, false}, Deleted)) 854 return false; 855 856 assert(Widened && "Widened IV expected"); 857 FI.Widened = true; 858 859 // Save the old/narrow induction phis, which we need to ignore in CheckPHIs. 860 FI.NarrowInnerInductionPHI = FI.InnerInductionPHI; 861 FI.NarrowOuterInductionPHI = FI.OuterInductionPHI; 862 863 // After widening, rediscover all the loop components. 864 return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI); 865 } 866 867 static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 868 ScalarEvolution *SE, AssumptionCache *AC, 869 const TargetTransformInfo *TTI, LPMUpdater *U, 870 MemorySSAUpdater *MSSAU) { 871 LLVM_DEBUG( 872 dbgs() << "Loop flattening running on outer loop " 873 << FI.OuterLoop->getHeader()->getName() << " and inner loop " 874 << FI.InnerLoop->getHeader()->getName() << " in " 875 << FI.OuterLoop->getHeader()->getParent()->getName() << "\n"); 876 877 if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI)) 878 return false; 879 880 // Check if we can widen the induction variables to avoid overflow checks. 881 bool CanFlatten = CanWidenIV(FI, DT, LI, SE, AC, TTI); 882 883 // It can happen that after widening of the IV, flattening may not be 884 // possible/happening, e.g. when it is deemed unprofitable. So bail here if 885 // that is the case. 886 // TODO: IV widening without performing the actual flattening transformation 887 // is not ideal. While this codegen change should not matter much, it is an 888 // unnecessary change which is better to avoid. It's unlikely this happens 889 // often, because if it's unprofitibale after widening, it should be 890 // unprofitabe before widening as checked in the first round of checks. But 891 // 'RepeatedInstructionThreshold' is set to only 2, which can probably be 892 // relaxed. Because this is making a code change (the IV widening, but not 893 // the flattening), we return true here. 894 if (FI.Widened && !CanFlatten) 895 return true; 896 897 // If we have widened and can perform the transformation, do that here. 898 if (CanFlatten) 899 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU); 900 901 // Otherwise, if we haven't widened the IV, check if the new iteration 902 // variable might overflow. In this case, we need to version the loop, and 903 // select the original version at runtime if the iteration space is too 904 // large. 905 // TODO: We currently don't version the loop. 906 OverflowResult OR = checkOverflow(FI, DT, AC); 907 if (OR == OverflowResult::AlwaysOverflowsHigh || 908 OR == OverflowResult::AlwaysOverflowsLow) { 909 LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n"); 910 return false; 911 } else if (OR == OverflowResult::MayOverflow) { 912 LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n"); 913 return false; 914 } 915 916 LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n"); 917 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU); 918 } 919 920 bool Flatten(LoopNest &LN, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, 921 AssumptionCache *AC, TargetTransformInfo *TTI, LPMUpdater *U, 922 MemorySSAUpdater *MSSAU) { 923 bool Changed = false; 924 for (Loop *InnerLoop : LN.getLoops()) { 925 auto *OuterLoop = InnerLoop->getParentLoop(); 926 if (!OuterLoop) 927 continue; 928 FlattenInfo FI(OuterLoop, InnerLoop); 929 Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU); 930 } 931 return Changed; 932 } 933 934 PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM, 935 LoopStandardAnalysisResults &AR, 936 LPMUpdater &U) { 937 938 bool Changed = false; 939 940 std::optional<MemorySSAUpdater> MSSAU; 941 if (AR.MSSA) { 942 MSSAU = MemorySSAUpdater(AR.MSSA); 943 if (VerifyMemorySSA) 944 AR.MSSA->verifyMemorySSA(); 945 } 946 947 // The loop flattening pass requires loops to be 948 // in simplified form, and also needs LCSSA. Running 949 // this pass will simplify all loops that contain inner loops, 950 // regardless of whether anything ends up being flattened. 951 Changed |= Flatten(LN, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI, &U, 952 MSSAU ? &*MSSAU : nullptr); 953 954 if (!Changed) 955 return PreservedAnalyses::all(); 956 957 if (AR.MSSA && VerifyMemorySSA) 958 AR.MSSA->verifyMemorySSA(); 959 960 auto PA = getLoopPassPreservedAnalyses(); 961 if (AR.MSSA) 962 PA.preserve<MemorySSAAnalysis>(); 963 return PA; 964 } 965 966 namespace { 967 class LoopFlattenLegacyPass : public FunctionPass { 968 public: 969 static char ID; // Pass ID, replacement for typeid 970 LoopFlattenLegacyPass() : FunctionPass(ID) { 971 initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry()); 972 } 973 974 // Possibly flatten loop L into its child. 975 bool runOnFunction(Function &F) override; 976 977 void getAnalysisUsage(AnalysisUsage &AU) const override { 978 getLoopAnalysisUsage(AU); 979 AU.addRequired<TargetTransformInfoWrapperPass>(); 980 AU.addPreserved<TargetTransformInfoWrapperPass>(); 981 AU.addRequired<AssumptionCacheTracker>(); 982 AU.addPreserved<AssumptionCacheTracker>(); 983 AU.addPreserved<MemorySSAWrapperPass>(); 984 } 985 }; 986 } // namespace 987 988 char LoopFlattenLegacyPass::ID = 0; 989 INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops", 990 false, false) 991 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 992 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 993 INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops", 994 false, false) 995 996 FunctionPass *llvm::createLoopFlattenPass() { 997 return new LoopFlattenLegacyPass(); 998 } 999 1000 bool LoopFlattenLegacyPass::runOnFunction(Function &F) { 1001 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1002 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1003 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1004 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 1005 auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>(); 1006 auto *TTI = &TTIP.getTTI(F); 1007 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1008 auto *MSSA = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 1009 1010 std::optional<MemorySSAUpdater> MSSAU; 1011 if (MSSA) 1012 MSSAU = MemorySSAUpdater(&MSSA->getMSSA()); 1013 1014 bool Changed = false; 1015 for (Loop *L : *LI) { 1016 auto LN = LoopNest::getLoopNest(*L, *SE); 1017 Changed |= 1018 Flatten(*LN, DT, LI, SE, AC, TTI, nullptr, MSSAU ? &*MSSAU : nullptr); 1019 } 1020 return Changed; 1021 } 1022