1 //===- LoopDistribute.cpp - Loop Distribution Pass ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Loop Distribution Pass. Its main focus is to 11 // distribute loops that cannot be vectorized due to dependence cycles. It 12 // tries to isolate the offending dependences into a new loop allowing 13 // vectorization of the remaining parts. 14 // 15 // For dependence analysis, the pass uses the LoopVectorizer's 16 // LoopAccessAnalysis. Because this analysis presumes no change in the order of 17 // memory operations, special care is taken to preserve the lexical order of 18 // these operations. 19 // 20 // Similarly to the Vectorizer, the pass also supports loop versioning to 21 // run-time disambiguate potentially overlapping arrays. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/Scalar/LoopDistribute.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DepthFirstIterator.h" 28 #include "llvm/ADT/EquivalenceClasses.h" 29 #include "llvm/ADT/Optional.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/StringRef.h" 35 #include "llvm/ADT/Twine.h" 36 #include "llvm/ADT/iterator_range.h" 37 #include "llvm/Analysis/AliasAnalysis.h" 38 #include "llvm/Analysis/AssumptionCache.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/LoopAccessAnalysis.h" 41 #include "llvm/Analysis/LoopAnalysisManager.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/ScalarEvolution.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DiagnosticInfo.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/InstrTypes.h" 53 #include "llvm/IR/Instruction.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/PassManager.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/Pass.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/Scalar.h" 65 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 66 #include "llvm/Transforms/Utils/Cloning.h" 67 #include "llvm/Transforms/Utils/LoopUtils.h" 68 #include "llvm/Transforms/Utils/LoopVersioning.h" 69 #include "llvm/Transforms/Utils/ValueMapper.h" 70 #include <cassert> 71 #include <functional> 72 #include <list> 73 #include <tuple> 74 #include <utility> 75 76 using namespace llvm; 77 78 #define LDIST_NAME "loop-distribute" 79 #define DEBUG_TYPE LDIST_NAME 80 81 static cl::opt<bool> 82 LDistVerify("loop-distribute-verify", cl::Hidden, 83 cl::desc("Turn on DominatorTree and LoopInfo verification " 84 "after Loop Distribution"), 85 cl::init(false)); 86 87 static cl::opt<bool> DistributeNonIfConvertible( 88 "loop-distribute-non-if-convertible", cl::Hidden, 89 cl::desc("Whether to distribute into a loop that may not be " 90 "if-convertible by the loop vectorizer"), 91 cl::init(false)); 92 93 static cl::opt<unsigned> DistributeSCEVCheckThreshold( 94 "loop-distribute-scev-check-threshold", cl::init(8), cl::Hidden, 95 cl::desc("The maximum number of SCEV checks allowed for Loop " 96 "Distribution")); 97 98 static cl::opt<unsigned> PragmaDistributeSCEVCheckThreshold( 99 "loop-distribute-scev-check-threshold-with-pragma", cl::init(128), 100 cl::Hidden, 101 cl::desc( 102 "The maximum number of SCEV checks allowed for Loop " 103 "Distribution for loop marked with #pragma loop distribute(enable)")); 104 105 static cl::opt<bool> EnableLoopDistribute( 106 "enable-loop-distribute", cl::Hidden, 107 cl::desc("Enable the new, experimental LoopDistribution Pass"), 108 cl::init(false)); 109 110 STATISTIC(NumLoopsDistributed, "Number of loops distributed"); 111 112 namespace { 113 114 /// Maintains the set of instructions of the loop for a partition before 115 /// cloning. After cloning, it hosts the new loop. 116 class InstPartition { 117 using InstructionSet = SmallPtrSet<Instruction *, 8>; 118 119 public: 120 InstPartition(Instruction *I, Loop *L, bool DepCycle = false) 121 : DepCycle(DepCycle), OrigLoop(L) { 122 Set.insert(I); 123 } 124 125 /// Returns whether this partition contains a dependence cycle. 126 bool hasDepCycle() const { return DepCycle; } 127 128 /// Adds an instruction to this partition. 129 void add(Instruction *I) { Set.insert(I); } 130 131 /// Collection accessors. 132 InstructionSet::iterator begin() { return Set.begin(); } 133 InstructionSet::iterator end() { return Set.end(); } 134 InstructionSet::const_iterator begin() const { return Set.begin(); } 135 InstructionSet::const_iterator end() const { return Set.end(); } 136 bool empty() const { return Set.empty(); } 137 138 /// Moves this partition into \p Other. This partition becomes empty 139 /// after this. 140 void moveTo(InstPartition &Other) { 141 Other.Set.insert(Set.begin(), Set.end()); 142 Set.clear(); 143 Other.DepCycle |= DepCycle; 144 } 145 146 /// Populates the partition with a transitive closure of all the 147 /// instructions that the seeded instructions dependent on. 148 void populateUsedSet() { 149 // FIXME: We currently don't use control-dependence but simply include all 150 // blocks (possibly empty at the end) and let simplifycfg mostly clean this 151 // up. 152 for (auto *B : OrigLoop->getBlocks()) 153 Set.insert(B->getTerminator()); 154 155 // Follow the use-def chains to form a transitive closure of all the 156 // instructions that the originally seeded instructions depend on. 157 SmallVector<Instruction *, 8> Worklist(Set.begin(), Set.end()); 158 while (!Worklist.empty()) { 159 Instruction *I = Worklist.pop_back_val(); 160 // Insert instructions from the loop that we depend on. 161 for (Value *V : I->operand_values()) { 162 auto *I = dyn_cast<Instruction>(V); 163 if (I && OrigLoop->contains(I->getParent()) && Set.insert(I).second) 164 Worklist.push_back(I); 165 } 166 } 167 } 168 169 /// Clones the original loop. 170 /// 171 /// Updates LoopInfo and DominatorTree using the information that block \p 172 /// LoopDomBB dominates the loop. 173 Loop *cloneLoopWithPreheader(BasicBlock *InsertBefore, BasicBlock *LoopDomBB, 174 unsigned Index, LoopInfo *LI, 175 DominatorTree *DT) { 176 ClonedLoop = ::cloneLoopWithPreheader(InsertBefore, LoopDomBB, OrigLoop, 177 VMap, Twine(".ldist") + Twine(Index), 178 LI, DT, ClonedLoopBlocks); 179 return ClonedLoop; 180 } 181 182 /// The cloned loop. If this partition is mapped to the original loop, 183 /// this is null. 184 const Loop *getClonedLoop() const { return ClonedLoop; } 185 186 /// Returns the loop where this partition ends up after distribution. 187 /// If this partition is mapped to the original loop then use the block from 188 /// the loop. 189 const Loop *getDistributedLoop() const { 190 return ClonedLoop ? ClonedLoop : OrigLoop; 191 } 192 193 /// The VMap that is populated by cloning and then used in 194 /// remapinstruction to remap the cloned instructions. 195 ValueToValueMapTy &getVMap() { return VMap; } 196 197 /// Remaps the cloned instructions using VMap. 198 void remapInstructions() { 199 remapInstructionsInBlocks(ClonedLoopBlocks, VMap); 200 } 201 202 /// Based on the set of instructions selected for this partition, 203 /// removes the unnecessary ones. 204 void removeUnusedInsts() { 205 SmallVector<Instruction *, 8> Unused; 206 207 for (auto *Block : OrigLoop->getBlocks()) 208 for (auto &Inst : *Block) 209 if (!Set.count(&Inst)) { 210 Instruction *NewInst = &Inst; 211 if (!VMap.empty()) 212 NewInst = cast<Instruction>(VMap[NewInst]); 213 214 assert(!isa<BranchInst>(NewInst) && 215 "Branches are marked used early on"); 216 Unused.push_back(NewInst); 217 } 218 219 // Delete the instructions backwards, as it has a reduced likelihood of 220 // having to update as many def-use and use-def chains. 221 for (auto *Inst : reverse(Unused)) { 222 if (!Inst->use_empty()) 223 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 224 Inst->eraseFromParent(); 225 } 226 } 227 228 void print() const { 229 if (DepCycle) 230 dbgs() << " (cycle)\n"; 231 for (auto *I : Set) 232 // Prefix with the block name. 233 dbgs() << " " << I->getParent()->getName() << ":" << *I << "\n"; 234 } 235 236 void printBlocks() const { 237 for (auto *BB : getDistributedLoop()->getBlocks()) 238 dbgs() << *BB; 239 } 240 241 private: 242 /// Instructions from OrigLoop selected for this partition. 243 InstructionSet Set; 244 245 /// Whether this partition contains a dependence cycle. 246 bool DepCycle; 247 248 /// The original loop. 249 Loop *OrigLoop; 250 251 /// The cloned loop. If this partition is mapped to the original loop, 252 /// this is null. 253 Loop *ClonedLoop = nullptr; 254 255 /// The blocks of ClonedLoop including the preheader. If this 256 /// partition is mapped to the original loop, this is empty. 257 SmallVector<BasicBlock *, 8> ClonedLoopBlocks; 258 259 /// These gets populated once the set of instructions have been 260 /// finalized. If this partition is mapped to the original loop, these are not 261 /// set. 262 ValueToValueMapTy VMap; 263 }; 264 265 /// Holds the set of Partitions. It populates them, merges them and then 266 /// clones the loops. 267 class InstPartitionContainer { 268 using InstToPartitionIdT = DenseMap<Instruction *, int>; 269 270 public: 271 InstPartitionContainer(Loop *L, LoopInfo *LI, DominatorTree *DT) 272 : L(L), LI(LI), DT(DT) {} 273 274 /// Returns the number of partitions. 275 unsigned getSize() const { return PartitionContainer.size(); } 276 277 /// Adds \p Inst into the current partition if that is marked to 278 /// contain cycles. Otherwise start a new partition for it. 279 void addToCyclicPartition(Instruction *Inst) { 280 // If the current partition is non-cyclic. Start a new one. 281 if (PartitionContainer.empty() || !PartitionContainer.back().hasDepCycle()) 282 PartitionContainer.emplace_back(Inst, L, /*DepCycle=*/true); 283 else 284 PartitionContainer.back().add(Inst); 285 } 286 287 /// Adds \p Inst into a partition that is not marked to contain 288 /// dependence cycles. 289 /// 290 // Initially we isolate memory instructions into as many partitions as 291 // possible, then later we may merge them back together. 292 void addToNewNonCyclicPartition(Instruction *Inst) { 293 PartitionContainer.emplace_back(Inst, L); 294 } 295 296 /// Merges adjacent non-cyclic partitions. 297 /// 298 /// The idea is that we currently only want to isolate the non-vectorizable 299 /// partition. We could later allow more distribution among these partition 300 /// too. 301 void mergeAdjacentNonCyclic() { 302 mergeAdjacentPartitionsIf( 303 [](const InstPartition *P) { return !P->hasDepCycle(); }); 304 } 305 306 /// If a partition contains only conditional stores, we won't vectorize 307 /// it. Try to merge it with a previous cyclic partition. 308 void mergeNonIfConvertible() { 309 mergeAdjacentPartitionsIf([&](const InstPartition *Partition) { 310 if (Partition->hasDepCycle()) 311 return true; 312 313 // Now, check if all stores are conditional in this partition. 314 bool seenStore = false; 315 316 for (auto *Inst : *Partition) 317 if (isa<StoreInst>(Inst)) { 318 seenStore = true; 319 if (!LoopAccessInfo::blockNeedsPredication(Inst->getParent(), L, DT)) 320 return false; 321 } 322 return seenStore; 323 }); 324 } 325 326 /// Merges the partitions according to various heuristics. 327 void mergeBeforePopulating() { 328 mergeAdjacentNonCyclic(); 329 if (!DistributeNonIfConvertible) 330 mergeNonIfConvertible(); 331 } 332 333 /// Merges partitions in order to ensure that no loads are duplicated. 334 /// 335 /// We can't duplicate loads because that could potentially reorder them. 336 /// LoopAccessAnalysis provides dependency information with the context that 337 /// the order of memory operation is preserved. 338 /// 339 /// Return if any partitions were merged. 340 bool mergeToAvoidDuplicatedLoads() { 341 using LoadToPartitionT = DenseMap<Instruction *, InstPartition *>; 342 using ToBeMergedT = EquivalenceClasses<InstPartition *>; 343 344 LoadToPartitionT LoadToPartition; 345 ToBeMergedT ToBeMerged; 346 347 // Step through the partitions and create equivalence between partitions 348 // that contain the same load. Also put partitions in between them in the 349 // same equivalence class to avoid reordering of memory operations. 350 for (PartitionContainerT::iterator I = PartitionContainer.begin(), 351 E = PartitionContainer.end(); 352 I != E; ++I) { 353 auto *PartI = &*I; 354 355 // If a load occurs in two partitions PartI and PartJ, merge all 356 // partitions (PartI, PartJ] into PartI. 357 for (Instruction *Inst : *PartI) 358 if (isa<LoadInst>(Inst)) { 359 bool NewElt; 360 LoadToPartitionT::iterator LoadToPart; 361 362 std::tie(LoadToPart, NewElt) = 363 LoadToPartition.insert(std::make_pair(Inst, PartI)); 364 if (!NewElt) { 365 LLVM_DEBUG(dbgs() 366 << "Merging partitions due to this load in multiple " 367 << "partitions: " << PartI << ", " << LoadToPart->second 368 << "\n" 369 << *Inst << "\n"); 370 371 auto PartJ = I; 372 do { 373 --PartJ; 374 ToBeMerged.unionSets(PartI, &*PartJ); 375 } while (&*PartJ != LoadToPart->second); 376 } 377 } 378 } 379 if (ToBeMerged.empty()) 380 return false; 381 382 // Merge the member of an equivalence class into its class leader. This 383 // makes the members empty. 384 for (ToBeMergedT::iterator I = ToBeMerged.begin(), E = ToBeMerged.end(); 385 I != E; ++I) { 386 if (!I->isLeader()) 387 continue; 388 389 auto PartI = I->getData(); 390 for (auto PartJ : make_range(std::next(ToBeMerged.member_begin(I)), 391 ToBeMerged.member_end())) { 392 PartJ->moveTo(*PartI); 393 } 394 } 395 396 // Remove the empty partitions. 397 PartitionContainer.remove_if( 398 [](const InstPartition &P) { return P.empty(); }); 399 400 return true; 401 } 402 403 /// Sets up the mapping between instructions to partitions. If the 404 /// instruction is duplicated across multiple partitions, set the entry to -1. 405 void setupPartitionIdOnInstructions() { 406 int PartitionID = 0; 407 for (const auto &Partition : PartitionContainer) { 408 for (Instruction *Inst : Partition) { 409 bool NewElt; 410 InstToPartitionIdT::iterator Iter; 411 412 std::tie(Iter, NewElt) = 413 InstToPartitionId.insert(std::make_pair(Inst, PartitionID)); 414 if (!NewElt) 415 Iter->second = -1; 416 } 417 ++PartitionID; 418 } 419 } 420 421 /// Populates the partition with everything that the seeding 422 /// instructions require. 423 void populateUsedSet() { 424 for (auto &P : PartitionContainer) 425 P.populateUsedSet(); 426 } 427 428 /// This performs the main chunk of the work of cloning the loops for 429 /// the partitions. 430 void cloneLoops() { 431 BasicBlock *OrigPH = L->getLoopPreheader(); 432 // At this point the predecessor of the preheader is either the memcheck 433 // block or the top part of the original preheader. 434 BasicBlock *Pred = OrigPH->getSinglePredecessor(); 435 assert(Pred && "Preheader does not have a single predecessor"); 436 BasicBlock *ExitBlock = L->getExitBlock(); 437 assert(ExitBlock && "No single exit block"); 438 Loop *NewLoop; 439 440 assert(!PartitionContainer.empty() && "at least two partitions expected"); 441 // We're cloning the preheader along with the loop so we already made sure 442 // it was empty. 443 assert(&*OrigPH->begin() == OrigPH->getTerminator() && 444 "preheader not empty"); 445 446 // Create a loop for each partition except the last. Clone the original 447 // loop before PH along with adding a preheader for the cloned loop. Then 448 // update PH to point to the newly added preheader. 449 BasicBlock *TopPH = OrigPH; 450 unsigned Index = getSize() - 1; 451 for (auto I = std::next(PartitionContainer.rbegin()), 452 E = PartitionContainer.rend(); 453 I != E; ++I, --Index, TopPH = NewLoop->getLoopPreheader()) { 454 auto *Part = &*I; 455 456 NewLoop = Part->cloneLoopWithPreheader(TopPH, Pred, Index, LI, DT); 457 458 Part->getVMap()[ExitBlock] = TopPH; 459 Part->remapInstructions(); 460 } 461 Pred->getTerminator()->replaceUsesOfWith(OrigPH, TopPH); 462 463 // Now go in forward order and update the immediate dominator for the 464 // preheaders with the exiting block of the previous loop. Dominance 465 // within the loop is updated in cloneLoopWithPreheader. 466 for (auto Curr = PartitionContainer.cbegin(), 467 Next = std::next(PartitionContainer.cbegin()), 468 E = PartitionContainer.cend(); 469 Next != E; ++Curr, ++Next) 470 DT->changeImmediateDominator( 471 Next->getDistributedLoop()->getLoopPreheader(), 472 Curr->getDistributedLoop()->getExitingBlock()); 473 } 474 475 /// Removes the dead instructions from the cloned loops. 476 void removeUnusedInsts() { 477 for (auto &Partition : PartitionContainer) 478 Partition.removeUnusedInsts(); 479 } 480 481 /// For each memory pointer, it computes the partitionId the pointer is 482 /// used in. 483 /// 484 /// This returns an array of int where the I-th entry corresponds to I-th 485 /// entry in LAI.getRuntimePointerCheck(). If the pointer is used in multiple 486 /// partitions its entry is set to -1. 487 SmallVector<int, 8> 488 computePartitionSetForPointers(const LoopAccessInfo &LAI) { 489 const RuntimePointerChecking *RtPtrCheck = LAI.getRuntimePointerChecking(); 490 491 unsigned N = RtPtrCheck->Pointers.size(); 492 SmallVector<int, 8> PtrToPartitions(N); 493 for (unsigned I = 0; I < N; ++I) { 494 Value *Ptr = RtPtrCheck->Pointers[I].PointerValue; 495 auto Instructions = 496 LAI.getInstructionsForAccess(Ptr, RtPtrCheck->Pointers[I].IsWritePtr); 497 498 int &Partition = PtrToPartitions[I]; 499 // First set it to uninitialized. 500 Partition = -2; 501 for (Instruction *Inst : Instructions) { 502 // Note that this could be -1 if Inst is duplicated across multiple 503 // partitions. 504 int ThisPartition = this->InstToPartitionId[Inst]; 505 if (Partition == -2) 506 Partition = ThisPartition; 507 // -1 means belonging to multiple partitions. 508 else if (Partition == -1) 509 break; 510 else if (Partition != (int)ThisPartition) 511 Partition = -1; 512 } 513 assert(Partition != -2 && "Pointer not belonging to any partition"); 514 } 515 516 return PtrToPartitions; 517 } 518 519 void print(raw_ostream &OS) const { 520 unsigned Index = 0; 521 for (const auto &P : PartitionContainer) { 522 OS << "Partition " << Index++ << " (" << &P << "):\n"; 523 P.print(); 524 } 525 } 526 527 void dump() const { print(dbgs()); } 528 529 #ifndef NDEBUG 530 friend raw_ostream &operator<<(raw_ostream &OS, 531 const InstPartitionContainer &Partitions) { 532 Partitions.print(OS); 533 return OS; 534 } 535 #endif 536 537 void printBlocks() const { 538 unsigned Index = 0; 539 for (const auto &P : PartitionContainer) { 540 dbgs() << "\nPartition " << Index++ << " (" << &P << "):\n"; 541 P.printBlocks(); 542 } 543 } 544 545 private: 546 using PartitionContainerT = std::list<InstPartition>; 547 548 /// List of partitions. 549 PartitionContainerT PartitionContainer; 550 551 /// Mapping from Instruction to partition Id. If the instruction 552 /// belongs to multiple partitions the entry contains -1. 553 InstToPartitionIdT InstToPartitionId; 554 555 Loop *L; 556 LoopInfo *LI; 557 DominatorTree *DT; 558 559 /// The control structure to merge adjacent partitions if both satisfy 560 /// the \p Predicate. 561 template <class UnaryPredicate> 562 void mergeAdjacentPartitionsIf(UnaryPredicate Predicate) { 563 InstPartition *PrevMatch = nullptr; 564 for (auto I = PartitionContainer.begin(); I != PartitionContainer.end();) { 565 auto DoesMatch = Predicate(&*I); 566 if (PrevMatch == nullptr && DoesMatch) { 567 PrevMatch = &*I; 568 ++I; 569 } else if (PrevMatch != nullptr && DoesMatch) { 570 I->moveTo(*PrevMatch); 571 I = PartitionContainer.erase(I); 572 } else { 573 PrevMatch = nullptr; 574 ++I; 575 } 576 } 577 } 578 }; 579 580 /// For each memory instruction, this class maintains difference of the 581 /// number of unsafe dependences that start out from this instruction minus 582 /// those that end here. 583 /// 584 /// By traversing the memory instructions in program order and accumulating this 585 /// number, we know whether any unsafe dependence crosses over a program point. 586 class MemoryInstructionDependences { 587 using Dependence = MemoryDepChecker::Dependence; 588 589 public: 590 struct Entry { 591 Instruction *Inst; 592 unsigned NumUnsafeDependencesStartOrEnd = 0; 593 594 Entry(Instruction *Inst) : Inst(Inst) {} 595 }; 596 597 using AccessesType = SmallVector<Entry, 8>; 598 599 AccessesType::const_iterator begin() const { return Accesses.begin(); } 600 AccessesType::const_iterator end() const { return Accesses.end(); } 601 602 MemoryInstructionDependences( 603 const SmallVectorImpl<Instruction *> &Instructions, 604 const SmallVectorImpl<Dependence> &Dependences) { 605 Accesses.append(Instructions.begin(), Instructions.end()); 606 607 LLVM_DEBUG(dbgs() << "Backward dependences:\n"); 608 for (auto &Dep : Dependences) 609 if (Dep.isPossiblyBackward()) { 610 // Note that the designations source and destination follow the program 611 // order, i.e. source is always first. (The direction is given by the 612 // DepType.) 613 ++Accesses[Dep.Source].NumUnsafeDependencesStartOrEnd; 614 --Accesses[Dep.Destination].NumUnsafeDependencesStartOrEnd; 615 616 LLVM_DEBUG(Dep.print(dbgs(), 2, Instructions)); 617 } 618 } 619 620 private: 621 AccessesType Accesses; 622 }; 623 624 /// The actual class performing the per-loop work. 625 class LoopDistributeForLoop { 626 public: 627 LoopDistributeForLoop(Loop *L, Function *F, LoopInfo *LI, DominatorTree *DT, 628 ScalarEvolution *SE, OptimizationRemarkEmitter *ORE) 629 : L(L), F(F), LI(LI), DT(DT), SE(SE), ORE(ORE) { 630 setForced(); 631 } 632 633 /// Try to distribute an inner-most loop. 634 bool processLoop(std::function<const LoopAccessInfo &(Loop &)> &GetLAA) { 635 assert(L->empty() && "Only process inner loops."); 636 637 LLVM_DEBUG(dbgs() << "\nLDist: In \"" 638 << L->getHeader()->getParent()->getName() 639 << "\" checking " << *L << "\n"); 640 641 if (!L->getExitBlock()) 642 return fail("MultipleExitBlocks", "multiple exit blocks"); 643 if (!L->isLoopSimplifyForm()) 644 return fail("NotLoopSimplifyForm", 645 "loop is not in loop-simplify form"); 646 647 BasicBlock *PH = L->getLoopPreheader(); 648 649 // LAA will check that we only have a single exiting block. 650 LAI = &GetLAA(*L); 651 652 // Currently, we only distribute to isolate the part of the loop with 653 // dependence cycles to enable partial vectorization. 654 if (LAI->canVectorizeMemory()) 655 return fail("MemOpsCanBeVectorized", 656 "memory operations are safe for vectorization"); 657 658 auto *Dependences = LAI->getDepChecker().getDependences(); 659 if (!Dependences || Dependences->empty()) 660 return fail("NoUnsafeDeps", "no unsafe dependences to isolate"); 661 662 InstPartitionContainer Partitions(L, LI, DT); 663 664 // First, go through each memory operation and assign them to consecutive 665 // partitions (the order of partitions follows program order). Put those 666 // with unsafe dependences into "cyclic" partition otherwise put each store 667 // in its own "non-cyclic" partition (we'll merge these later). 668 // 669 // Note that a memory operation (e.g. Load2 below) at a program point that 670 // has an unsafe dependence (Store3->Load1) spanning over it must be 671 // included in the same cyclic partition as the dependent operations. This 672 // is to preserve the original program order after distribution. E.g.: 673 // 674 // NumUnsafeDependencesStartOrEnd NumUnsafeDependencesActive 675 // Load1 -. 1 0->1 676 // Load2 | /Unsafe/ 0 1 677 // Store3 -' -1 1->0 678 // Load4 0 0 679 // 680 // NumUnsafeDependencesActive > 0 indicates this situation and in this case 681 // we just keep assigning to the same cyclic partition until 682 // NumUnsafeDependencesActive reaches 0. 683 const MemoryDepChecker &DepChecker = LAI->getDepChecker(); 684 MemoryInstructionDependences MID(DepChecker.getMemoryInstructions(), 685 *Dependences); 686 687 int NumUnsafeDependencesActive = 0; 688 for (auto &InstDep : MID) { 689 Instruction *I = InstDep.Inst; 690 // We update NumUnsafeDependencesActive post-instruction, catch the 691 // start of a dependence directly via NumUnsafeDependencesStartOrEnd. 692 if (NumUnsafeDependencesActive || 693 InstDep.NumUnsafeDependencesStartOrEnd > 0) 694 Partitions.addToCyclicPartition(I); 695 else 696 Partitions.addToNewNonCyclicPartition(I); 697 NumUnsafeDependencesActive += InstDep.NumUnsafeDependencesStartOrEnd; 698 assert(NumUnsafeDependencesActive >= 0 && 699 "Negative number of dependences active"); 700 } 701 702 // Add partitions for values used outside. These partitions can be out of 703 // order from the original program order. This is OK because if the 704 // partition uses a load we will merge this partition with the original 705 // partition of the load that we set up in the previous loop (see 706 // mergeToAvoidDuplicatedLoads). 707 auto DefsUsedOutside = findDefsUsedOutsideOfLoop(L); 708 for (auto *Inst : DefsUsedOutside) 709 Partitions.addToNewNonCyclicPartition(Inst); 710 711 LLVM_DEBUG(dbgs() << "Seeded partitions:\n" << Partitions); 712 if (Partitions.getSize() < 2) 713 return fail("CantIsolateUnsafeDeps", 714 "cannot isolate unsafe dependencies"); 715 716 // Run the merge heuristics: Merge non-cyclic adjacent partitions since we 717 // should be able to vectorize these together. 718 Partitions.mergeBeforePopulating(); 719 LLVM_DEBUG(dbgs() << "\nMerged partitions:\n" << Partitions); 720 if (Partitions.getSize() < 2) 721 return fail("CantIsolateUnsafeDeps", 722 "cannot isolate unsafe dependencies"); 723 724 // Now, populate the partitions with non-memory operations. 725 Partitions.populateUsedSet(); 726 LLVM_DEBUG(dbgs() << "\nPopulated partitions:\n" << Partitions); 727 728 // In order to preserve original lexical order for loads, keep them in the 729 // partition that we set up in the MemoryInstructionDependences loop. 730 if (Partitions.mergeToAvoidDuplicatedLoads()) { 731 LLVM_DEBUG(dbgs() << "\nPartitions merged to ensure unique loads:\n" 732 << Partitions); 733 if (Partitions.getSize() < 2) 734 return fail("CantIsolateUnsafeDeps", 735 "cannot isolate unsafe dependencies"); 736 } 737 738 // Don't distribute the loop if we need too many SCEV run-time checks. 739 const SCEVUnionPredicate &Pred = LAI->getPSE().getUnionPredicate(); 740 if (Pred.getComplexity() > (IsForced.getValueOr(false) 741 ? PragmaDistributeSCEVCheckThreshold 742 : DistributeSCEVCheckThreshold)) 743 return fail("TooManySCEVRuntimeChecks", 744 "too many SCEV run-time checks needed.\n"); 745 746 LLVM_DEBUG(dbgs() << "\nDistributing loop: " << *L << "\n"); 747 // We're done forming the partitions set up the reverse mapping from 748 // instructions to partitions. 749 Partitions.setupPartitionIdOnInstructions(); 750 751 // To keep things simple have an empty preheader before we version or clone 752 // the loop. (Also split if this has no predecessor, i.e. entry, because we 753 // rely on PH having a predecessor.) 754 if (!PH->getSinglePredecessor() || &*PH->begin() != PH->getTerminator()) 755 SplitBlock(PH, PH->getTerminator(), DT, LI); 756 757 // If we need run-time checks, version the loop now. 758 auto PtrToPartition = Partitions.computePartitionSetForPointers(*LAI); 759 const auto *RtPtrChecking = LAI->getRuntimePointerChecking(); 760 const auto &AllChecks = RtPtrChecking->getChecks(); 761 auto Checks = includeOnlyCrossPartitionChecks(AllChecks, PtrToPartition, 762 RtPtrChecking); 763 764 if (!Pred.isAlwaysTrue() || !Checks.empty()) { 765 LLVM_DEBUG(dbgs() << "\nPointers:\n"); 766 LLVM_DEBUG(LAI->getRuntimePointerChecking()->printChecks(dbgs(), Checks)); 767 LoopVersioning LVer(*LAI, L, LI, DT, SE, false); 768 LVer.setAliasChecks(std::move(Checks)); 769 LVer.setSCEVChecks(LAI->getPSE().getUnionPredicate()); 770 LVer.versionLoop(DefsUsedOutside); 771 LVer.annotateLoopWithNoAlias(); 772 } 773 774 // Create identical copies of the original loop for each partition and hook 775 // them up sequentially. 776 Partitions.cloneLoops(); 777 778 // Now, we remove the instruction from each loop that don't belong to that 779 // partition. 780 Partitions.removeUnusedInsts(); 781 LLVM_DEBUG(dbgs() << "\nAfter removing unused Instrs:\n"); 782 LLVM_DEBUG(Partitions.printBlocks()); 783 784 if (LDistVerify) { 785 LI->verify(*DT); 786 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 787 } 788 789 ++NumLoopsDistributed; 790 // Report the success. 791 ORE->emit([&]() { 792 return OptimizationRemark(LDIST_NAME, "Distribute", L->getStartLoc(), 793 L->getHeader()) 794 << "distributed loop"; 795 }); 796 return true; 797 } 798 799 /// Provide diagnostics then \return with false. 800 bool fail(StringRef RemarkName, StringRef Message) { 801 LLVMContext &Ctx = F->getContext(); 802 bool Forced = isForced().getValueOr(false); 803 804 LLVM_DEBUG(dbgs() << "Skipping; " << Message << "\n"); 805 806 // With Rpass-missed report that distribution failed. 807 ORE->emit([&]() { 808 return OptimizationRemarkMissed(LDIST_NAME, "NotDistributed", 809 L->getStartLoc(), L->getHeader()) 810 << "loop not distributed: use -Rpass-analysis=loop-distribute for " 811 "more " 812 "info"; 813 }); 814 815 // With Rpass-analysis report why. This is on by default if distribution 816 // was requested explicitly. 817 ORE->emit(OptimizationRemarkAnalysis( 818 Forced ? OptimizationRemarkAnalysis::AlwaysPrint : LDIST_NAME, 819 RemarkName, L->getStartLoc(), L->getHeader()) 820 << "loop not distributed: " << Message); 821 822 // Also issue a warning if distribution was requested explicitly but it 823 // failed. 824 if (Forced) 825 Ctx.diagnose(DiagnosticInfoOptimizationFailure( 826 *F, L->getStartLoc(), "loop not distributed: failed " 827 "explicitly specified loop distribution")); 828 829 return false; 830 } 831 832 /// Return if distribution forced to be enabled/disabled for the loop. 833 /// 834 /// If the optional has a value, it indicates whether distribution was forced 835 /// to be enabled (true) or disabled (false). If the optional has no value 836 /// distribution was not forced either way. 837 const Optional<bool> &isForced() const { return IsForced; } 838 839 private: 840 /// Filter out checks between pointers from the same partition. 841 /// 842 /// \p PtrToPartition contains the partition number for pointers. Partition 843 /// number -1 means that the pointer is used in multiple partitions. In this 844 /// case we can't safely omit the check. 845 SmallVector<RuntimePointerChecking::PointerCheck, 4> 846 includeOnlyCrossPartitionChecks( 847 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &AllChecks, 848 const SmallVectorImpl<int> &PtrToPartition, 849 const RuntimePointerChecking *RtPtrChecking) { 850 SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks; 851 852 copy_if(AllChecks, std::back_inserter(Checks), 853 [&](const RuntimePointerChecking::PointerCheck &Check) { 854 for (unsigned PtrIdx1 : Check.first->Members) 855 for (unsigned PtrIdx2 : Check.second->Members) 856 // Only include this check if there is a pair of pointers 857 // that require checking and the pointers fall into 858 // separate partitions. 859 // 860 // (Note that we already know at this point that the two 861 // pointer groups need checking but it doesn't follow 862 // that each pair of pointers within the two groups need 863 // checking as well. 864 // 865 // In other words we don't want to include a check just 866 // because there is a pair of pointers between the two 867 // pointer groups that require checks and a different 868 // pair whose pointers fall into different partitions.) 869 if (RtPtrChecking->needsChecking(PtrIdx1, PtrIdx2) && 870 !RuntimePointerChecking::arePointersInSamePartition( 871 PtrToPartition, PtrIdx1, PtrIdx2)) 872 return true; 873 return false; 874 }); 875 876 return Checks; 877 } 878 879 /// Check whether the loop metadata is forcing distribution to be 880 /// enabled/disabled. 881 void setForced() { 882 Optional<const MDOperand *> Value = 883 findStringMetadataForLoop(L, "llvm.loop.distribute.enable"); 884 if (!Value) 885 return; 886 887 const MDOperand *Op = *Value; 888 assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata"); 889 IsForced = mdconst::extract<ConstantInt>(*Op)->getZExtValue(); 890 } 891 892 Loop *L; 893 Function *F; 894 895 // Analyses used. 896 LoopInfo *LI; 897 const LoopAccessInfo *LAI = nullptr; 898 DominatorTree *DT; 899 ScalarEvolution *SE; 900 OptimizationRemarkEmitter *ORE; 901 902 /// Indicates whether distribution is forced to be enabled/disabled for 903 /// the loop. 904 /// 905 /// If the optional has a value, it indicates whether distribution was forced 906 /// to be enabled (true) or disabled (false). If the optional has no value 907 /// distribution was not forced either way. 908 Optional<bool> IsForced; 909 }; 910 911 } // end anonymous namespace 912 913 /// Shared implementation between new and old PMs. 914 static bool runImpl(Function &F, LoopInfo *LI, DominatorTree *DT, 915 ScalarEvolution *SE, OptimizationRemarkEmitter *ORE, 916 std::function<const LoopAccessInfo &(Loop &)> &GetLAA) { 917 // Build up a worklist of inner-loops to vectorize. This is necessary as the 918 // act of distributing a loop creates new loops and can invalidate iterators 919 // across the loops. 920 SmallVector<Loop *, 8> Worklist; 921 922 for (Loop *TopLevelLoop : *LI) 923 for (Loop *L : depth_first(TopLevelLoop)) 924 // We only handle inner-most loops. 925 if (L->empty()) 926 Worklist.push_back(L); 927 928 // Now walk the identified inner loops. 929 bool Changed = false; 930 for (Loop *L : Worklist) { 931 LoopDistributeForLoop LDL(L, &F, LI, DT, SE, ORE); 932 933 // If distribution was forced for the specific loop to be 934 // enabled/disabled, follow that. Otherwise use the global flag. 935 if (LDL.isForced().getValueOr(EnableLoopDistribute)) 936 Changed |= LDL.processLoop(GetLAA); 937 } 938 939 // Process each loop nest in the function. 940 return Changed; 941 } 942 943 namespace { 944 945 /// The pass class. 946 class LoopDistributeLegacy : public FunctionPass { 947 public: 948 static char ID; 949 950 LoopDistributeLegacy() : FunctionPass(ID) { 951 // The default is set by the caller. 952 initializeLoopDistributeLegacyPass(*PassRegistry::getPassRegistry()); 953 } 954 955 bool runOnFunction(Function &F) override { 956 if (skipFunction(F)) 957 return false; 958 959 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 960 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 961 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 962 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 963 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 964 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 965 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 966 967 return runImpl(F, LI, DT, SE, ORE, GetLAA); 968 } 969 970 void getAnalysisUsage(AnalysisUsage &AU) const override { 971 AU.addRequired<ScalarEvolutionWrapperPass>(); 972 AU.addRequired<LoopInfoWrapperPass>(); 973 AU.addPreserved<LoopInfoWrapperPass>(); 974 AU.addRequired<LoopAccessLegacyAnalysis>(); 975 AU.addRequired<DominatorTreeWrapperPass>(); 976 AU.addPreserved<DominatorTreeWrapperPass>(); 977 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 978 AU.addPreserved<GlobalsAAWrapperPass>(); 979 } 980 }; 981 982 } // end anonymous namespace 983 984 PreservedAnalyses LoopDistributePass::run(Function &F, 985 FunctionAnalysisManager &AM) { 986 auto &LI = AM.getResult<LoopAnalysis>(F); 987 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 988 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 989 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 990 991 // We don't directly need these analyses but they're required for loop 992 // analyses so provide them below. 993 auto &AA = AM.getResult<AAManager>(F); 994 auto &AC = AM.getResult<AssumptionAnalysis>(F); 995 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 996 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 997 998 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 999 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1000 [&](Loop &L) -> const LoopAccessInfo & { 1001 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr}; 1002 return LAM.getResult<LoopAccessAnalysis>(L, AR); 1003 }; 1004 1005 bool Changed = runImpl(F, &LI, &DT, &SE, &ORE, GetLAA); 1006 if (!Changed) 1007 return PreservedAnalyses::all(); 1008 PreservedAnalyses PA; 1009 PA.preserve<LoopAnalysis>(); 1010 PA.preserve<DominatorTreeAnalysis>(); 1011 PA.preserve<GlobalsAA>(); 1012 return PA; 1013 } 1014 1015 char LoopDistributeLegacy::ID; 1016 1017 static const char ldist_name[] = "Loop Distribution"; 1018 1019 INITIALIZE_PASS_BEGIN(LoopDistributeLegacy, LDIST_NAME, ldist_name, false, 1020 false) 1021 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 1022 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 1023 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1024 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 1025 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1026 INITIALIZE_PASS_END(LoopDistributeLegacy, LDIST_NAME, ldist_name, false, false) 1027 1028 FunctionPass *llvm::createLoopDistributePass() { return new LoopDistributeLegacy(); } 1029