xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopDistribute.cpp (revision 9590658fb88d40b88ad5bb34c66c946513579384)
1 //===- LoopDistribute.cpp - Loop Distribution Pass ------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Loop Distribution Pass.  Its main focus is to
11 // distribute loops that cannot be vectorized due to dependence cycles.  It
12 // tries to isolate the offending dependences into a new loop allowing
13 // vectorization of the remaining parts.
14 //
15 // For dependence analysis, the pass uses the LoopVectorizer's
16 // LoopAccessAnalysis.  Because this analysis presumes no change in the order of
17 // memory operations, special care is taken to preserve the lexical order of
18 // these operations.
19 //
20 // Similarly to the Vectorizer, the pass also supports loop versioning to
21 // run-time disambiguate potentially overlapping arrays.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/Transforms/Scalar/LoopDistribute.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/EquivalenceClasses.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/BlockFrequencyInfo.h"
31 #include "llvm/Analysis/GlobalsModRef.h"
32 #include "llvm/Analysis/LoopAccessAnalysis.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/IR/DiagnosticInfo.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Transforms/Scalar/LoopPassManager.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
42 #include "llvm/Transforms/Utils/Cloning.h"
43 #include "llvm/Transforms/Utils/LoopUtils.h"
44 #include "llvm/Transforms/Utils/LoopVersioning.h"
45 #include <list>
46 
47 #define LDIST_NAME "loop-distribute"
48 #define DEBUG_TYPE LDIST_NAME
49 
50 using namespace llvm;
51 
52 static cl::opt<bool>
53     LDistVerify("loop-distribute-verify", cl::Hidden,
54                 cl::desc("Turn on DominatorTree and LoopInfo verification "
55                          "after Loop Distribution"),
56                 cl::init(false));
57 
58 static cl::opt<bool> DistributeNonIfConvertible(
59     "loop-distribute-non-if-convertible", cl::Hidden,
60     cl::desc("Whether to distribute into a loop that may not be "
61              "if-convertible by the loop vectorizer"),
62     cl::init(false));
63 
64 static cl::opt<unsigned> DistributeSCEVCheckThreshold(
65     "loop-distribute-scev-check-threshold", cl::init(8), cl::Hidden,
66     cl::desc("The maximum number of SCEV checks allowed for Loop "
67              "Distribution"));
68 
69 static cl::opt<unsigned> PragmaDistributeSCEVCheckThreshold(
70     "loop-distribute-scev-check-threshold-with-pragma", cl::init(128),
71     cl::Hidden,
72     cl::desc(
73         "The maximum number of SCEV checks allowed for Loop "
74         "Distribution for loop marked with #pragma loop distribute(enable)"));
75 
76 static cl::opt<bool> EnableLoopDistribute(
77     "enable-loop-distribute", cl::Hidden,
78     cl::desc("Enable the new, experimental LoopDistribution Pass"),
79     cl::init(false));
80 
81 STATISTIC(NumLoopsDistributed, "Number of loops distributed");
82 
83 namespace {
84 /// \brief Maintains the set of instructions of the loop for a partition before
85 /// cloning.  After cloning, it hosts the new loop.
86 class InstPartition {
87   typedef SmallPtrSet<Instruction *, 8> InstructionSet;
88 
89 public:
90   InstPartition(Instruction *I, Loop *L, bool DepCycle = false)
91       : DepCycle(DepCycle), OrigLoop(L), ClonedLoop(nullptr) {
92     Set.insert(I);
93   }
94 
95   /// \brief Returns whether this partition contains a dependence cycle.
96   bool hasDepCycle() const { return DepCycle; }
97 
98   /// \brief Adds an instruction to this partition.
99   void add(Instruction *I) { Set.insert(I); }
100 
101   /// \brief Collection accessors.
102   InstructionSet::iterator begin() { return Set.begin(); }
103   InstructionSet::iterator end() { return Set.end(); }
104   InstructionSet::const_iterator begin() const { return Set.begin(); }
105   InstructionSet::const_iterator end() const { return Set.end(); }
106   bool empty() const { return Set.empty(); }
107 
108   /// \brief Moves this partition into \p Other.  This partition becomes empty
109   /// after this.
110   void moveTo(InstPartition &Other) {
111     Other.Set.insert(Set.begin(), Set.end());
112     Set.clear();
113     Other.DepCycle |= DepCycle;
114   }
115 
116   /// \brief Populates the partition with a transitive closure of all the
117   /// instructions that the seeded instructions dependent on.
118   void populateUsedSet() {
119     // FIXME: We currently don't use control-dependence but simply include all
120     // blocks (possibly empty at the end) and let simplifycfg mostly clean this
121     // up.
122     for (auto *B : OrigLoop->getBlocks())
123       Set.insert(B->getTerminator());
124 
125     // Follow the use-def chains to form a transitive closure of all the
126     // instructions that the originally seeded instructions depend on.
127     SmallVector<Instruction *, 8> Worklist(Set.begin(), Set.end());
128     while (!Worklist.empty()) {
129       Instruction *I = Worklist.pop_back_val();
130       // Insert instructions from the loop that we depend on.
131       for (Value *V : I->operand_values()) {
132         auto *I = dyn_cast<Instruction>(V);
133         if (I && OrigLoop->contains(I->getParent()) && Set.insert(I).second)
134           Worklist.push_back(I);
135       }
136     }
137   }
138 
139   /// \brief Clones the original loop.
140   ///
141   /// Updates LoopInfo and DominatorTree using the information that block \p
142   /// LoopDomBB dominates the loop.
143   Loop *cloneLoopWithPreheader(BasicBlock *InsertBefore, BasicBlock *LoopDomBB,
144                                unsigned Index, LoopInfo *LI,
145                                DominatorTree *DT) {
146     ClonedLoop = ::cloneLoopWithPreheader(InsertBefore, LoopDomBB, OrigLoop,
147                                           VMap, Twine(".ldist") + Twine(Index),
148                                           LI, DT, ClonedLoopBlocks);
149     return ClonedLoop;
150   }
151 
152   /// \brief The cloned loop.  If this partition is mapped to the original loop,
153   /// this is null.
154   const Loop *getClonedLoop() const { return ClonedLoop; }
155 
156   /// \brief Returns the loop where this partition ends up after distribution.
157   /// If this partition is mapped to the original loop then use the block from
158   /// the loop.
159   const Loop *getDistributedLoop() const {
160     return ClonedLoop ? ClonedLoop : OrigLoop;
161   }
162 
163   /// \brief The VMap that is populated by cloning and then used in
164   /// remapinstruction to remap the cloned instructions.
165   ValueToValueMapTy &getVMap() { return VMap; }
166 
167   /// \brief Remaps the cloned instructions using VMap.
168   void remapInstructions() {
169     remapInstructionsInBlocks(ClonedLoopBlocks, VMap);
170   }
171 
172   /// \brief Based on the set of instructions selected for this partition,
173   /// removes the unnecessary ones.
174   void removeUnusedInsts() {
175     SmallVector<Instruction *, 8> Unused;
176 
177     for (auto *Block : OrigLoop->getBlocks())
178       for (auto &Inst : *Block)
179         if (!Set.count(&Inst)) {
180           Instruction *NewInst = &Inst;
181           if (!VMap.empty())
182             NewInst = cast<Instruction>(VMap[NewInst]);
183 
184           assert(!isa<BranchInst>(NewInst) &&
185                  "Branches are marked used early on");
186           Unused.push_back(NewInst);
187         }
188 
189     // Delete the instructions backwards, as it has a reduced likelihood of
190     // having to update as many def-use and use-def chains.
191     for (auto *Inst : reverse(Unused)) {
192       if (!Inst->use_empty())
193         Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
194       Inst->eraseFromParent();
195     }
196   }
197 
198   void print() const {
199     if (DepCycle)
200       dbgs() << "  (cycle)\n";
201     for (auto *I : Set)
202       // Prefix with the block name.
203       dbgs() << "  " << I->getParent()->getName() << ":" << *I << "\n";
204   }
205 
206   void printBlocks() const {
207     for (auto *BB : getDistributedLoop()->getBlocks())
208       dbgs() << *BB;
209   }
210 
211 private:
212   /// \brief Instructions from OrigLoop selected for this partition.
213   InstructionSet Set;
214 
215   /// \brief Whether this partition contains a dependence cycle.
216   bool DepCycle;
217 
218   /// \brief The original loop.
219   Loop *OrigLoop;
220 
221   /// \brief The cloned loop.  If this partition is mapped to the original loop,
222   /// this is null.
223   Loop *ClonedLoop;
224 
225   /// \brief The blocks of ClonedLoop including the preheader.  If this
226   /// partition is mapped to the original loop, this is empty.
227   SmallVector<BasicBlock *, 8> ClonedLoopBlocks;
228 
229   /// \brief These gets populated once the set of instructions have been
230   /// finalized. If this partition is mapped to the original loop, these are not
231   /// set.
232   ValueToValueMapTy VMap;
233 };
234 
235 /// \brief Holds the set of Partitions.  It populates them, merges them and then
236 /// clones the loops.
237 class InstPartitionContainer {
238   typedef DenseMap<Instruction *, int> InstToPartitionIdT;
239 
240 public:
241   InstPartitionContainer(Loop *L, LoopInfo *LI, DominatorTree *DT)
242       : L(L), LI(LI), DT(DT) {}
243 
244   /// \brief Returns the number of partitions.
245   unsigned getSize() const { return PartitionContainer.size(); }
246 
247   /// \brief Adds \p Inst into the current partition if that is marked to
248   /// contain cycles.  Otherwise start a new partition for it.
249   void addToCyclicPartition(Instruction *Inst) {
250     // If the current partition is non-cyclic.  Start a new one.
251     if (PartitionContainer.empty() || !PartitionContainer.back().hasDepCycle())
252       PartitionContainer.emplace_back(Inst, L, /*DepCycle=*/true);
253     else
254       PartitionContainer.back().add(Inst);
255   }
256 
257   /// \brief Adds \p Inst into a partition that is not marked to contain
258   /// dependence cycles.
259   ///
260   //  Initially we isolate memory instructions into as many partitions as
261   //  possible, then later we may merge them back together.
262   void addToNewNonCyclicPartition(Instruction *Inst) {
263     PartitionContainer.emplace_back(Inst, L);
264   }
265 
266   /// \brief Merges adjacent non-cyclic partitions.
267   ///
268   /// The idea is that we currently only want to isolate the non-vectorizable
269   /// partition.  We could later allow more distribution among these partition
270   /// too.
271   void mergeAdjacentNonCyclic() {
272     mergeAdjacentPartitionsIf(
273         [](const InstPartition *P) { return !P->hasDepCycle(); });
274   }
275 
276   /// \brief If a partition contains only conditional stores, we won't vectorize
277   /// it.  Try to merge it with a previous cyclic partition.
278   void mergeNonIfConvertible() {
279     mergeAdjacentPartitionsIf([&](const InstPartition *Partition) {
280       if (Partition->hasDepCycle())
281         return true;
282 
283       // Now, check if all stores are conditional in this partition.
284       bool seenStore = false;
285 
286       for (auto *Inst : *Partition)
287         if (isa<StoreInst>(Inst)) {
288           seenStore = true;
289           if (!LoopAccessInfo::blockNeedsPredication(Inst->getParent(), L, DT))
290             return false;
291         }
292       return seenStore;
293     });
294   }
295 
296   /// \brief Merges the partitions according to various heuristics.
297   void mergeBeforePopulating() {
298     mergeAdjacentNonCyclic();
299     if (!DistributeNonIfConvertible)
300       mergeNonIfConvertible();
301   }
302 
303   /// \brief Merges partitions in order to ensure that no loads are duplicated.
304   ///
305   /// We can't duplicate loads because that could potentially reorder them.
306   /// LoopAccessAnalysis provides dependency information with the context that
307   /// the order of memory operation is preserved.
308   ///
309   /// Return if any partitions were merged.
310   bool mergeToAvoidDuplicatedLoads() {
311     typedef DenseMap<Instruction *, InstPartition *> LoadToPartitionT;
312     typedef EquivalenceClasses<InstPartition *> ToBeMergedT;
313 
314     LoadToPartitionT LoadToPartition;
315     ToBeMergedT ToBeMerged;
316 
317     // Step through the partitions and create equivalence between partitions
318     // that contain the same load.  Also put partitions in between them in the
319     // same equivalence class to avoid reordering of memory operations.
320     for (PartitionContainerT::iterator I = PartitionContainer.begin(),
321                                        E = PartitionContainer.end();
322          I != E; ++I) {
323       auto *PartI = &*I;
324 
325       // If a load occurs in two partitions PartI and PartJ, merge all
326       // partitions (PartI, PartJ] into PartI.
327       for (Instruction *Inst : *PartI)
328         if (isa<LoadInst>(Inst)) {
329           bool NewElt;
330           LoadToPartitionT::iterator LoadToPart;
331 
332           std::tie(LoadToPart, NewElt) =
333               LoadToPartition.insert(std::make_pair(Inst, PartI));
334           if (!NewElt) {
335             DEBUG(dbgs() << "Merging partitions due to this load in multiple "
336                          << "partitions: " << PartI << ", "
337                          << LoadToPart->second << "\n" << *Inst << "\n");
338 
339             auto PartJ = I;
340             do {
341               --PartJ;
342               ToBeMerged.unionSets(PartI, &*PartJ);
343             } while (&*PartJ != LoadToPart->second);
344           }
345         }
346     }
347     if (ToBeMerged.empty())
348       return false;
349 
350     // Merge the member of an equivalence class into its class leader.  This
351     // makes the members empty.
352     for (ToBeMergedT::iterator I = ToBeMerged.begin(), E = ToBeMerged.end();
353          I != E; ++I) {
354       if (!I->isLeader())
355         continue;
356 
357       auto PartI = I->getData();
358       for (auto PartJ : make_range(std::next(ToBeMerged.member_begin(I)),
359                                    ToBeMerged.member_end())) {
360         PartJ->moveTo(*PartI);
361       }
362     }
363 
364     // Remove the empty partitions.
365     PartitionContainer.remove_if(
366         [](const InstPartition &P) { return P.empty(); });
367 
368     return true;
369   }
370 
371   /// \brief Sets up the mapping between instructions to partitions.  If the
372   /// instruction is duplicated across multiple partitions, set the entry to -1.
373   void setupPartitionIdOnInstructions() {
374     int PartitionID = 0;
375     for (const auto &Partition : PartitionContainer) {
376       for (Instruction *Inst : Partition) {
377         bool NewElt;
378         InstToPartitionIdT::iterator Iter;
379 
380         std::tie(Iter, NewElt) =
381             InstToPartitionId.insert(std::make_pair(Inst, PartitionID));
382         if (!NewElt)
383           Iter->second = -1;
384       }
385       ++PartitionID;
386     }
387   }
388 
389   /// \brief Populates the partition with everything that the seeding
390   /// instructions require.
391   void populateUsedSet() {
392     for (auto &P : PartitionContainer)
393       P.populateUsedSet();
394   }
395 
396   /// \brief This performs the main chunk of the work of cloning the loops for
397   /// the partitions.
398   void cloneLoops() {
399     BasicBlock *OrigPH = L->getLoopPreheader();
400     // At this point the predecessor of the preheader is either the memcheck
401     // block or the top part of the original preheader.
402     BasicBlock *Pred = OrigPH->getSinglePredecessor();
403     assert(Pred && "Preheader does not have a single predecessor");
404     BasicBlock *ExitBlock = L->getExitBlock();
405     assert(ExitBlock && "No single exit block");
406     Loop *NewLoop;
407 
408     assert(!PartitionContainer.empty() && "at least two partitions expected");
409     // We're cloning the preheader along with the loop so we already made sure
410     // it was empty.
411     assert(&*OrigPH->begin() == OrigPH->getTerminator() &&
412            "preheader not empty");
413 
414     // Create a loop for each partition except the last.  Clone the original
415     // loop before PH along with adding a preheader for the cloned loop.  Then
416     // update PH to point to the newly added preheader.
417     BasicBlock *TopPH = OrigPH;
418     unsigned Index = getSize() - 1;
419     for (auto I = std::next(PartitionContainer.rbegin()),
420               E = PartitionContainer.rend();
421          I != E; ++I, --Index, TopPH = NewLoop->getLoopPreheader()) {
422       auto *Part = &*I;
423 
424       NewLoop = Part->cloneLoopWithPreheader(TopPH, Pred, Index, LI, DT);
425 
426       Part->getVMap()[ExitBlock] = TopPH;
427       Part->remapInstructions();
428     }
429     Pred->getTerminator()->replaceUsesOfWith(OrigPH, TopPH);
430 
431     // Now go in forward order and update the immediate dominator for the
432     // preheaders with the exiting block of the previous loop.  Dominance
433     // within the loop is updated in cloneLoopWithPreheader.
434     for (auto Curr = PartitionContainer.cbegin(),
435               Next = std::next(PartitionContainer.cbegin()),
436               E = PartitionContainer.cend();
437          Next != E; ++Curr, ++Next)
438       DT->changeImmediateDominator(
439           Next->getDistributedLoop()->getLoopPreheader(),
440           Curr->getDistributedLoop()->getExitingBlock());
441   }
442 
443   /// \brief Removes the dead instructions from the cloned loops.
444   void removeUnusedInsts() {
445     for (auto &Partition : PartitionContainer)
446       Partition.removeUnusedInsts();
447   }
448 
449   /// \brief For each memory pointer, it computes the partitionId the pointer is
450   /// used in.
451   ///
452   /// This returns an array of int where the I-th entry corresponds to I-th
453   /// entry in LAI.getRuntimePointerCheck().  If the pointer is used in multiple
454   /// partitions its entry is set to -1.
455   SmallVector<int, 8>
456   computePartitionSetForPointers(const LoopAccessInfo &LAI) {
457     const RuntimePointerChecking *RtPtrCheck = LAI.getRuntimePointerChecking();
458 
459     unsigned N = RtPtrCheck->Pointers.size();
460     SmallVector<int, 8> PtrToPartitions(N);
461     for (unsigned I = 0; I < N; ++I) {
462       Value *Ptr = RtPtrCheck->Pointers[I].PointerValue;
463       auto Instructions =
464           LAI.getInstructionsForAccess(Ptr, RtPtrCheck->Pointers[I].IsWritePtr);
465 
466       int &Partition = PtrToPartitions[I];
467       // First set it to uninitialized.
468       Partition = -2;
469       for (Instruction *Inst : Instructions) {
470         // Note that this could be -1 if Inst is duplicated across multiple
471         // partitions.
472         int ThisPartition = this->InstToPartitionId[Inst];
473         if (Partition == -2)
474           Partition = ThisPartition;
475         // -1 means belonging to multiple partitions.
476         else if (Partition == -1)
477           break;
478         else if (Partition != (int)ThisPartition)
479           Partition = -1;
480       }
481       assert(Partition != -2 && "Pointer not belonging to any partition");
482     }
483 
484     return PtrToPartitions;
485   }
486 
487   void print(raw_ostream &OS) const {
488     unsigned Index = 0;
489     for (const auto &P : PartitionContainer) {
490       OS << "Partition " << Index++ << " (" << &P << "):\n";
491       P.print();
492     }
493   }
494 
495   void dump() const { print(dbgs()); }
496 
497 #ifndef NDEBUG
498   friend raw_ostream &operator<<(raw_ostream &OS,
499                                  const InstPartitionContainer &Partitions) {
500     Partitions.print(OS);
501     return OS;
502   }
503 #endif
504 
505   void printBlocks() const {
506     unsigned Index = 0;
507     for (const auto &P : PartitionContainer) {
508       dbgs() << "\nPartition " << Index++ << " (" << &P << "):\n";
509       P.printBlocks();
510     }
511   }
512 
513 private:
514   typedef std::list<InstPartition> PartitionContainerT;
515 
516   /// \brief List of partitions.
517   PartitionContainerT PartitionContainer;
518 
519   /// \brief Mapping from Instruction to partition Id.  If the instruction
520   /// belongs to multiple partitions the entry contains -1.
521   InstToPartitionIdT InstToPartitionId;
522 
523   Loop *L;
524   LoopInfo *LI;
525   DominatorTree *DT;
526 
527   /// \brief The control structure to merge adjacent partitions if both satisfy
528   /// the \p Predicate.
529   template <class UnaryPredicate>
530   void mergeAdjacentPartitionsIf(UnaryPredicate Predicate) {
531     InstPartition *PrevMatch = nullptr;
532     for (auto I = PartitionContainer.begin(); I != PartitionContainer.end();) {
533       auto DoesMatch = Predicate(&*I);
534       if (PrevMatch == nullptr && DoesMatch) {
535         PrevMatch = &*I;
536         ++I;
537       } else if (PrevMatch != nullptr && DoesMatch) {
538         I->moveTo(*PrevMatch);
539         I = PartitionContainer.erase(I);
540       } else {
541         PrevMatch = nullptr;
542         ++I;
543       }
544     }
545   }
546 };
547 
548 /// \brief For each memory instruction, this class maintains difference of the
549 /// number of unsafe dependences that start out from this instruction minus
550 /// those that end here.
551 ///
552 /// By traversing the memory instructions in program order and accumulating this
553 /// number, we know whether any unsafe dependence crosses over a program point.
554 class MemoryInstructionDependences {
555   typedef MemoryDepChecker::Dependence Dependence;
556 
557 public:
558   struct Entry {
559     Instruction *Inst;
560     unsigned NumUnsafeDependencesStartOrEnd;
561 
562     Entry(Instruction *Inst) : Inst(Inst), NumUnsafeDependencesStartOrEnd(0) {}
563   };
564 
565   typedef SmallVector<Entry, 8> AccessesType;
566 
567   AccessesType::const_iterator begin() const { return Accesses.begin(); }
568   AccessesType::const_iterator end() const { return Accesses.end(); }
569 
570   MemoryInstructionDependences(
571       const SmallVectorImpl<Instruction *> &Instructions,
572       const SmallVectorImpl<Dependence> &Dependences) {
573     Accesses.append(Instructions.begin(), Instructions.end());
574 
575     DEBUG(dbgs() << "Backward dependences:\n");
576     for (auto &Dep : Dependences)
577       if (Dep.isPossiblyBackward()) {
578         // Note that the designations source and destination follow the program
579         // order, i.e. source is always first.  (The direction is given by the
580         // DepType.)
581         ++Accesses[Dep.Source].NumUnsafeDependencesStartOrEnd;
582         --Accesses[Dep.Destination].NumUnsafeDependencesStartOrEnd;
583 
584         DEBUG(Dep.print(dbgs(), 2, Instructions));
585       }
586   }
587 
588 private:
589   AccessesType Accesses;
590 };
591 
592 /// \brief The actual class performing the per-loop work.
593 class LoopDistributeForLoop {
594 public:
595   LoopDistributeForLoop(Loop *L, Function *F, LoopInfo *LI, DominatorTree *DT,
596                         ScalarEvolution *SE, OptimizationRemarkEmitter *ORE)
597       : L(L), F(F), LI(LI), LAI(nullptr), DT(DT), SE(SE), ORE(ORE) {
598     setForced();
599   }
600 
601   /// \brief Try to distribute an inner-most loop.
602   bool processLoop(std::function<const LoopAccessInfo &(Loop &)> &GetLAA) {
603     assert(L->empty() && "Only process inner loops.");
604 
605     DEBUG(dbgs() << "\nLDist: In \"" << L->getHeader()->getParent()->getName()
606                  << "\" checking " << *L << "\n");
607 
608     if (!L->getExitBlock())
609       return fail("MultipleExitBlocks", "multiple exit blocks");
610     if (!L->isLoopSimplifyForm())
611       return fail("NotLoopSimplifyForm",
612                   "loop is not in loop-simplify form");
613 
614     BasicBlock *PH = L->getLoopPreheader();
615 
616     // LAA will check that we only have a single exiting block.
617     LAI = &GetLAA(*L);
618 
619     // Currently, we only distribute to isolate the part of the loop with
620     // dependence cycles to enable partial vectorization.
621     if (LAI->canVectorizeMemory())
622       return fail("MemOpsCanBeVectorized",
623                   "memory operations are safe for vectorization");
624 
625     auto *Dependences = LAI->getDepChecker().getDependences();
626     if (!Dependences || Dependences->empty())
627       return fail("NoUnsafeDeps", "no unsafe dependences to isolate");
628 
629     InstPartitionContainer Partitions(L, LI, DT);
630 
631     // First, go through each memory operation and assign them to consecutive
632     // partitions (the order of partitions follows program order).  Put those
633     // with unsafe dependences into "cyclic" partition otherwise put each store
634     // in its own "non-cyclic" partition (we'll merge these later).
635     //
636     // Note that a memory operation (e.g. Load2 below) at a program point that
637     // has an unsafe dependence (Store3->Load1) spanning over it must be
638     // included in the same cyclic partition as the dependent operations.  This
639     // is to preserve the original program order after distribution.  E.g.:
640     //
641     //                NumUnsafeDependencesStartOrEnd  NumUnsafeDependencesActive
642     //  Load1   -.                     1                       0->1
643     //  Load2    | /Unsafe/            0                       1
644     //  Store3  -'                    -1                       1->0
645     //  Load4                          0                       0
646     //
647     // NumUnsafeDependencesActive > 0 indicates this situation and in this case
648     // we just keep assigning to the same cyclic partition until
649     // NumUnsafeDependencesActive reaches 0.
650     const MemoryDepChecker &DepChecker = LAI->getDepChecker();
651     MemoryInstructionDependences MID(DepChecker.getMemoryInstructions(),
652                                      *Dependences);
653 
654     int NumUnsafeDependencesActive = 0;
655     for (auto &InstDep : MID) {
656       Instruction *I = InstDep.Inst;
657       // We update NumUnsafeDependencesActive post-instruction, catch the
658       // start of a dependence directly via NumUnsafeDependencesStartOrEnd.
659       if (NumUnsafeDependencesActive ||
660           InstDep.NumUnsafeDependencesStartOrEnd > 0)
661         Partitions.addToCyclicPartition(I);
662       else
663         Partitions.addToNewNonCyclicPartition(I);
664       NumUnsafeDependencesActive += InstDep.NumUnsafeDependencesStartOrEnd;
665       assert(NumUnsafeDependencesActive >= 0 &&
666              "Negative number of dependences active");
667     }
668 
669     // Add partitions for values used outside.  These partitions can be out of
670     // order from the original program order.  This is OK because if the
671     // partition uses a load we will merge this partition with the original
672     // partition of the load that we set up in the previous loop (see
673     // mergeToAvoidDuplicatedLoads).
674     auto DefsUsedOutside = findDefsUsedOutsideOfLoop(L);
675     for (auto *Inst : DefsUsedOutside)
676       Partitions.addToNewNonCyclicPartition(Inst);
677 
678     DEBUG(dbgs() << "Seeded partitions:\n" << Partitions);
679     if (Partitions.getSize() < 2)
680       return fail("CantIsolateUnsafeDeps",
681                   "cannot isolate unsafe dependencies");
682 
683     // Run the merge heuristics: Merge non-cyclic adjacent partitions since we
684     // should be able to vectorize these together.
685     Partitions.mergeBeforePopulating();
686     DEBUG(dbgs() << "\nMerged partitions:\n" << Partitions);
687     if (Partitions.getSize() < 2)
688       return fail("CantIsolateUnsafeDeps",
689                   "cannot isolate unsafe dependencies");
690 
691     // Now, populate the partitions with non-memory operations.
692     Partitions.populateUsedSet();
693     DEBUG(dbgs() << "\nPopulated partitions:\n" << Partitions);
694 
695     // In order to preserve original lexical order for loads, keep them in the
696     // partition that we set up in the MemoryInstructionDependences loop.
697     if (Partitions.mergeToAvoidDuplicatedLoads()) {
698       DEBUG(dbgs() << "\nPartitions merged to ensure unique loads:\n"
699                    << Partitions);
700       if (Partitions.getSize() < 2)
701         return fail("CantIsolateUnsafeDeps",
702                     "cannot isolate unsafe dependencies");
703     }
704 
705     // Don't distribute the loop if we need too many SCEV run-time checks.
706     const SCEVUnionPredicate &Pred = LAI->getPSE().getUnionPredicate();
707     if (Pred.getComplexity() > (IsForced.getValueOr(false)
708                                     ? PragmaDistributeSCEVCheckThreshold
709                                     : DistributeSCEVCheckThreshold))
710       return fail("TooManySCEVRuntimeChecks",
711                   "too many SCEV run-time checks needed.\n");
712 
713     DEBUG(dbgs() << "\nDistributing loop: " << *L << "\n");
714     // We're done forming the partitions set up the reverse mapping from
715     // instructions to partitions.
716     Partitions.setupPartitionIdOnInstructions();
717 
718     // To keep things simple have an empty preheader before we version or clone
719     // the loop.  (Also split if this has no predecessor, i.e. entry, because we
720     // rely on PH having a predecessor.)
721     if (!PH->getSinglePredecessor() || &*PH->begin() != PH->getTerminator())
722       SplitBlock(PH, PH->getTerminator(), DT, LI);
723 
724     // If we need run-time checks, version the loop now.
725     auto PtrToPartition = Partitions.computePartitionSetForPointers(*LAI);
726     const auto *RtPtrChecking = LAI->getRuntimePointerChecking();
727     const auto &AllChecks = RtPtrChecking->getChecks();
728     auto Checks = includeOnlyCrossPartitionChecks(AllChecks, PtrToPartition,
729                                                   RtPtrChecking);
730 
731     if (!Pred.isAlwaysTrue() || !Checks.empty()) {
732       DEBUG(dbgs() << "\nPointers:\n");
733       DEBUG(LAI->getRuntimePointerChecking()->printChecks(dbgs(), Checks));
734       LoopVersioning LVer(*LAI, L, LI, DT, SE, false);
735       LVer.setAliasChecks(std::move(Checks));
736       LVer.setSCEVChecks(LAI->getPSE().getUnionPredicate());
737       LVer.versionLoop(DefsUsedOutside);
738       LVer.annotateLoopWithNoAlias();
739     }
740 
741     // Create identical copies of the original loop for each partition and hook
742     // them up sequentially.
743     Partitions.cloneLoops();
744 
745     // Now, we remove the instruction from each loop that don't belong to that
746     // partition.
747     Partitions.removeUnusedInsts();
748     DEBUG(dbgs() << "\nAfter removing unused Instrs:\n");
749     DEBUG(Partitions.printBlocks());
750 
751     if (LDistVerify) {
752       LI->verify(*DT);
753       DT->verifyDomTree();
754     }
755 
756     ++NumLoopsDistributed;
757     // Report the success.
758     ORE->emit([&]() {
759       return OptimizationRemark(LDIST_NAME, "Distribute", L->getStartLoc(),
760                                 L->getHeader())
761              << "distributed loop";
762     });
763     return true;
764   }
765 
766   /// \brief Provide diagnostics then \return with false.
767   bool fail(StringRef RemarkName, StringRef Message) {
768     LLVMContext &Ctx = F->getContext();
769     bool Forced = isForced().getValueOr(false);
770 
771     DEBUG(dbgs() << "Skipping; " << Message << "\n");
772 
773     // With Rpass-missed report that distribution failed.
774     ORE->emit([&]() {
775       return OptimizationRemarkMissed(LDIST_NAME, "NotDistributed",
776                                       L->getStartLoc(), L->getHeader())
777              << "loop not distributed: use -Rpass-analysis=loop-distribute for "
778                 "more "
779                 "info";
780     });
781 
782     // With Rpass-analysis report why.  This is on by default if distribution
783     // was requested explicitly.
784     ORE->emit(OptimizationRemarkAnalysis(
785                   Forced ? OptimizationRemarkAnalysis::AlwaysPrint : LDIST_NAME,
786                   RemarkName, L->getStartLoc(), L->getHeader())
787               << "loop not distributed: " << Message);
788 
789     // Also issue a warning if distribution was requested explicitly but it
790     // failed.
791     if (Forced)
792       Ctx.diagnose(DiagnosticInfoOptimizationFailure(
793           *F, L->getStartLoc(), "loop not distributed: failed "
794                                 "explicitly specified loop distribution"));
795 
796     return false;
797   }
798 
799   /// \brief Return if distribution forced to be enabled/disabled for the loop.
800   ///
801   /// If the optional has a value, it indicates whether distribution was forced
802   /// to be enabled (true) or disabled (false).  If the optional has no value
803   /// distribution was not forced either way.
804   const Optional<bool> &isForced() const { return IsForced; }
805 
806 private:
807   /// \brief Filter out checks between pointers from the same partition.
808   ///
809   /// \p PtrToPartition contains the partition number for pointers.  Partition
810   /// number -1 means that the pointer is used in multiple partitions.  In this
811   /// case we can't safely omit the check.
812   SmallVector<RuntimePointerChecking::PointerCheck, 4>
813   includeOnlyCrossPartitionChecks(
814       const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &AllChecks,
815       const SmallVectorImpl<int> &PtrToPartition,
816       const RuntimePointerChecking *RtPtrChecking) {
817     SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;
818 
819     copy_if(AllChecks, std::back_inserter(Checks),
820             [&](const RuntimePointerChecking::PointerCheck &Check) {
821               for (unsigned PtrIdx1 : Check.first->Members)
822                 for (unsigned PtrIdx2 : Check.second->Members)
823                   // Only include this check if there is a pair of pointers
824                   // that require checking and the pointers fall into
825                   // separate partitions.
826                   //
827                   // (Note that we already know at this point that the two
828                   // pointer groups need checking but it doesn't follow
829                   // that each pair of pointers within the two groups need
830                   // checking as well.
831                   //
832                   // In other words we don't want to include a check just
833                   // because there is a pair of pointers between the two
834                   // pointer groups that require checks and a different
835                   // pair whose pointers fall into different partitions.)
836                   if (RtPtrChecking->needsChecking(PtrIdx1, PtrIdx2) &&
837                       !RuntimePointerChecking::arePointersInSamePartition(
838                           PtrToPartition, PtrIdx1, PtrIdx2))
839                     return true;
840               return false;
841             });
842 
843     return Checks;
844   }
845 
846   /// \brief Check whether the loop metadata is forcing distribution to be
847   /// enabled/disabled.
848   void setForced() {
849     Optional<const MDOperand *> Value =
850         findStringMetadataForLoop(L, "llvm.loop.distribute.enable");
851     if (!Value)
852       return;
853 
854     const MDOperand *Op = *Value;
855     assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata");
856     IsForced = mdconst::extract<ConstantInt>(*Op)->getZExtValue();
857   }
858 
859   Loop *L;
860   Function *F;
861 
862   // Analyses used.
863   LoopInfo *LI;
864   const LoopAccessInfo *LAI;
865   DominatorTree *DT;
866   ScalarEvolution *SE;
867   OptimizationRemarkEmitter *ORE;
868 
869   /// \brief Indicates whether distribution is forced to be enabled/disabled for
870   /// the loop.
871   ///
872   /// If the optional has a value, it indicates whether distribution was forced
873   /// to be enabled (true) or disabled (false).  If the optional has no value
874   /// distribution was not forced either way.
875   Optional<bool> IsForced;
876 };
877 
878 /// Shared implementation between new and old PMs.
879 static bool runImpl(Function &F, LoopInfo *LI, DominatorTree *DT,
880                     ScalarEvolution *SE, OptimizationRemarkEmitter *ORE,
881                     std::function<const LoopAccessInfo &(Loop &)> &GetLAA) {
882   // Build up a worklist of inner-loops to vectorize. This is necessary as the
883   // act of distributing a loop creates new loops and can invalidate iterators
884   // across the loops.
885   SmallVector<Loop *, 8> Worklist;
886 
887   for (Loop *TopLevelLoop : *LI)
888     for (Loop *L : depth_first(TopLevelLoop))
889       // We only handle inner-most loops.
890       if (L->empty())
891         Worklist.push_back(L);
892 
893   // Now walk the identified inner loops.
894   bool Changed = false;
895   for (Loop *L : Worklist) {
896     LoopDistributeForLoop LDL(L, &F, LI, DT, SE, ORE);
897 
898     // If distribution was forced for the specific loop to be
899     // enabled/disabled, follow that.  Otherwise use the global flag.
900     if (LDL.isForced().getValueOr(EnableLoopDistribute))
901       Changed |= LDL.processLoop(GetLAA);
902   }
903 
904   // Process each loop nest in the function.
905   return Changed;
906 }
907 
908 /// \brief The pass class.
909 class LoopDistributeLegacy : public FunctionPass {
910 public:
911   LoopDistributeLegacy() : FunctionPass(ID) {
912     // The default is set by the caller.
913     initializeLoopDistributeLegacyPass(*PassRegistry::getPassRegistry());
914   }
915 
916   bool runOnFunction(Function &F) override {
917     if (skipFunction(F))
918       return false;
919 
920     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
921     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
922     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
923     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
924     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
925     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
926         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
927 
928     return runImpl(F, LI, DT, SE, ORE, GetLAA);
929   }
930 
931   void getAnalysisUsage(AnalysisUsage &AU) const override {
932     AU.addRequired<ScalarEvolutionWrapperPass>();
933     AU.addRequired<LoopInfoWrapperPass>();
934     AU.addPreserved<LoopInfoWrapperPass>();
935     AU.addRequired<LoopAccessLegacyAnalysis>();
936     AU.addRequired<DominatorTreeWrapperPass>();
937     AU.addPreserved<DominatorTreeWrapperPass>();
938     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
939     AU.addPreserved<GlobalsAAWrapperPass>();
940   }
941 
942   static char ID;
943 };
944 } // anonymous namespace
945 
946 PreservedAnalyses LoopDistributePass::run(Function &F,
947                                           FunctionAnalysisManager &AM) {
948   auto &LI = AM.getResult<LoopAnalysis>(F);
949   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
950   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
951   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
952 
953   // We don't directly need these analyses but they're required for loop
954   // analyses so provide them below.
955   auto &AA = AM.getResult<AAManager>(F);
956   auto &AC = AM.getResult<AssumptionAnalysis>(F);
957   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
958   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
959 
960   auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
961   std::function<const LoopAccessInfo &(Loop &)> GetLAA =
962       [&](Loop &L) -> const LoopAccessInfo & {
963     LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI};
964     return LAM.getResult<LoopAccessAnalysis>(L, AR);
965   };
966 
967   bool Changed = runImpl(F, &LI, &DT, &SE, &ORE, GetLAA);
968   if (!Changed)
969     return PreservedAnalyses::all();
970   PreservedAnalyses PA;
971   PA.preserve<LoopAnalysis>();
972   PA.preserve<DominatorTreeAnalysis>();
973   PA.preserve<GlobalsAA>();
974   return PA;
975 }
976 
977 char LoopDistributeLegacy::ID;
978 static const char ldist_name[] = "Loop Distribution";
979 
980 INITIALIZE_PASS_BEGIN(LoopDistributeLegacy, LDIST_NAME, ldist_name, false,
981                       false)
982 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
983 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
984 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
985 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
986 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
987 INITIALIZE_PASS_END(LoopDistributeLegacy, LDIST_NAME, ldist_name, false, false)
988 
989 namespace llvm {
990 FunctionPass *createLoopDistributePass() { return new LoopDistributeLegacy(); }
991 }
992