1 //===- LoopDistribute.cpp - Loop Distribution Pass ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Loop Distribution Pass. Its main focus is to 11 // distribute loops that cannot be vectorized due to dependence cycles. It 12 // tries to isolate the offending dependences into a new loop allowing 13 // vectorization of the remaining parts. 14 // 15 // For dependence analysis, the pass uses the LoopVectorizer's 16 // LoopAccessAnalysis. Because this analysis presumes no change in the order of 17 // memory operations, special care is taken to preserve the lexical order of 18 // these operations. 19 // 20 // Similarly to the Vectorizer, the pass also supports loop versioning to 21 // run-time disambiguate potentially overlapping arrays. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/Scalar/LoopDistribute.h" 26 #include "llvm/ADT/DepthFirstIterator.h" 27 #include "llvm/ADT/EquivalenceClasses.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/Analysis/BlockFrequencyInfo.h" 31 #include "llvm/Analysis/GlobalsModRef.h" 32 #include "llvm/Analysis/LoopAccessAnalysis.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/LoopPassManager.h" 35 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 36 #include "llvm/IR/DiagnosticInfo.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 #include "llvm/Transforms/Utils/Cloning.h" 43 #include "llvm/Transforms/Utils/LoopUtils.h" 44 #include "llvm/Transforms/Utils/LoopVersioning.h" 45 #include <list> 46 47 #define LDIST_NAME "loop-distribute" 48 #define DEBUG_TYPE LDIST_NAME 49 50 using namespace llvm; 51 52 static cl::opt<bool> 53 LDistVerify("loop-distribute-verify", cl::Hidden, 54 cl::desc("Turn on DominatorTree and LoopInfo verification " 55 "after Loop Distribution"), 56 cl::init(false)); 57 58 static cl::opt<bool> DistributeNonIfConvertible( 59 "loop-distribute-non-if-convertible", cl::Hidden, 60 cl::desc("Whether to distribute into a loop that may not be " 61 "if-convertible by the loop vectorizer"), 62 cl::init(false)); 63 64 static cl::opt<unsigned> DistributeSCEVCheckThreshold( 65 "loop-distribute-scev-check-threshold", cl::init(8), cl::Hidden, 66 cl::desc("The maximum number of SCEV checks allowed for Loop " 67 "Distribution")); 68 69 static cl::opt<unsigned> PragmaDistributeSCEVCheckThreshold( 70 "loop-distribute-scev-check-threshold-with-pragma", cl::init(128), 71 cl::Hidden, 72 cl::desc( 73 "The maximum number of SCEV checks allowed for Loop " 74 "Distribution for loop marked with #pragma loop distribute(enable)")); 75 76 // Note that the initial value for this depends on whether the pass is invoked 77 // directly or from the optimization pipeline. 78 static cl::opt<bool> EnableLoopDistribute( 79 "enable-loop-distribute", cl::Hidden, 80 cl::desc("Enable the new, experimental LoopDistribution Pass")); 81 82 STATISTIC(NumLoopsDistributed, "Number of loops distributed"); 83 84 namespace { 85 /// \brief Maintains the set of instructions of the loop for a partition before 86 /// cloning. After cloning, it hosts the new loop. 87 class InstPartition { 88 typedef SmallPtrSet<Instruction *, 8> InstructionSet; 89 90 public: 91 InstPartition(Instruction *I, Loop *L, bool DepCycle = false) 92 : DepCycle(DepCycle), OrigLoop(L), ClonedLoop(nullptr) { 93 Set.insert(I); 94 } 95 96 /// \brief Returns whether this partition contains a dependence cycle. 97 bool hasDepCycle() const { return DepCycle; } 98 99 /// \brief Adds an instruction to this partition. 100 void add(Instruction *I) { Set.insert(I); } 101 102 /// \brief Collection accessors. 103 InstructionSet::iterator begin() { return Set.begin(); } 104 InstructionSet::iterator end() { return Set.end(); } 105 InstructionSet::const_iterator begin() const { return Set.begin(); } 106 InstructionSet::const_iterator end() const { return Set.end(); } 107 bool empty() const { return Set.empty(); } 108 109 /// \brief Moves this partition into \p Other. This partition becomes empty 110 /// after this. 111 void moveTo(InstPartition &Other) { 112 Other.Set.insert(Set.begin(), Set.end()); 113 Set.clear(); 114 Other.DepCycle |= DepCycle; 115 } 116 117 /// \brief Populates the partition with a transitive closure of all the 118 /// instructions that the seeded instructions dependent on. 119 void populateUsedSet() { 120 // FIXME: We currently don't use control-dependence but simply include all 121 // blocks (possibly empty at the end) and let simplifycfg mostly clean this 122 // up. 123 for (auto *B : OrigLoop->getBlocks()) 124 Set.insert(B->getTerminator()); 125 126 // Follow the use-def chains to form a transitive closure of all the 127 // instructions that the originally seeded instructions depend on. 128 SmallVector<Instruction *, 8> Worklist(Set.begin(), Set.end()); 129 while (!Worklist.empty()) { 130 Instruction *I = Worklist.pop_back_val(); 131 // Insert instructions from the loop that we depend on. 132 for (Value *V : I->operand_values()) { 133 auto *I = dyn_cast<Instruction>(V); 134 if (I && OrigLoop->contains(I->getParent()) && Set.insert(I).second) 135 Worklist.push_back(I); 136 } 137 } 138 } 139 140 /// \brief Clones the original loop. 141 /// 142 /// Updates LoopInfo and DominatorTree using the information that block \p 143 /// LoopDomBB dominates the loop. 144 Loop *cloneLoopWithPreheader(BasicBlock *InsertBefore, BasicBlock *LoopDomBB, 145 unsigned Index, LoopInfo *LI, 146 DominatorTree *DT) { 147 ClonedLoop = ::cloneLoopWithPreheader(InsertBefore, LoopDomBB, OrigLoop, 148 VMap, Twine(".ldist") + Twine(Index), 149 LI, DT, ClonedLoopBlocks); 150 return ClonedLoop; 151 } 152 153 /// \brief The cloned loop. If this partition is mapped to the original loop, 154 /// this is null. 155 const Loop *getClonedLoop() const { return ClonedLoop; } 156 157 /// \brief Returns the loop where this partition ends up after distribution. 158 /// If this partition is mapped to the original loop then use the block from 159 /// the loop. 160 const Loop *getDistributedLoop() const { 161 return ClonedLoop ? ClonedLoop : OrigLoop; 162 } 163 164 /// \brief The VMap that is populated by cloning and then used in 165 /// remapinstruction to remap the cloned instructions. 166 ValueToValueMapTy &getVMap() { return VMap; } 167 168 /// \brief Remaps the cloned instructions using VMap. 169 void remapInstructions() { 170 remapInstructionsInBlocks(ClonedLoopBlocks, VMap); 171 } 172 173 /// \brief Based on the set of instructions selected for this partition, 174 /// removes the unnecessary ones. 175 void removeUnusedInsts() { 176 SmallVector<Instruction *, 8> Unused; 177 178 for (auto *Block : OrigLoop->getBlocks()) 179 for (auto &Inst : *Block) 180 if (!Set.count(&Inst)) { 181 Instruction *NewInst = &Inst; 182 if (!VMap.empty()) 183 NewInst = cast<Instruction>(VMap[NewInst]); 184 185 assert(!isa<BranchInst>(NewInst) && 186 "Branches are marked used early on"); 187 Unused.push_back(NewInst); 188 } 189 190 // Delete the instructions backwards, as it has a reduced likelihood of 191 // having to update as many def-use and use-def chains. 192 for (auto *Inst : reverse(Unused)) { 193 if (!Inst->use_empty()) 194 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 195 Inst->eraseFromParent(); 196 } 197 } 198 199 void print() const { 200 if (DepCycle) 201 dbgs() << " (cycle)\n"; 202 for (auto *I : Set) 203 // Prefix with the block name. 204 dbgs() << " " << I->getParent()->getName() << ":" << *I << "\n"; 205 } 206 207 void printBlocks() const { 208 for (auto *BB : getDistributedLoop()->getBlocks()) 209 dbgs() << *BB; 210 } 211 212 private: 213 /// \brief Instructions from OrigLoop selected for this partition. 214 InstructionSet Set; 215 216 /// \brief Whether this partition contains a dependence cycle. 217 bool DepCycle; 218 219 /// \brief The original loop. 220 Loop *OrigLoop; 221 222 /// \brief The cloned loop. If this partition is mapped to the original loop, 223 /// this is null. 224 Loop *ClonedLoop; 225 226 /// \brief The blocks of ClonedLoop including the preheader. If this 227 /// partition is mapped to the original loop, this is empty. 228 SmallVector<BasicBlock *, 8> ClonedLoopBlocks; 229 230 /// \brief These gets populated once the set of instructions have been 231 /// finalized. If this partition is mapped to the original loop, these are not 232 /// set. 233 ValueToValueMapTy VMap; 234 }; 235 236 /// \brief Holds the set of Partitions. It populates them, merges them and then 237 /// clones the loops. 238 class InstPartitionContainer { 239 typedef DenseMap<Instruction *, int> InstToPartitionIdT; 240 241 public: 242 InstPartitionContainer(Loop *L, LoopInfo *LI, DominatorTree *DT) 243 : L(L), LI(LI), DT(DT) {} 244 245 /// \brief Returns the number of partitions. 246 unsigned getSize() const { return PartitionContainer.size(); } 247 248 /// \brief Adds \p Inst into the current partition if that is marked to 249 /// contain cycles. Otherwise start a new partition for it. 250 void addToCyclicPartition(Instruction *Inst) { 251 // If the current partition is non-cyclic. Start a new one. 252 if (PartitionContainer.empty() || !PartitionContainer.back().hasDepCycle()) 253 PartitionContainer.emplace_back(Inst, L, /*DepCycle=*/true); 254 else 255 PartitionContainer.back().add(Inst); 256 } 257 258 /// \brief Adds \p Inst into a partition that is not marked to contain 259 /// dependence cycles. 260 /// 261 // Initially we isolate memory instructions into as many partitions as 262 // possible, then later we may merge them back together. 263 void addToNewNonCyclicPartition(Instruction *Inst) { 264 PartitionContainer.emplace_back(Inst, L); 265 } 266 267 /// \brief Merges adjacent non-cyclic partitions. 268 /// 269 /// The idea is that we currently only want to isolate the non-vectorizable 270 /// partition. We could later allow more distribution among these partition 271 /// too. 272 void mergeAdjacentNonCyclic() { 273 mergeAdjacentPartitionsIf( 274 [](const InstPartition *P) { return !P->hasDepCycle(); }); 275 } 276 277 /// \brief If a partition contains only conditional stores, we won't vectorize 278 /// it. Try to merge it with a previous cyclic partition. 279 void mergeNonIfConvertible() { 280 mergeAdjacentPartitionsIf([&](const InstPartition *Partition) { 281 if (Partition->hasDepCycle()) 282 return true; 283 284 // Now, check if all stores are conditional in this partition. 285 bool seenStore = false; 286 287 for (auto *Inst : *Partition) 288 if (isa<StoreInst>(Inst)) { 289 seenStore = true; 290 if (!LoopAccessInfo::blockNeedsPredication(Inst->getParent(), L, DT)) 291 return false; 292 } 293 return seenStore; 294 }); 295 } 296 297 /// \brief Merges the partitions according to various heuristics. 298 void mergeBeforePopulating() { 299 mergeAdjacentNonCyclic(); 300 if (!DistributeNonIfConvertible) 301 mergeNonIfConvertible(); 302 } 303 304 /// \brief Merges partitions in order to ensure that no loads are duplicated. 305 /// 306 /// We can't duplicate loads because that could potentially reorder them. 307 /// LoopAccessAnalysis provides dependency information with the context that 308 /// the order of memory operation is preserved. 309 /// 310 /// Return if any partitions were merged. 311 bool mergeToAvoidDuplicatedLoads() { 312 typedef DenseMap<Instruction *, InstPartition *> LoadToPartitionT; 313 typedef EquivalenceClasses<InstPartition *> ToBeMergedT; 314 315 LoadToPartitionT LoadToPartition; 316 ToBeMergedT ToBeMerged; 317 318 // Step through the partitions and create equivalence between partitions 319 // that contain the same load. Also put partitions in between them in the 320 // same equivalence class to avoid reordering of memory operations. 321 for (PartitionContainerT::iterator I = PartitionContainer.begin(), 322 E = PartitionContainer.end(); 323 I != E; ++I) { 324 auto *PartI = &*I; 325 326 // If a load occurs in two partitions PartI and PartJ, merge all 327 // partitions (PartI, PartJ] into PartI. 328 for (Instruction *Inst : *PartI) 329 if (isa<LoadInst>(Inst)) { 330 bool NewElt; 331 LoadToPartitionT::iterator LoadToPart; 332 333 std::tie(LoadToPart, NewElt) = 334 LoadToPartition.insert(std::make_pair(Inst, PartI)); 335 if (!NewElt) { 336 DEBUG(dbgs() << "Merging partitions due to this load in multiple " 337 << "partitions: " << PartI << ", " 338 << LoadToPart->second << "\n" << *Inst << "\n"); 339 340 auto PartJ = I; 341 do { 342 --PartJ; 343 ToBeMerged.unionSets(PartI, &*PartJ); 344 } while (&*PartJ != LoadToPart->second); 345 } 346 } 347 } 348 if (ToBeMerged.empty()) 349 return false; 350 351 // Merge the member of an equivalence class into its class leader. This 352 // makes the members empty. 353 for (ToBeMergedT::iterator I = ToBeMerged.begin(), E = ToBeMerged.end(); 354 I != E; ++I) { 355 if (!I->isLeader()) 356 continue; 357 358 auto PartI = I->getData(); 359 for (auto PartJ : make_range(std::next(ToBeMerged.member_begin(I)), 360 ToBeMerged.member_end())) { 361 PartJ->moveTo(*PartI); 362 } 363 } 364 365 // Remove the empty partitions. 366 PartitionContainer.remove_if( 367 [](const InstPartition &P) { return P.empty(); }); 368 369 return true; 370 } 371 372 /// \brief Sets up the mapping between instructions to partitions. If the 373 /// instruction is duplicated across multiple partitions, set the entry to -1. 374 void setupPartitionIdOnInstructions() { 375 int PartitionID = 0; 376 for (const auto &Partition : PartitionContainer) { 377 for (Instruction *Inst : Partition) { 378 bool NewElt; 379 InstToPartitionIdT::iterator Iter; 380 381 std::tie(Iter, NewElt) = 382 InstToPartitionId.insert(std::make_pair(Inst, PartitionID)); 383 if (!NewElt) 384 Iter->second = -1; 385 } 386 ++PartitionID; 387 } 388 } 389 390 /// \brief Populates the partition with everything that the seeding 391 /// instructions require. 392 void populateUsedSet() { 393 for (auto &P : PartitionContainer) 394 P.populateUsedSet(); 395 } 396 397 /// \brief This performs the main chunk of the work of cloning the loops for 398 /// the partitions. 399 void cloneLoops() { 400 BasicBlock *OrigPH = L->getLoopPreheader(); 401 // At this point the predecessor of the preheader is either the memcheck 402 // block or the top part of the original preheader. 403 BasicBlock *Pred = OrigPH->getSinglePredecessor(); 404 assert(Pred && "Preheader does not have a single predecessor"); 405 BasicBlock *ExitBlock = L->getExitBlock(); 406 assert(ExitBlock && "No single exit block"); 407 Loop *NewLoop; 408 409 assert(!PartitionContainer.empty() && "at least two partitions expected"); 410 // We're cloning the preheader along with the loop so we already made sure 411 // it was empty. 412 assert(&*OrigPH->begin() == OrigPH->getTerminator() && 413 "preheader not empty"); 414 415 // Create a loop for each partition except the last. Clone the original 416 // loop before PH along with adding a preheader for the cloned loop. Then 417 // update PH to point to the newly added preheader. 418 BasicBlock *TopPH = OrigPH; 419 unsigned Index = getSize() - 1; 420 for (auto I = std::next(PartitionContainer.rbegin()), 421 E = PartitionContainer.rend(); 422 I != E; ++I, --Index, TopPH = NewLoop->getLoopPreheader()) { 423 auto *Part = &*I; 424 425 NewLoop = Part->cloneLoopWithPreheader(TopPH, Pred, Index, LI, DT); 426 427 Part->getVMap()[ExitBlock] = TopPH; 428 Part->remapInstructions(); 429 } 430 Pred->getTerminator()->replaceUsesOfWith(OrigPH, TopPH); 431 432 // Now go in forward order and update the immediate dominator for the 433 // preheaders with the exiting block of the previous loop. Dominance 434 // within the loop is updated in cloneLoopWithPreheader. 435 for (auto Curr = PartitionContainer.cbegin(), 436 Next = std::next(PartitionContainer.cbegin()), 437 E = PartitionContainer.cend(); 438 Next != E; ++Curr, ++Next) 439 DT->changeImmediateDominator( 440 Next->getDistributedLoop()->getLoopPreheader(), 441 Curr->getDistributedLoop()->getExitingBlock()); 442 } 443 444 /// \brief Removes the dead instructions from the cloned loops. 445 void removeUnusedInsts() { 446 for (auto &Partition : PartitionContainer) 447 Partition.removeUnusedInsts(); 448 } 449 450 /// \brief For each memory pointer, it computes the partitionId the pointer is 451 /// used in. 452 /// 453 /// This returns an array of int where the I-th entry corresponds to I-th 454 /// entry in LAI.getRuntimePointerCheck(). If the pointer is used in multiple 455 /// partitions its entry is set to -1. 456 SmallVector<int, 8> 457 computePartitionSetForPointers(const LoopAccessInfo &LAI) { 458 const RuntimePointerChecking *RtPtrCheck = LAI.getRuntimePointerChecking(); 459 460 unsigned N = RtPtrCheck->Pointers.size(); 461 SmallVector<int, 8> PtrToPartitions(N); 462 for (unsigned I = 0; I < N; ++I) { 463 Value *Ptr = RtPtrCheck->Pointers[I].PointerValue; 464 auto Instructions = 465 LAI.getInstructionsForAccess(Ptr, RtPtrCheck->Pointers[I].IsWritePtr); 466 467 int &Partition = PtrToPartitions[I]; 468 // First set it to uninitialized. 469 Partition = -2; 470 for (Instruction *Inst : Instructions) { 471 // Note that this could be -1 if Inst is duplicated across multiple 472 // partitions. 473 int ThisPartition = this->InstToPartitionId[Inst]; 474 if (Partition == -2) 475 Partition = ThisPartition; 476 // -1 means belonging to multiple partitions. 477 else if (Partition == -1) 478 break; 479 else if (Partition != (int)ThisPartition) 480 Partition = -1; 481 } 482 assert(Partition != -2 && "Pointer not belonging to any partition"); 483 } 484 485 return PtrToPartitions; 486 } 487 488 void print(raw_ostream &OS) const { 489 unsigned Index = 0; 490 for (const auto &P : PartitionContainer) { 491 OS << "Partition " << Index++ << " (" << &P << "):\n"; 492 P.print(); 493 } 494 } 495 496 void dump() const { print(dbgs()); } 497 498 #ifndef NDEBUG 499 friend raw_ostream &operator<<(raw_ostream &OS, 500 const InstPartitionContainer &Partitions) { 501 Partitions.print(OS); 502 return OS; 503 } 504 #endif 505 506 void printBlocks() const { 507 unsigned Index = 0; 508 for (const auto &P : PartitionContainer) { 509 dbgs() << "\nPartition " << Index++ << " (" << &P << "):\n"; 510 P.printBlocks(); 511 } 512 } 513 514 private: 515 typedef std::list<InstPartition> PartitionContainerT; 516 517 /// \brief List of partitions. 518 PartitionContainerT PartitionContainer; 519 520 /// \brief Mapping from Instruction to partition Id. If the instruction 521 /// belongs to multiple partitions the entry contains -1. 522 InstToPartitionIdT InstToPartitionId; 523 524 Loop *L; 525 LoopInfo *LI; 526 DominatorTree *DT; 527 528 /// \brief The control structure to merge adjacent partitions if both satisfy 529 /// the \p Predicate. 530 template <class UnaryPredicate> 531 void mergeAdjacentPartitionsIf(UnaryPredicate Predicate) { 532 InstPartition *PrevMatch = nullptr; 533 for (auto I = PartitionContainer.begin(); I != PartitionContainer.end();) { 534 auto DoesMatch = Predicate(&*I); 535 if (PrevMatch == nullptr && DoesMatch) { 536 PrevMatch = &*I; 537 ++I; 538 } else if (PrevMatch != nullptr && DoesMatch) { 539 I->moveTo(*PrevMatch); 540 I = PartitionContainer.erase(I); 541 } else { 542 PrevMatch = nullptr; 543 ++I; 544 } 545 } 546 } 547 }; 548 549 /// \brief For each memory instruction, this class maintains difference of the 550 /// number of unsafe dependences that start out from this instruction minus 551 /// those that end here. 552 /// 553 /// By traversing the memory instructions in program order and accumulating this 554 /// number, we know whether any unsafe dependence crosses over a program point. 555 class MemoryInstructionDependences { 556 typedef MemoryDepChecker::Dependence Dependence; 557 558 public: 559 struct Entry { 560 Instruction *Inst; 561 unsigned NumUnsafeDependencesStartOrEnd; 562 563 Entry(Instruction *Inst) : Inst(Inst), NumUnsafeDependencesStartOrEnd(0) {} 564 }; 565 566 typedef SmallVector<Entry, 8> AccessesType; 567 568 AccessesType::const_iterator begin() const { return Accesses.begin(); } 569 AccessesType::const_iterator end() const { return Accesses.end(); } 570 571 MemoryInstructionDependences( 572 const SmallVectorImpl<Instruction *> &Instructions, 573 const SmallVectorImpl<Dependence> &Dependences) { 574 Accesses.append(Instructions.begin(), Instructions.end()); 575 576 DEBUG(dbgs() << "Backward dependences:\n"); 577 for (auto &Dep : Dependences) 578 if (Dep.isPossiblyBackward()) { 579 // Note that the designations source and destination follow the program 580 // order, i.e. source is always first. (The direction is given by the 581 // DepType.) 582 ++Accesses[Dep.Source].NumUnsafeDependencesStartOrEnd; 583 --Accesses[Dep.Destination].NumUnsafeDependencesStartOrEnd; 584 585 DEBUG(Dep.print(dbgs(), 2, Instructions)); 586 } 587 } 588 589 private: 590 AccessesType Accesses; 591 }; 592 593 /// \brief The actual class performing the per-loop work. 594 class LoopDistributeForLoop { 595 public: 596 LoopDistributeForLoop(Loop *L, Function *F, LoopInfo *LI, DominatorTree *DT, 597 ScalarEvolution *SE, OptimizationRemarkEmitter *ORE) 598 : L(L), F(F), LI(LI), LAI(nullptr), DT(DT), SE(SE), ORE(ORE) { 599 setForced(); 600 } 601 602 /// \brief Try to distribute an inner-most loop. 603 bool processLoop(std::function<const LoopAccessInfo &(Loop &)> &GetLAA) { 604 assert(L->empty() && "Only process inner loops."); 605 606 DEBUG(dbgs() << "\nLDist: In \"" << L->getHeader()->getParent()->getName() 607 << "\" checking " << *L << "\n"); 608 609 BasicBlock *PH = L->getLoopPreheader(); 610 if (!PH) 611 return fail("no preheader"); 612 if (!L->getExitBlock()) 613 return fail("multiple exit blocks"); 614 615 // LAA will check that we only have a single exiting block. 616 LAI = &GetLAA(*L); 617 618 // Currently, we only distribute to isolate the part of the loop with 619 // dependence cycles to enable partial vectorization. 620 if (LAI->canVectorizeMemory()) 621 return fail("memory operations are safe for vectorization"); 622 623 auto *Dependences = LAI->getDepChecker().getDependences(); 624 if (!Dependences || Dependences->empty()) 625 return fail("no unsafe dependences to isolate"); 626 627 InstPartitionContainer Partitions(L, LI, DT); 628 629 // First, go through each memory operation and assign them to consecutive 630 // partitions (the order of partitions follows program order). Put those 631 // with unsafe dependences into "cyclic" partition otherwise put each store 632 // in its own "non-cyclic" partition (we'll merge these later). 633 // 634 // Note that a memory operation (e.g. Load2 below) at a program point that 635 // has an unsafe dependence (Store3->Load1) spanning over it must be 636 // included in the same cyclic partition as the dependent operations. This 637 // is to preserve the original program order after distribution. E.g.: 638 // 639 // NumUnsafeDependencesStartOrEnd NumUnsafeDependencesActive 640 // Load1 -. 1 0->1 641 // Load2 | /Unsafe/ 0 1 642 // Store3 -' -1 1->0 643 // Load4 0 0 644 // 645 // NumUnsafeDependencesActive > 0 indicates this situation and in this case 646 // we just keep assigning to the same cyclic partition until 647 // NumUnsafeDependencesActive reaches 0. 648 const MemoryDepChecker &DepChecker = LAI->getDepChecker(); 649 MemoryInstructionDependences MID(DepChecker.getMemoryInstructions(), 650 *Dependences); 651 652 int NumUnsafeDependencesActive = 0; 653 for (auto &InstDep : MID) { 654 Instruction *I = InstDep.Inst; 655 // We update NumUnsafeDependencesActive post-instruction, catch the 656 // start of a dependence directly via NumUnsafeDependencesStartOrEnd. 657 if (NumUnsafeDependencesActive || 658 InstDep.NumUnsafeDependencesStartOrEnd > 0) 659 Partitions.addToCyclicPartition(I); 660 else 661 Partitions.addToNewNonCyclicPartition(I); 662 NumUnsafeDependencesActive += InstDep.NumUnsafeDependencesStartOrEnd; 663 assert(NumUnsafeDependencesActive >= 0 && 664 "Negative number of dependences active"); 665 } 666 667 // Add partitions for values used outside. These partitions can be out of 668 // order from the original program order. This is OK because if the 669 // partition uses a load we will merge this partition with the original 670 // partition of the load that we set up in the previous loop (see 671 // mergeToAvoidDuplicatedLoads). 672 auto DefsUsedOutside = findDefsUsedOutsideOfLoop(L); 673 for (auto *Inst : DefsUsedOutside) 674 Partitions.addToNewNonCyclicPartition(Inst); 675 676 DEBUG(dbgs() << "Seeded partitions:\n" << Partitions); 677 if (Partitions.getSize() < 2) 678 return fail("cannot isolate unsafe dependencies"); 679 680 // Run the merge heuristics: Merge non-cyclic adjacent partitions since we 681 // should be able to vectorize these together. 682 Partitions.mergeBeforePopulating(); 683 DEBUG(dbgs() << "\nMerged partitions:\n" << Partitions); 684 if (Partitions.getSize() < 2) 685 return fail("cannot isolate unsafe dependencies"); 686 687 // Now, populate the partitions with non-memory operations. 688 Partitions.populateUsedSet(); 689 DEBUG(dbgs() << "\nPopulated partitions:\n" << Partitions); 690 691 // In order to preserve original lexical order for loads, keep them in the 692 // partition that we set up in the MemoryInstructionDependences loop. 693 if (Partitions.mergeToAvoidDuplicatedLoads()) { 694 DEBUG(dbgs() << "\nPartitions merged to ensure unique loads:\n" 695 << Partitions); 696 if (Partitions.getSize() < 2) 697 return fail("cannot isolate unsafe dependencies"); 698 } 699 700 // Don't distribute the loop if we need too many SCEV run-time checks. 701 const SCEVUnionPredicate &Pred = LAI->getPSE().getUnionPredicate(); 702 if (Pred.getComplexity() > (IsForced.getValueOr(false) 703 ? PragmaDistributeSCEVCheckThreshold 704 : DistributeSCEVCheckThreshold)) 705 return fail("too many SCEV run-time checks needed.\n"); 706 707 DEBUG(dbgs() << "\nDistributing loop: " << *L << "\n"); 708 // We're done forming the partitions set up the reverse mapping from 709 // instructions to partitions. 710 Partitions.setupPartitionIdOnInstructions(); 711 712 // To keep things simple have an empty preheader before we version or clone 713 // the loop. (Also split if this has no predecessor, i.e. entry, because we 714 // rely on PH having a predecessor.) 715 if (!PH->getSinglePredecessor() || &*PH->begin() != PH->getTerminator()) 716 SplitBlock(PH, PH->getTerminator(), DT, LI); 717 718 // If we need run-time checks, version the loop now. 719 auto PtrToPartition = Partitions.computePartitionSetForPointers(*LAI); 720 const auto *RtPtrChecking = LAI->getRuntimePointerChecking(); 721 const auto &AllChecks = RtPtrChecking->getChecks(); 722 auto Checks = includeOnlyCrossPartitionChecks(AllChecks, PtrToPartition, 723 RtPtrChecking); 724 725 if (!Pred.isAlwaysTrue() || !Checks.empty()) { 726 DEBUG(dbgs() << "\nPointers:\n"); 727 DEBUG(LAI->getRuntimePointerChecking()->printChecks(dbgs(), Checks)); 728 LoopVersioning LVer(*LAI, L, LI, DT, SE, false); 729 LVer.setAliasChecks(std::move(Checks)); 730 LVer.setSCEVChecks(LAI->getPSE().getUnionPredicate()); 731 LVer.versionLoop(DefsUsedOutside); 732 LVer.annotateLoopWithNoAlias(); 733 } 734 735 // Create identical copies of the original loop for each partition and hook 736 // them up sequentially. 737 Partitions.cloneLoops(); 738 739 // Now, we remove the instruction from each loop that don't belong to that 740 // partition. 741 Partitions.removeUnusedInsts(); 742 DEBUG(dbgs() << "\nAfter removing unused Instrs:\n"); 743 DEBUG(Partitions.printBlocks()); 744 745 if (LDistVerify) { 746 LI->verify(*DT); 747 DT->verifyDomTree(); 748 } 749 750 ++NumLoopsDistributed; 751 // Report the success. 752 ORE->emitOptimizationRemark(LDIST_NAME, L, "distributed loop"); 753 return true; 754 } 755 756 /// \brief Provide diagnostics then \return with false. 757 bool fail(llvm::StringRef Message) { 758 LLVMContext &Ctx = F->getContext(); 759 bool Forced = isForced().getValueOr(false); 760 761 DEBUG(dbgs() << "Skipping; " << Message << "\n"); 762 763 // With Rpass-missed report that distribution failed. 764 ORE->emitOptimizationRemarkMissed( 765 LDIST_NAME, L, 766 "loop not distributed: use -Rpass-analysis=loop-distribute for more " 767 "info"); 768 769 // With Rpass-analysis report why. This is on by default if distribution 770 // was requested explicitly. 771 ORE->emitOptimizationRemarkAnalysis( 772 Forced ? DiagnosticInfoOptimizationRemarkAnalysis::AlwaysPrint 773 : LDIST_NAME, 774 L, Twine("loop not distributed: ") + Message); 775 776 // Also issue a warning if distribution was requested explicitly but it 777 // failed. 778 if (Forced) 779 Ctx.diagnose(DiagnosticInfoOptimizationFailure( 780 *F, L->getStartLoc(), "loop not distributed: failed " 781 "explicitly specified loop distribution")); 782 783 return false; 784 } 785 786 /// \brief Return if distribution forced to be enabled/disabled for the loop. 787 /// 788 /// If the optional has a value, it indicates whether distribution was forced 789 /// to be enabled (true) or disabled (false). If the optional has no value 790 /// distribution was not forced either way. 791 const Optional<bool> &isForced() const { return IsForced; } 792 793 private: 794 /// \brief Filter out checks between pointers from the same partition. 795 /// 796 /// \p PtrToPartition contains the partition number for pointers. Partition 797 /// number -1 means that the pointer is used in multiple partitions. In this 798 /// case we can't safely omit the check. 799 SmallVector<RuntimePointerChecking::PointerCheck, 4> 800 includeOnlyCrossPartitionChecks( 801 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &AllChecks, 802 const SmallVectorImpl<int> &PtrToPartition, 803 const RuntimePointerChecking *RtPtrChecking) { 804 SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks; 805 806 std::copy_if(AllChecks.begin(), AllChecks.end(), std::back_inserter(Checks), 807 [&](const RuntimePointerChecking::PointerCheck &Check) { 808 for (unsigned PtrIdx1 : Check.first->Members) 809 for (unsigned PtrIdx2 : Check.second->Members) 810 // Only include this check if there is a pair of pointers 811 // that require checking and the pointers fall into 812 // separate partitions. 813 // 814 // (Note that we already know at this point that the two 815 // pointer groups need checking but it doesn't follow 816 // that each pair of pointers within the two groups need 817 // checking as well. 818 // 819 // In other words we don't want to include a check just 820 // because there is a pair of pointers between the two 821 // pointer groups that require checks and a different 822 // pair whose pointers fall into different partitions.) 823 if (RtPtrChecking->needsChecking(PtrIdx1, PtrIdx2) && 824 !RuntimePointerChecking::arePointersInSamePartition( 825 PtrToPartition, PtrIdx1, PtrIdx2)) 826 return true; 827 return false; 828 }); 829 830 return Checks; 831 } 832 833 /// \brief Check whether the loop metadata is forcing distribution to be 834 /// enabled/disabled. 835 void setForced() { 836 Optional<const MDOperand *> Value = 837 findStringMetadataForLoop(L, "llvm.loop.distribute.enable"); 838 if (!Value) 839 return; 840 841 const MDOperand *Op = *Value; 842 assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata"); 843 IsForced = mdconst::extract<ConstantInt>(*Op)->getZExtValue(); 844 } 845 846 Loop *L; 847 Function *F; 848 849 // Analyses used. 850 LoopInfo *LI; 851 const LoopAccessInfo *LAI; 852 DominatorTree *DT; 853 ScalarEvolution *SE; 854 OptimizationRemarkEmitter *ORE; 855 856 /// \brief Indicates whether distribution is forced to be enabled/disabled for 857 /// the loop. 858 /// 859 /// If the optional has a value, it indicates whether distribution was forced 860 /// to be enabled (true) or disabled (false). If the optional has no value 861 /// distribution was not forced either way. 862 Optional<bool> IsForced; 863 }; 864 865 /// Shared implementation between new and old PMs. 866 static bool runImpl(Function &F, LoopInfo *LI, DominatorTree *DT, 867 ScalarEvolution *SE, OptimizationRemarkEmitter *ORE, 868 std::function<const LoopAccessInfo &(Loop &)> &GetLAA, 869 bool ProcessAllLoops) { 870 // Build up a worklist of inner-loops to vectorize. This is necessary as the 871 // act of distributing a loop creates new loops and can invalidate iterators 872 // across the loops. 873 SmallVector<Loop *, 8> Worklist; 874 875 for (Loop *TopLevelLoop : *LI) 876 for (Loop *L : depth_first(TopLevelLoop)) 877 // We only handle inner-most loops. 878 if (L->empty()) 879 Worklist.push_back(L); 880 881 // Now walk the identified inner loops. 882 bool Changed = false; 883 for (Loop *L : Worklist) { 884 LoopDistributeForLoop LDL(L, &F, LI, DT, SE, ORE); 885 886 // If distribution was forced for the specific loop to be 887 // enabled/disabled, follow that. Otherwise use the global flag. 888 if (LDL.isForced().getValueOr(ProcessAllLoops)) 889 Changed |= LDL.processLoop(GetLAA); 890 } 891 892 // Process each loop nest in the function. 893 return Changed; 894 } 895 896 /// \brief The pass class. 897 class LoopDistributeLegacy : public FunctionPass { 898 public: 899 /// \p ProcessAllLoopsByDefault specifies whether loop distribution should be 900 /// performed by default. Pass -enable-loop-distribute={0,1} overrides this 901 /// default. We use this to keep LoopDistribution off by default when invoked 902 /// from the optimization pipeline but on when invoked explicitly from opt. 903 LoopDistributeLegacy(bool ProcessAllLoopsByDefault = true) 904 : FunctionPass(ID), ProcessAllLoops(ProcessAllLoopsByDefault) { 905 // The default is set by the caller. 906 if (EnableLoopDistribute.getNumOccurrences() > 0) 907 ProcessAllLoops = EnableLoopDistribute; 908 initializeLoopDistributeLegacyPass(*PassRegistry::getPassRegistry()); 909 } 910 911 bool runOnFunction(Function &F) override { 912 if (skipFunction(F)) 913 return false; 914 915 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 916 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 917 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 918 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 919 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 920 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 921 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 922 923 return runImpl(F, LI, DT, SE, ORE, GetLAA, ProcessAllLoops); 924 } 925 926 void getAnalysisUsage(AnalysisUsage &AU) const override { 927 AU.addRequired<ScalarEvolutionWrapperPass>(); 928 AU.addRequired<LoopInfoWrapperPass>(); 929 AU.addPreserved<LoopInfoWrapperPass>(); 930 AU.addRequired<LoopAccessLegacyAnalysis>(); 931 AU.addRequired<DominatorTreeWrapperPass>(); 932 AU.addPreserved<DominatorTreeWrapperPass>(); 933 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 934 AU.addPreserved<GlobalsAAWrapperPass>(); 935 } 936 937 static char ID; 938 939 private: 940 /// \brief Whether distribution should be on in this function. The per-loop 941 /// pragma can override this. 942 bool ProcessAllLoops; 943 }; 944 } // anonymous namespace 945 946 PreservedAnalyses LoopDistributePass::run(Function &F, 947 FunctionAnalysisManager &AM) { 948 // FIXME: This does not currently match the behavior from the old PM. 949 // ProcessAllLoops with the old PM defaults to true when invoked from opt and 950 // false when invoked from the optimization pipeline. 951 bool ProcessAllLoops = false; 952 if (EnableLoopDistribute.getNumOccurrences() > 0) 953 ProcessAllLoops = EnableLoopDistribute; 954 955 auto &LI = AM.getResult<LoopAnalysis>(F); 956 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 957 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 958 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 959 960 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 961 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 962 [&](Loop &L) -> const LoopAccessInfo & { 963 return LAM.getResult<LoopAccessAnalysis>(L); 964 }; 965 966 bool Changed = runImpl(F, &LI, &DT, &SE, &ORE, GetLAA, ProcessAllLoops); 967 if (!Changed) 968 return PreservedAnalyses::all(); 969 PreservedAnalyses PA; 970 PA.preserve<LoopAnalysis>(); 971 PA.preserve<DominatorTreeAnalysis>(); 972 return PA; 973 } 974 975 char LoopDistributeLegacy::ID; 976 static const char ldist_name[] = "Loop Distribition"; 977 978 INITIALIZE_PASS_BEGIN(LoopDistributeLegacy, LDIST_NAME, ldist_name, false, 979 false) 980 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 981 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 982 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 983 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 984 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 985 INITIALIZE_PASS_END(LoopDistributeLegacy, LDIST_NAME, ldist_name, false, false) 986 987 namespace llvm { 988 FunctionPass *createLoopDistributePass(bool ProcessAllLoopsByDefault) { 989 return new LoopDistributeLegacy(ProcessAllLoopsByDefault); 990 } 991 } 992