xref: /llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision ffeb64db355e7faf849de4a830010d2d85183f86)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BlockFrequencyInfo.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/Analysis/CFG.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/DomTreeUpdater.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/GuardUtils.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/LazyValueInfo.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/PatternMatch.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Use.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/InitializePasses.h"
59 #include "llvm/Pass.h"
60 #include "llvm/Support/BlockFrequency.h"
61 #include "llvm/Support/BranchProbability.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Transforms/Scalar.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/Cloning.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/SSAUpdater.h"
71 #include "llvm/Transforms/Utils/ValueMapper.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <memory>
78 #include <utility>
79 
80 using namespace llvm;
81 using namespace jumpthreading;
82 
83 #define DEBUG_TYPE "jump-threading"
84 
85 STATISTIC(NumThreads, "Number of jumps threaded");
86 STATISTIC(NumFolds,   "Number of terminators folded");
87 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
88 
89 static cl::opt<unsigned>
90 BBDuplicateThreshold("jump-threading-threshold",
91           cl::desc("Max block size to duplicate for jump threading"),
92           cl::init(6), cl::Hidden);
93 
94 static cl::opt<unsigned>
95 ImplicationSearchThreshold(
96   "jump-threading-implication-search-threshold",
97   cl::desc("The number of predecessors to search for a stronger "
98            "condition to use to thread over a weaker condition"),
99   cl::init(3), cl::Hidden);
100 
101 static cl::opt<bool> PrintLVIAfterJumpThreading(
102     "print-lvi-after-jump-threading",
103     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
104     cl::Hidden);
105 
106 static cl::opt<bool> ThreadAcrossLoopHeaders(
107     "jump-threading-across-loop-headers",
108     cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
109     cl::init(false), cl::Hidden);
110 
111 
112 namespace {
113 
114   /// This pass performs 'jump threading', which looks at blocks that have
115   /// multiple predecessors and multiple successors.  If one or more of the
116   /// predecessors of the block can be proven to always jump to one of the
117   /// successors, we forward the edge from the predecessor to the successor by
118   /// duplicating the contents of this block.
119   ///
120   /// An example of when this can occur is code like this:
121   ///
122   ///   if () { ...
123   ///     X = 4;
124   ///   }
125   ///   if (X < 3) {
126   ///
127   /// In this case, the unconditional branch at the end of the first if can be
128   /// revectored to the false side of the second if.
129   class JumpThreading : public FunctionPass {
130     JumpThreadingPass Impl;
131 
132   public:
133     static char ID; // Pass identification
134 
135     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
136       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
137     }
138 
139     bool runOnFunction(Function &F) override;
140 
141     void getAnalysisUsage(AnalysisUsage &AU) const override {
142       AU.addRequired<DominatorTreeWrapperPass>();
143       AU.addPreserved<DominatorTreeWrapperPass>();
144       AU.addRequired<AAResultsWrapperPass>();
145       AU.addRequired<LazyValueInfoWrapperPass>();
146       AU.addPreserved<LazyValueInfoWrapperPass>();
147       AU.addPreserved<GlobalsAAWrapperPass>();
148       AU.addRequired<TargetLibraryInfoWrapperPass>();
149     }
150 
151     void releaseMemory() override { Impl.releaseMemory(); }
152   };
153 
154 } // end anonymous namespace
155 
156 char JumpThreading::ID = 0;
157 
158 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
159                 "Jump Threading", false, false)
160 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
161 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
162 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
163 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
164 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
165                 "Jump Threading", false, false)
166 
167 // Public interface to the Jump Threading pass
168 FunctionPass *llvm::createJumpThreadingPass(int Threshold) {
169   return new JumpThreading(Threshold);
170 }
171 
172 JumpThreadingPass::JumpThreadingPass(int T) {
173   DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
174 }
175 
176 // Update branch probability information according to conditional
177 // branch probability. This is usually made possible for cloned branches
178 // in inline instances by the context specific profile in the caller.
179 // For instance,
180 //
181 //  [Block PredBB]
182 //  [Branch PredBr]
183 //  if (t) {
184 //     Block A;
185 //  } else {
186 //     Block B;
187 //  }
188 //
189 //  [Block BB]
190 //  cond = PN([true, %A], [..., %B]); // PHI node
191 //  [Branch CondBr]
192 //  if (cond) {
193 //    ...  // P(cond == true) = 1%
194 //  }
195 //
196 //  Here we know that when block A is taken, cond must be true, which means
197 //      P(cond == true | A) = 1
198 //
199 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
200 //                               P(cond == true | B) * P(B)
201 //  we get:
202 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
203 //
204 //  which gives us:
205 //     P(A) is less than P(cond == true), i.e.
206 //     P(t == true) <= P(cond == true)
207 //
208 //  In other words, if we know P(cond == true) is unlikely, we know
209 //  that P(t == true) is also unlikely.
210 //
211 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
212   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
213   if (!CondBr)
214     return;
215 
216   BranchProbability BP;
217   uint64_t TrueWeight, FalseWeight;
218   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
219     return;
220 
221   // Returns the outgoing edge of the dominating predecessor block
222   // that leads to the PhiNode's incoming block:
223   auto GetPredOutEdge =
224       [](BasicBlock *IncomingBB,
225          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
226     auto *PredBB = IncomingBB;
227     auto *SuccBB = PhiBB;
228     SmallPtrSet<BasicBlock *, 16> Visited;
229     while (true) {
230       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
231       if (PredBr && PredBr->isConditional())
232         return {PredBB, SuccBB};
233       Visited.insert(PredBB);
234       auto *SinglePredBB = PredBB->getSinglePredecessor();
235       if (!SinglePredBB)
236         return {nullptr, nullptr};
237 
238       // Stop searching when SinglePredBB has been visited. It means we see
239       // an unreachable loop.
240       if (Visited.count(SinglePredBB))
241         return {nullptr, nullptr};
242 
243       SuccBB = PredBB;
244       PredBB = SinglePredBB;
245     }
246   };
247 
248   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
249     Value *PhiOpnd = PN->getIncomingValue(i);
250     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
251 
252     if (!CI || !CI->getType()->isIntegerTy(1))
253       continue;
254 
255     BP = (CI->isOne() ? BranchProbability::getBranchProbability(
256                             TrueWeight, TrueWeight + FalseWeight)
257                       : BranchProbability::getBranchProbability(
258                             FalseWeight, TrueWeight + FalseWeight));
259 
260     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
261     if (!PredOutEdge.first)
262       return;
263 
264     BasicBlock *PredBB = PredOutEdge.first;
265     BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
266     if (!PredBr)
267       return;
268 
269     uint64_t PredTrueWeight, PredFalseWeight;
270     // FIXME: We currently only set the profile data when it is missing.
271     // With PGO, this can be used to refine even existing profile data with
272     // context information. This needs to be done after more performance
273     // testing.
274     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
275       continue;
276 
277     // We can not infer anything useful when BP >= 50%, because BP is the
278     // upper bound probability value.
279     if (BP >= BranchProbability(50, 100))
280       continue;
281 
282     SmallVector<uint32_t, 2> Weights;
283     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
284       Weights.push_back(BP.getNumerator());
285       Weights.push_back(BP.getCompl().getNumerator());
286     } else {
287       Weights.push_back(BP.getCompl().getNumerator());
288       Weights.push_back(BP.getNumerator());
289     }
290     PredBr->setMetadata(LLVMContext::MD_prof,
291                         MDBuilder(PredBr->getParent()->getContext())
292                             .createBranchWeights(Weights));
293   }
294 }
295 
296 /// runOnFunction - Toplevel algorithm.
297 bool JumpThreading::runOnFunction(Function &F) {
298   if (skipFunction(F))
299     return false;
300   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
301   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
302   // DT if it's available.
303   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
304   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
305   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
306   DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
307   std::unique_ptr<BlockFrequencyInfo> BFI;
308   std::unique_ptr<BranchProbabilityInfo> BPI;
309   if (F.hasProfileData()) {
310     LoopInfo LI{DominatorTree(F)};
311     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
312     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
313   }
314 
315   bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, F.hasProfileData(),
316                               std::move(BFI), std::move(BPI));
317   if (PrintLVIAfterJumpThreading) {
318     dbgs() << "LVI for function '" << F.getName() << "':\n";
319     LVI->printLVI(F, *DT, dbgs());
320   }
321   return Changed;
322 }
323 
324 PreservedAnalyses JumpThreadingPass::run(Function &F,
325                                          FunctionAnalysisManager &AM) {
326   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
327   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
328   // DT if it's available.
329   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
330   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
331   auto &AA = AM.getResult<AAManager>(F);
332   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
333 
334   std::unique_ptr<BlockFrequencyInfo> BFI;
335   std::unique_ptr<BranchProbabilityInfo> BPI;
336   if (F.hasProfileData()) {
337     LoopInfo LI{DominatorTree(F)};
338     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
339     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
340   }
341 
342   bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, F.hasProfileData(),
343                          std::move(BFI), std::move(BPI));
344 
345   if (!Changed)
346     return PreservedAnalyses::all();
347   PreservedAnalyses PA;
348   PA.preserve<GlobalsAA>();
349   PA.preserve<DominatorTreeAnalysis>();
350   PA.preserve<LazyValueAnalysis>();
351   return PA;
352 }
353 
354 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
355                                 LazyValueInfo *LVI_, AliasAnalysis *AA_,
356                                 DomTreeUpdater *DTU_, bool HasProfileData_,
357                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
358                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
359   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
360   TLI = TLI_;
361   LVI = LVI_;
362   AA = AA_;
363   DTU = DTU_;
364   BFI.reset();
365   BPI.reset();
366   // When profile data is available, we need to update edge weights after
367   // successful jump threading, which requires both BPI and BFI being available.
368   HasProfileData = HasProfileData_;
369   auto *GuardDecl = F.getParent()->getFunction(
370       Intrinsic::getName(Intrinsic::experimental_guard));
371   HasGuards = GuardDecl && !GuardDecl->use_empty();
372   if (HasProfileData) {
373     BPI = std::move(BPI_);
374     BFI = std::move(BFI_);
375   }
376 
377   // Reduce the number of instructions duplicated when optimizing strictly for
378   // size.
379   if (BBDuplicateThreshold.getNumOccurrences())
380     BBDupThreshold = BBDuplicateThreshold;
381   else if (F.hasFnAttribute(Attribute::MinSize))
382     BBDupThreshold = 3;
383   else
384     BBDupThreshold = DefaultBBDupThreshold;
385 
386   // JumpThreading must not processes blocks unreachable from entry. It's a
387   // waste of compute time and can potentially lead to hangs.
388   SmallPtrSet<BasicBlock *, 16> Unreachable;
389   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
390   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
391   DominatorTree &DT = DTU->getDomTree();
392   for (auto &BB : F)
393     if (!DT.isReachableFromEntry(&BB))
394       Unreachable.insert(&BB);
395 
396   if (!ThreadAcrossLoopHeaders)
397     FindLoopHeaders(F);
398 
399   bool EverChanged = false;
400   bool Changed;
401   do {
402     Changed = false;
403     for (auto &BB : F) {
404       if (Unreachable.count(&BB))
405         continue;
406       while (ProcessBlock(&BB)) // Thread all of the branches we can over BB.
407         Changed = true;
408 
409       // Jump threading may have introduced redundant debug values into BB
410       // which should be removed.
411       if (Changed)
412         RemoveRedundantDbgInstrs(&BB);
413 
414       // Stop processing BB if it's the entry or is now deleted. The following
415       // routines attempt to eliminate BB and locating a suitable replacement
416       // for the entry is non-trivial.
417       if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
418         continue;
419 
420       if (pred_empty(&BB)) {
421         // When ProcessBlock makes BB unreachable it doesn't bother to fix up
422         // the instructions in it. We must remove BB to prevent invalid IR.
423         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
424                           << "' with terminator: " << *BB.getTerminator()
425                           << '\n');
426         LoopHeaders.erase(&BB);
427         LVI->eraseBlock(&BB);
428         DeleteDeadBlock(&BB, DTU);
429         Changed = true;
430         continue;
431       }
432 
433       // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB
434       // is "almost empty", we attempt to merge BB with its sole successor.
435       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
436       if (BI && BI->isUnconditional()) {
437         BasicBlock *Succ = BI->getSuccessor(0);
438         if (
439             // The terminator must be the only non-phi instruction in BB.
440             BB.getFirstNonPHIOrDbg()->isTerminator() &&
441             // Don't alter Loop headers and latches to ensure another pass can
442             // detect and transform nested loops later.
443             !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
444             TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
445           RemoveRedundantDbgInstrs(Succ);
446           // BB is valid for cleanup here because we passed in DTU. F remains
447           // BB's parent until a DTU->getDomTree() event.
448           LVI->eraseBlock(&BB);
449           Changed = true;
450         }
451       }
452     }
453     EverChanged |= Changed;
454   } while (Changed);
455 
456   LoopHeaders.clear();
457   // Flush only the Dominator Tree.
458   DTU->getDomTree();
459   LVI->enableDT();
460   return EverChanged;
461 }
462 
463 // Replace uses of Cond with ToVal when safe to do so. If all uses are
464 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
465 // because we may incorrectly replace uses when guards/assumes are uses of
466 // of `Cond` and we used the guards/assume to reason about the `Cond` value
467 // at the end of block. RAUW unconditionally replaces all uses
468 // including the guards/assumes themselves and the uses before the
469 // guard/assume.
470 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) {
471   assert(Cond->getType() == ToVal->getType());
472   auto *BB = Cond->getParent();
473   // We can unconditionally replace all uses in non-local blocks (i.e. uses
474   // strictly dominated by BB), since LVI information is true from the
475   // terminator of BB.
476   replaceNonLocalUsesWith(Cond, ToVal);
477   for (Instruction &I : reverse(*BB)) {
478     // Reached the Cond whose uses we are trying to replace, so there are no
479     // more uses.
480     if (&I == Cond)
481       break;
482     // We only replace uses in instructions that are guaranteed to reach the end
483     // of BB, where we know Cond is ToVal.
484     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
485       break;
486     I.replaceUsesOfWith(Cond, ToVal);
487   }
488   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
489     Cond->eraseFromParent();
490 }
491 
492 /// Return the cost of duplicating a piece of this block from first non-phi
493 /// and before StopAt instruction to thread across it. Stop scanning the block
494 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
495 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
496                                              Instruction *StopAt,
497                                              unsigned Threshold) {
498   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
499   /// Ignore PHI nodes, these will be flattened when duplication happens.
500   BasicBlock::const_iterator I(BB->getFirstNonPHI());
501 
502   // FIXME: THREADING will delete values that are just used to compute the
503   // branch, so they shouldn't count against the duplication cost.
504 
505   unsigned Bonus = 0;
506   if (BB->getTerminator() == StopAt) {
507     // Threading through a switch statement is particularly profitable.  If this
508     // block ends in a switch, decrease its cost to make it more likely to
509     // happen.
510     if (isa<SwitchInst>(StopAt))
511       Bonus = 6;
512 
513     // The same holds for indirect branches, but slightly more so.
514     if (isa<IndirectBrInst>(StopAt))
515       Bonus = 8;
516   }
517 
518   // Bump the threshold up so the early exit from the loop doesn't skip the
519   // terminator-based Size adjustment at the end.
520   Threshold += Bonus;
521 
522   // Sum up the cost of each instruction until we get to the terminator.  Don't
523   // include the terminator because the copy won't include it.
524   unsigned Size = 0;
525   for (; &*I != StopAt; ++I) {
526 
527     // Stop scanning the block if we've reached the threshold.
528     if (Size > Threshold)
529       return Size;
530 
531     // Debugger intrinsics don't incur code size.
532     if (isa<DbgInfoIntrinsic>(I)) continue;
533 
534     // If this is a pointer->pointer bitcast, it is free.
535     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
536       continue;
537 
538     // Bail out if this instruction gives back a token type, it is not possible
539     // to duplicate it if it is used outside this BB.
540     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
541       return ~0U;
542 
543     // All other instructions count for at least one unit.
544     ++Size;
545 
546     // Calls are more expensive.  If they are non-intrinsic calls, we model them
547     // as having cost of 4.  If they are a non-vector intrinsic, we model them
548     // as having cost of 2 total, and if they are a vector intrinsic, we model
549     // them as having cost 1.
550     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
551       if (CI->cannotDuplicate() || CI->isConvergent())
552         // Blocks with NoDuplicate are modelled as having infinite cost, so they
553         // are never duplicated.
554         return ~0U;
555       else if (!isa<IntrinsicInst>(CI))
556         Size += 3;
557       else if (!CI->getType()->isVectorTy())
558         Size += 1;
559     }
560   }
561 
562   return Size > Bonus ? Size - Bonus : 0;
563 }
564 
565 /// FindLoopHeaders - We do not want jump threading to turn proper loop
566 /// structures into irreducible loops.  Doing this breaks up the loop nesting
567 /// hierarchy and pessimizes later transformations.  To prevent this from
568 /// happening, we first have to find the loop headers.  Here we approximate this
569 /// by finding targets of backedges in the CFG.
570 ///
571 /// Note that there definitely are cases when we want to allow threading of
572 /// edges across a loop header.  For example, threading a jump from outside the
573 /// loop (the preheader) to an exit block of the loop is definitely profitable.
574 /// It is also almost always profitable to thread backedges from within the loop
575 /// to exit blocks, and is often profitable to thread backedges to other blocks
576 /// within the loop (forming a nested loop).  This simple analysis is not rich
577 /// enough to track all of these properties and keep it up-to-date as the CFG
578 /// mutates, so we don't allow any of these transformations.
579 void JumpThreadingPass::FindLoopHeaders(Function &F) {
580   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
581   FindFunctionBackedges(F, Edges);
582 
583   for (const auto &Edge : Edges)
584     LoopHeaders.insert(Edge.second);
585 }
586 
587 /// getKnownConstant - Helper method to determine if we can thread over a
588 /// terminator with the given value as its condition, and if so what value to
589 /// use for that. What kind of value this is depends on whether we want an
590 /// integer or a block address, but an undef is always accepted.
591 /// Returns null if Val is null or not an appropriate constant.
592 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
593   if (!Val)
594     return nullptr;
595 
596   // Undef is "known" enough.
597   if (UndefValue *U = dyn_cast<UndefValue>(Val))
598     return U;
599 
600   if (Preference == WantBlockAddress)
601     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
602 
603   return dyn_cast<ConstantInt>(Val);
604 }
605 
606 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
607 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
608 /// in any of our predecessors.  If so, return the known list of value and pred
609 /// BB in the result vector.
610 ///
611 /// This returns true if there were any known values.
612 bool JumpThreadingPass::ComputeValueKnownInPredecessorsImpl(
613     Value *V, BasicBlock *BB, PredValueInfo &Result,
614     ConstantPreference Preference,
615     DenseSet<std::pair<Value *, BasicBlock *>> &RecursionSet,
616     Instruction *CxtI) {
617   // This method walks up use-def chains recursively.  Because of this, we could
618   // get into an infinite loop going around loops in the use-def chain.  To
619   // prevent this, keep track of what (value, block) pairs we've already visited
620   // and terminate the search if we loop back to them
621   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
622     return false;
623 
624   // If V is a constant, then it is known in all predecessors.
625   if (Constant *KC = getKnownConstant(V, Preference)) {
626     for (BasicBlock *Pred : predecessors(BB))
627       Result.push_back(std::make_pair(KC, Pred));
628 
629     return !Result.empty();
630   }
631 
632   // If V is a non-instruction value, or an instruction in a different block,
633   // then it can't be derived from a PHI.
634   Instruction *I = dyn_cast<Instruction>(V);
635   if (!I || I->getParent() != BB) {
636 
637     // Okay, if this is a live-in value, see if it has a known value at the end
638     // of any of our predecessors.
639     //
640     // FIXME: This should be an edge property, not a block end property.
641     /// TODO: Per PR2563, we could infer value range information about a
642     /// predecessor based on its terminator.
643     //
644     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
645     // "I" is a non-local compare-with-a-constant instruction.  This would be
646     // able to handle value inequalities better, for example if the compare is
647     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
648     // Perhaps getConstantOnEdge should be smart enough to do this?
649 
650     if (DTU->hasPendingDomTreeUpdates())
651       LVI->disableDT();
652     else
653       LVI->enableDT();
654     for (BasicBlock *P : predecessors(BB)) {
655       // If the value is known by LazyValueInfo to be a constant in a
656       // predecessor, use that information to try to thread this block.
657       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
658       if (Constant *KC = getKnownConstant(PredCst, Preference))
659         Result.push_back(std::make_pair(KC, P));
660     }
661 
662     return !Result.empty();
663   }
664 
665   /// If I is a PHI node, then we know the incoming values for any constants.
666   if (PHINode *PN = dyn_cast<PHINode>(I)) {
667     if (DTU->hasPendingDomTreeUpdates())
668       LVI->disableDT();
669     else
670       LVI->enableDT();
671     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
672       Value *InVal = PN->getIncomingValue(i);
673       if (Constant *KC = getKnownConstant(InVal, Preference)) {
674         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
675       } else {
676         Constant *CI = LVI->getConstantOnEdge(InVal,
677                                               PN->getIncomingBlock(i),
678                                               BB, CxtI);
679         if (Constant *KC = getKnownConstant(CI, Preference))
680           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
681       }
682     }
683 
684     return !Result.empty();
685   }
686 
687   // Handle Cast instructions.  Only see through Cast when the source operand is
688   // PHI or Cmp to save the compilation time.
689   if (CastInst *CI = dyn_cast<CastInst>(I)) {
690     Value *Source = CI->getOperand(0);
691     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
692       return false;
693     ComputeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
694                                         RecursionSet, CxtI);
695     if (Result.empty())
696       return false;
697 
698     // Convert the known values.
699     for (auto &R : Result)
700       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
701 
702     return true;
703   }
704 
705   // Handle some boolean conditions.
706   if (I->getType()->getPrimitiveSizeInBits() == 1) {
707     assert(Preference == WantInteger && "One-bit non-integer type?");
708     // X | true -> true
709     // X & false -> false
710     if (I->getOpcode() == Instruction::Or ||
711         I->getOpcode() == Instruction::And) {
712       PredValueInfoTy LHSVals, RHSVals;
713 
714       ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
715                                       WantInteger, RecursionSet, CxtI);
716       ComputeValueKnownInPredecessorsImpl(I->getOperand(1), BB, RHSVals,
717                                           WantInteger, RecursionSet, CxtI);
718 
719       if (LHSVals.empty() && RHSVals.empty())
720         return false;
721 
722       ConstantInt *InterestingVal;
723       if (I->getOpcode() == Instruction::Or)
724         InterestingVal = ConstantInt::getTrue(I->getContext());
725       else
726         InterestingVal = ConstantInt::getFalse(I->getContext());
727 
728       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
729 
730       // Scan for the sentinel.  If we find an undef, force it to the
731       // interesting value: x|undef -> true and x&undef -> false.
732       for (const auto &LHSVal : LHSVals)
733         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
734           Result.emplace_back(InterestingVal, LHSVal.second);
735           LHSKnownBBs.insert(LHSVal.second);
736         }
737       for (const auto &RHSVal : RHSVals)
738         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
739           // If we already inferred a value for this block on the LHS, don't
740           // re-add it.
741           if (!LHSKnownBBs.count(RHSVal.second))
742             Result.emplace_back(InterestingVal, RHSVal.second);
743         }
744 
745       return !Result.empty();
746     }
747 
748     // Handle the NOT form of XOR.
749     if (I->getOpcode() == Instruction::Xor &&
750         isa<ConstantInt>(I->getOperand(1)) &&
751         cast<ConstantInt>(I->getOperand(1))->isOne()) {
752       ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
753                                           WantInteger, RecursionSet, CxtI);
754       if (Result.empty())
755         return false;
756 
757       // Invert the known values.
758       for (auto &R : Result)
759         R.first = ConstantExpr::getNot(R.first);
760 
761       return true;
762     }
763 
764   // Try to simplify some other binary operator values.
765   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
766     assert(Preference != WantBlockAddress
767             && "A binary operator creating a block address?");
768     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
769       PredValueInfoTy LHSVals;
770       ComputeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
771                                           WantInteger, RecursionSet, CxtI);
772 
773       // Try to use constant folding to simplify the binary operator.
774       for (const auto &LHSVal : LHSVals) {
775         Constant *V = LHSVal.first;
776         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
777 
778         if (Constant *KC = getKnownConstant(Folded, WantInteger))
779           Result.push_back(std::make_pair(KC, LHSVal.second));
780       }
781     }
782 
783     return !Result.empty();
784   }
785 
786   // Handle compare with phi operand, where the PHI is defined in this block.
787   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
788     assert(Preference == WantInteger && "Compares only produce integers");
789     Type *CmpType = Cmp->getType();
790     Value *CmpLHS = Cmp->getOperand(0);
791     Value *CmpRHS = Cmp->getOperand(1);
792     CmpInst::Predicate Pred = Cmp->getPredicate();
793 
794     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
795     if (!PN)
796       PN = dyn_cast<PHINode>(CmpRHS);
797     if (PN && PN->getParent() == BB) {
798       const DataLayout &DL = PN->getModule()->getDataLayout();
799       // We can do this simplification if any comparisons fold to true or false.
800       // See if any do.
801       if (DTU->hasPendingDomTreeUpdates())
802         LVI->disableDT();
803       else
804         LVI->enableDT();
805       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
806         BasicBlock *PredBB = PN->getIncomingBlock(i);
807         Value *LHS, *RHS;
808         if (PN == CmpLHS) {
809           LHS = PN->getIncomingValue(i);
810           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
811         } else {
812           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
813           RHS = PN->getIncomingValue(i);
814         }
815         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
816         if (!Res) {
817           if (!isa<Constant>(RHS))
818             continue;
819 
820           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
821           auto LHSInst = dyn_cast<Instruction>(LHS);
822           if (LHSInst && LHSInst->getParent() == BB)
823             continue;
824 
825           LazyValueInfo::Tristate
826             ResT = LVI->getPredicateOnEdge(Pred, LHS,
827                                            cast<Constant>(RHS), PredBB, BB,
828                                            CxtI ? CxtI : Cmp);
829           if (ResT == LazyValueInfo::Unknown)
830             continue;
831           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
832         }
833 
834         if (Constant *KC = getKnownConstant(Res, WantInteger))
835           Result.push_back(std::make_pair(KC, PredBB));
836       }
837 
838       return !Result.empty();
839     }
840 
841     // If comparing a live-in value against a constant, see if we know the
842     // live-in value on any predecessors.
843     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
844       Constant *CmpConst = cast<Constant>(CmpRHS);
845 
846       if (!isa<Instruction>(CmpLHS) ||
847           cast<Instruction>(CmpLHS)->getParent() != BB) {
848         if (DTU->hasPendingDomTreeUpdates())
849           LVI->disableDT();
850         else
851           LVI->enableDT();
852         for (BasicBlock *P : predecessors(BB)) {
853           // If the value is known by LazyValueInfo to be a constant in a
854           // predecessor, use that information to try to thread this block.
855           LazyValueInfo::Tristate Res =
856             LVI->getPredicateOnEdge(Pred, CmpLHS,
857                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
858           if (Res == LazyValueInfo::Unknown)
859             continue;
860 
861           Constant *ResC = ConstantInt::get(CmpType, Res);
862           Result.push_back(std::make_pair(ResC, P));
863         }
864 
865         return !Result.empty();
866       }
867 
868       // InstCombine can fold some forms of constant range checks into
869       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
870       // x as a live-in.
871       {
872         using namespace PatternMatch;
873 
874         Value *AddLHS;
875         ConstantInt *AddConst;
876         if (isa<ConstantInt>(CmpConst) &&
877             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
878           if (!isa<Instruction>(AddLHS) ||
879               cast<Instruction>(AddLHS)->getParent() != BB) {
880             if (DTU->hasPendingDomTreeUpdates())
881               LVI->disableDT();
882             else
883               LVI->enableDT();
884             for (BasicBlock *P : predecessors(BB)) {
885               // If the value is known by LazyValueInfo to be a ConstantRange in
886               // a predecessor, use that information to try to thread this
887               // block.
888               ConstantRange CR = LVI->getConstantRangeOnEdge(
889                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
890               // Propagate the range through the addition.
891               CR = CR.add(AddConst->getValue());
892 
893               // Get the range where the compare returns true.
894               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
895                   Pred, cast<ConstantInt>(CmpConst)->getValue());
896 
897               Constant *ResC;
898               if (CmpRange.contains(CR))
899                 ResC = ConstantInt::getTrue(CmpType);
900               else if (CmpRange.inverse().contains(CR))
901                 ResC = ConstantInt::getFalse(CmpType);
902               else
903                 continue;
904 
905               Result.push_back(std::make_pair(ResC, P));
906             }
907 
908             return !Result.empty();
909           }
910         }
911       }
912 
913       // Try to find a constant value for the LHS of a comparison,
914       // and evaluate it statically if we can.
915       PredValueInfoTy LHSVals;
916       ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
917                                           WantInteger, RecursionSet, CxtI);
918 
919       for (const auto &LHSVal : LHSVals) {
920         Constant *V = LHSVal.first;
921         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
922         if (Constant *KC = getKnownConstant(Folded, WantInteger))
923           Result.push_back(std::make_pair(KC, LHSVal.second));
924       }
925 
926       return !Result.empty();
927     }
928   }
929 
930   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
931     // Handle select instructions where at least one operand is a known constant
932     // and we can figure out the condition value for any predecessor block.
933     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
934     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
935     PredValueInfoTy Conds;
936     if ((TrueVal || FalseVal) &&
937         ComputeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
938                                             WantInteger, RecursionSet, CxtI)) {
939       for (auto &C : Conds) {
940         Constant *Cond = C.first;
941 
942         // Figure out what value to use for the condition.
943         bool KnownCond;
944         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
945           // A known boolean.
946           KnownCond = CI->isOne();
947         } else {
948           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
949           // Either operand will do, so be sure to pick the one that's a known
950           // constant.
951           // FIXME: Do this more cleverly if both values are known constants?
952           KnownCond = (TrueVal != nullptr);
953         }
954 
955         // See if the select has a known constant value for this predecessor.
956         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
957           Result.push_back(std::make_pair(Val, C.second));
958       }
959 
960       return !Result.empty();
961     }
962   }
963 
964   // If all else fails, see if LVI can figure out a constant value for us.
965   if (DTU->hasPendingDomTreeUpdates())
966     LVI->disableDT();
967   else
968     LVI->enableDT();
969   Constant *CI = LVI->getConstant(V, BB, CxtI);
970   if (Constant *KC = getKnownConstant(CI, Preference)) {
971     for (BasicBlock *Pred : predecessors(BB))
972       Result.push_back(std::make_pair(KC, Pred));
973   }
974 
975   return !Result.empty();
976 }
977 
978 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
979 /// in an undefined jump, decide which block is best to revector to.
980 ///
981 /// Since we can pick an arbitrary destination, we pick the successor with the
982 /// fewest predecessors.  This should reduce the in-degree of the others.
983 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
984   Instruction *BBTerm = BB->getTerminator();
985   unsigned MinSucc = 0;
986   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
987   // Compute the successor with the minimum number of predecessors.
988   unsigned MinNumPreds = pred_size(TestBB);
989   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
990     TestBB = BBTerm->getSuccessor(i);
991     unsigned NumPreds = pred_size(TestBB);
992     if (NumPreds < MinNumPreds) {
993       MinSucc = i;
994       MinNumPreds = NumPreds;
995     }
996   }
997 
998   return MinSucc;
999 }
1000 
1001 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
1002   if (!BB->hasAddressTaken()) return false;
1003 
1004   // If the block has its address taken, it may be a tree of dead constants
1005   // hanging off of it.  These shouldn't keep the block alive.
1006   BlockAddress *BA = BlockAddress::get(BB);
1007   BA->removeDeadConstantUsers();
1008   return !BA->use_empty();
1009 }
1010 
1011 /// ProcessBlock - If there are any predecessors whose control can be threaded
1012 /// through to a successor, transform them now.
1013 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
1014   // If the block is trivially dead, just return and let the caller nuke it.
1015   // This simplifies other transformations.
1016   if (DTU->isBBPendingDeletion(BB) ||
1017       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
1018     return false;
1019 
1020   // If this block has a single predecessor, and if that pred has a single
1021   // successor, merge the blocks.  This encourages recursive jump threading
1022   // because now the condition in this block can be threaded through
1023   // predecessors of our predecessor block.
1024   if (MaybeMergeBasicBlockIntoOnlyPred(BB))
1025     return true;
1026 
1027   if (TryToUnfoldSelectInCurrBB(BB))
1028     return true;
1029 
1030   // Look if we can propagate guards to predecessors.
1031   if (HasGuards && ProcessGuards(BB))
1032     return true;
1033 
1034   // What kind of constant we're looking for.
1035   ConstantPreference Preference = WantInteger;
1036 
1037   // Look to see if the terminator is a conditional branch, switch or indirect
1038   // branch, if not we can't thread it.
1039   Value *Condition;
1040   Instruction *Terminator = BB->getTerminator();
1041   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1042     // Can't thread an unconditional jump.
1043     if (BI->isUnconditional()) return false;
1044     Condition = BI->getCondition();
1045   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1046     Condition = SI->getCondition();
1047   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1048     // Can't thread indirect branch with no successors.
1049     if (IB->getNumSuccessors() == 0) return false;
1050     Condition = IB->getAddress()->stripPointerCasts();
1051     Preference = WantBlockAddress;
1052   } else {
1053     return false; // Must be an invoke or callbr.
1054   }
1055 
1056   // Run constant folding to see if we can reduce the condition to a simple
1057   // constant.
1058   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1059     Value *SimpleVal =
1060         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1061     if (SimpleVal) {
1062       I->replaceAllUsesWith(SimpleVal);
1063       if (isInstructionTriviallyDead(I, TLI))
1064         I->eraseFromParent();
1065       Condition = SimpleVal;
1066     }
1067   }
1068 
1069   // If the terminator is branching on an undef, we can pick any of the
1070   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
1071   if (isa<UndefValue>(Condition)) {
1072     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
1073     std::vector<DominatorTree::UpdateType> Updates;
1074 
1075     // Fold the branch/switch.
1076     Instruction *BBTerm = BB->getTerminator();
1077     Updates.reserve(BBTerm->getNumSuccessors());
1078     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1079       if (i == BestSucc) continue;
1080       BasicBlock *Succ = BBTerm->getSuccessor(i);
1081       Succ->removePredecessor(BB, true);
1082       Updates.push_back({DominatorTree::Delete, BB, Succ});
1083     }
1084 
1085     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1086                       << "' folding undef terminator: " << *BBTerm << '\n');
1087     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1088     BBTerm->eraseFromParent();
1089     DTU->applyUpdatesPermissive(Updates);
1090     return true;
1091   }
1092 
1093   // If the terminator of this block is branching on a constant, simplify the
1094   // terminator to an unconditional branch.  This can occur due to threading in
1095   // other blocks.
1096   if (getKnownConstant(Condition, Preference)) {
1097     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1098                       << "' folding terminator: " << *BB->getTerminator()
1099                       << '\n');
1100     ++NumFolds;
1101     ConstantFoldTerminator(BB, true, nullptr, DTU);
1102     return true;
1103   }
1104 
1105   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1106 
1107   // All the rest of our checks depend on the condition being an instruction.
1108   if (!CondInst) {
1109     // FIXME: Unify this with code below.
1110     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
1111       return true;
1112     return false;
1113   }
1114 
1115   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1116     // If we're branching on a conditional, LVI might be able to determine
1117     // it's value at the branch instruction.  We only handle comparisons
1118     // against a constant at this time.
1119     // TODO: This should be extended to handle switches as well.
1120     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1121     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1122     if (CondBr && CondConst) {
1123       // We should have returned as soon as we turn a conditional branch to
1124       // unconditional. Because its no longer interesting as far as jump
1125       // threading is concerned.
1126       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1127 
1128       if (DTU->hasPendingDomTreeUpdates())
1129         LVI->disableDT();
1130       else
1131         LVI->enableDT();
1132       LazyValueInfo::Tristate Ret =
1133         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1134                             CondConst, CondBr);
1135       if (Ret != LazyValueInfo::Unknown) {
1136         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1137         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1138         BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1139         ToRemoveSucc->removePredecessor(BB, true);
1140         BranchInst *UncondBr =
1141           BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1142         UncondBr->setDebugLoc(CondBr->getDebugLoc());
1143         CondBr->eraseFromParent();
1144         if (CondCmp->use_empty())
1145           CondCmp->eraseFromParent();
1146         // We can safely replace *some* uses of the CondInst if it has
1147         // exactly one value as returned by LVI. RAUW is incorrect in the
1148         // presence of guards and assumes, that have the `Cond` as the use. This
1149         // is because we use the guards/assume to reason about the `Cond` value
1150         // at the end of block, but RAUW unconditionally replaces all uses
1151         // including the guards/assumes themselves and the uses before the
1152         // guard/assume.
1153         else if (CondCmp->getParent() == BB) {
1154           auto *CI = Ret == LazyValueInfo::True ?
1155             ConstantInt::getTrue(CondCmp->getType()) :
1156             ConstantInt::getFalse(CondCmp->getType());
1157           ReplaceFoldableUses(CondCmp, CI);
1158         }
1159         DTU->applyUpdatesPermissive(
1160             {{DominatorTree::Delete, BB, ToRemoveSucc}});
1161         return true;
1162       }
1163 
1164       // We did not manage to simplify this branch, try to see whether
1165       // CondCmp depends on a known phi-select pattern.
1166       if (TryToUnfoldSelect(CondCmp, BB))
1167         return true;
1168     }
1169   }
1170 
1171   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1172     if (TryToUnfoldSelect(SI, BB))
1173       return true;
1174 
1175   // Check for some cases that are worth simplifying.  Right now we want to look
1176   // for loads that are used by a switch or by the condition for the branch.  If
1177   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1178   // which can then be used to thread the values.
1179   Value *SimplifyValue = CondInst;
1180   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1181     if (isa<Constant>(CondCmp->getOperand(1)))
1182       SimplifyValue = CondCmp->getOperand(0);
1183 
1184   // TODO: There are other places where load PRE would be profitable, such as
1185   // more complex comparisons.
1186   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1187     if (SimplifyPartiallyRedundantLoad(LoadI))
1188       return true;
1189 
1190   // Before threading, try to propagate profile data backwards:
1191   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1192     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1193       updatePredecessorProfileMetadata(PN, BB);
1194 
1195   // Handle a variety of cases where we are branching on something derived from
1196   // a PHI node in the current block.  If we can prove that any predecessors
1197   // compute a predictable value based on a PHI node, thread those predecessors.
1198   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
1199     return true;
1200 
1201   // If this is an otherwise-unfoldable branch on a phi node in the current
1202   // block, see if we can simplify.
1203   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1204     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1205       return ProcessBranchOnPHI(PN);
1206 
1207   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1208   if (CondInst->getOpcode() == Instruction::Xor &&
1209       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1210     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
1211 
1212   // Search for a stronger dominating condition that can be used to simplify a
1213   // conditional branch leaving BB.
1214   if (ProcessImpliedCondition(BB))
1215     return true;
1216 
1217   return false;
1218 }
1219 
1220 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
1221   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1222   if (!BI || !BI->isConditional())
1223     return false;
1224 
1225   Value *Cond = BI->getCondition();
1226   BasicBlock *CurrentBB = BB;
1227   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1228   unsigned Iter = 0;
1229 
1230   auto &DL = BB->getModule()->getDataLayout();
1231 
1232   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1233     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1234     if (!PBI || !PBI->isConditional())
1235       return false;
1236     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1237       return false;
1238 
1239     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1240     Optional<bool> Implication =
1241         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1242     if (Implication) {
1243       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1244       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1245       RemoveSucc->removePredecessor(BB);
1246       BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
1247       UncondBI->setDebugLoc(BI->getDebugLoc());
1248       BI->eraseFromParent();
1249       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1250       return true;
1251     }
1252     CurrentBB = CurrentPred;
1253     CurrentPred = CurrentBB->getSinglePredecessor();
1254   }
1255 
1256   return false;
1257 }
1258 
1259 /// Return true if Op is an instruction defined in the given block.
1260 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1261   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1262     if (OpInst->getParent() == BB)
1263       return true;
1264   return false;
1265 }
1266 
1267 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1268 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1269 /// This is an important optimization that encourages jump threading, and needs
1270 /// to be run interlaced with other jump threading tasks.
1271 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1272   // Don't hack volatile and ordered loads.
1273   if (!LoadI->isUnordered()) return false;
1274 
1275   // If the load is defined in a block with exactly one predecessor, it can't be
1276   // partially redundant.
1277   BasicBlock *LoadBB = LoadI->getParent();
1278   if (LoadBB->getSinglePredecessor())
1279     return false;
1280 
1281   // If the load is defined in an EH pad, it can't be partially redundant,
1282   // because the edges between the invoke and the EH pad cannot have other
1283   // instructions between them.
1284   if (LoadBB->isEHPad())
1285     return false;
1286 
1287   Value *LoadedPtr = LoadI->getOperand(0);
1288 
1289   // If the loaded operand is defined in the LoadBB and its not a phi,
1290   // it can't be available in predecessors.
1291   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1292     return false;
1293 
1294   // Scan a few instructions up from the load, to see if it is obviously live at
1295   // the entry to its block.
1296   BasicBlock::iterator BBIt(LoadI);
1297   bool IsLoadCSE;
1298   if (Value *AvailableVal = FindAvailableLoadedValue(
1299           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1300     // If the value of the load is locally available within the block, just use
1301     // it.  This frequently occurs for reg2mem'd allocas.
1302 
1303     if (IsLoadCSE) {
1304       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1305       combineMetadataForCSE(NLoadI, LoadI, false);
1306     };
1307 
1308     // If the returned value is the load itself, replace with an undef. This can
1309     // only happen in dead loops.
1310     if (AvailableVal == LoadI)
1311       AvailableVal = UndefValue::get(LoadI->getType());
1312     if (AvailableVal->getType() != LoadI->getType())
1313       AvailableVal = CastInst::CreateBitOrPointerCast(
1314           AvailableVal, LoadI->getType(), "", LoadI);
1315     LoadI->replaceAllUsesWith(AvailableVal);
1316     LoadI->eraseFromParent();
1317     return true;
1318   }
1319 
1320   // Otherwise, if we scanned the whole block and got to the top of the block,
1321   // we know the block is locally transparent to the load.  If not, something
1322   // might clobber its value.
1323   if (BBIt != LoadBB->begin())
1324     return false;
1325 
1326   // If all of the loads and stores that feed the value have the same AA tags,
1327   // then we can propagate them onto any newly inserted loads.
1328   AAMDNodes AATags;
1329   LoadI->getAAMetadata(AATags);
1330 
1331   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1332 
1333   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1334 
1335   AvailablePredsTy AvailablePreds;
1336   BasicBlock *OneUnavailablePred = nullptr;
1337   SmallVector<LoadInst*, 8> CSELoads;
1338 
1339   // If we got here, the loaded value is transparent through to the start of the
1340   // block.  Check to see if it is available in any of the predecessor blocks.
1341   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1342     // If we already scanned this predecessor, skip it.
1343     if (!PredsScanned.insert(PredBB).second)
1344       continue;
1345 
1346     BBIt = PredBB->end();
1347     unsigned NumScanedInst = 0;
1348     Value *PredAvailable = nullptr;
1349     // NOTE: We don't CSE load that is volatile or anything stronger than
1350     // unordered, that should have been checked when we entered the function.
1351     assert(LoadI->isUnordered() &&
1352            "Attempting to CSE volatile or atomic loads");
1353     // If this is a load on a phi pointer, phi-translate it and search
1354     // for available load/store to the pointer in predecessors.
1355     Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
1356     PredAvailable = FindAvailablePtrLoadStore(
1357         Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt,
1358         DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst);
1359 
1360     // If PredBB has a single predecessor, continue scanning through the
1361     // single predecessor.
1362     BasicBlock *SinglePredBB = PredBB;
1363     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1364            NumScanedInst < DefMaxInstsToScan) {
1365       SinglePredBB = SinglePredBB->getSinglePredecessor();
1366       if (SinglePredBB) {
1367         BBIt = SinglePredBB->end();
1368         PredAvailable = FindAvailablePtrLoadStore(
1369             Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt,
1370             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1371             &NumScanedInst);
1372       }
1373     }
1374 
1375     if (!PredAvailable) {
1376       OneUnavailablePred = PredBB;
1377       continue;
1378     }
1379 
1380     if (IsLoadCSE)
1381       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1382 
1383     // If so, this load is partially redundant.  Remember this info so that we
1384     // can create a PHI node.
1385     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1386   }
1387 
1388   // If the loaded value isn't available in any predecessor, it isn't partially
1389   // redundant.
1390   if (AvailablePreds.empty()) return false;
1391 
1392   // Okay, the loaded value is available in at least one (and maybe all!)
1393   // predecessors.  If the value is unavailable in more than one unique
1394   // predecessor, we want to insert a merge block for those common predecessors.
1395   // This ensures that we only have to insert one reload, thus not increasing
1396   // code size.
1397   BasicBlock *UnavailablePred = nullptr;
1398 
1399   // If the value is unavailable in one of predecessors, we will end up
1400   // inserting a new instruction into them. It is only valid if all the
1401   // instructions before LoadI are guaranteed to pass execution to its
1402   // successor, or if LoadI is safe to speculate.
1403   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1404   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1405   // It requires domination tree analysis, so for this simple case it is an
1406   // overkill.
1407   if (PredsScanned.size() != AvailablePreds.size() &&
1408       !isSafeToSpeculativelyExecute(LoadI))
1409     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1410       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1411         return false;
1412 
1413   // If there is exactly one predecessor where the value is unavailable, the
1414   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1415   // unconditional branch, we know that it isn't a critical edge.
1416   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1417       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1418     UnavailablePred = OneUnavailablePred;
1419   } else if (PredsScanned.size() != AvailablePreds.size()) {
1420     // Otherwise, we had multiple unavailable predecessors or we had a critical
1421     // edge from the one.
1422     SmallVector<BasicBlock*, 8> PredsToSplit;
1423     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1424 
1425     for (const auto &AvailablePred : AvailablePreds)
1426       AvailablePredSet.insert(AvailablePred.first);
1427 
1428     // Add all the unavailable predecessors to the PredsToSplit list.
1429     for (BasicBlock *P : predecessors(LoadBB)) {
1430       // If the predecessor is an indirect goto, we can't split the edge.
1431       // Same for CallBr.
1432       if (isa<IndirectBrInst>(P->getTerminator()) ||
1433           isa<CallBrInst>(P->getTerminator()))
1434         return false;
1435 
1436       if (!AvailablePredSet.count(P))
1437         PredsToSplit.push_back(P);
1438     }
1439 
1440     // Split them out to their own block.
1441     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1442   }
1443 
1444   // If the value isn't available in all predecessors, then there will be
1445   // exactly one where it isn't available.  Insert a load on that edge and add
1446   // it to the AvailablePreds list.
1447   if (UnavailablePred) {
1448     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1449            "Can't handle critical edge here!");
1450     LoadInst *NewVal = new LoadInst(
1451         LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1452         LoadI->getName() + ".pr", false, MaybeAlign(LoadI->getAlignment()),
1453         LoadI->getOrdering(), LoadI->getSyncScopeID(),
1454         UnavailablePred->getTerminator());
1455     NewVal->setDebugLoc(LoadI->getDebugLoc());
1456     if (AATags)
1457       NewVal->setAAMetadata(AATags);
1458 
1459     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1460   }
1461 
1462   // Now we know that each predecessor of this block has a value in
1463   // AvailablePreds, sort them for efficient access as we're walking the preds.
1464   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1465 
1466   // Create a PHI node at the start of the block for the PRE'd load value.
1467   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1468   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1469                                 &LoadBB->front());
1470   PN->takeName(LoadI);
1471   PN->setDebugLoc(LoadI->getDebugLoc());
1472 
1473   // Insert new entries into the PHI for each predecessor.  A single block may
1474   // have multiple entries here.
1475   for (pred_iterator PI = PB; PI != PE; ++PI) {
1476     BasicBlock *P = *PI;
1477     AvailablePredsTy::iterator I =
1478         llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1479 
1480     assert(I != AvailablePreds.end() && I->first == P &&
1481            "Didn't find entry for predecessor!");
1482 
1483     // If we have an available predecessor but it requires casting, insert the
1484     // cast in the predecessor and use the cast. Note that we have to update the
1485     // AvailablePreds vector as we go so that all of the PHI entries for this
1486     // predecessor use the same bitcast.
1487     Value *&PredV = I->second;
1488     if (PredV->getType() != LoadI->getType())
1489       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1490                                                P->getTerminator());
1491 
1492     PN->addIncoming(PredV, I->first);
1493   }
1494 
1495   for (LoadInst *PredLoadI : CSELoads) {
1496     combineMetadataForCSE(PredLoadI, LoadI, true);
1497   }
1498 
1499   LoadI->replaceAllUsesWith(PN);
1500   LoadI->eraseFromParent();
1501 
1502   return true;
1503 }
1504 
1505 /// FindMostPopularDest - The specified list contains multiple possible
1506 /// threadable destinations.  Pick the one that occurs the most frequently in
1507 /// the list.
1508 static BasicBlock *
1509 FindMostPopularDest(BasicBlock *BB,
1510                     const SmallVectorImpl<std::pair<BasicBlock *,
1511                                           BasicBlock *>> &PredToDestList) {
1512   assert(!PredToDestList.empty());
1513 
1514   // Determine popularity.  If there are multiple possible destinations, we
1515   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1516   // blocks with known and real destinations to threading undef.  We'll handle
1517   // them later if interesting.
1518   DenseMap<BasicBlock*, unsigned> DestPopularity;
1519   for (const auto &PredToDest : PredToDestList)
1520     if (PredToDest.second)
1521       DestPopularity[PredToDest.second]++;
1522 
1523   if (DestPopularity.empty())
1524     return nullptr;
1525 
1526   // Find the most popular dest.
1527   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1528   BasicBlock *MostPopularDest = DPI->first;
1529   unsigned Popularity = DPI->second;
1530   SmallVector<BasicBlock*, 4> SamePopularity;
1531 
1532   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1533     // If the popularity of this entry isn't higher than the popularity we've
1534     // seen so far, ignore it.
1535     if (DPI->second < Popularity)
1536       ; // ignore.
1537     else if (DPI->second == Popularity) {
1538       // If it is the same as what we've seen so far, keep track of it.
1539       SamePopularity.push_back(DPI->first);
1540     } else {
1541       // If it is more popular, remember it.
1542       SamePopularity.clear();
1543       MostPopularDest = DPI->first;
1544       Popularity = DPI->second;
1545     }
1546   }
1547 
1548   // Okay, now we know the most popular destination.  If there is more than one
1549   // destination, we need to determine one.  This is arbitrary, but we need
1550   // to make a deterministic decision.  Pick the first one that appears in the
1551   // successor list.
1552   if (!SamePopularity.empty()) {
1553     SamePopularity.push_back(MostPopularDest);
1554     Instruction *TI = BB->getTerminator();
1555     for (unsigned i = 0; ; ++i) {
1556       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1557 
1558       if (!is_contained(SamePopularity, TI->getSuccessor(i)))
1559         continue;
1560 
1561       MostPopularDest = TI->getSuccessor(i);
1562       break;
1563     }
1564   }
1565 
1566   // Okay, we have finally picked the most popular destination.
1567   return MostPopularDest;
1568 }
1569 
1570 // Try to evaluate the value of V when the control flows from PredPredBB to
1571 // BB->getSinglePredecessor() and then on to BB.
1572 Constant *JumpThreadingPass::EvaluateOnPredecessorEdge(BasicBlock *BB,
1573                                                        BasicBlock *PredPredBB,
1574                                                        Value *V) {
1575   BasicBlock *PredBB = BB->getSinglePredecessor();
1576   assert(PredBB && "Expected a single predecessor");
1577 
1578   if (Constant *Cst = dyn_cast<Constant>(V)) {
1579     return Cst;
1580   }
1581 
1582   // Consult LVI if V is not an instruction in BB or PredBB.
1583   Instruction *I = dyn_cast<Instruction>(V);
1584   if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1585     if (DTU->hasPendingDomTreeUpdates())
1586       LVI->disableDT();
1587     else
1588       LVI->enableDT();
1589     return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1590   }
1591 
1592   // Look into a PHI argument.
1593   if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1594     if (PHI->getParent() == PredBB)
1595       return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1596     return nullptr;
1597   }
1598 
1599   // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1600   if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1601     if (CondCmp->getParent() == BB) {
1602       Constant *Op0 =
1603           EvaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
1604       Constant *Op1 =
1605           EvaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
1606       if (Op0 && Op1) {
1607         return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
1608       }
1609     }
1610     return nullptr;
1611   }
1612 
1613   return nullptr;
1614 }
1615 
1616 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1617                                                ConstantPreference Preference,
1618                                                Instruction *CxtI) {
1619   // If threading this would thread across a loop header, don't even try to
1620   // thread the edge.
1621   if (LoopHeaders.count(BB))
1622     return false;
1623 
1624   PredValueInfoTy PredValues;
1625   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1626                                        CxtI)) {
1627     // We don't have known values in predecessors.  See if we can thread through
1628     // BB and its sole predecessor.
1629     return MaybeThreadThroughTwoBasicBlocks(BB, Cond);
1630   }
1631 
1632   assert(!PredValues.empty() &&
1633          "ComputeValueKnownInPredecessors returned true with no values");
1634 
1635   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1636              for (const auto &PredValue : PredValues) {
1637                dbgs() << "  BB '" << BB->getName()
1638                       << "': FOUND condition = " << *PredValue.first
1639                       << " for pred '" << PredValue.second->getName() << "'.\n";
1640   });
1641 
1642   // Decide what we want to thread through.  Convert our list of known values to
1643   // a list of known destinations for each pred.  This also discards duplicate
1644   // predecessors and keeps track of the undefined inputs (which are represented
1645   // as a null dest in the PredToDestList).
1646   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1647   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1648 
1649   BasicBlock *OnlyDest = nullptr;
1650   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1651   Constant *OnlyVal = nullptr;
1652   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1653 
1654   for (const auto &PredValue : PredValues) {
1655     BasicBlock *Pred = PredValue.second;
1656     if (!SeenPreds.insert(Pred).second)
1657       continue;  // Duplicate predecessor entry.
1658 
1659     Constant *Val = PredValue.first;
1660 
1661     BasicBlock *DestBB;
1662     if (isa<UndefValue>(Val))
1663       DestBB = nullptr;
1664     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1665       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1666       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1667     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1668       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1669       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1670     } else {
1671       assert(isa<IndirectBrInst>(BB->getTerminator())
1672               && "Unexpected terminator");
1673       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1674       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1675     }
1676 
1677     // If we have exactly one destination, remember it for efficiency below.
1678     if (PredToDestList.empty()) {
1679       OnlyDest = DestBB;
1680       OnlyVal = Val;
1681     } else {
1682       if (OnlyDest != DestBB)
1683         OnlyDest = MultipleDestSentinel;
1684       // It possible we have same destination, but different value, e.g. default
1685       // case in switchinst.
1686       if (Val != OnlyVal)
1687         OnlyVal = MultipleVal;
1688     }
1689 
1690     // If the predecessor ends with an indirect goto, we can't change its
1691     // destination. Same for CallBr.
1692     if (isa<IndirectBrInst>(Pred->getTerminator()) ||
1693         isa<CallBrInst>(Pred->getTerminator()))
1694       continue;
1695 
1696     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1697   }
1698 
1699   // If all edges were unthreadable, we fail.
1700   if (PredToDestList.empty())
1701     return false;
1702 
1703   // If all the predecessors go to a single known successor, we want to fold,
1704   // not thread. By doing so, we do not need to duplicate the current block and
1705   // also miss potential opportunities in case we dont/cant duplicate.
1706   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1707     if (BB->hasNPredecessors(PredToDestList.size())) {
1708       bool SeenFirstBranchToOnlyDest = false;
1709       std::vector <DominatorTree::UpdateType> Updates;
1710       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1711       for (BasicBlock *SuccBB : successors(BB)) {
1712         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1713           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1714         } else {
1715           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1716           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1717         }
1718       }
1719 
1720       // Finally update the terminator.
1721       Instruction *Term = BB->getTerminator();
1722       BranchInst::Create(OnlyDest, Term);
1723       Term->eraseFromParent();
1724       DTU->applyUpdatesPermissive(Updates);
1725 
1726       // If the condition is now dead due to the removal of the old terminator,
1727       // erase it.
1728       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1729         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1730           CondInst->eraseFromParent();
1731         // We can safely replace *some* uses of the CondInst if it has
1732         // exactly one value as returned by LVI. RAUW is incorrect in the
1733         // presence of guards and assumes, that have the `Cond` as the use. This
1734         // is because we use the guards/assume to reason about the `Cond` value
1735         // at the end of block, but RAUW unconditionally replaces all uses
1736         // including the guards/assumes themselves and the uses before the
1737         // guard/assume.
1738         else if (OnlyVal && OnlyVal != MultipleVal &&
1739                  CondInst->getParent() == BB)
1740           ReplaceFoldableUses(CondInst, OnlyVal);
1741       }
1742       return true;
1743     }
1744   }
1745 
1746   // Determine which is the most common successor.  If we have many inputs and
1747   // this block is a switch, we want to start by threading the batch that goes
1748   // to the most popular destination first.  If we only know about one
1749   // threadable destination (the common case) we can avoid this.
1750   BasicBlock *MostPopularDest = OnlyDest;
1751 
1752   if (MostPopularDest == MultipleDestSentinel) {
1753     // Remove any loop headers from the Dest list, ThreadEdge conservatively
1754     // won't process them, but we might have other destination that are eligible
1755     // and we still want to process.
1756     erase_if(PredToDestList,
1757              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1758                return LoopHeaders.count(PredToDest.second) != 0;
1759              });
1760 
1761     if (PredToDestList.empty())
1762       return false;
1763 
1764     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1765   }
1766 
1767   // Now that we know what the most popular destination is, factor all
1768   // predecessors that will jump to it into a single predecessor.
1769   SmallVector<BasicBlock*, 16> PredsToFactor;
1770   for (const auto &PredToDest : PredToDestList)
1771     if (PredToDest.second == MostPopularDest) {
1772       BasicBlock *Pred = PredToDest.first;
1773 
1774       // This predecessor may be a switch or something else that has multiple
1775       // edges to the block.  Factor each of these edges by listing them
1776       // according to # occurrences in PredsToFactor.
1777       for (BasicBlock *Succ : successors(Pred))
1778         if (Succ == BB)
1779           PredsToFactor.push_back(Pred);
1780     }
1781 
1782   // If the threadable edges are branching on an undefined value, we get to pick
1783   // the destination that these predecessors should get to.
1784   if (!MostPopularDest)
1785     MostPopularDest = BB->getTerminator()->
1786                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1787 
1788   // Ok, try to thread it!
1789   return TryThreadEdge(BB, PredsToFactor, MostPopularDest);
1790 }
1791 
1792 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1793 /// a PHI node in the current block.  See if there are any simplifications we
1794 /// can do based on inputs to the phi node.
1795 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1796   BasicBlock *BB = PN->getParent();
1797 
1798   // TODO: We could make use of this to do it once for blocks with common PHI
1799   // values.
1800   SmallVector<BasicBlock*, 1> PredBBs;
1801   PredBBs.resize(1);
1802 
1803   // If any of the predecessor blocks end in an unconditional branch, we can
1804   // *duplicate* the conditional branch into that block in order to further
1805   // encourage jump threading and to eliminate cases where we have branch on a
1806   // phi of an icmp (branch on icmp is much better).
1807   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1808     BasicBlock *PredBB = PN->getIncomingBlock(i);
1809     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1810       if (PredBr->isUnconditional()) {
1811         PredBBs[0] = PredBB;
1812         // Try to duplicate BB into PredBB.
1813         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1814           return true;
1815       }
1816   }
1817 
1818   return false;
1819 }
1820 
1821 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1822 /// a xor instruction in the current block.  See if there are any
1823 /// simplifications we can do based on inputs to the xor.
1824 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1825   BasicBlock *BB = BO->getParent();
1826 
1827   // If either the LHS or RHS of the xor is a constant, don't do this
1828   // optimization.
1829   if (isa<ConstantInt>(BO->getOperand(0)) ||
1830       isa<ConstantInt>(BO->getOperand(1)))
1831     return false;
1832 
1833   // If the first instruction in BB isn't a phi, we won't be able to infer
1834   // anything special about any particular predecessor.
1835   if (!isa<PHINode>(BB->front()))
1836     return false;
1837 
1838   // If this BB is a landing pad, we won't be able to split the edge into it.
1839   if (BB->isEHPad())
1840     return false;
1841 
1842   // If we have a xor as the branch input to this block, and we know that the
1843   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1844   // the condition into the predecessor and fix that value to true, saving some
1845   // logical ops on that path and encouraging other paths to simplify.
1846   //
1847   // This copies something like this:
1848   //
1849   //  BB:
1850   //    %X = phi i1 [1],  [%X']
1851   //    %Y = icmp eq i32 %A, %B
1852   //    %Z = xor i1 %X, %Y
1853   //    br i1 %Z, ...
1854   //
1855   // Into:
1856   //  BB':
1857   //    %Y = icmp ne i32 %A, %B
1858   //    br i1 %Y, ...
1859 
1860   PredValueInfoTy XorOpValues;
1861   bool isLHS = true;
1862   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1863                                        WantInteger, BO)) {
1864     assert(XorOpValues.empty());
1865     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1866                                          WantInteger, BO))
1867       return false;
1868     isLHS = false;
1869   }
1870 
1871   assert(!XorOpValues.empty() &&
1872          "ComputeValueKnownInPredecessors returned true with no values");
1873 
1874   // Scan the information to see which is most popular: true or false.  The
1875   // predecessors can be of the set true, false, or undef.
1876   unsigned NumTrue = 0, NumFalse = 0;
1877   for (const auto &XorOpValue : XorOpValues) {
1878     if (isa<UndefValue>(XorOpValue.first))
1879       // Ignore undefs for the count.
1880       continue;
1881     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1882       ++NumFalse;
1883     else
1884       ++NumTrue;
1885   }
1886 
1887   // Determine which value to split on, true, false, or undef if neither.
1888   ConstantInt *SplitVal = nullptr;
1889   if (NumTrue > NumFalse)
1890     SplitVal = ConstantInt::getTrue(BB->getContext());
1891   else if (NumTrue != 0 || NumFalse != 0)
1892     SplitVal = ConstantInt::getFalse(BB->getContext());
1893 
1894   // Collect all of the blocks that this can be folded into so that we can
1895   // factor this once and clone it once.
1896   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1897   for (const auto &XorOpValue : XorOpValues) {
1898     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1899       continue;
1900 
1901     BlocksToFoldInto.push_back(XorOpValue.second);
1902   }
1903 
1904   // If we inferred a value for all of the predecessors, then duplication won't
1905   // help us.  However, we can just replace the LHS or RHS with the constant.
1906   if (BlocksToFoldInto.size() ==
1907       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1908     if (!SplitVal) {
1909       // If all preds provide undef, just nuke the xor, because it is undef too.
1910       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1911       BO->eraseFromParent();
1912     } else if (SplitVal->isZero()) {
1913       // If all preds provide 0, replace the xor with the other input.
1914       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1915       BO->eraseFromParent();
1916     } else {
1917       // If all preds provide 1, set the computed value to 1.
1918       BO->setOperand(!isLHS, SplitVal);
1919     }
1920 
1921     return true;
1922   }
1923 
1924   // Try to duplicate BB into PredBB.
1925   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1926 }
1927 
1928 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1929 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1930 /// NewPred using the entries from OldPred (suitably mapped).
1931 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1932                                             BasicBlock *OldPred,
1933                                             BasicBlock *NewPred,
1934                                      DenseMap<Instruction*, Value*> &ValueMap) {
1935   for (PHINode &PN : PHIBB->phis()) {
1936     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1937     // DestBlock.
1938     Value *IV = PN.getIncomingValueForBlock(OldPred);
1939 
1940     // Remap the value if necessary.
1941     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1942       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1943       if (I != ValueMap.end())
1944         IV = I->second;
1945     }
1946 
1947     PN.addIncoming(IV, NewPred);
1948   }
1949 }
1950 
1951 /// Merge basic block BB into its sole predecessor if possible.
1952 bool JumpThreadingPass::MaybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1953   BasicBlock *SinglePred = BB->getSinglePredecessor();
1954   if (!SinglePred)
1955     return false;
1956 
1957   const Instruction *TI = SinglePred->getTerminator();
1958   if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 ||
1959       SinglePred == BB || hasAddressTakenAndUsed(BB))
1960     return false;
1961 
1962   // If SinglePred was a loop header, BB becomes one.
1963   if (LoopHeaders.erase(SinglePred))
1964     LoopHeaders.insert(BB);
1965 
1966   LVI->eraseBlock(SinglePred);
1967   MergeBasicBlockIntoOnlyPred(BB, DTU);
1968 
1969   // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1970   // BB code within one basic block `BB`), we need to invalidate the LVI
1971   // information associated with BB, because the LVI information need not be
1972   // true for all of BB after the merge. For example,
1973   // Before the merge, LVI info and code is as follows:
1974   // SinglePred: <LVI info1 for %p val>
1975   // %y = use of %p
1976   // call @exit() // need not transfer execution to successor.
1977   // assume(%p) // from this point on %p is true
1978   // br label %BB
1979   // BB: <LVI info2 for %p val, i.e. %p is true>
1980   // %x = use of %p
1981   // br label exit
1982   //
1983   // Note that this LVI info for blocks BB and SinglPred is correct for %p
1984   // (info2 and info1 respectively). After the merge and the deletion of the
1985   // LVI info1 for SinglePred. We have the following code:
1986   // BB: <LVI info2 for %p val>
1987   // %y = use of %p
1988   // call @exit()
1989   // assume(%p)
1990   // %x = use of %p <-- LVI info2 is correct from here onwards.
1991   // br label exit
1992   // LVI info2 for BB is incorrect at the beginning of BB.
1993 
1994   // Invalidate LVI information for BB if the LVI is not provably true for
1995   // all of BB.
1996   if (!isGuaranteedToTransferExecutionToSuccessor(BB))
1997     LVI->eraseBlock(BB);
1998   return true;
1999 }
2000 
2001 /// Update the SSA form.  NewBB contains instructions that are copied from BB.
2002 /// ValueMapping maps old values in BB to new ones in NewBB.
2003 void JumpThreadingPass::UpdateSSA(
2004     BasicBlock *BB, BasicBlock *NewBB,
2005     DenseMap<Instruction *, Value *> &ValueMapping) {
2006   // If there were values defined in BB that are used outside the block, then we
2007   // now have to update all uses of the value to use either the original value,
2008   // the cloned value, or some PHI derived value.  This can require arbitrary
2009   // PHI insertion, of which we are prepared to do, clean these up now.
2010   SSAUpdater SSAUpdate;
2011   SmallVector<Use *, 16> UsesToRename;
2012 
2013   for (Instruction &I : *BB) {
2014     // Scan all uses of this instruction to see if it is used outside of its
2015     // block, and if so, record them in UsesToRename.
2016     for (Use &U : I.uses()) {
2017       Instruction *User = cast<Instruction>(U.getUser());
2018       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2019         if (UserPN->getIncomingBlock(U) == BB)
2020           continue;
2021       } else if (User->getParent() == BB)
2022         continue;
2023 
2024       UsesToRename.push_back(&U);
2025     }
2026 
2027     // If there are no uses outside the block, we're done with this instruction.
2028     if (UsesToRename.empty())
2029       continue;
2030     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2031 
2032     // We found a use of I outside of BB.  Rename all uses of I that are outside
2033     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2034     // with the two values we know.
2035     SSAUpdate.Initialize(I.getType(), I.getName());
2036     SSAUpdate.AddAvailableValue(BB, &I);
2037     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2038 
2039     while (!UsesToRename.empty())
2040       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2041     LLVM_DEBUG(dbgs() << "\n");
2042   }
2043 }
2044 
2045 /// Clone instructions in range [BI, BE) to NewBB.  For PHI nodes, we only clone
2046 /// arguments that come from PredBB.  Return the map from the variables in the
2047 /// source basic block to the variables in the newly created basic block.
2048 DenseMap<Instruction *, Value *>
2049 JumpThreadingPass::CloneInstructions(BasicBlock::iterator BI,
2050                                      BasicBlock::iterator BE, BasicBlock *NewBB,
2051                                      BasicBlock *PredBB) {
2052   // We are going to have to map operands from the source basic block to the new
2053   // copy of the block 'NewBB'.  If there are PHI nodes in the source basic
2054   // block, evaluate them to account for entry from PredBB.
2055   DenseMap<Instruction *, Value *> ValueMapping;
2056 
2057   // Clone the phi nodes of the source basic block into NewBB.  The resulting
2058   // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2059   // might need to rewrite the operand of the cloned phi.
2060   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2061     PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2062     NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2063     ValueMapping[PN] = NewPN;
2064   }
2065 
2066   // Clone the non-phi instructions of the source basic block into NewBB,
2067   // keeping track of the mapping and using it to remap operands in the cloned
2068   // instructions.
2069   for (; BI != BE; ++BI) {
2070     Instruction *New = BI->clone();
2071     New->setName(BI->getName());
2072     NewBB->getInstList().push_back(New);
2073     ValueMapping[&*BI] = New;
2074 
2075     // Remap operands to patch up intra-block references.
2076     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2077       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2078         DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
2079         if (I != ValueMapping.end())
2080           New->setOperand(i, I->second);
2081       }
2082   }
2083 
2084   return ValueMapping;
2085 }
2086 
2087 /// Attempt to thread through two successive basic blocks.
2088 bool JumpThreadingPass::MaybeThreadThroughTwoBasicBlocks(BasicBlock *BB,
2089                                                          Value *Cond) {
2090   // Consider:
2091   //
2092   // PredBB:
2093   //   %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2094   //   %tobool = icmp eq i32 %cond, 0
2095   //   br i1 %tobool, label %BB, label ...
2096   //
2097   // BB:
2098   //   %cmp = icmp eq i32* %var, null
2099   //   br i1 %cmp, label ..., label ...
2100   //
2101   // We don't know the value of %var at BB even if we know which incoming edge
2102   // we take to BB.  However, once we duplicate PredBB for each of its incoming
2103   // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2104   // PredBB.  Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2105 
2106   // Require that BB end with a Branch for simplicity.
2107   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2108   if (!CondBr)
2109     return false;
2110 
2111   // BB must have exactly one predecessor.
2112   BasicBlock *PredBB = BB->getSinglePredecessor();
2113   if (!PredBB)
2114     return false;
2115 
2116   // Require that PredBB end with a Branch.  If PredBB ends with an
2117   // unconditional branch, we should be merging PredBB and BB instead.  For
2118   // simplicity, we don't deal with a switch.
2119   BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2120   if (!PredBBBranch)
2121     return false;
2122 
2123   // If PredBB has exactly one incoming edge, we don't gain anything by copying
2124   // PredBB.
2125   if (PredBB->getSinglePredecessor())
2126     return false;
2127 
2128   // Don't thread across a loop header.
2129   if (LoopHeaders.count(PredBB))
2130     return false;
2131 
2132   // Avoid complication with duplicating EH pads.
2133   if (PredBB->isEHPad())
2134     return false;
2135 
2136   // Find a predecessor that we can thread.  For simplicity, we only consider a
2137   // successor edge out of BB to which we thread exactly one incoming edge into
2138   // PredBB.
2139   unsigned ZeroCount = 0;
2140   unsigned OneCount = 0;
2141   BasicBlock *ZeroPred = nullptr;
2142   BasicBlock *OnePred = nullptr;
2143   for (BasicBlock *P : predecessors(PredBB)) {
2144     if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2145             EvaluateOnPredecessorEdge(BB, P, Cond))) {
2146       if (CI->isZero()) {
2147         ZeroCount++;
2148         ZeroPred = P;
2149       } else if (CI->isOne()) {
2150         OneCount++;
2151         OnePred = P;
2152       }
2153     }
2154   }
2155 
2156   // Disregard complicated cases where we have to thread multiple edges.
2157   BasicBlock *PredPredBB;
2158   if (ZeroCount == 1) {
2159     PredPredBB = ZeroPred;
2160   } else if (OneCount == 1) {
2161     PredPredBB = OnePred;
2162   } else {
2163     return false;
2164   }
2165 
2166   BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2167 
2168   // If threading to the same block as we come from, we would infinite loop.
2169   if (SuccBB == BB) {
2170     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2171                       << "' - would thread to self!\n");
2172     return false;
2173   }
2174 
2175   // If threading this would thread across a loop header, don't thread the edge.
2176   // See the comments above FindLoopHeaders for justifications and caveats.
2177   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2178     LLVM_DEBUG({
2179       bool BBIsHeader = LoopHeaders.count(BB);
2180       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2181       dbgs() << "  Not threading across "
2182              << (BBIsHeader ? "loop header BB '" : "block BB '")
2183              << BB->getName() << "' to dest "
2184              << (SuccIsHeader ? "loop header BB '" : "block BB '")
2185              << SuccBB->getName()
2186              << "' - it might create an irreducible loop!\n";
2187     });
2188     return false;
2189   }
2190 
2191   // Compute the cost of duplicating BB and PredBB.
2192   unsigned BBCost =
2193       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2194   unsigned PredBBCost = getJumpThreadDuplicationCost(
2195       PredBB, PredBB->getTerminator(), BBDupThreshold);
2196 
2197   // Give up if costs are too high.  We need to check BBCost and PredBBCost
2198   // individually before checking their sum because getJumpThreadDuplicationCost
2199   // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2200   if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2201       BBCost + PredBBCost > BBDupThreshold) {
2202     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2203                       << "' - Cost is too high: " << PredBBCost
2204                       << " for PredBB, " << BBCost << "for BB\n");
2205     return false;
2206   }
2207 
2208   // Now we are ready to duplicate PredBB.
2209   ThreadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2210   return true;
2211 }
2212 
2213 void JumpThreadingPass::ThreadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2214                                                     BasicBlock *PredBB,
2215                                                     BasicBlock *BB,
2216                                                     BasicBlock *SuccBB) {
2217   LLVM_DEBUG(dbgs() << "  Threading through '" << PredBB->getName() << "' and '"
2218                     << BB->getName() << "'\n");
2219 
2220   BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2221   BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2222 
2223   BasicBlock *NewBB =
2224       BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2225                          PredBB->getParent(), PredBB);
2226   NewBB->moveAfter(PredBB);
2227 
2228   // Set the block frequency of NewBB.
2229   if (HasProfileData) {
2230     auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2231                      BPI->getEdgeProbability(PredPredBB, PredBB);
2232     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2233   }
2234 
2235   // We are going to have to map operands from the original BB block to the new
2236   // copy of the block 'NewBB'.  If there are PHI nodes in PredBB, evaluate them
2237   // to account for entry from PredPredBB.
2238   DenseMap<Instruction *, Value *> ValueMapping =
2239       CloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
2240 
2241   // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2242   // This eliminates predecessors from PredPredBB, which requires us to simplify
2243   // any PHI nodes in PredBB.
2244   Instruction *PredPredTerm = PredPredBB->getTerminator();
2245   for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2246     if (PredPredTerm->getSuccessor(i) == PredBB) {
2247       PredBB->removePredecessor(PredPredBB, true);
2248       PredPredTerm->setSuccessor(i, NewBB);
2249     }
2250 
2251   AddPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2252                                   ValueMapping);
2253   AddPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2254                                   ValueMapping);
2255 
2256   DTU->applyUpdatesPermissive(
2257       {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2258        {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2259        {DominatorTree::Insert, PredPredBB, NewBB},
2260        {DominatorTree::Delete, PredPredBB, PredBB}});
2261 
2262   UpdateSSA(PredBB, NewBB, ValueMapping);
2263 
2264   // Clean up things like PHI nodes with single operands, dead instructions,
2265   // etc.
2266   SimplifyInstructionsInBlock(NewBB, TLI);
2267   SimplifyInstructionsInBlock(PredBB, TLI);
2268 
2269   SmallVector<BasicBlock *, 1> PredsToFactor;
2270   PredsToFactor.push_back(NewBB);
2271   ThreadEdge(BB, PredsToFactor, SuccBB);
2272 }
2273 
2274 /// TryThreadEdge - Thread an edge if it's safe and profitable to do so.
2275 bool JumpThreadingPass::TryThreadEdge(
2276     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2277     BasicBlock *SuccBB) {
2278   // If threading to the same block as we come from, we would infinite loop.
2279   if (SuccBB == BB) {
2280     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2281                       << "' - would thread to self!\n");
2282     return false;
2283   }
2284 
2285   // If threading this would thread across a loop header, don't thread the edge.
2286   // See the comments above FindLoopHeaders for justifications and caveats.
2287   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2288     LLVM_DEBUG({
2289       bool BBIsHeader = LoopHeaders.count(BB);
2290       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2291       dbgs() << "  Not threading across "
2292           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2293           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2294           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2295     });
2296     return false;
2297   }
2298 
2299   unsigned JumpThreadCost =
2300       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2301   if (JumpThreadCost > BBDupThreshold) {
2302     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2303                       << "' - Cost is too high: " << JumpThreadCost << "\n");
2304     return false;
2305   }
2306 
2307   ThreadEdge(BB, PredBBs, SuccBB);
2308   return true;
2309 }
2310 
2311 /// ThreadEdge - We have decided that it is safe and profitable to factor the
2312 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2313 /// across BB.  Transform the IR to reflect this change.
2314 void JumpThreadingPass::ThreadEdge(BasicBlock *BB,
2315                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
2316                                    BasicBlock *SuccBB) {
2317   assert(SuccBB != BB && "Don't create an infinite loop");
2318 
2319   assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2320          "Don't thread across loop headers");
2321 
2322   // And finally, do it!  Start by factoring the predecessors if needed.
2323   BasicBlock *PredBB;
2324   if (PredBBs.size() == 1)
2325     PredBB = PredBBs[0];
2326   else {
2327     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2328                       << " common predecessors.\n");
2329     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2330   }
2331 
2332   // And finally, do it!
2333   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
2334                     << "' to '" << SuccBB->getName()
2335                     << ", across block:\n    " << *BB << "\n");
2336 
2337   if (DTU->hasPendingDomTreeUpdates())
2338     LVI->disableDT();
2339   else
2340     LVI->enableDT();
2341   LVI->threadEdge(PredBB, BB, SuccBB);
2342 
2343   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2344                                          BB->getName()+".thread",
2345                                          BB->getParent(), BB);
2346   NewBB->moveAfter(PredBB);
2347 
2348   // Set the block frequency of NewBB.
2349   if (HasProfileData) {
2350     auto NewBBFreq =
2351         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2352     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2353   }
2354 
2355   // Copy all the instructions from BB to NewBB except the terminator.
2356   DenseMap<Instruction *, Value *> ValueMapping =
2357       CloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
2358 
2359   // We didn't copy the terminator from BB over to NewBB, because there is now
2360   // an unconditional jump to SuccBB.  Insert the unconditional jump.
2361   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2362   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2363 
2364   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2365   // PHI nodes for NewBB now.
2366   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2367 
2368   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2369   // eliminates predecessors from BB, which requires us to simplify any PHI
2370   // nodes in BB.
2371   Instruction *PredTerm = PredBB->getTerminator();
2372   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2373     if (PredTerm->getSuccessor(i) == BB) {
2374       BB->removePredecessor(PredBB, true);
2375       PredTerm->setSuccessor(i, NewBB);
2376     }
2377 
2378   // Enqueue required DT updates.
2379   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2380                                {DominatorTree::Insert, PredBB, NewBB},
2381                                {DominatorTree::Delete, PredBB, BB}});
2382 
2383   UpdateSSA(BB, NewBB, ValueMapping);
2384 
2385   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2386   // over the new instructions and zap any that are constants or dead.  This
2387   // frequently happens because of phi translation.
2388   SimplifyInstructionsInBlock(NewBB, TLI);
2389 
2390   // Update the edge weight from BB to SuccBB, which should be less than before.
2391   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2392 
2393   // Threaded an edge!
2394   ++NumThreads;
2395 }
2396 
2397 /// Create a new basic block that will be the predecessor of BB and successor of
2398 /// all blocks in Preds. When profile data is available, update the frequency of
2399 /// this new block.
2400 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
2401                                                ArrayRef<BasicBlock *> Preds,
2402                                                const char *Suffix) {
2403   SmallVector<BasicBlock *, 2> NewBBs;
2404 
2405   // Collect the frequencies of all predecessors of BB, which will be used to
2406   // update the edge weight of the result of splitting predecessors.
2407   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2408   if (HasProfileData)
2409     for (auto Pred : Preds)
2410       FreqMap.insert(std::make_pair(
2411           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2412 
2413   // In the case when BB is a LandingPad block we create 2 new predecessors
2414   // instead of just one.
2415   if (BB->isLandingPad()) {
2416     std::string NewName = std::string(Suffix) + ".split-lp";
2417     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2418   } else {
2419     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2420   }
2421 
2422   std::vector<DominatorTree::UpdateType> Updates;
2423   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2424   for (auto NewBB : NewBBs) {
2425     BlockFrequency NewBBFreq(0);
2426     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2427     for (auto Pred : predecessors(NewBB)) {
2428       Updates.push_back({DominatorTree::Delete, Pred, BB});
2429       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2430       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2431         NewBBFreq += FreqMap.lookup(Pred);
2432     }
2433     if (HasProfileData) // Apply the summed frequency to NewBB.
2434       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2435   }
2436 
2437   DTU->applyUpdatesPermissive(Updates);
2438   return NewBBs[0];
2439 }
2440 
2441 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2442   const Instruction *TI = BB->getTerminator();
2443   assert(TI->getNumSuccessors() > 1 && "not a split");
2444 
2445   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2446   if (!WeightsNode)
2447     return false;
2448 
2449   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2450   if (MDName->getString() != "branch_weights")
2451     return false;
2452 
2453   // Ensure there are weights for all of the successors. Note that the first
2454   // operand to the metadata node is a name, not a weight.
2455   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2456 }
2457 
2458 /// Update the block frequency of BB and branch weight and the metadata on the
2459 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2460 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2461 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2462                                                      BasicBlock *BB,
2463                                                      BasicBlock *NewBB,
2464                                                      BasicBlock *SuccBB) {
2465   if (!HasProfileData)
2466     return;
2467 
2468   assert(BFI && BPI && "BFI & BPI should have been created here");
2469 
2470   // As the edge from PredBB to BB is deleted, we have to update the block
2471   // frequency of BB.
2472   auto BBOrigFreq = BFI->getBlockFreq(BB);
2473   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2474   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2475   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2476   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2477 
2478   // Collect updated outgoing edges' frequencies from BB and use them to update
2479   // edge probabilities.
2480   SmallVector<uint64_t, 4> BBSuccFreq;
2481   for (BasicBlock *Succ : successors(BB)) {
2482     auto SuccFreq = (Succ == SuccBB)
2483                         ? BB2SuccBBFreq - NewBBFreq
2484                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2485     BBSuccFreq.push_back(SuccFreq.getFrequency());
2486   }
2487 
2488   uint64_t MaxBBSuccFreq =
2489       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2490 
2491   SmallVector<BranchProbability, 4> BBSuccProbs;
2492   if (MaxBBSuccFreq == 0)
2493     BBSuccProbs.assign(BBSuccFreq.size(),
2494                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2495   else {
2496     for (uint64_t Freq : BBSuccFreq)
2497       BBSuccProbs.push_back(
2498           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2499     // Normalize edge probabilities so that they sum up to one.
2500     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2501                                               BBSuccProbs.end());
2502   }
2503 
2504   // Update edge probabilities in BPI.
2505   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
2506     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
2507 
2508   // Update the profile metadata as well.
2509   //
2510   // Don't do this if the profile of the transformed blocks was statically
2511   // estimated.  (This could occur despite the function having an entry
2512   // frequency in completely cold parts of the CFG.)
2513   //
2514   // In this case we don't want to suggest to subsequent passes that the
2515   // calculated weights are fully consistent.  Consider this graph:
2516   //
2517   //                 check_1
2518   //             50% /  |
2519   //             eq_1   | 50%
2520   //                 \  |
2521   //                 check_2
2522   //             50% /  |
2523   //             eq_2   | 50%
2524   //                 \  |
2525   //                 check_3
2526   //             50% /  |
2527   //             eq_3   | 50%
2528   //                 \  |
2529   //
2530   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2531   // the overall probabilities are inconsistent; the total probability that the
2532   // value is either 1, 2 or 3 is 150%.
2533   //
2534   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2535   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2536   // the loop exit edge.  Then based solely on static estimation we would assume
2537   // the loop was extremely hot.
2538   //
2539   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2540   // shouldn't make edges extremely likely or unlikely based solely on static
2541   // estimation.
2542   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2543     SmallVector<uint32_t, 4> Weights;
2544     for (auto Prob : BBSuccProbs)
2545       Weights.push_back(Prob.getNumerator());
2546 
2547     auto TI = BB->getTerminator();
2548     TI->setMetadata(
2549         LLVMContext::MD_prof,
2550         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2551   }
2552 }
2553 
2554 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2555 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2556 /// If we can duplicate the contents of BB up into PredBB do so now, this
2557 /// improves the odds that the branch will be on an analyzable instruction like
2558 /// a compare.
2559 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
2560     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2561   assert(!PredBBs.empty() && "Can't handle an empty set");
2562 
2563   // If BB is a loop header, then duplicating this block outside the loop would
2564   // cause us to transform this into an irreducible loop, don't do this.
2565   // See the comments above FindLoopHeaders for justifications and caveats.
2566   if (LoopHeaders.count(BB)) {
2567     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2568                       << "' into predecessor block '" << PredBBs[0]->getName()
2569                       << "' - it might create an irreducible loop!\n");
2570     return false;
2571   }
2572 
2573   unsigned DuplicationCost =
2574       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2575   if (DuplicationCost > BBDupThreshold) {
2576     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2577                       << "' - Cost is too high: " << DuplicationCost << "\n");
2578     return false;
2579   }
2580 
2581   // And finally, do it!  Start by factoring the predecessors if needed.
2582   std::vector<DominatorTree::UpdateType> Updates;
2583   BasicBlock *PredBB;
2584   if (PredBBs.size() == 1)
2585     PredBB = PredBBs[0];
2586   else {
2587     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2588                       << " common predecessors.\n");
2589     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2590   }
2591   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2592 
2593   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2594   // of PredBB.
2595   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2596                     << "' into end of '" << PredBB->getName()
2597                     << "' to eliminate branch on phi.  Cost: "
2598                     << DuplicationCost << " block is:" << *BB << "\n");
2599 
2600   // Unless PredBB ends with an unconditional branch, split the edge so that we
2601   // can just clone the bits from BB into the end of the new PredBB.
2602   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2603 
2604   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2605     BasicBlock *OldPredBB = PredBB;
2606     PredBB = SplitEdge(OldPredBB, BB);
2607     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2608     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2609     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2610     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2611   }
2612 
2613   // We are going to have to map operands from the original BB block into the
2614   // PredBB block.  Evaluate PHI nodes in BB.
2615   DenseMap<Instruction*, Value*> ValueMapping;
2616 
2617   BasicBlock::iterator BI = BB->begin();
2618   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2619     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2620   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2621   // mapping and using it to remap operands in the cloned instructions.
2622   for (; BI != BB->end(); ++BI) {
2623     Instruction *New = BI->clone();
2624 
2625     // Remap operands to patch up intra-block references.
2626     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2627       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2628         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2629         if (I != ValueMapping.end())
2630           New->setOperand(i, I->second);
2631       }
2632 
2633     // If this instruction can be simplified after the operands are updated,
2634     // just use the simplified value instead.  This frequently happens due to
2635     // phi translation.
2636     if (Value *IV = SimplifyInstruction(
2637             New,
2638             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2639       ValueMapping[&*BI] = IV;
2640       if (!New->mayHaveSideEffects()) {
2641         New->deleteValue();
2642         New = nullptr;
2643       }
2644     } else {
2645       ValueMapping[&*BI] = New;
2646     }
2647     if (New) {
2648       // Otherwise, insert the new instruction into the block.
2649       New->setName(BI->getName());
2650       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2651       // Update Dominance from simplified New instruction operands.
2652       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2653         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2654           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2655     }
2656   }
2657 
2658   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2659   // add entries to the PHI nodes for branch from PredBB now.
2660   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2661   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2662                                   ValueMapping);
2663   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2664                                   ValueMapping);
2665 
2666   UpdateSSA(BB, PredBB, ValueMapping);
2667 
2668   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2669   // that we nuked.
2670   BB->removePredecessor(PredBB, true);
2671 
2672   // Remove the unconditional branch at the end of the PredBB block.
2673   OldPredBranch->eraseFromParent();
2674   DTU->applyUpdatesPermissive(Updates);
2675 
2676   ++NumDupes;
2677   return true;
2678 }
2679 
2680 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2681 // a Select instruction in Pred. BB has other predecessors and SI is used in
2682 // a PHI node in BB. SI has no other use.
2683 // A new basic block, NewBB, is created and SI is converted to compare and
2684 // conditional branch. SI is erased from parent.
2685 void JumpThreadingPass::UnfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2686                                           SelectInst *SI, PHINode *SIUse,
2687                                           unsigned Idx) {
2688   // Expand the select.
2689   //
2690   // Pred --
2691   //  |    v
2692   //  |  NewBB
2693   //  |    |
2694   //  |-----
2695   //  v
2696   // BB
2697   BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2698   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2699                                          BB->getParent(), BB);
2700   // Move the unconditional branch to NewBB.
2701   PredTerm->removeFromParent();
2702   NewBB->getInstList().insert(NewBB->end(), PredTerm);
2703   // Create a conditional branch and update PHI nodes.
2704   BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2705   SIUse->setIncomingValue(Idx, SI->getFalseValue());
2706   SIUse->addIncoming(SI->getTrueValue(), NewBB);
2707 
2708   // The select is now dead.
2709   SI->eraseFromParent();
2710   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2711                                {DominatorTree::Insert, Pred, NewBB}});
2712 
2713   // Update any other PHI nodes in BB.
2714   for (BasicBlock::iterator BI = BB->begin();
2715        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2716     if (Phi != SIUse)
2717       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2718 }
2719 
2720 bool JumpThreadingPass::TryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2721   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2722 
2723   if (!CondPHI || CondPHI->getParent() != BB)
2724     return false;
2725 
2726   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2727     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2728     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2729 
2730     // The second and third condition can be potentially relaxed. Currently
2731     // the conditions help to simplify the code and allow us to reuse existing
2732     // code, developed for TryToUnfoldSelect(CmpInst *, BasicBlock *)
2733     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2734       continue;
2735 
2736     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2737     if (!PredTerm || !PredTerm->isUnconditional())
2738       continue;
2739 
2740     UnfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2741     return true;
2742   }
2743   return false;
2744 }
2745 
2746 /// TryToUnfoldSelect - Look for blocks of the form
2747 /// bb1:
2748 ///   %a = select
2749 ///   br bb2
2750 ///
2751 /// bb2:
2752 ///   %p = phi [%a, %bb1] ...
2753 ///   %c = icmp %p
2754 ///   br i1 %c
2755 ///
2756 /// And expand the select into a branch structure if one of its arms allows %c
2757 /// to be folded. This later enables threading from bb1 over bb2.
2758 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2759   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2760   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2761   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2762 
2763   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2764       CondLHS->getParent() != BB)
2765     return false;
2766 
2767   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2768     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2769     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2770 
2771     // Look if one of the incoming values is a select in the corresponding
2772     // predecessor.
2773     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2774       continue;
2775 
2776     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2777     if (!PredTerm || !PredTerm->isUnconditional())
2778       continue;
2779 
2780     // Now check if one of the select values would allow us to constant fold the
2781     // terminator in BB. We don't do the transform if both sides fold, those
2782     // cases will be threaded in any case.
2783     if (DTU->hasPendingDomTreeUpdates())
2784       LVI->disableDT();
2785     else
2786       LVI->enableDT();
2787     LazyValueInfo::Tristate LHSFolds =
2788         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2789                                 CondRHS, Pred, BB, CondCmp);
2790     LazyValueInfo::Tristate RHSFolds =
2791         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2792                                 CondRHS, Pred, BB, CondCmp);
2793     if ((LHSFolds != LazyValueInfo::Unknown ||
2794          RHSFolds != LazyValueInfo::Unknown) &&
2795         LHSFolds != RHSFolds) {
2796       UnfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2797       return true;
2798     }
2799   }
2800   return false;
2801 }
2802 
2803 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2804 /// same BB in the form
2805 /// bb:
2806 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2807 ///   %s = select %p, trueval, falseval
2808 ///
2809 /// or
2810 ///
2811 /// bb:
2812 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2813 ///   %c = cmp %p, 0
2814 ///   %s = select %c, trueval, falseval
2815 ///
2816 /// And expand the select into a branch structure. This later enables
2817 /// jump-threading over bb in this pass.
2818 ///
2819 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2820 /// select if the associated PHI has at least one constant.  If the unfolded
2821 /// select is not jump-threaded, it will be folded again in the later
2822 /// optimizations.
2823 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2824   // If threading this would thread across a loop header, don't thread the edge.
2825   // See the comments above FindLoopHeaders for justifications and caveats.
2826   if (LoopHeaders.count(BB))
2827     return false;
2828 
2829   for (BasicBlock::iterator BI = BB->begin();
2830        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2831     // Look for a Phi having at least one constant incoming value.
2832     if (llvm::all_of(PN->incoming_values(),
2833                      [](Value *V) { return !isa<ConstantInt>(V); }))
2834       continue;
2835 
2836     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2837       // Check if SI is in BB and use V as condition.
2838       if (SI->getParent() != BB)
2839         return false;
2840       Value *Cond = SI->getCondition();
2841       return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
2842     };
2843 
2844     SelectInst *SI = nullptr;
2845     for (Use &U : PN->uses()) {
2846       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2847         // Look for a ICmp in BB that compares PN with a constant and is the
2848         // condition of a Select.
2849         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2850             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2851           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2852             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2853               SI = SelectI;
2854               break;
2855             }
2856       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2857         // Look for a Select in BB that uses PN as condition.
2858         if (isUnfoldCandidate(SelectI, U.get())) {
2859           SI = SelectI;
2860           break;
2861         }
2862       }
2863     }
2864 
2865     if (!SI)
2866       continue;
2867     // Expand the select.
2868     Instruction *Term =
2869         SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
2870     BasicBlock *SplitBB = SI->getParent();
2871     BasicBlock *NewBB = Term->getParent();
2872     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2873     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2874     NewPN->addIncoming(SI->getFalseValue(), BB);
2875     SI->replaceAllUsesWith(NewPN);
2876     SI->eraseFromParent();
2877     // NewBB and SplitBB are newly created blocks which require insertion.
2878     std::vector<DominatorTree::UpdateType> Updates;
2879     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2880     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2881     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2882     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2883     // BB's successors were moved to SplitBB, update DTU accordingly.
2884     for (auto *Succ : successors(SplitBB)) {
2885       Updates.push_back({DominatorTree::Delete, BB, Succ});
2886       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2887     }
2888     DTU->applyUpdatesPermissive(Updates);
2889     return true;
2890   }
2891   return false;
2892 }
2893 
2894 /// Try to propagate a guard from the current BB into one of its predecessors
2895 /// in case if another branch of execution implies that the condition of this
2896 /// guard is always true. Currently we only process the simplest case that
2897 /// looks like:
2898 ///
2899 /// Start:
2900 ///   %cond = ...
2901 ///   br i1 %cond, label %T1, label %F1
2902 /// T1:
2903 ///   br label %Merge
2904 /// F1:
2905 ///   br label %Merge
2906 /// Merge:
2907 ///   %condGuard = ...
2908 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2909 ///
2910 /// And cond either implies condGuard or !condGuard. In this case all the
2911 /// instructions before the guard can be duplicated in both branches, and the
2912 /// guard is then threaded to one of them.
2913 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
2914   using namespace PatternMatch;
2915 
2916   // We only want to deal with two predecessors.
2917   BasicBlock *Pred1, *Pred2;
2918   auto PI = pred_begin(BB), PE = pred_end(BB);
2919   if (PI == PE)
2920     return false;
2921   Pred1 = *PI++;
2922   if (PI == PE)
2923     return false;
2924   Pred2 = *PI++;
2925   if (PI != PE)
2926     return false;
2927   if (Pred1 == Pred2)
2928     return false;
2929 
2930   // Try to thread one of the guards of the block.
2931   // TODO: Look up deeper than to immediate predecessor?
2932   auto *Parent = Pred1->getSinglePredecessor();
2933   if (!Parent || Parent != Pred2->getSinglePredecessor())
2934     return false;
2935 
2936   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2937     for (auto &I : *BB)
2938       if (isGuard(&I) && ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
2939         return true;
2940 
2941   return false;
2942 }
2943 
2944 /// Try to propagate the guard from BB which is the lower block of a diamond
2945 /// to one of its branches, in case if diamond's condition implies guard's
2946 /// condition.
2947 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2948                                     BranchInst *BI) {
2949   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2950   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2951   Value *GuardCond = Guard->getArgOperand(0);
2952   Value *BranchCond = BI->getCondition();
2953   BasicBlock *TrueDest = BI->getSuccessor(0);
2954   BasicBlock *FalseDest = BI->getSuccessor(1);
2955 
2956   auto &DL = BB->getModule()->getDataLayout();
2957   bool TrueDestIsSafe = false;
2958   bool FalseDestIsSafe = false;
2959 
2960   // True dest is safe if BranchCond => GuardCond.
2961   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
2962   if (Impl && *Impl)
2963     TrueDestIsSafe = true;
2964   else {
2965     // False dest is safe if !BranchCond => GuardCond.
2966     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
2967     if (Impl && *Impl)
2968       FalseDestIsSafe = true;
2969   }
2970 
2971   if (!TrueDestIsSafe && !FalseDestIsSafe)
2972     return false;
2973 
2974   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
2975   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
2976 
2977   ValueToValueMapTy UnguardedMapping, GuardedMapping;
2978   Instruction *AfterGuard = Guard->getNextNode();
2979   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
2980   if (Cost > BBDupThreshold)
2981     return false;
2982   // Duplicate all instructions before the guard and the guard itself to the
2983   // branch where implication is not proved.
2984   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
2985       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
2986   assert(GuardedBlock && "Could not create the guarded block?");
2987   // Duplicate all instructions before the guard in the unguarded branch.
2988   // Since we have successfully duplicated the guarded block and this block
2989   // has fewer instructions, we expect it to succeed.
2990   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
2991       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
2992   assert(UnguardedBlock && "Could not create the unguarded block?");
2993   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
2994                     << GuardedBlock->getName() << "\n");
2995   // Some instructions before the guard may still have uses. For them, we need
2996   // to create Phi nodes merging their copies in both guarded and unguarded
2997   // branches. Those instructions that have no uses can be just removed.
2998   SmallVector<Instruction *, 4> ToRemove;
2999   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
3000     if (!isa<PHINode>(&*BI))
3001       ToRemove.push_back(&*BI);
3002 
3003   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
3004   assert(InsertionPoint && "Empty block?");
3005   // Substitute with Phis & remove.
3006   for (auto *Inst : reverse(ToRemove)) {
3007     if (!Inst->use_empty()) {
3008       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
3009       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3010       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3011       NewPN->insertBefore(InsertionPoint);
3012       Inst->replaceAllUsesWith(NewPN);
3013     }
3014     Inst->eraseFromParent();
3015   }
3016   return true;
3017 }
3018