1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "jump-threading" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/IntrinsicInst.h" 17 #include "llvm/LLVMContext.h" 18 #include "llvm/Pass.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LazyValueInfo.h" 21 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 22 #include "llvm/Transforms/Utils/Local.h" 23 #include "llvm/Transforms/Utils/SSAUpdater.h" 24 #include "llvm/Target/TargetData.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 using namespace llvm; 34 35 STATISTIC(NumThreads, "Number of jumps threaded"); 36 STATISTIC(NumFolds, "Number of terminators folded"); 37 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 38 39 static cl::opt<unsigned> 40 Threshold("jump-threading-threshold", 41 cl::desc("Max block size to duplicate for jump threading"), 42 cl::init(6), cl::Hidden); 43 44 // Turn on use of LazyValueInfo. 45 static cl::opt<bool> 46 EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden); 47 48 49 50 namespace { 51 /// This pass performs 'jump threading', which looks at blocks that have 52 /// multiple predecessors and multiple successors. If one or more of the 53 /// predecessors of the block can be proven to always jump to one of the 54 /// successors, we forward the edge from the predecessor to the successor by 55 /// duplicating the contents of this block. 56 /// 57 /// An example of when this can occur is code like this: 58 /// 59 /// if () { ... 60 /// X = 4; 61 /// } 62 /// if (X < 3) { 63 /// 64 /// In this case, the unconditional branch at the end of the first if can be 65 /// revectored to the false side of the second if. 66 /// 67 class JumpThreading : public FunctionPass { 68 TargetData *TD; 69 LazyValueInfo *LVI; 70 #ifdef NDEBUG 71 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 72 #else 73 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 74 #endif 75 public: 76 static char ID; // Pass identification 77 JumpThreading() : FunctionPass(&ID) {} 78 79 bool runOnFunction(Function &F); 80 81 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 82 if (EnableLVI) 83 AU.addRequired<LazyValueInfo>(); 84 } 85 86 void FindLoopHeaders(Function &F); 87 bool ProcessBlock(BasicBlock *BB); 88 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 89 BasicBlock *SuccBB); 90 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 91 BasicBlock *PredBB); 92 93 typedef SmallVectorImpl<std::pair<ConstantInt*, 94 BasicBlock*> > PredValueInfo; 95 96 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 97 PredValueInfo &Result); 98 bool ProcessThreadableEdges(Instruction *CondInst, BasicBlock *BB); 99 100 101 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 102 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 103 104 bool ProcessJumpOnPHI(PHINode *PN); 105 106 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 107 }; 108 } 109 110 char JumpThreading::ID = 0; 111 static RegisterPass<JumpThreading> 112 X("jump-threading", "Jump Threading"); 113 114 // Public interface to the Jump Threading pass 115 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 116 117 /// runOnFunction - Top level algorithm. 118 /// 119 bool JumpThreading::runOnFunction(Function &F) { 120 DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n"); 121 TD = getAnalysisIfAvailable<TargetData>(); 122 LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0; 123 124 FindLoopHeaders(F); 125 126 bool AnotherIteration = true, EverChanged = false; 127 while (AnotherIteration) { 128 AnotherIteration = false; 129 bool Changed = false; 130 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 131 BasicBlock *BB = I; 132 // Thread all of the branches we can over this block. 133 while (ProcessBlock(BB)) 134 Changed = true; 135 136 ++I; 137 138 // If the block is trivially dead, zap it. This eliminates the successor 139 // edges which simplifies the CFG. 140 if (pred_begin(BB) == pred_end(BB) && 141 BB != &BB->getParent()->getEntryBlock()) { 142 DEBUG(errs() << " JT: Deleting dead block '" << BB->getName() 143 << "' with terminator: " << *BB->getTerminator() << '\n'); 144 LoopHeaders.erase(BB); 145 DeleteDeadBlock(BB); 146 Changed = true; 147 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 148 // Can't thread an unconditional jump, but if the block is "almost 149 // empty", we can replace uses of it with uses of the successor and make 150 // this dead. 151 if (BI->isUnconditional() && 152 BB != &BB->getParent()->getEntryBlock()) { 153 BasicBlock::iterator BBI = BB->getFirstNonPHI(); 154 // Ignore dbg intrinsics. 155 while (isa<DbgInfoIntrinsic>(BBI)) 156 ++BBI; 157 // If the terminator is the only non-phi instruction, try to nuke it. 158 if (BBI->isTerminator()) { 159 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 160 // block, we have to make sure it isn't in the LoopHeaders set. We 161 // reinsert afterward in the rare case when the block isn't deleted. 162 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 163 164 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) 165 Changed = true; 166 else if (ErasedFromLoopHeaders) 167 LoopHeaders.insert(BB); 168 } 169 } 170 } 171 } 172 AnotherIteration = Changed; 173 EverChanged |= Changed; 174 } 175 176 LoopHeaders.clear(); 177 return EverChanged; 178 } 179 180 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 181 /// thread across it. 182 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) { 183 /// Ignore PHI nodes, these will be flattened when duplication happens. 184 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 185 186 // FIXME: THREADING will delete values that are just used to compute the 187 // branch, so they shouldn't count against the duplication cost. 188 189 190 // Sum up the cost of each instruction until we get to the terminator. Don't 191 // include the terminator because the copy won't include it. 192 unsigned Size = 0; 193 for (; !isa<TerminatorInst>(I); ++I) { 194 // Debugger intrinsics don't incur code size. 195 if (isa<DbgInfoIntrinsic>(I)) continue; 196 197 // If this is a pointer->pointer bitcast, it is free. 198 if (isa<BitCastInst>(I) && isa<PointerType>(I->getType())) 199 continue; 200 201 // All other instructions count for at least one unit. 202 ++Size; 203 204 // Calls are more expensive. If they are non-intrinsic calls, we model them 205 // as having cost of 4. If they are a non-vector intrinsic, we model them 206 // as having cost of 2 total, and if they are a vector intrinsic, we model 207 // them as having cost 1. 208 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 209 if (!isa<IntrinsicInst>(CI)) 210 Size += 3; 211 else if (!isa<VectorType>(CI->getType())) 212 Size += 1; 213 } 214 } 215 216 // Threading through a switch statement is particularly profitable. If this 217 // block ends in a switch, decrease its cost to make it more likely to happen. 218 if (isa<SwitchInst>(I)) 219 Size = Size > 6 ? Size-6 : 0; 220 221 return Size; 222 } 223 224 /// FindLoopHeaders - We do not want jump threading to turn proper loop 225 /// structures into irreducible loops. Doing this breaks up the loop nesting 226 /// hierarchy and pessimizes later transformations. To prevent this from 227 /// happening, we first have to find the loop headers. Here we approximate this 228 /// by finding targets of backedges in the CFG. 229 /// 230 /// Note that there definitely are cases when we want to allow threading of 231 /// edges across a loop header. For example, threading a jump from outside the 232 /// loop (the preheader) to an exit block of the loop is definitely profitable. 233 /// It is also almost always profitable to thread backedges from within the loop 234 /// to exit blocks, and is often profitable to thread backedges to other blocks 235 /// within the loop (forming a nested loop). This simple analysis is not rich 236 /// enough to track all of these properties and keep it up-to-date as the CFG 237 /// mutates, so we don't allow any of these transformations. 238 /// 239 void JumpThreading::FindLoopHeaders(Function &F) { 240 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 241 FindFunctionBackedges(F, Edges); 242 243 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 244 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 245 } 246 247 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 248 /// if we can infer that the value is a known ConstantInt in any of our 249 /// predecessors. If so, return the known list of value and pred BB in the 250 /// result vector. If a value is known to be undef, it is returned as null. 251 /// 252 /// This returns true if there were any known values. 253 /// 254 bool JumpThreading:: 255 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){ 256 // If V is a constantint, then it is known in all predecessors. 257 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) { 258 ConstantInt *CI = dyn_cast<ConstantInt>(V); 259 260 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 261 Result.push_back(std::make_pair(CI, *PI)); 262 return true; 263 } 264 265 // If V is a non-instruction value, or an instruction in a different block, 266 // then it can't be derived from a PHI. 267 Instruction *I = dyn_cast<Instruction>(V); 268 if (I == 0 || I->getParent() != BB) { 269 270 // Okay, if this is a live-in value, see if it has a known value at the end 271 // of any of our predecessors. 272 // 273 // FIXME: This should be an edge property, not a block end property. 274 /// TODO: Per PR2563, we could infer value range information about a 275 /// predecessor based on its terminator. 276 // 277 if (LVI) { 278 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 279 // If the value is known by LazyValueInfo to be a constant in a 280 // predecessor, use that information to try to thread this block. 281 Constant *PredCst = LVI->getConstant(V, *PI); 282 if (PredCst == 0 || 283 (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst))) 284 continue; 285 286 Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI)); 287 } 288 289 return !Result.empty(); 290 } 291 292 return false; 293 } 294 295 /// If I is a PHI node, then we know the incoming values for any constants. 296 if (PHINode *PN = dyn_cast<PHINode>(I)) { 297 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 298 Value *InVal = PN->getIncomingValue(i); 299 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) { 300 ConstantInt *CI = dyn_cast<ConstantInt>(InVal); 301 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i))); 302 } 303 } 304 return !Result.empty(); 305 } 306 307 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals; 308 309 // Handle some boolean conditions. 310 if (I->getType()->getPrimitiveSizeInBits() == 1) { 311 // X | true -> true 312 // X & false -> false 313 if (I->getOpcode() == Instruction::Or || 314 I->getOpcode() == Instruction::And) { 315 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); 316 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals); 317 318 if (LHSVals.empty() && RHSVals.empty()) 319 return false; 320 321 ConstantInt *InterestingVal; 322 if (I->getOpcode() == Instruction::Or) 323 InterestingVal = ConstantInt::getTrue(I->getContext()); 324 else 325 InterestingVal = ConstantInt::getFalse(I->getContext()); 326 327 // Scan for the sentinel. 328 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 329 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) 330 Result.push_back(LHSVals[i]); 331 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 332 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) 333 Result.push_back(RHSVals[i]); 334 return !Result.empty(); 335 } 336 337 // Handle the NOT form of XOR. 338 if (I->getOpcode() == Instruction::Xor && 339 isa<ConstantInt>(I->getOperand(1)) && 340 cast<ConstantInt>(I->getOperand(1))->isOne()) { 341 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result); 342 if (Result.empty()) 343 return false; 344 345 // Invert the known values. 346 for (unsigned i = 0, e = Result.size(); i != e; ++i) 347 Result[i].first = 348 cast<ConstantInt>(ConstantExpr::getNot(Result[i].first)); 349 return true; 350 } 351 } 352 353 // Handle compare with phi operand, where the PHI is defined in this block. 354 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 355 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 356 if (PN && PN->getParent() == BB) { 357 // We can do this simplification if any comparisons fold to true or false. 358 // See if any do. 359 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 360 BasicBlock *PredBB = PN->getIncomingBlock(i); 361 Value *LHS = PN->getIncomingValue(i); 362 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 363 364 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS); 365 if (Res == 0) continue; 366 367 if (isa<UndefValue>(Res)) 368 Result.push_back(std::make_pair((ConstantInt*)0, PredBB)); 369 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res)) 370 Result.push_back(std::make_pair(CI, PredBB)); 371 } 372 373 return !Result.empty(); 374 } 375 376 // TODO: We could also recurse to see if we can determine constants another 377 // way. 378 } 379 return false; 380 } 381 382 383 384 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 385 /// in an undefined jump, decide which block is best to revector to. 386 /// 387 /// Since we can pick an arbitrary destination, we pick the successor with the 388 /// fewest predecessors. This should reduce the in-degree of the others. 389 /// 390 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 391 TerminatorInst *BBTerm = BB->getTerminator(); 392 unsigned MinSucc = 0; 393 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 394 // Compute the successor with the minimum number of predecessors. 395 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 396 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 397 TestBB = BBTerm->getSuccessor(i); 398 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 399 if (NumPreds < MinNumPreds) 400 MinSucc = i; 401 } 402 403 return MinSucc; 404 } 405 406 /// ProcessBlock - If there are any predecessors whose control can be threaded 407 /// through to a successor, transform them now. 408 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 409 // If this block has a single predecessor, and if that pred has a single 410 // successor, merge the blocks. This encourages recursive jump threading 411 // because now the condition in this block can be threaded through 412 // predecessors of our predecessor block. 413 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 414 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 415 SinglePred != BB) { 416 // If SinglePred was a loop header, BB becomes one. 417 if (LoopHeaders.erase(SinglePred)) 418 LoopHeaders.insert(BB); 419 420 // Remember if SinglePred was the entry block of the function. If so, we 421 // will need to move BB back to the entry position. 422 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 423 MergeBasicBlockIntoOnlyPred(BB); 424 425 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 426 BB->moveBefore(&BB->getParent()->getEntryBlock()); 427 return true; 428 } 429 } 430 431 // Look to see if the terminator is a branch of switch, if not we can't thread 432 // it. 433 Value *Condition; 434 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 435 // Can't thread an unconditional jump. 436 if (BI->isUnconditional()) return false; 437 Condition = BI->getCondition(); 438 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 439 Condition = SI->getCondition(); 440 else 441 return false; // Must be an invoke. 442 443 // If the terminator of this block is branching on a constant, simplify the 444 // terminator to an unconditional branch. This can occur due to threading in 445 // other blocks. 446 if (isa<ConstantInt>(Condition)) { 447 DEBUG(errs() << " In block '" << BB->getName() 448 << "' folding terminator: " << *BB->getTerminator() << '\n'); 449 ++NumFolds; 450 ConstantFoldTerminator(BB); 451 return true; 452 } 453 454 // If the terminator is branching on an undef, we can pick any of the 455 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 456 if (isa<UndefValue>(Condition)) { 457 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 458 459 // Fold the branch/switch. 460 TerminatorInst *BBTerm = BB->getTerminator(); 461 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 462 if (i == BestSucc) continue; 463 RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD); 464 } 465 466 DEBUG(errs() << " In block '" << BB->getName() 467 << "' folding undef terminator: " << *BBTerm << '\n'); 468 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 469 BBTerm->eraseFromParent(); 470 return true; 471 } 472 473 Instruction *CondInst = dyn_cast<Instruction>(Condition); 474 475 // If the condition is an instruction defined in another block, see if a 476 // predecessor has the same condition: 477 // br COND, BBX, BBY 478 // BBX: 479 // br COND, BBZ, BBW 480 if (!Condition->hasOneUse() && // Multiple uses. 481 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition. 482 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 483 if (isa<BranchInst>(BB->getTerminator())) { 484 for (; PI != E; ++PI) 485 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 486 if (PBI->isConditional() && PBI->getCondition() == Condition && 487 ProcessBranchOnDuplicateCond(*PI, BB)) 488 return true; 489 } else { 490 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator"); 491 for (; PI != E; ++PI) 492 if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator())) 493 if (PSI->getCondition() == Condition && 494 ProcessSwitchOnDuplicateCond(*PI, BB)) 495 return true; 496 } 497 } 498 499 // All the rest of our checks depend on the condition being an instruction. 500 if (CondInst == 0) 501 return false; 502 503 // See if this is a phi node in the current block. 504 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 505 if (PN->getParent() == BB) 506 return ProcessJumpOnPHI(PN); 507 508 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 509 if (!isa<PHINode>(CondCmp->getOperand(0)) || 510 cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB) { 511 // If we have a comparison, loop over the predecessors to see if there is 512 // a condition with a lexically identical value. 513 pred_iterator PI = pred_begin(BB), E = pred_end(BB); 514 for (; PI != E; ++PI) 515 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 516 if (PBI->isConditional() && *PI != BB) { 517 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) { 518 if (CI->getOperand(0) == CondCmp->getOperand(0) && 519 CI->getOperand(1) == CondCmp->getOperand(1) && 520 CI->getPredicate() == CondCmp->getPredicate()) { 521 // TODO: Could handle things like (x != 4) --> (x == 17) 522 if (ProcessBranchOnDuplicateCond(*PI, BB)) 523 return true; 524 } 525 } 526 } 527 } 528 } 529 530 // Check for some cases that are worth simplifying. Right now we want to look 531 // for loads that are used by a switch or by the condition for the branch. If 532 // we see one, check to see if it's partially redundant. If so, insert a PHI 533 // which can then be used to thread the values. 534 // 535 // This is particularly important because reg2mem inserts loads and stores all 536 // over the place, and this blocks jump threading if we don't zap them. 537 Value *SimplifyValue = CondInst; 538 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 539 if (isa<Constant>(CondCmp->getOperand(1))) 540 SimplifyValue = CondCmp->getOperand(0); 541 542 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 543 if (SimplifyPartiallyRedundantLoad(LI)) 544 return true; 545 546 547 // Handle a variety of cases where we are branching on something derived from 548 // a PHI node in the current block. If we can prove that any predecessors 549 // compute a predictable value based on a PHI node, thread those predecessors. 550 // 551 if (ProcessThreadableEdges(CondInst, BB)) 552 return true; 553 554 555 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 556 // "(X == 4)" thread through this block. 557 558 return false; 559 } 560 561 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that 562 /// block that jump on exactly the same condition. This means that we almost 563 /// always know the direction of the edge in the DESTBB: 564 /// PREDBB: 565 /// br COND, DESTBB, BBY 566 /// DESTBB: 567 /// br COND, BBZ, BBW 568 /// 569 /// If DESTBB has multiple predecessors, we can't just constant fold the branch 570 /// in DESTBB, we have to thread over it. 571 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB, 572 BasicBlock *BB) { 573 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator()); 574 575 // If both successors of PredBB go to DESTBB, we don't know anything. We can 576 // fold the branch to an unconditional one, which allows other recursive 577 // simplifications. 578 bool BranchDir; 579 if (PredBI->getSuccessor(1) != BB) 580 BranchDir = true; 581 else if (PredBI->getSuccessor(0) != BB) 582 BranchDir = false; 583 else { 584 DEBUG(errs() << " In block '" << PredBB->getName() 585 << "' folding terminator: " << *PredBB->getTerminator() << '\n'); 586 ++NumFolds; 587 ConstantFoldTerminator(PredBB); 588 return true; 589 } 590 591 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator()); 592 593 // If the dest block has one predecessor, just fix the branch condition to a 594 // constant and fold it. 595 if (BB->getSinglePredecessor()) { 596 DEBUG(errs() << " In block '" << BB->getName() 597 << "' folding condition to '" << BranchDir << "': " 598 << *BB->getTerminator() << '\n'); 599 ++NumFolds; 600 Value *OldCond = DestBI->getCondition(); 601 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 602 BranchDir)); 603 ConstantFoldTerminator(BB); 604 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 605 return true; 606 } 607 608 609 // Next, figure out which successor we are threading to. 610 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir); 611 612 SmallVector<BasicBlock*, 2> Preds; 613 Preds.push_back(PredBB); 614 615 // Ok, try to thread it! 616 return ThreadEdge(BB, Preds, SuccBB); 617 } 618 619 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that 620 /// block that switch on exactly the same condition. This means that we almost 621 /// always know the direction of the edge in the DESTBB: 622 /// PREDBB: 623 /// switch COND [... DESTBB, BBY ... ] 624 /// DESTBB: 625 /// switch COND [... BBZ, BBW ] 626 /// 627 /// Optimizing switches like this is very important, because simplifycfg builds 628 /// switches out of repeated 'if' conditions. 629 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, 630 BasicBlock *DestBB) { 631 // Can't thread edge to self. 632 if (PredBB == DestBB) 633 return false; 634 635 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator()); 636 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator()); 637 638 // There are a variety of optimizations that we can potentially do on these 639 // blocks: we order them from most to least preferable. 640 641 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB 642 // directly to their destination. This does not introduce *any* code size 643 // growth. Skip debug info first. 644 BasicBlock::iterator BBI = DestBB->begin(); 645 while (isa<DbgInfoIntrinsic>(BBI)) 646 BBI++; 647 648 // FIXME: Thread if it just contains a PHI. 649 if (isa<SwitchInst>(BBI)) { 650 bool MadeChange = false; 651 // Ignore the default edge for now. 652 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) { 653 ConstantInt *DestVal = DestSI->getCaseValue(i); 654 BasicBlock *DestSucc = DestSI->getSuccessor(i); 655 656 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if 657 // PredSI has an explicit case for it. If so, forward. If it is covered 658 // by the default case, we can't update PredSI. 659 unsigned PredCase = PredSI->findCaseValue(DestVal); 660 if (PredCase == 0) continue; 661 662 // If PredSI doesn't go to DestBB on this value, then it won't reach the 663 // case on this condition. 664 if (PredSI->getSuccessor(PredCase) != DestBB && 665 DestSI->getSuccessor(i) != DestBB) 666 continue; 667 668 // Otherwise, we're safe to make the change. Make sure that the edge from 669 // DestSI to DestSucc is not critical and has no PHI nodes. 670 DEBUG(errs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI); 671 DEBUG(errs() << "THROUGH: " << *DestSI); 672 673 // If the destination has PHI nodes, just split the edge for updating 674 // simplicity. 675 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){ 676 SplitCriticalEdge(DestSI, i, this); 677 DestSucc = DestSI->getSuccessor(i); 678 } 679 FoldSingleEntryPHINodes(DestSucc); 680 PredSI->setSuccessor(PredCase, DestSucc); 681 MadeChange = true; 682 } 683 684 if (MadeChange) 685 return true; 686 } 687 688 return false; 689 } 690 691 692 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 693 /// load instruction, eliminate it by replacing it with a PHI node. This is an 694 /// important optimization that encourages jump threading, and needs to be run 695 /// interlaced with other jump threading tasks. 696 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 697 // Don't hack volatile loads. 698 if (LI->isVolatile()) return false; 699 700 // If the load is defined in a block with exactly one predecessor, it can't be 701 // partially redundant. 702 BasicBlock *LoadBB = LI->getParent(); 703 if (LoadBB->getSinglePredecessor()) 704 return false; 705 706 Value *LoadedPtr = LI->getOperand(0); 707 708 // If the loaded operand is defined in the LoadBB, it can't be available. 709 // FIXME: Could do PHI translation, that would be fun :) 710 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 711 if (PtrOp->getParent() == LoadBB) 712 return false; 713 714 // Scan a few instructions up from the load, to see if it is obviously live at 715 // the entry to its block. 716 BasicBlock::iterator BBIt = LI; 717 718 if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB, 719 BBIt, 6)) { 720 // If the value if the load is locally available within the block, just use 721 // it. This frequently occurs for reg2mem'd allocas. 722 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 723 724 // If the returned value is the load itself, replace with an undef. This can 725 // only happen in dead loops. 726 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 727 LI->replaceAllUsesWith(AvailableVal); 728 LI->eraseFromParent(); 729 return true; 730 } 731 732 // Otherwise, if we scanned the whole block and got to the top of the block, 733 // we know the block is locally transparent to the load. If not, something 734 // might clobber its value. 735 if (BBIt != LoadBB->begin()) 736 return false; 737 738 739 SmallPtrSet<BasicBlock*, 8> PredsScanned; 740 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 741 AvailablePredsTy AvailablePreds; 742 BasicBlock *OneUnavailablePred = 0; 743 744 // If we got here, the loaded value is transparent through to the start of the 745 // block. Check to see if it is available in any of the predecessor blocks. 746 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 747 PI != PE; ++PI) { 748 BasicBlock *PredBB = *PI; 749 750 // If we already scanned this predecessor, skip it. 751 if (!PredsScanned.insert(PredBB)) 752 continue; 753 754 // Scan the predecessor to see if the value is available in the pred. 755 BBIt = PredBB->end(); 756 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6); 757 if (!PredAvailable) { 758 OneUnavailablePred = PredBB; 759 continue; 760 } 761 762 // If so, this load is partially redundant. Remember this info so that we 763 // can create a PHI node. 764 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 765 } 766 767 // If the loaded value isn't available in any predecessor, it isn't partially 768 // redundant. 769 if (AvailablePreds.empty()) return false; 770 771 // Okay, the loaded value is available in at least one (and maybe all!) 772 // predecessors. If the value is unavailable in more than one unique 773 // predecessor, we want to insert a merge block for those common predecessors. 774 // This ensures that we only have to insert one reload, thus not increasing 775 // code size. 776 BasicBlock *UnavailablePred = 0; 777 778 // If there is exactly one predecessor where the value is unavailable, the 779 // already computed 'OneUnavailablePred' block is it. If it ends in an 780 // unconditional branch, we know that it isn't a critical edge. 781 if (PredsScanned.size() == AvailablePreds.size()+1 && 782 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 783 UnavailablePred = OneUnavailablePred; 784 } else if (PredsScanned.size() != AvailablePreds.size()) { 785 // Otherwise, we had multiple unavailable predecessors or we had a critical 786 // edge from the one. 787 SmallVector<BasicBlock*, 8> PredsToSplit; 788 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 789 790 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 791 AvailablePredSet.insert(AvailablePreds[i].first); 792 793 // Add all the unavailable predecessors to the PredsToSplit list. 794 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 795 PI != PE; ++PI) 796 if (!AvailablePredSet.count(*PI)) 797 PredsToSplit.push_back(*PI); 798 799 // Split them out to their own block. 800 UnavailablePred = 801 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(), 802 "thread-split", this); 803 } 804 805 // If the value isn't available in all predecessors, then there will be 806 // exactly one where it isn't available. Insert a load on that edge and add 807 // it to the AvailablePreds list. 808 if (UnavailablePred) { 809 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 810 "Can't handle critical edge here!"); 811 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", 812 UnavailablePred->getTerminator()); 813 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 814 } 815 816 // Now we know that each predecessor of this block has a value in 817 // AvailablePreds, sort them for efficient access as we're walking the preds. 818 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 819 820 // Create a PHI node at the start of the block for the PRE'd load value. 821 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin()); 822 PN->takeName(LI); 823 824 // Insert new entries into the PHI for each predecessor. A single block may 825 // have multiple entries here. 826 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; 827 ++PI) { 828 AvailablePredsTy::iterator I = 829 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 830 std::make_pair(*PI, (Value*)0)); 831 832 assert(I != AvailablePreds.end() && I->first == *PI && 833 "Didn't find entry for predecessor!"); 834 835 PN->addIncoming(I->second, I->first); 836 } 837 838 //cerr << "PRE: " << *LI << *PN << "\n"; 839 840 LI->replaceAllUsesWith(PN); 841 LI->eraseFromParent(); 842 843 return true; 844 } 845 846 /// FindMostPopularDest - The specified list contains multiple possible 847 /// threadable destinations. Pick the one that occurs the most frequently in 848 /// the list. 849 static BasicBlock * 850 FindMostPopularDest(BasicBlock *BB, 851 const SmallVectorImpl<std::pair<BasicBlock*, 852 BasicBlock*> > &PredToDestList) { 853 assert(!PredToDestList.empty()); 854 855 // Determine popularity. If there are multiple possible destinations, we 856 // explicitly choose to ignore 'undef' destinations. We prefer to thread 857 // blocks with known and real destinations to threading undef. We'll handle 858 // them later if interesting. 859 DenseMap<BasicBlock*, unsigned> DestPopularity; 860 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 861 if (PredToDestList[i].second) 862 DestPopularity[PredToDestList[i].second]++; 863 864 // Find the most popular dest. 865 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 866 BasicBlock *MostPopularDest = DPI->first; 867 unsigned Popularity = DPI->second; 868 SmallVector<BasicBlock*, 4> SamePopularity; 869 870 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 871 // If the popularity of this entry isn't higher than the popularity we've 872 // seen so far, ignore it. 873 if (DPI->second < Popularity) 874 ; // ignore. 875 else if (DPI->second == Popularity) { 876 // If it is the same as what we've seen so far, keep track of it. 877 SamePopularity.push_back(DPI->first); 878 } else { 879 // If it is more popular, remember it. 880 SamePopularity.clear(); 881 MostPopularDest = DPI->first; 882 Popularity = DPI->second; 883 } 884 } 885 886 // Okay, now we know the most popular destination. If there is more than 887 // destination, we need to determine one. This is arbitrary, but we need 888 // to make a deterministic decision. Pick the first one that appears in the 889 // successor list. 890 if (!SamePopularity.empty()) { 891 SamePopularity.push_back(MostPopularDest); 892 TerminatorInst *TI = BB->getTerminator(); 893 for (unsigned i = 0; ; ++i) { 894 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 895 896 if (std::find(SamePopularity.begin(), SamePopularity.end(), 897 TI->getSuccessor(i)) == SamePopularity.end()) 898 continue; 899 900 MostPopularDest = TI->getSuccessor(i); 901 break; 902 } 903 } 904 905 // Okay, we have finally picked the most popular destination. 906 return MostPopularDest; 907 } 908 909 bool JumpThreading::ProcessThreadableEdges(Instruction *CondInst, 910 BasicBlock *BB) { 911 // If threading this would thread across a loop header, don't even try to 912 // thread the edge. 913 if (LoopHeaders.count(BB)) 914 return false; 915 916 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues; 917 if (!ComputeValueKnownInPredecessors(CondInst, BB, PredValues)) 918 return false; 919 assert(!PredValues.empty() && 920 "ComputeValueKnownInPredecessors returned true with no values"); 921 922 DEBUG(errs() << "IN BB: " << *BB; 923 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 924 errs() << " BB '" << BB->getName() << "': FOUND condition = "; 925 if (PredValues[i].first) 926 errs() << *PredValues[i].first; 927 else 928 errs() << "UNDEF"; 929 errs() << " for pred '" << PredValues[i].second->getName() 930 << "'.\n"; 931 }); 932 933 // Decide what we want to thread through. Convert our list of known values to 934 // a list of known destinations for each pred. This also discards duplicate 935 // predecessors and keeps track of the undefined inputs (which are represented 936 // as a null dest in the PredToDestList). 937 SmallPtrSet<BasicBlock*, 16> SeenPreds; 938 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 939 940 BasicBlock *OnlyDest = 0; 941 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 942 943 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 944 BasicBlock *Pred = PredValues[i].second; 945 if (!SeenPreds.insert(Pred)) 946 continue; // Duplicate predecessor entry. 947 948 // If the predecessor ends with an indirect goto, we can't change its 949 // destination. 950 if (isa<IndirectBrInst>(Pred->getTerminator())) 951 continue; 952 953 ConstantInt *Val = PredValues[i].first; 954 955 BasicBlock *DestBB; 956 if (Val == 0) // Undef. 957 DestBB = 0; 958 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 959 DestBB = BI->getSuccessor(Val->isZero()); 960 else { 961 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator()); 962 DestBB = SI->getSuccessor(SI->findCaseValue(Val)); 963 } 964 965 // If we have exactly one destination, remember it for efficiency below. 966 if (i == 0) 967 OnlyDest = DestBB; 968 else if (OnlyDest != DestBB) 969 OnlyDest = MultipleDestSentinel; 970 971 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 972 } 973 974 // If all edges were unthreadable, we fail. 975 if (PredToDestList.empty()) 976 return false; 977 978 // Determine which is the most common successor. If we have many inputs and 979 // this block is a switch, we want to start by threading the batch that goes 980 // to the most popular destination first. If we only know about one 981 // threadable destination (the common case) we can avoid this. 982 BasicBlock *MostPopularDest = OnlyDest; 983 984 if (MostPopularDest == MultipleDestSentinel) 985 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 986 987 // Now that we know what the most popular destination is, factor all 988 // predecessors that will jump to it into a single predecessor. 989 SmallVector<BasicBlock*, 16> PredsToFactor; 990 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 991 if (PredToDestList[i].second == MostPopularDest) { 992 BasicBlock *Pred = PredToDestList[i].first; 993 994 // This predecessor may be a switch or something else that has multiple 995 // edges to the block. Factor each of these edges by listing them 996 // according to # occurrences in PredsToFactor. 997 TerminatorInst *PredTI = Pred->getTerminator(); 998 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 999 if (PredTI->getSuccessor(i) == BB) 1000 PredsToFactor.push_back(Pred); 1001 } 1002 1003 // If the threadable edges are branching on an undefined value, we get to pick 1004 // the destination that these predecessors should get to. 1005 if (MostPopularDest == 0) 1006 MostPopularDest = BB->getTerminator()-> 1007 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1008 1009 // Ok, try to thread it! 1010 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1011 } 1012 1013 /// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in 1014 /// the current block. See if there are any simplifications we can do based on 1015 /// inputs to the phi node. 1016 /// 1017 bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) { 1018 BasicBlock *BB = PN->getParent(); 1019 1020 // If any of the predecessor blocks end in an unconditional branch, we can 1021 // *duplicate* the jump into that block in order to further encourage jump 1022 // threading and to eliminate cases where we have branch on a phi of an icmp 1023 // (branch on icmp is much better). 1024 1025 // We don't want to do this tranformation for switches, because we don't 1026 // really want to duplicate a switch. 1027 if (isa<SwitchInst>(BB->getTerminator())) 1028 return false; 1029 1030 // Look for unconditional branch predecessors. 1031 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1032 BasicBlock *PredBB = PN->getIncomingBlock(i); 1033 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1034 if (PredBr->isUnconditional() && 1035 // Try to duplicate BB into PredBB. 1036 DuplicateCondBranchOnPHIIntoPred(BB, PredBB)) 1037 return true; 1038 } 1039 1040 return false; 1041 } 1042 1043 1044 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1045 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1046 /// NewPred using the entries from OldPred (suitably mapped). 1047 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1048 BasicBlock *OldPred, 1049 BasicBlock *NewPred, 1050 DenseMap<Instruction*, Value*> &ValueMap) { 1051 for (BasicBlock::iterator PNI = PHIBB->begin(); 1052 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1053 // Ok, we have a PHI node. Figure out what the incoming value was for the 1054 // DestBlock. 1055 Value *IV = PN->getIncomingValueForBlock(OldPred); 1056 1057 // Remap the value if necessary. 1058 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1059 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1060 if (I != ValueMap.end()) 1061 IV = I->second; 1062 } 1063 1064 PN->addIncoming(IV, NewPred); 1065 } 1066 } 1067 1068 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1069 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1070 /// across BB. Transform the IR to reflect this change. 1071 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1072 const SmallVectorImpl<BasicBlock*> &PredBBs, 1073 BasicBlock *SuccBB) { 1074 // If threading to the same block as we come from, we would infinite loop. 1075 if (SuccBB == BB) { 1076 DEBUG(errs() << " Not threading across BB '" << BB->getName() 1077 << "' - would thread to self!\n"); 1078 return false; 1079 } 1080 1081 // If threading this would thread across a loop header, don't thread the edge. 1082 // See the comments above FindLoopHeaders for justifications and caveats. 1083 if (LoopHeaders.count(BB)) { 1084 DEBUG(errs() << " Not threading across loop header BB '" << BB->getName() 1085 << "' to dest BB '" << SuccBB->getName() 1086 << "' - it might create an irreducible loop!\n"); 1087 return false; 1088 } 1089 1090 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); 1091 if (JumpThreadCost > Threshold) { 1092 DEBUG(errs() << " Not threading BB '" << BB->getName() 1093 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1094 return false; 1095 } 1096 1097 // And finally, do it! Start by factoring the predecessors is needed. 1098 BasicBlock *PredBB; 1099 if (PredBBs.size() == 1) 1100 PredBB = PredBBs[0]; 1101 else { 1102 DEBUG(errs() << " Factoring out " << PredBBs.size() 1103 << " common predecessors.\n"); 1104 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1105 ".thr_comm", this); 1106 } 1107 1108 // And finally, do it! 1109 DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '" 1110 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1111 << ", across block:\n " 1112 << *BB << "\n"); 1113 1114 // We are going to have to map operands from the original BB block to the new 1115 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1116 // account for entry from PredBB. 1117 DenseMap<Instruction*, Value*> ValueMapping; 1118 1119 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1120 BB->getName()+".thread", 1121 BB->getParent(), BB); 1122 NewBB->moveAfter(PredBB); 1123 1124 BasicBlock::iterator BI = BB->begin(); 1125 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1126 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1127 1128 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1129 // mapping and using it to remap operands in the cloned instructions. 1130 for (; !isa<TerminatorInst>(BI); ++BI) { 1131 Instruction *New = BI->clone(); 1132 New->setName(BI->getName()); 1133 NewBB->getInstList().push_back(New); 1134 ValueMapping[BI] = New; 1135 1136 // Remap operands to patch up intra-block references. 1137 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1138 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1139 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1140 if (I != ValueMapping.end()) 1141 New->setOperand(i, I->second); 1142 } 1143 } 1144 1145 // We didn't copy the terminator from BB over to NewBB, because there is now 1146 // an unconditional jump to SuccBB. Insert the unconditional jump. 1147 BranchInst::Create(SuccBB, NewBB); 1148 1149 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1150 // PHI nodes for NewBB now. 1151 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1152 1153 // If there were values defined in BB that are used outside the block, then we 1154 // now have to update all uses of the value to use either the original value, 1155 // the cloned value, or some PHI derived value. This can require arbitrary 1156 // PHI insertion, of which we are prepared to do, clean these up now. 1157 SSAUpdater SSAUpdate; 1158 SmallVector<Use*, 16> UsesToRename; 1159 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1160 // Scan all uses of this instruction to see if it is used outside of its 1161 // block, and if so, record them in UsesToRename. 1162 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1163 ++UI) { 1164 Instruction *User = cast<Instruction>(*UI); 1165 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1166 if (UserPN->getIncomingBlock(UI) == BB) 1167 continue; 1168 } else if (User->getParent() == BB) 1169 continue; 1170 1171 UsesToRename.push_back(&UI.getUse()); 1172 } 1173 1174 // If there are no uses outside the block, we're done with this instruction. 1175 if (UsesToRename.empty()) 1176 continue; 1177 1178 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1179 1180 // We found a use of I outside of BB. Rename all uses of I that are outside 1181 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1182 // with the two values we know. 1183 SSAUpdate.Initialize(I); 1184 SSAUpdate.AddAvailableValue(BB, I); 1185 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1186 1187 while (!UsesToRename.empty()) 1188 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1189 DEBUG(errs() << "\n"); 1190 } 1191 1192 1193 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1194 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1195 // us to simplify any PHI nodes in BB. 1196 TerminatorInst *PredTerm = PredBB->getTerminator(); 1197 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1198 if (PredTerm->getSuccessor(i) == BB) { 1199 RemovePredecessorAndSimplify(BB, PredBB, TD); 1200 PredTerm->setSuccessor(i, NewBB); 1201 } 1202 1203 // At this point, the IR is fully up to date and consistent. Do a quick scan 1204 // over the new instructions and zap any that are constants or dead. This 1205 // frequently happens because of phi translation. 1206 BI = NewBB->begin(); 1207 for (BasicBlock::iterator E = NewBB->end(); BI != E; ) { 1208 Instruction *Inst = BI++; 1209 1210 if (Value *V = SimplifyInstruction(Inst, TD)) { 1211 WeakVH BIHandle(BI); 1212 ReplaceAndSimplifyAllUses(Inst, V, TD); 1213 if (BIHandle == 0) 1214 BI = NewBB->begin(); 1215 continue; 1216 } 1217 1218 RecursivelyDeleteTriviallyDeadInstructions(Inst); 1219 } 1220 1221 // Threaded an edge! 1222 ++NumThreads; 1223 return true; 1224 } 1225 1226 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1227 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1228 /// If we can duplicate the contents of BB up into PredBB do so now, this 1229 /// improves the odds that the branch will be on an analyzable instruction like 1230 /// a compare. 1231 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1232 BasicBlock *PredBB) { 1233 // If BB is a loop header, then duplicating this block outside the loop would 1234 // cause us to transform this into an irreducible loop, don't do this. 1235 // See the comments above FindLoopHeaders for justifications and caveats. 1236 if (LoopHeaders.count(BB)) { 1237 DEBUG(errs() << " Not duplicating loop header '" << BB->getName() 1238 << "' into predecessor block '" << PredBB->getName() 1239 << "' - it might create an irreducible loop!\n"); 1240 return false; 1241 } 1242 1243 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB); 1244 if (DuplicationCost > Threshold) { 1245 DEBUG(errs() << " Not duplicating BB '" << BB->getName() 1246 << "' - Cost is too high: " << DuplicationCost << "\n"); 1247 return false; 1248 } 1249 1250 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1251 // of PredBB. 1252 DEBUG(errs() << " Duplicating block '" << BB->getName() << "' into end of '" 1253 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1254 << DuplicationCost << " block is:" << *BB << "\n"); 1255 1256 // We are going to have to map operands from the original BB block into the 1257 // PredBB block. Evaluate PHI nodes in BB. 1258 DenseMap<Instruction*, Value*> ValueMapping; 1259 1260 BasicBlock::iterator BI = BB->begin(); 1261 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1262 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1263 1264 BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1265 1266 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1267 // mapping and using it to remap operands in the cloned instructions. 1268 for (; BI != BB->end(); ++BI) { 1269 Instruction *New = BI->clone(); 1270 New->setName(BI->getName()); 1271 PredBB->getInstList().insert(OldPredBranch, New); 1272 ValueMapping[BI] = New; 1273 1274 // Remap operands to patch up intra-block references. 1275 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1276 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1277 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1278 if (I != ValueMapping.end()) 1279 New->setOperand(i, I->second); 1280 } 1281 } 1282 1283 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1284 // add entries to the PHI nodes for branch from PredBB now. 1285 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1286 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1287 ValueMapping); 1288 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1289 ValueMapping); 1290 1291 // If there were values defined in BB that are used outside the block, then we 1292 // now have to update all uses of the value to use either the original value, 1293 // the cloned value, or some PHI derived value. This can require arbitrary 1294 // PHI insertion, of which we are prepared to do, clean these up now. 1295 SSAUpdater SSAUpdate; 1296 SmallVector<Use*, 16> UsesToRename; 1297 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1298 // Scan all uses of this instruction to see if it is used outside of its 1299 // block, and if so, record them in UsesToRename. 1300 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1301 ++UI) { 1302 Instruction *User = cast<Instruction>(*UI); 1303 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1304 if (UserPN->getIncomingBlock(UI) == BB) 1305 continue; 1306 } else if (User->getParent() == BB) 1307 continue; 1308 1309 UsesToRename.push_back(&UI.getUse()); 1310 } 1311 1312 // If there are no uses outside the block, we're done with this instruction. 1313 if (UsesToRename.empty()) 1314 continue; 1315 1316 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1317 1318 // We found a use of I outside of BB. Rename all uses of I that are outside 1319 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1320 // with the two values we know. 1321 SSAUpdate.Initialize(I); 1322 SSAUpdate.AddAvailableValue(BB, I); 1323 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1324 1325 while (!UsesToRename.empty()) 1326 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1327 DEBUG(errs() << "\n"); 1328 } 1329 1330 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1331 // that we nuked. 1332 RemovePredecessorAndSimplify(BB, PredBB, TD); 1333 1334 // Remove the unconditional branch at the end of the PredBB block. 1335 OldPredBranch->eraseFromParent(); 1336 1337 ++NumDupes; 1338 return true; 1339 } 1340 1341 1342