xref: /llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision fa6db90164459924a31eb590de0279ba4bf43af8)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/JumpThreading.h"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
23 #include "llvm/Analysis/ConstantFolding.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/Loads.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Local.h"
39 #include "llvm/Transforms/Utils/SSAUpdater.h"
40 #include <algorithm>
41 #include <memory>
42 using namespace llvm;
43 using namespace jumpthreading;
44 
45 #define DEBUG_TYPE "jump-threading"
46 
47 STATISTIC(NumThreads, "Number of jumps threaded");
48 STATISTIC(NumFolds,   "Number of terminators folded");
49 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
50 
51 static cl::opt<unsigned>
52 BBDuplicateThreshold("jump-threading-threshold",
53           cl::desc("Max block size to duplicate for jump threading"),
54           cl::init(6), cl::Hidden);
55 
56 static cl::opt<unsigned>
57 ImplicationSearchThreshold(
58   "jump-threading-implication-search-threshold",
59   cl::desc("The number of predecessors to search for a stronger "
60            "condition to use to thread over a weaker condition"),
61   cl::init(3), cl::Hidden);
62 
63 namespace {
64   /// This pass performs 'jump threading', which looks at blocks that have
65   /// multiple predecessors and multiple successors.  If one or more of the
66   /// predecessors of the block can be proven to always jump to one of the
67   /// successors, we forward the edge from the predecessor to the successor by
68   /// duplicating the contents of this block.
69   ///
70   /// An example of when this can occur is code like this:
71   ///
72   ///   if () { ...
73   ///     X = 4;
74   ///   }
75   ///   if (X < 3) {
76   ///
77   /// In this case, the unconditional branch at the end of the first if can be
78   /// revectored to the false side of the second if.
79   ///
80   class JumpThreading : public FunctionPass {
81     JumpThreadingPass Impl;
82 
83   public:
84     static char ID; // Pass identification
85     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
86       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
87     }
88 
89     bool runOnFunction(Function &F) override;
90 
91     void getAnalysisUsage(AnalysisUsage &AU) const override {
92       AU.addRequired<LazyValueInfoWrapperPass>();
93       AU.addPreserved<LazyValueInfoWrapperPass>();
94       AU.addPreserved<GlobalsAAWrapperPass>();
95       AU.addRequired<TargetLibraryInfoWrapperPass>();
96     }
97 
98     void releaseMemory() override { Impl.releaseMemory(); }
99   };
100 }
101 
102 char JumpThreading::ID = 0;
103 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
104                 "Jump Threading", false, false)
105 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
106 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
107 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
108                 "Jump Threading", false, false)
109 
110 // Public interface to the Jump Threading pass
111 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); }
112 
113 JumpThreadingPass::JumpThreadingPass(int T) {
114   BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
115 }
116 
117 /// runOnFunction - Top level algorithm.
118 ///
119 bool JumpThreading::runOnFunction(Function &F) {
120   if (skipFunction(F))
121     return false;
122   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
123   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
124   std::unique_ptr<BlockFrequencyInfo> BFI;
125   std::unique_ptr<BranchProbabilityInfo> BPI;
126   bool HasProfileData = F.getEntryCount().hasValue();
127   if (HasProfileData) {
128     LoopInfo LI{DominatorTree(F)};
129     BPI.reset(new BranchProbabilityInfo(F, LI));
130     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
131   }
132   return Impl.runImpl(F, TLI, LVI, HasProfileData, std::move(BFI),
133                       std::move(BPI));
134 }
135 
136 PreservedAnalyses JumpThreadingPass::run(Function &F,
137                                          AnalysisManager<Function> &AM) {
138 
139   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
140   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
141   std::unique_ptr<BlockFrequencyInfo> BFI;
142   std::unique_ptr<BranchProbabilityInfo> BPI;
143   bool HasProfileData = F.getEntryCount().hasValue();
144   if (HasProfileData) {
145     LoopInfo LI{DominatorTree(F)};
146     BPI.reset(new BranchProbabilityInfo(F, LI));
147     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
148   }
149   bool Changed =
150       runImpl(F, &TLI, &LVI, HasProfileData, std::move(BFI), std::move(BPI));
151   if (!Changed)
152     return PreservedAnalyses::all();
153   PreservedAnalyses PA;
154   // FIXME: Not preserving LVI! We need it to be invalidated so that we
155   // don't run into issues like PR28400. Is there a better solution?
156   PA.preserve<GlobalsAA>();
157   return PA;
158 }
159 
160 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
161                                 LazyValueInfo *LVI_, bool HasProfileData_,
162                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
163                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
164 
165   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
166   TLI = TLI_;
167   LVI = LVI_;
168   BFI.reset();
169   BPI.reset();
170   // When profile data is available, we need to update edge weights after
171   // successful jump threading, which requires both BPI and BFI being available.
172   HasProfileData = HasProfileData_;
173   if (HasProfileData) {
174     BPI = std::move(BPI_);
175     BFI = std::move(BFI_);
176   }
177 
178   // Remove unreachable blocks from function as they may result in infinite
179   // loop. We do threading if we found something profitable. Jump threading a
180   // branch can create other opportunities. If these opportunities form a cycle
181   // i.e. if any jump threading is undoing previous threading in the path, then
182   // we will loop forever. We take care of this issue by not jump threading for
183   // back edges. This works for normal cases but not for unreachable blocks as
184   // they may have cycle with no back edge.
185   bool EverChanged = false;
186   EverChanged |= removeUnreachableBlocks(F, LVI);
187 
188   FindLoopHeaders(F);
189 
190   bool Changed;
191   do {
192     Changed = false;
193     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
194       BasicBlock *BB = &*I;
195       // Thread all of the branches we can over this block.
196       while (ProcessBlock(BB))
197         Changed = true;
198 
199       ++I;
200 
201       // If the block is trivially dead, zap it.  This eliminates the successor
202       // edges which simplifies the CFG.
203       if (pred_empty(BB) &&
204           BB != &BB->getParent()->getEntryBlock()) {
205         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
206               << "' with terminator: " << *BB->getTerminator() << '\n');
207         LoopHeaders.erase(BB);
208         LVI->eraseBlock(BB);
209         DeleteDeadBlock(BB);
210         Changed = true;
211         continue;
212       }
213 
214       BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
215 
216       // Can't thread an unconditional jump, but if the block is "almost
217       // empty", we can replace uses of it with uses of the successor and make
218       // this dead.
219       // We should not eliminate the loop header either, because eliminating
220       // a loop header might later prevent LoopSimplify from transforming nested
221       // loops into simplified form.
222       if (BI && BI->isUnconditional() &&
223           BB != &BB->getParent()->getEntryBlock() &&
224           // If the terminator is the only non-phi instruction, try to nuke it.
225           BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB)) {
226         // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
227         // block, we have to make sure it isn't in the LoopHeaders set.  We
228         // reinsert afterward if needed.
229         bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
230         BasicBlock *Succ = BI->getSuccessor(0);
231 
232         // FIXME: It is always conservatively correct to drop the info
233         // for a block even if it doesn't get erased.  This isn't totally
234         // awesome, but it allows us to use AssertingVH to prevent nasty
235         // dangling pointer issues within LazyValueInfo.
236         LVI->eraseBlock(BB);
237         if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
238           Changed = true;
239           // If we deleted BB and BB was the header of a loop, then the
240           // successor is now the header of the loop.
241           BB = Succ;
242         }
243 
244         if (ErasedFromLoopHeaders)
245           LoopHeaders.insert(BB);
246       }
247     }
248     EverChanged |= Changed;
249   } while (Changed);
250 
251   LoopHeaders.clear();
252   return EverChanged;
253 }
254 
255 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
256 /// thread across it. Stop scanning the block when passing the threshold.
257 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB,
258                                              unsigned Threshold) {
259   /// Ignore PHI nodes, these will be flattened when duplication happens.
260   BasicBlock::const_iterator I(BB->getFirstNonPHI());
261 
262   // FIXME: THREADING will delete values that are just used to compute the
263   // branch, so they shouldn't count against the duplication cost.
264 
265   unsigned Bonus = 0;
266   const TerminatorInst *BBTerm = BB->getTerminator();
267   // Threading through a switch statement is particularly profitable.  If this
268   // block ends in a switch, decrease its cost to make it more likely to happen.
269   if (isa<SwitchInst>(BBTerm))
270     Bonus = 6;
271 
272   // The same holds for indirect branches, but slightly more so.
273   if (isa<IndirectBrInst>(BBTerm))
274     Bonus = 8;
275 
276   // Bump the threshold up so the early exit from the loop doesn't skip the
277   // terminator-based Size adjustment at the end.
278   Threshold += Bonus;
279 
280   // Sum up the cost of each instruction until we get to the terminator.  Don't
281   // include the terminator because the copy won't include it.
282   unsigned Size = 0;
283   for (; !isa<TerminatorInst>(I); ++I) {
284 
285     // Stop scanning the block if we've reached the threshold.
286     if (Size > Threshold)
287       return Size;
288 
289     // Debugger intrinsics don't incur code size.
290     if (isa<DbgInfoIntrinsic>(I)) continue;
291 
292     // If this is a pointer->pointer bitcast, it is free.
293     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
294       continue;
295 
296     // Bail out if this instruction gives back a token type, it is not possible
297     // to duplicate it if it is used outside this BB.
298     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
299       return ~0U;
300 
301     // All other instructions count for at least one unit.
302     ++Size;
303 
304     // Calls are more expensive.  If they are non-intrinsic calls, we model them
305     // as having cost of 4.  If they are a non-vector intrinsic, we model them
306     // as having cost of 2 total, and if they are a vector intrinsic, we model
307     // them as having cost 1.
308     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
309       if (CI->cannotDuplicate() || CI->isConvergent())
310         // Blocks with NoDuplicate are modelled as having infinite cost, so they
311         // are never duplicated.
312         return ~0U;
313       else if (!isa<IntrinsicInst>(CI))
314         Size += 3;
315       else if (!CI->getType()->isVectorTy())
316         Size += 1;
317     }
318   }
319 
320   return Size > Bonus ? Size - Bonus : 0;
321 }
322 
323 /// FindLoopHeaders - We do not want jump threading to turn proper loop
324 /// structures into irreducible loops.  Doing this breaks up the loop nesting
325 /// hierarchy and pessimizes later transformations.  To prevent this from
326 /// happening, we first have to find the loop headers.  Here we approximate this
327 /// by finding targets of backedges in the CFG.
328 ///
329 /// Note that there definitely are cases when we want to allow threading of
330 /// edges across a loop header.  For example, threading a jump from outside the
331 /// loop (the preheader) to an exit block of the loop is definitely profitable.
332 /// It is also almost always profitable to thread backedges from within the loop
333 /// to exit blocks, and is often profitable to thread backedges to other blocks
334 /// within the loop (forming a nested loop).  This simple analysis is not rich
335 /// enough to track all of these properties and keep it up-to-date as the CFG
336 /// mutates, so we don't allow any of these transformations.
337 ///
338 void JumpThreadingPass::FindLoopHeaders(Function &F) {
339   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
340   FindFunctionBackedges(F, Edges);
341 
342   for (const auto &Edge : Edges)
343     LoopHeaders.insert(Edge.second);
344 }
345 
346 /// getKnownConstant - Helper method to determine if we can thread over a
347 /// terminator with the given value as its condition, and if so what value to
348 /// use for that. What kind of value this is depends on whether we want an
349 /// integer or a block address, but an undef is always accepted.
350 /// Returns null if Val is null or not an appropriate constant.
351 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
352   if (!Val)
353     return nullptr;
354 
355   // Undef is "known" enough.
356   if (UndefValue *U = dyn_cast<UndefValue>(Val))
357     return U;
358 
359   if (Preference == WantBlockAddress)
360     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
361 
362   return dyn_cast<ConstantInt>(Val);
363 }
364 
365 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
366 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
367 /// in any of our predecessors.  If so, return the known list of value and pred
368 /// BB in the result vector.
369 ///
370 /// This returns true if there were any known values.
371 ///
372 bool JumpThreadingPass::ComputeValueKnownInPredecessors(
373     Value *V, BasicBlock *BB, PredValueInfo &Result,
374     ConstantPreference Preference, Instruction *CxtI) {
375   // This method walks up use-def chains recursively.  Because of this, we could
376   // get into an infinite loop going around loops in the use-def chain.  To
377   // prevent this, keep track of what (value, block) pairs we've already visited
378   // and terminate the search if we loop back to them
379   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
380     return false;
381 
382   // An RAII help to remove this pair from the recursion set once the recursion
383   // stack pops back out again.
384   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
385 
386   // If V is a constant, then it is known in all predecessors.
387   if (Constant *KC = getKnownConstant(V, Preference)) {
388     for (BasicBlock *Pred : predecessors(BB))
389       Result.push_back(std::make_pair(KC, Pred));
390 
391     return !Result.empty();
392   }
393 
394   // If V is a non-instruction value, or an instruction in a different block,
395   // then it can't be derived from a PHI.
396   Instruction *I = dyn_cast<Instruction>(V);
397   if (!I || I->getParent() != BB) {
398 
399     // Okay, if this is a live-in value, see if it has a known value at the end
400     // of any of our predecessors.
401     //
402     // FIXME: This should be an edge property, not a block end property.
403     /// TODO: Per PR2563, we could infer value range information about a
404     /// predecessor based on its terminator.
405     //
406     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
407     // "I" is a non-local compare-with-a-constant instruction.  This would be
408     // able to handle value inequalities better, for example if the compare is
409     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
410     // Perhaps getConstantOnEdge should be smart enough to do this?
411 
412     for (BasicBlock *P : predecessors(BB)) {
413       // If the value is known by LazyValueInfo to be a constant in a
414       // predecessor, use that information to try to thread this block.
415       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
416       if (Constant *KC = getKnownConstant(PredCst, Preference))
417         Result.push_back(std::make_pair(KC, P));
418     }
419 
420     return !Result.empty();
421   }
422 
423   /// If I is a PHI node, then we know the incoming values for any constants.
424   if (PHINode *PN = dyn_cast<PHINode>(I)) {
425     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
426       Value *InVal = PN->getIncomingValue(i);
427       if (Constant *KC = getKnownConstant(InVal, Preference)) {
428         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
429       } else {
430         Constant *CI = LVI->getConstantOnEdge(InVal,
431                                               PN->getIncomingBlock(i),
432                                               BB, CxtI);
433         if (Constant *KC = getKnownConstant(CI, Preference))
434           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
435       }
436     }
437 
438     return !Result.empty();
439   }
440 
441   // Handle Cast instructions.  Only see through Cast when the source operand is
442   // PHI or Cmp and the source type is i1 to save the compilation time.
443   if (CastInst *CI = dyn_cast<CastInst>(I)) {
444     Value *Source = CI->getOperand(0);
445     if (!Source->getType()->isIntegerTy(1))
446       return false;
447     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
448       return false;
449     ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI);
450     if (Result.empty())
451       return false;
452 
453     // Convert the known values.
454     for (auto &R : Result)
455       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
456 
457     return true;
458   }
459 
460   PredValueInfoTy LHSVals, RHSVals;
461 
462   // Handle some boolean conditions.
463   if (I->getType()->getPrimitiveSizeInBits() == 1) {
464     assert(Preference == WantInteger && "One-bit non-integer type?");
465     // X | true -> true
466     // X & false -> false
467     if (I->getOpcode() == Instruction::Or ||
468         I->getOpcode() == Instruction::And) {
469       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
470                                       WantInteger, CxtI);
471       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
472                                       WantInteger, CxtI);
473 
474       if (LHSVals.empty() && RHSVals.empty())
475         return false;
476 
477       ConstantInt *InterestingVal;
478       if (I->getOpcode() == Instruction::Or)
479         InterestingVal = ConstantInt::getTrue(I->getContext());
480       else
481         InterestingVal = ConstantInt::getFalse(I->getContext());
482 
483       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
484 
485       // Scan for the sentinel.  If we find an undef, force it to the
486       // interesting value: x|undef -> true and x&undef -> false.
487       for (const auto &LHSVal : LHSVals)
488         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
489           Result.emplace_back(InterestingVal, LHSVal.second);
490           LHSKnownBBs.insert(LHSVal.second);
491         }
492       for (const auto &RHSVal : RHSVals)
493         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
494           // If we already inferred a value for this block on the LHS, don't
495           // re-add it.
496           if (!LHSKnownBBs.count(RHSVal.second))
497             Result.emplace_back(InterestingVal, RHSVal.second);
498         }
499 
500       return !Result.empty();
501     }
502 
503     // Handle the NOT form of XOR.
504     if (I->getOpcode() == Instruction::Xor &&
505         isa<ConstantInt>(I->getOperand(1)) &&
506         cast<ConstantInt>(I->getOperand(1))->isOne()) {
507       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
508                                       WantInteger, CxtI);
509       if (Result.empty())
510         return false;
511 
512       // Invert the known values.
513       for (auto &R : Result)
514         R.first = ConstantExpr::getNot(R.first);
515 
516       return true;
517     }
518 
519   // Try to simplify some other binary operator values.
520   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
521     assert(Preference != WantBlockAddress
522             && "A binary operator creating a block address?");
523     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
524       PredValueInfoTy LHSVals;
525       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
526                                       WantInteger, CxtI);
527 
528       // Try to use constant folding to simplify the binary operator.
529       for (const auto &LHSVal : LHSVals) {
530         Constant *V = LHSVal.first;
531         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
532 
533         if (Constant *KC = getKnownConstant(Folded, WantInteger))
534           Result.push_back(std::make_pair(KC, LHSVal.second));
535       }
536     }
537 
538     return !Result.empty();
539   }
540 
541   // Handle compare with phi operand, where the PHI is defined in this block.
542   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
543     assert(Preference == WantInteger && "Compares only produce integers");
544     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
545     if (PN && PN->getParent() == BB) {
546       const DataLayout &DL = PN->getModule()->getDataLayout();
547       // We can do this simplification if any comparisons fold to true or false.
548       // See if any do.
549       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
550         BasicBlock *PredBB = PN->getIncomingBlock(i);
551         Value *LHS = PN->getIncomingValue(i);
552         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
553 
554         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL);
555         if (!Res) {
556           if (!isa<Constant>(RHS))
557             continue;
558 
559           LazyValueInfo::Tristate
560             ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
561                                            cast<Constant>(RHS), PredBB, BB,
562                                            CxtI ? CxtI : Cmp);
563           if (ResT == LazyValueInfo::Unknown)
564             continue;
565           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
566         }
567 
568         if (Constant *KC = getKnownConstant(Res, WantInteger))
569           Result.push_back(std::make_pair(KC, PredBB));
570       }
571 
572       return !Result.empty();
573     }
574 
575     // If comparing a live-in value against a constant, see if we know the
576     // live-in value on any predecessors.
577     if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
578       if (!isa<Instruction>(Cmp->getOperand(0)) ||
579           cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
580         Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
581 
582         for (BasicBlock *P : predecessors(BB)) {
583           // If the value is known by LazyValueInfo to be a constant in a
584           // predecessor, use that information to try to thread this block.
585           LazyValueInfo::Tristate Res =
586             LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
587                                     RHSCst, P, BB, CxtI ? CxtI : Cmp);
588           if (Res == LazyValueInfo::Unknown)
589             continue;
590 
591           Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
592           Result.push_back(std::make_pair(ResC, P));
593         }
594 
595         return !Result.empty();
596       }
597 
598       // Try to find a constant value for the LHS of a comparison,
599       // and evaluate it statically if we can.
600       if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
601         PredValueInfoTy LHSVals;
602         ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
603                                         WantInteger, CxtI);
604 
605         for (const auto &LHSVal : LHSVals) {
606           Constant *V = LHSVal.first;
607           Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
608                                                       V, CmpConst);
609           if (Constant *KC = getKnownConstant(Folded, WantInteger))
610             Result.push_back(std::make_pair(KC, LHSVal.second));
611         }
612 
613         return !Result.empty();
614       }
615     }
616   }
617 
618   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
619     // Handle select instructions where at least one operand is a known constant
620     // and we can figure out the condition value for any predecessor block.
621     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
622     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
623     PredValueInfoTy Conds;
624     if ((TrueVal || FalseVal) &&
625         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
626                                         WantInteger, CxtI)) {
627       for (auto &C : Conds) {
628         Constant *Cond = C.first;
629 
630         // Figure out what value to use for the condition.
631         bool KnownCond;
632         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
633           // A known boolean.
634           KnownCond = CI->isOne();
635         } else {
636           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
637           // Either operand will do, so be sure to pick the one that's a known
638           // constant.
639           // FIXME: Do this more cleverly if both values are known constants?
640           KnownCond = (TrueVal != nullptr);
641         }
642 
643         // See if the select has a known constant value for this predecessor.
644         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
645           Result.push_back(std::make_pair(Val, C.second));
646       }
647 
648       return !Result.empty();
649     }
650   }
651 
652   // If all else fails, see if LVI can figure out a constant value for us.
653   Constant *CI = LVI->getConstant(V, BB, CxtI);
654   if (Constant *KC = getKnownConstant(CI, Preference)) {
655     for (BasicBlock *Pred : predecessors(BB))
656       Result.push_back(std::make_pair(KC, Pred));
657   }
658 
659   return !Result.empty();
660 }
661 
662 
663 
664 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
665 /// in an undefined jump, decide which block is best to revector to.
666 ///
667 /// Since we can pick an arbitrary destination, we pick the successor with the
668 /// fewest predecessors.  This should reduce the in-degree of the others.
669 ///
670 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
671   TerminatorInst *BBTerm = BB->getTerminator();
672   unsigned MinSucc = 0;
673   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
674   // Compute the successor with the minimum number of predecessors.
675   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
676   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
677     TestBB = BBTerm->getSuccessor(i);
678     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
679     if (NumPreds < MinNumPreds) {
680       MinSucc = i;
681       MinNumPreds = NumPreds;
682     }
683   }
684 
685   return MinSucc;
686 }
687 
688 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
689   if (!BB->hasAddressTaken()) return false;
690 
691   // If the block has its address taken, it may be a tree of dead constants
692   // hanging off of it.  These shouldn't keep the block alive.
693   BlockAddress *BA = BlockAddress::get(BB);
694   BA->removeDeadConstantUsers();
695   return !BA->use_empty();
696 }
697 
698 /// ProcessBlock - If there are any predecessors whose control can be threaded
699 /// through to a successor, transform them now.
700 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
701   // If the block is trivially dead, just return and let the caller nuke it.
702   // This simplifies other transformations.
703   if (pred_empty(BB) &&
704       BB != &BB->getParent()->getEntryBlock())
705     return false;
706 
707   // If this block has a single predecessor, and if that pred has a single
708   // successor, merge the blocks.  This encourages recursive jump threading
709   // because now the condition in this block can be threaded through
710   // predecessors of our predecessor block.
711   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
712     const TerminatorInst *TI = SinglePred->getTerminator();
713     if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
714         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
715       // If SinglePred was a loop header, BB becomes one.
716       if (LoopHeaders.erase(SinglePred))
717         LoopHeaders.insert(BB);
718 
719       LVI->eraseBlock(SinglePred);
720       MergeBasicBlockIntoOnlyPred(BB);
721 
722       return true;
723     }
724   }
725 
726   if (TryToUnfoldSelectInCurrBB(BB))
727     return true;
728 
729   // What kind of constant we're looking for.
730   ConstantPreference Preference = WantInteger;
731 
732   // Look to see if the terminator is a conditional branch, switch or indirect
733   // branch, if not we can't thread it.
734   Value *Condition;
735   Instruction *Terminator = BB->getTerminator();
736   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
737     // Can't thread an unconditional jump.
738     if (BI->isUnconditional()) return false;
739     Condition = BI->getCondition();
740   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
741     Condition = SI->getCondition();
742   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
743     // Can't thread indirect branch with no successors.
744     if (IB->getNumSuccessors() == 0) return false;
745     Condition = IB->getAddress()->stripPointerCasts();
746     Preference = WantBlockAddress;
747   } else {
748     return false; // Must be an invoke.
749   }
750 
751   // Run constant folding to see if we can reduce the condition to a simple
752   // constant.
753   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
754     Value *SimpleVal =
755         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
756     if (SimpleVal) {
757       I->replaceAllUsesWith(SimpleVal);
758       I->eraseFromParent();
759       Condition = SimpleVal;
760     }
761   }
762 
763   // If the terminator is branching on an undef, we can pick any of the
764   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
765   if (isa<UndefValue>(Condition)) {
766     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
767 
768     // Fold the branch/switch.
769     TerminatorInst *BBTerm = BB->getTerminator();
770     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
771       if (i == BestSucc) continue;
772       BBTerm->getSuccessor(i)->removePredecessor(BB, true);
773     }
774 
775     DEBUG(dbgs() << "  In block '" << BB->getName()
776           << "' folding undef terminator: " << *BBTerm << '\n');
777     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
778     BBTerm->eraseFromParent();
779     return true;
780   }
781 
782   // If the terminator of this block is branching on a constant, simplify the
783   // terminator to an unconditional branch.  This can occur due to threading in
784   // other blocks.
785   if (getKnownConstant(Condition, Preference)) {
786     DEBUG(dbgs() << "  In block '" << BB->getName()
787           << "' folding terminator: " << *BB->getTerminator() << '\n');
788     ++NumFolds;
789     ConstantFoldTerminator(BB, true);
790     return true;
791   }
792 
793   Instruction *CondInst = dyn_cast<Instruction>(Condition);
794 
795   // All the rest of our checks depend on the condition being an instruction.
796   if (!CondInst) {
797     // FIXME: Unify this with code below.
798     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
799       return true;
800     return false;
801   }
802 
803 
804   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
805     // If we're branching on a conditional, LVI might be able to determine
806     // it's value at the branch instruction.  We only handle comparisons
807     // against a constant at this time.
808     // TODO: This should be extended to handle switches as well.
809     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
810     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
811     if (CondBr && CondConst && CondBr->isConditional()) {
812       LazyValueInfo::Tristate Ret =
813         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
814                             CondConst, CondBr);
815       if (Ret != LazyValueInfo::Unknown) {
816         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
817         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
818         CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
819         BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
820         CondBr->eraseFromParent();
821         if (CondCmp->use_empty())
822           CondCmp->eraseFromParent();
823         else if (CondCmp->getParent() == BB) {
824           // If the fact we just learned is true for all uses of the
825           // condition, replace it with a constant value
826           auto *CI = Ret == LazyValueInfo::True ?
827             ConstantInt::getTrue(CondCmp->getType()) :
828             ConstantInt::getFalse(CondCmp->getType());
829           CondCmp->replaceAllUsesWith(CI);
830           CondCmp->eraseFromParent();
831         }
832         return true;
833       }
834     }
835 
836     if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB))
837       return true;
838   }
839 
840   // Check for some cases that are worth simplifying.  Right now we want to look
841   // for loads that are used by a switch or by the condition for the branch.  If
842   // we see one, check to see if it's partially redundant.  If so, insert a PHI
843   // which can then be used to thread the values.
844   //
845   Value *SimplifyValue = CondInst;
846   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
847     if (isa<Constant>(CondCmp->getOperand(1)))
848       SimplifyValue = CondCmp->getOperand(0);
849 
850   // TODO: There are other places where load PRE would be profitable, such as
851   // more complex comparisons.
852   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
853     if (SimplifyPartiallyRedundantLoad(LI))
854       return true;
855 
856 
857   // Handle a variety of cases where we are branching on something derived from
858   // a PHI node in the current block.  If we can prove that any predecessors
859   // compute a predictable value based on a PHI node, thread those predecessors.
860   //
861   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
862     return true;
863 
864   // If this is an otherwise-unfoldable branch on a phi node in the current
865   // block, see if we can simplify.
866   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
867     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
868       return ProcessBranchOnPHI(PN);
869 
870 
871   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
872   if (CondInst->getOpcode() == Instruction::Xor &&
873       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
874     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
875 
876   // Search for a stronger dominating condition that can be used to simplify a
877   // conditional branch leaving BB.
878   if (ProcessImpliedCondition(BB))
879     return true;
880 
881   return false;
882 }
883 
884 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
885   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
886   if (!BI || !BI->isConditional())
887     return false;
888 
889   Value *Cond = BI->getCondition();
890   BasicBlock *CurrentBB = BB;
891   BasicBlock *CurrentPred = BB->getSinglePredecessor();
892   unsigned Iter = 0;
893 
894   auto &DL = BB->getModule()->getDataLayout();
895 
896   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
897     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
898     if (!PBI || !PBI->isConditional())
899       return false;
900     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
901       return false;
902 
903     bool FalseDest = PBI->getSuccessor(1) == CurrentBB;
904     Optional<bool> Implication =
905       isImpliedCondition(PBI->getCondition(), Cond, DL, FalseDest);
906     if (Implication) {
907       BI->getSuccessor(*Implication ? 1 : 0)->removePredecessor(BB);
908       BranchInst::Create(BI->getSuccessor(*Implication ? 0 : 1), BI);
909       BI->eraseFromParent();
910       return true;
911     }
912     CurrentBB = CurrentPred;
913     CurrentPred = CurrentBB->getSinglePredecessor();
914   }
915 
916   return false;
917 }
918 
919 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
920 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
921 /// important optimization that encourages jump threading, and needs to be run
922 /// interlaced with other jump threading tasks.
923 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
924   // Don't hack volatile/atomic loads.
925   if (!LI->isSimple()) return false;
926 
927   // If the load is defined in a block with exactly one predecessor, it can't be
928   // partially redundant.
929   BasicBlock *LoadBB = LI->getParent();
930   if (LoadBB->getSinglePredecessor())
931     return false;
932 
933   // If the load is defined in an EH pad, it can't be partially redundant,
934   // because the edges between the invoke and the EH pad cannot have other
935   // instructions between them.
936   if (LoadBB->isEHPad())
937     return false;
938 
939   Value *LoadedPtr = LI->getOperand(0);
940 
941   // If the loaded operand is defined in the LoadBB, it can't be available.
942   // TODO: Could do simple PHI translation, that would be fun :)
943   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
944     if (PtrOp->getParent() == LoadBB)
945       return false;
946 
947   // Scan a few instructions up from the load, to see if it is obviously live at
948   // the entry to its block.
949   BasicBlock::iterator BBIt(LI);
950 
951   if (Value *AvailableVal =
952         FindAvailableLoadedValue(LI, LoadBB, BBIt, DefMaxInstsToScan)) {
953     // If the value of the load is locally available within the block, just use
954     // it.  This frequently occurs for reg2mem'd allocas.
955     //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
956 
957     // If the returned value is the load itself, replace with an undef. This can
958     // only happen in dead loops.
959     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
960     if (AvailableVal->getType() != LI->getType())
961       AvailableVal =
962           CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI);
963     LI->replaceAllUsesWith(AvailableVal);
964     LI->eraseFromParent();
965     return true;
966   }
967 
968   // Otherwise, if we scanned the whole block and got to the top of the block,
969   // we know the block is locally transparent to the load.  If not, something
970   // might clobber its value.
971   if (BBIt != LoadBB->begin())
972     return false;
973 
974   // If all of the loads and stores that feed the value have the same AA tags,
975   // then we can propagate them onto any newly inserted loads.
976   AAMDNodes AATags;
977   LI->getAAMetadata(AATags);
978 
979   SmallPtrSet<BasicBlock*, 8> PredsScanned;
980   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
981   AvailablePredsTy AvailablePreds;
982   BasicBlock *OneUnavailablePred = nullptr;
983 
984   // If we got here, the loaded value is transparent through to the start of the
985   // block.  Check to see if it is available in any of the predecessor blocks.
986   for (BasicBlock *PredBB : predecessors(LoadBB)) {
987     // If we already scanned this predecessor, skip it.
988     if (!PredsScanned.insert(PredBB).second)
989       continue;
990 
991     // Scan the predecessor to see if the value is available in the pred.
992     BBIt = PredBB->end();
993     AAMDNodes ThisAATags;
994     Value *PredAvailable = FindAvailableLoadedValue(LI, PredBB, BBIt,
995                                                     DefMaxInstsToScan,
996                                                     nullptr, &ThisAATags);
997     if (!PredAvailable) {
998       OneUnavailablePred = PredBB;
999       continue;
1000     }
1001 
1002     // If AA tags disagree or are not present, forget about them.
1003     if (AATags != ThisAATags) AATags = AAMDNodes();
1004 
1005     // If so, this load is partially redundant.  Remember this info so that we
1006     // can create a PHI node.
1007     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1008   }
1009 
1010   // If the loaded value isn't available in any predecessor, it isn't partially
1011   // redundant.
1012   if (AvailablePreds.empty()) return false;
1013 
1014   // Okay, the loaded value is available in at least one (and maybe all!)
1015   // predecessors.  If the value is unavailable in more than one unique
1016   // predecessor, we want to insert a merge block for those common predecessors.
1017   // This ensures that we only have to insert one reload, thus not increasing
1018   // code size.
1019   BasicBlock *UnavailablePred = nullptr;
1020 
1021   // If there is exactly one predecessor where the value is unavailable, the
1022   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1023   // unconditional branch, we know that it isn't a critical edge.
1024   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1025       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1026     UnavailablePred = OneUnavailablePred;
1027   } else if (PredsScanned.size() != AvailablePreds.size()) {
1028     // Otherwise, we had multiple unavailable predecessors or we had a critical
1029     // edge from the one.
1030     SmallVector<BasicBlock*, 8> PredsToSplit;
1031     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1032 
1033     for (const auto &AvailablePred : AvailablePreds)
1034       AvailablePredSet.insert(AvailablePred.first);
1035 
1036     // Add all the unavailable predecessors to the PredsToSplit list.
1037     for (BasicBlock *P : predecessors(LoadBB)) {
1038       // If the predecessor is an indirect goto, we can't split the edge.
1039       if (isa<IndirectBrInst>(P->getTerminator()))
1040         return false;
1041 
1042       if (!AvailablePredSet.count(P))
1043         PredsToSplit.push_back(P);
1044     }
1045 
1046     // Split them out to their own block.
1047     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1048   }
1049 
1050   // If the value isn't available in all predecessors, then there will be
1051   // exactly one where it isn't available.  Insert a load on that edge and add
1052   // it to the AvailablePreds list.
1053   if (UnavailablePred) {
1054     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1055            "Can't handle critical edge here!");
1056     LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
1057                                  LI->getAlignment(),
1058                                  UnavailablePred->getTerminator());
1059     NewVal->setDebugLoc(LI->getDebugLoc());
1060     if (AATags)
1061       NewVal->setAAMetadata(AATags);
1062 
1063     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1064   }
1065 
1066   // Now we know that each predecessor of this block has a value in
1067   // AvailablePreds, sort them for efficient access as we're walking the preds.
1068   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1069 
1070   // Create a PHI node at the start of the block for the PRE'd load value.
1071   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1072   PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
1073                                 &LoadBB->front());
1074   PN->takeName(LI);
1075   PN->setDebugLoc(LI->getDebugLoc());
1076 
1077   // Insert new entries into the PHI for each predecessor.  A single block may
1078   // have multiple entries here.
1079   for (pred_iterator PI = PB; PI != PE; ++PI) {
1080     BasicBlock *P = *PI;
1081     AvailablePredsTy::iterator I =
1082       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1083                        std::make_pair(P, (Value*)nullptr));
1084 
1085     assert(I != AvailablePreds.end() && I->first == P &&
1086            "Didn't find entry for predecessor!");
1087 
1088     // If we have an available predecessor but it requires casting, insert the
1089     // cast in the predecessor and use the cast. Note that we have to update the
1090     // AvailablePreds vector as we go so that all of the PHI entries for this
1091     // predecessor use the same bitcast.
1092     Value *&PredV = I->second;
1093     if (PredV->getType() != LI->getType())
1094       PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "",
1095                                                P->getTerminator());
1096 
1097     PN->addIncoming(PredV, I->first);
1098   }
1099 
1100   //cerr << "PRE: " << *LI << *PN << "\n";
1101 
1102   LI->replaceAllUsesWith(PN);
1103   LI->eraseFromParent();
1104 
1105   return true;
1106 }
1107 
1108 /// FindMostPopularDest - The specified list contains multiple possible
1109 /// threadable destinations.  Pick the one that occurs the most frequently in
1110 /// the list.
1111 static BasicBlock *
1112 FindMostPopularDest(BasicBlock *BB,
1113                     const SmallVectorImpl<std::pair<BasicBlock*,
1114                                   BasicBlock*> > &PredToDestList) {
1115   assert(!PredToDestList.empty());
1116 
1117   // Determine popularity.  If there are multiple possible destinations, we
1118   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1119   // blocks with known and real destinations to threading undef.  We'll handle
1120   // them later if interesting.
1121   DenseMap<BasicBlock*, unsigned> DestPopularity;
1122   for (const auto &PredToDest : PredToDestList)
1123     if (PredToDest.second)
1124       DestPopularity[PredToDest.second]++;
1125 
1126   // Find the most popular dest.
1127   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1128   BasicBlock *MostPopularDest = DPI->first;
1129   unsigned Popularity = DPI->second;
1130   SmallVector<BasicBlock*, 4> SamePopularity;
1131 
1132   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1133     // If the popularity of this entry isn't higher than the popularity we've
1134     // seen so far, ignore it.
1135     if (DPI->second < Popularity)
1136       ; // ignore.
1137     else if (DPI->second == Popularity) {
1138       // If it is the same as what we've seen so far, keep track of it.
1139       SamePopularity.push_back(DPI->first);
1140     } else {
1141       // If it is more popular, remember it.
1142       SamePopularity.clear();
1143       MostPopularDest = DPI->first;
1144       Popularity = DPI->second;
1145     }
1146   }
1147 
1148   // Okay, now we know the most popular destination.  If there is more than one
1149   // destination, we need to determine one.  This is arbitrary, but we need
1150   // to make a deterministic decision.  Pick the first one that appears in the
1151   // successor list.
1152   if (!SamePopularity.empty()) {
1153     SamePopularity.push_back(MostPopularDest);
1154     TerminatorInst *TI = BB->getTerminator();
1155     for (unsigned i = 0; ; ++i) {
1156       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1157 
1158       if (std::find(SamePopularity.begin(), SamePopularity.end(),
1159                     TI->getSuccessor(i)) == SamePopularity.end())
1160         continue;
1161 
1162       MostPopularDest = TI->getSuccessor(i);
1163       break;
1164     }
1165   }
1166 
1167   // Okay, we have finally picked the most popular destination.
1168   return MostPopularDest;
1169 }
1170 
1171 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1172                                                ConstantPreference Preference,
1173                                                Instruction *CxtI) {
1174   // If threading this would thread across a loop header, don't even try to
1175   // thread the edge.
1176   if (LoopHeaders.count(BB))
1177     return false;
1178 
1179   PredValueInfoTy PredValues;
1180   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1181     return false;
1182 
1183   assert(!PredValues.empty() &&
1184          "ComputeValueKnownInPredecessors returned true with no values");
1185 
1186   DEBUG(dbgs() << "IN BB: " << *BB;
1187         for (const auto &PredValue : PredValues) {
1188           dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1189             << *PredValue.first
1190             << " for pred '" << PredValue.second->getName() << "'.\n";
1191         });
1192 
1193   // Decide what we want to thread through.  Convert our list of known values to
1194   // a list of known destinations for each pred.  This also discards duplicate
1195   // predecessors and keeps track of the undefined inputs (which are represented
1196   // as a null dest in the PredToDestList).
1197   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1198   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1199 
1200   BasicBlock *OnlyDest = nullptr;
1201   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1202 
1203   for (const auto &PredValue : PredValues) {
1204     BasicBlock *Pred = PredValue.second;
1205     if (!SeenPreds.insert(Pred).second)
1206       continue;  // Duplicate predecessor entry.
1207 
1208     // If the predecessor ends with an indirect goto, we can't change its
1209     // destination.
1210     if (isa<IndirectBrInst>(Pred->getTerminator()))
1211       continue;
1212 
1213     Constant *Val = PredValue.first;
1214 
1215     BasicBlock *DestBB;
1216     if (isa<UndefValue>(Val))
1217       DestBB = nullptr;
1218     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1219       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1220     else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1221       DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor();
1222     } else {
1223       assert(isa<IndirectBrInst>(BB->getTerminator())
1224               && "Unexpected terminator");
1225       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1226     }
1227 
1228     // If we have exactly one destination, remember it for efficiency below.
1229     if (PredToDestList.empty())
1230       OnlyDest = DestBB;
1231     else if (OnlyDest != DestBB)
1232       OnlyDest = MultipleDestSentinel;
1233 
1234     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1235   }
1236 
1237   // If all edges were unthreadable, we fail.
1238   if (PredToDestList.empty())
1239     return false;
1240 
1241   // Determine which is the most common successor.  If we have many inputs and
1242   // this block is a switch, we want to start by threading the batch that goes
1243   // to the most popular destination first.  If we only know about one
1244   // threadable destination (the common case) we can avoid this.
1245   BasicBlock *MostPopularDest = OnlyDest;
1246 
1247   if (MostPopularDest == MultipleDestSentinel)
1248     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1249 
1250   // Now that we know what the most popular destination is, factor all
1251   // predecessors that will jump to it into a single predecessor.
1252   SmallVector<BasicBlock*, 16> PredsToFactor;
1253   for (const auto &PredToDest : PredToDestList)
1254     if (PredToDest.second == MostPopularDest) {
1255       BasicBlock *Pred = PredToDest.first;
1256 
1257       // This predecessor may be a switch or something else that has multiple
1258       // edges to the block.  Factor each of these edges by listing them
1259       // according to # occurrences in PredsToFactor.
1260       for (BasicBlock *Succ : successors(Pred))
1261         if (Succ == BB)
1262           PredsToFactor.push_back(Pred);
1263     }
1264 
1265   // If the threadable edges are branching on an undefined value, we get to pick
1266   // the destination that these predecessors should get to.
1267   if (!MostPopularDest)
1268     MostPopularDest = BB->getTerminator()->
1269                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1270 
1271   // Ok, try to thread it!
1272   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1273 }
1274 
1275 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1276 /// a PHI node in the current block.  See if there are any simplifications we
1277 /// can do based on inputs to the phi node.
1278 ///
1279 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1280   BasicBlock *BB = PN->getParent();
1281 
1282   // TODO: We could make use of this to do it once for blocks with common PHI
1283   // values.
1284   SmallVector<BasicBlock*, 1> PredBBs;
1285   PredBBs.resize(1);
1286 
1287   // If any of the predecessor blocks end in an unconditional branch, we can
1288   // *duplicate* the conditional branch into that block in order to further
1289   // encourage jump threading and to eliminate cases where we have branch on a
1290   // phi of an icmp (branch on icmp is much better).
1291   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1292     BasicBlock *PredBB = PN->getIncomingBlock(i);
1293     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1294       if (PredBr->isUnconditional()) {
1295         PredBBs[0] = PredBB;
1296         // Try to duplicate BB into PredBB.
1297         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1298           return true;
1299       }
1300   }
1301 
1302   return false;
1303 }
1304 
1305 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1306 /// a xor instruction in the current block.  See if there are any
1307 /// simplifications we can do based on inputs to the xor.
1308 ///
1309 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1310   BasicBlock *BB = BO->getParent();
1311 
1312   // If either the LHS or RHS of the xor is a constant, don't do this
1313   // optimization.
1314   if (isa<ConstantInt>(BO->getOperand(0)) ||
1315       isa<ConstantInt>(BO->getOperand(1)))
1316     return false;
1317 
1318   // If the first instruction in BB isn't a phi, we won't be able to infer
1319   // anything special about any particular predecessor.
1320   if (!isa<PHINode>(BB->front()))
1321     return false;
1322 
1323   // If we have a xor as the branch input to this block, and we know that the
1324   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1325   // the condition into the predecessor and fix that value to true, saving some
1326   // logical ops on that path and encouraging other paths to simplify.
1327   //
1328   // This copies something like this:
1329   //
1330   //  BB:
1331   //    %X = phi i1 [1],  [%X']
1332   //    %Y = icmp eq i32 %A, %B
1333   //    %Z = xor i1 %X, %Y
1334   //    br i1 %Z, ...
1335   //
1336   // Into:
1337   //  BB':
1338   //    %Y = icmp ne i32 %A, %B
1339   //    br i1 %Y, ...
1340 
1341   PredValueInfoTy XorOpValues;
1342   bool isLHS = true;
1343   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1344                                        WantInteger, BO)) {
1345     assert(XorOpValues.empty());
1346     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1347                                          WantInteger, BO))
1348       return false;
1349     isLHS = false;
1350   }
1351 
1352   assert(!XorOpValues.empty() &&
1353          "ComputeValueKnownInPredecessors returned true with no values");
1354 
1355   // Scan the information to see which is most popular: true or false.  The
1356   // predecessors can be of the set true, false, or undef.
1357   unsigned NumTrue = 0, NumFalse = 0;
1358   for (const auto &XorOpValue : XorOpValues) {
1359     if (isa<UndefValue>(XorOpValue.first))
1360       // Ignore undefs for the count.
1361       continue;
1362     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1363       ++NumFalse;
1364     else
1365       ++NumTrue;
1366   }
1367 
1368   // Determine which value to split on, true, false, or undef if neither.
1369   ConstantInt *SplitVal = nullptr;
1370   if (NumTrue > NumFalse)
1371     SplitVal = ConstantInt::getTrue(BB->getContext());
1372   else if (NumTrue != 0 || NumFalse != 0)
1373     SplitVal = ConstantInt::getFalse(BB->getContext());
1374 
1375   // Collect all of the blocks that this can be folded into so that we can
1376   // factor this once and clone it once.
1377   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1378   for (const auto &XorOpValue : XorOpValues) {
1379     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1380       continue;
1381 
1382     BlocksToFoldInto.push_back(XorOpValue.second);
1383   }
1384 
1385   // If we inferred a value for all of the predecessors, then duplication won't
1386   // help us.  However, we can just replace the LHS or RHS with the constant.
1387   if (BlocksToFoldInto.size() ==
1388       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1389     if (!SplitVal) {
1390       // If all preds provide undef, just nuke the xor, because it is undef too.
1391       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1392       BO->eraseFromParent();
1393     } else if (SplitVal->isZero()) {
1394       // If all preds provide 0, replace the xor with the other input.
1395       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1396       BO->eraseFromParent();
1397     } else {
1398       // If all preds provide 1, set the computed value to 1.
1399       BO->setOperand(!isLHS, SplitVal);
1400     }
1401 
1402     return true;
1403   }
1404 
1405   // Try to duplicate BB into PredBB.
1406   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1407 }
1408 
1409 
1410 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1411 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1412 /// NewPred using the entries from OldPred (suitably mapped).
1413 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1414                                             BasicBlock *OldPred,
1415                                             BasicBlock *NewPred,
1416                                      DenseMap<Instruction*, Value*> &ValueMap) {
1417   for (BasicBlock::iterator PNI = PHIBB->begin();
1418        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1419     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1420     // DestBlock.
1421     Value *IV = PN->getIncomingValueForBlock(OldPred);
1422 
1423     // Remap the value if necessary.
1424     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1425       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1426       if (I != ValueMap.end())
1427         IV = I->second;
1428     }
1429 
1430     PN->addIncoming(IV, NewPred);
1431   }
1432 }
1433 
1434 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1435 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1436 /// across BB.  Transform the IR to reflect this change.
1437 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
1438                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
1439                                    BasicBlock *SuccBB) {
1440   // If threading to the same block as we come from, we would infinite loop.
1441   if (SuccBB == BB) {
1442     DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1443           << "' - would thread to self!\n");
1444     return false;
1445   }
1446 
1447   // If threading this would thread across a loop header, don't thread the edge.
1448   // See the comments above FindLoopHeaders for justifications and caveats.
1449   if (LoopHeaders.count(BB)) {
1450     DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1451           << "' to dest BB '" << SuccBB->getName()
1452           << "' - it might create an irreducible loop!\n");
1453     return false;
1454   }
1455 
1456   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
1457   if (JumpThreadCost > BBDupThreshold) {
1458     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1459           << "' - Cost is too high: " << JumpThreadCost << "\n");
1460     return false;
1461   }
1462 
1463   // And finally, do it!  Start by factoring the predecessors if needed.
1464   BasicBlock *PredBB;
1465   if (PredBBs.size() == 1)
1466     PredBB = PredBBs[0];
1467   else {
1468     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1469           << " common predecessors.\n");
1470     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1471   }
1472 
1473   // And finally, do it!
1474   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1475         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1476         << ", across block:\n    "
1477         << *BB << "\n");
1478 
1479   LVI->threadEdge(PredBB, BB, SuccBB);
1480 
1481   // We are going to have to map operands from the original BB block to the new
1482   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1483   // account for entry from PredBB.
1484   DenseMap<Instruction*, Value*> ValueMapping;
1485 
1486   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1487                                          BB->getName()+".thread",
1488                                          BB->getParent(), BB);
1489   NewBB->moveAfter(PredBB);
1490 
1491   // Set the block frequency of NewBB.
1492   if (HasProfileData) {
1493     auto NewBBFreq =
1494         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1495     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1496   }
1497 
1498   BasicBlock::iterator BI = BB->begin();
1499   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1500     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1501 
1502   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1503   // mapping and using it to remap operands in the cloned instructions.
1504   for (; !isa<TerminatorInst>(BI); ++BI) {
1505     Instruction *New = BI->clone();
1506     New->setName(BI->getName());
1507     NewBB->getInstList().push_back(New);
1508     ValueMapping[&*BI] = New;
1509 
1510     // Remap operands to patch up intra-block references.
1511     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1512       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1513         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1514         if (I != ValueMapping.end())
1515           New->setOperand(i, I->second);
1516       }
1517   }
1518 
1519   // We didn't copy the terminator from BB over to NewBB, because there is now
1520   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1521   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
1522   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1523 
1524   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1525   // PHI nodes for NewBB now.
1526   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1527 
1528   // If there were values defined in BB that are used outside the block, then we
1529   // now have to update all uses of the value to use either the original value,
1530   // the cloned value, or some PHI derived value.  This can require arbitrary
1531   // PHI insertion, of which we are prepared to do, clean these up now.
1532   SSAUpdater SSAUpdate;
1533   SmallVector<Use*, 16> UsesToRename;
1534   for (Instruction &I : *BB) {
1535     // Scan all uses of this instruction to see if it is used outside of its
1536     // block, and if so, record them in UsesToRename.
1537     for (Use &U : I.uses()) {
1538       Instruction *User = cast<Instruction>(U.getUser());
1539       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1540         if (UserPN->getIncomingBlock(U) == BB)
1541           continue;
1542       } else if (User->getParent() == BB)
1543         continue;
1544 
1545       UsesToRename.push_back(&U);
1546     }
1547 
1548     // If there are no uses outside the block, we're done with this instruction.
1549     if (UsesToRename.empty())
1550       continue;
1551 
1552     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1553 
1554     // We found a use of I outside of BB.  Rename all uses of I that are outside
1555     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1556     // with the two values we know.
1557     SSAUpdate.Initialize(I.getType(), I.getName());
1558     SSAUpdate.AddAvailableValue(BB, &I);
1559     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
1560 
1561     while (!UsesToRename.empty())
1562       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1563     DEBUG(dbgs() << "\n");
1564   }
1565 
1566 
1567   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1568   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1569   // us to simplify any PHI nodes in BB.
1570   TerminatorInst *PredTerm = PredBB->getTerminator();
1571   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1572     if (PredTerm->getSuccessor(i) == BB) {
1573       BB->removePredecessor(PredBB, true);
1574       PredTerm->setSuccessor(i, NewBB);
1575     }
1576 
1577   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1578   // over the new instructions and zap any that are constants or dead.  This
1579   // frequently happens because of phi translation.
1580   SimplifyInstructionsInBlock(NewBB, TLI);
1581 
1582   // Update the edge weight from BB to SuccBB, which should be less than before.
1583   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
1584 
1585   // Threaded an edge!
1586   ++NumThreads;
1587   return true;
1588 }
1589 
1590 /// Create a new basic block that will be the predecessor of BB and successor of
1591 /// all blocks in Preds. When profile data is availble, update the frequency of
1592 /// this new block.
1593 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
1594                                                ArrayRef<BasicBlock *> Preds,
1595                                                const char *Suffix) {
1596   // Collect the frequencies of all predecessors of BB, which will be used to
1597   // update the edge weight on BB->SuccBB.
1598   BlockFrequency PredBBFreq(0);
1599   if (HasProfileData)
1600     for (auto Pred : Preds)
1601       PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB);
1602 
1603   BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix);
1604 
1605   // Set the block frequency of the newly created PredBB, which is the sum of
1606   // frequencies of Preds.
1607   if (HasProfileData)
1608     BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency());
1609   return PredBB;
1610 }
1611 
1612 /// Update the block frequency of BB and branch weight and the metadata on the
1613 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
1614 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
1615 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
1616                                                      BasicBlock *BB,
1617                                                      BasicBlock *NewBB,
1618                                                      BasicBlock *SuccBB) {
1619   if (!HasProfileData)
1620     return;
1621 
1622   assert(BFI && BPI && "BFI & BPI should have been created here");
1623 
1624   // As the edge from PredBB to BB is deleted, we have to update the block
1625   // frequency of BB.
1626   auto BBOrigFreq = BFI->getBlockFreq(BB);
1627   auto NewBBFreq = BFI->getBlockFreq(NewBB);
1628   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
1629   auto BBNewFreq = BBOrigFreq - NewBBFreq;
1630   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
1631 
1632   // Collect updated outgoing edges' frequencies from BB and use them to update
1633   // edge probabilities.
1634   SmallVector<uint64_t, 4> BBSuccFreq;
1635   for (BasicBlock *Succ : successors(BB)) {
1636     auto SuccFreq = (Succ == SuccBB)
1637                         ? BB2SuccBBFreq - NewBBFreq
1638                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
1639     BBSuccFreq.push_back(SuccFreq.getFrequency());
1640   }
1641 
1642   uint64_t MaxBBSuccFreq =
1643       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
1644 
1645   SmallVector<BranchProbability, 4> BBSuccProbs;
1646   if (MaxBBSuccFreq == 0)
1647     BBSuccProbs.assign(BBSuccFreq.size(),
1648                        {1, static_cast<unsigned>(BBSuccFreq.size())});
1649   else {
1650     for (uint64_t Freq : BBSuccFreq)
1651       BBSuccProbs.push_back(
1652           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
1653     // Normalize edge probabilities so that they sum up to one.
1654     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
1655                                               BBSuccProbs.end());
1656   }
1657 
1658   // Update edge probabilities in BPI.
1659   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
1660     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
1661 
1662   if (BBSuccProbs.size() >= 2) {
1663     SmallVector<uint32_t, 4> Weights;
1664     for (auto Prob : BBSuccProbs)
1665       Weights.push_back(Prob.getNumerator());
1666 
1667     auto TI = BB->getTerminator();
1668     TI->setMetadata(
1669         LLVMContext::MD_prof,
1670         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
1671   }
1672 }
1673 
1674 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1675 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1676 /// If we can duplicate the contents of BB up into PredBB do so now, this
1677 /// improves the odds that the branch will be on an analyzable instruction like
1678 /// a compare.
1679 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
1680     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
1681   assert(!PredBBs.empty() && "Can't handle an empty set");
1682 
1683   // If BB is a loop header, then duplicating this block outside the loop would
1684   // cause us to transform this into an irreducible loop, don't do this.
1685   // See the comments above FindLoopHeaders for justifications and caveats.
1686   if (LoopHeaders.count(BB)) {
1687     DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1688           << "' into predecessor block '" << PredBBs[0]->getName()
1689           << "' - it might create an irreducible loop!\n");
1690     return false;
1691   }
1692 
1693   unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
1694   if (DuplicationCost > BBDupThreshold) {
1695     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1696           << "' - Cost is too high: " << DuplicationCost << "\n");
1697     return false;
1698   }
1699 
1700   // And finally, do it!  Start by factoring the predecessors if needed.
1701   BasicBlock *PredBB;
1702   if (PredBBs.size() == 1)
1703     PredBB = PredBBs[0];
1704   else {
1705     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1706           << " common predecessors.\n");
1707     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1708   }
1709 
1710   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1711   // of PredBB.
1712   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1713         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1714         << DuplicationCost << " block is:" << *BB << "\n");
1715 
1716   // Unless PredBB ends with an unconditional branch, split the edge so that we
1717   // can just clone the bits from BB into the end of the new PredBB.
1718   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1719 
1720   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
1721     PredBB = SplitEdge(PredBB, BB);
1722     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1723   }
1724 
1725   // We are going to have to map operands from the original BB block into the
1726   // PredBB block.  Evaluate PHI nodes in BB.
1727   DenseMap<Instruction*, Value*> ValueMapping;
1728 
1729   BasicBlock::iterator BI = BB->begin();
1730   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1731     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1732   // Clone the non-phi instructions of BB into PredBB, keeping track of the
1733   // mapping and using it to remap operands in the cloned instructions.
1734   for (; BI != BB->end(); ++BI) {
1735     Instruction *New = BI->clone();
1736 
1737     // Remap operands to patch up intra-block references.
1738     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1739       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1740         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1741         if (I != ValueMapping.end())
1742           New->setOperand(i, I->second);
1743       }
1744 
1745     // If this instruction can be simplified after the operands are updated,
1746     // just use the simplified value instead.  This frequently happens due to
1747     // phi translation.
1748     if (Value *IV =
1749             SimplifyInstruction(New, BB->getModule()->getDataLayout())) {
1750       ValueMapping[&*BI] = IV;
1751       if (!New->mayHaveSideEffects()) {
1752         delete New;
1753         New = nullptr;
1754       }
1755     } else {
1756       ValueMapping[&*BI] = New;
1757     }
1758     if (New) {
1759       // Otherwise, insert the new instruction into the block.
1760       New->setName(BI->getName());
1761       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
1762     }
1763   }
1764 
1765   // Check to see if the targets of the branch had PHI nodes. If so, we need to
1766   // add entries to the PHI nodes for branch from PredBB now.
1767   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1768   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1769                                   ValueMapping);
1770   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1771                                   ValueMapping);
1772 
1773   // If there were values defined in BB that are used outside the block, then we
1774   // now have to update all uses of the value to use either the original value,
1775   // the cloned value, or some PHI derived value.  This can require arbitrary
1776   // PHI insertion, of which we are prepared to do, clean these up now.
1777   SSAUpdater SSAUpdate;
1778   SmallVector<Use*, 16> UsesToRename;
1779   for (Instruction &I : *BB) {
1780     // Scan all uses of this instruction to see if it is used outside of its
1781     // block, and if so, record them in UsesToRename.
1782     for (Use &U : I.uses()) {
1783       Instruction *User = cast<Instruction>(U.getUser());
1784       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1785         if (UserPN->getIncomingBlock(U) == BB)
1786           continue;
1787       } else if (User->getParent() == BB)
1788         continue;
1789 
1790       UsesToRename.push_back(&U);
1791     }
1792 
1793     // If there are no uses outside the block, we're done with this instruction.
1794     if (UsesToRename.empty())
1795       continue;
1796 
1797     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1798 
1799     // We found a use of I outside of BB.  Rename all uses of I that are outside
1800     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1801     // with the two values we know.
1802     SSAUpdate.Initialize(I.getType(), I.getName());
1803     SSAUpdate.AddAvailableValue(BB, &I);
1804     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
1805 
1806     while (!UsesToRename.empty())
1807       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1808     DEBUG(dbgs() << "\n");
1809   }
1810 
1811   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1812   // that we nuked.
1813   BB->removePredecessor(PredBB, true);
1814 
1815   // Remove the unconditional branch at the end of the PredBB block.
1816   OldPredBranch->eraseFromParent();
1817 
1818   ++NumDupes;
1819   return true;
1820 }
1821 
1822 /// TryToUnfoldSelect - Look for blocks of the form
1823 /// bb1:
1824 ///   %a = select
1825 ///   br bb
1826 ///
1827 /// bb2:
1828 ///   %p = phi [%a, %bb] ...
1829 ///   %c = icmp %p
1830 ///   br i1 %c
1831 ///
1832 /// And expand the select into a branch structure if one of its arms allows %c
1833 /// to be folded. This later enables threading from bb1 over bb2.
1834 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
1835   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1836   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
1837   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
1838 
1839   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
1840       CondLHS->getParent() != BB)
1841     return false;
1842 
1843   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
1844     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
1845     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
1846 
1847     // Look if one of the incoming values is a select in the corresponding
1848     // predecessor.
1849     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
1850       continue;
1851 
1852     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
1853     if (!PredTerm || !PredTerm->isUnconditional())
1854       continue;
1855 
1856     // Now check if one of the select values would allow us to constant fold the
1857     // terminator in BB. We don't do the transform if both sides fold, those
1858     // cases will be threaded in any case.
1859     LazyValueInfo::Tristate LHSFolds =
1860         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
1861                                 CondRHS, Pred, BB, CondCmp);
1862     LazyValueInfo::Tristate RHSFolds =
1863         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
1864                                 CondRHS, Pred, BB, CondCmp);
1865     if ((LHSFolds != LazyValueInfo::Unknown ||
1866          RHSFolds != LazyValueInfo::Unknown) &&
1867         LHSFolds != RHSFolds) {
1868       // Expand the select.
1869       //
1870       // Pred --
1871       //  |    v
1872       //  |  NewBB
1873       //  |    |
1874       //  |-----
1875       //  v
1876       // BB
1877       BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
1878                                              BB->getParent(), BB);
1879       // Move the unconditional branch to NewBB.
1880       PredTerm->removeFromParent();
1881       NewBB->getInstList().insert(NewBB->end(), PredTerm);
1882       // Create a conditional branch and update PHI nodes.
1883       BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
1884       CondLHS->setIncomingValue(I, SI->getFalseValue());
1885       CondLHS->addIncoming(SI->getTrueValue(), NewBB);
1886       // The select is now dead.
1887       SI->eraseFromParent();
1888 
1889       // Update any other PHI nodes in BB.
1890       for (BasicBlock::iterator BI = BB->begin();
1891            PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
1892         if (Phi != CondLHS)
1893           Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
1894       return true;
1895     }
1896   }
1897   return false;
1898 }
1899 
1900 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select in the same BB of the form
1901 /// bb:
1902 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
1903 ///   %s = select p, trueval, falseval
1904 ///
1905 /// And expand the select into a branch structure. This later enables
1906 /// jump-threading over bb in this pass.
1907 ///
1908 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
1909 /// select if the associated PHI has at least one constant.  If the unfolded
1910 /// select is not jump-threaded, it will be folded again in the later
1911 /// optimizations.
1912 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
1913   // If threading this would thread across a loop header, don't thread the edge.
1914   // See the comments above FindLoopHeaders for justifications and caveats.
1915   if (LoopHeaders.count(BB))
1916     return false;
1917 
1918   // Look for a Phi/Select pair in the same basic block.  The Phi feeds the
1919   // condition of the Select and at least one of the incoming values is a
1920   // constant.
1921   for (BasicBlock::iterator BI = BB->begin();
1922        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
1923     unsigned NumPHIValues = PN->getNumIncomingValues();
1924     if (NumPHIValues == 0 || !PN->hasOneUse())
1925       continue;
1926 
1927     SelectInst *SI = dyn_cast<SelectInst>(PN->user_back());
1928     if (!SI || SI->getParent() != BB)
1929       continue;
1930 
1931     Value *Cond = SI->getCondition();
1932     if (!Cond || Cond != PN || !Cond->getType()->isIntegerTy(1))
1933       continue;
1934 
1935     bool HasConst = false;
1936     for (unsigned i = 0; i != NumPHIValues; ++i) {
1937       if (PN->getIncomingBlock(i) == BB)
1938         return false;
1939       if (isa<ConstantInt>(PN->getIncomingValue(i)))
1940         HasConst = true;
1941     }
1942 
1943     if (HasConst) {
1944       // Expand the select.
1945       TerminatorInst *Term =
1946           SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
1947       PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
1948       NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
1949       NewPN->addIncoming(SI->getFalseValue(), BB);
1950       SI->replaceAllUsesWith(NewPN);
1951       SI->eraseFromParent();
1952       return true;
1953     }
1954   }
1955 
1956   return false;
1957 }
1958