1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/JumpThreading.h" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/Loads.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/MDBuilder.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/SSAUpdater.h" 40 #include <algorithm> 41 #include <memory> 42 using namespace llvm; 43 using namespace jumpthreading; 44 45 #define DEBUG_TYPE "jump-threading" 46 47 STATISTIC(NumThreads, "Number of jumps threaded"); 48 STATISTIC(NumFolds, "Number of terminators folded"); 49 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 50 51 static cl::opt<unsigned> 52 BBDuplicateThreshold("jump-threading-threshold", 53 cl::desc("Max block size to duplicate for jump threading"), 54 cl::init(6), cl::Hidden); 55 56 static cl::opt<unsigned> 57 ImplicationSearchThreshold( 58 "jump-threading-implication-search-threshold", 59 cl::desc("The number of predecessors to search for a stronger " 60 "condition to use to thread over a weaker condition"), 61 cl::init(3), cl::Hidden); 62 63 namespace { 64 /// This pass performs 'jump threading', which looks at blocks that have 65 /// multiple predecessors and multiple successors. If one or more of the 66 /// predecessors of the block can be proven to always jump to one of the 67 /// successors, we forward the edge from the predecessor to the successor by 68 /// duplicating the contents of this block. 69 /// 70 /// An example of when this can occur is code like this: 71 /// 72 /// if () { ... 73 /// X = 4; 74 /// } 75 /// if (X < 3) { 76 /// 77 /// In this case, the unconditional branch at the end of the first if can be 78 /// revectored to the false side of the second if. 79 /// 80 class JumpThreading : public FunctionPass { 81 JumpThreadingPass Impl; 82 83 public: 84 static char ID; // Pass identification 85 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 86 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 87 } 88 89 bool runOnFunction(Function &F) override; 90 91 void getAnalysisUsage(AnalysisUsage &AU) const override { 92 AU.addRequired<LazyValueInfoWrapperPass>(); 93 AU.addPreserved<LazyValueInfoWrapperPass>(); 94 AU.addPreserved<GlobalsAAWrapperPass>(); 95 AU.addRequired<TargetLibraryInfoWrapperPass>(); 96 } 97 98 void releaseMemory() override { Impl.releaseMemory(); } 99 }; 100 } 101 102 char JumpThreading::ID = 0; 103 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 104 "Jump Threading", false, false) 105 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 106 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 107 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 108 "Jump Threading", false, false) 109 110 // Public interface to the Jump Threading pass 111 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); } 112 113 JumpThreadingPass::JumpThreadingPass(int T) { 114 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 115 } 116 117 /// runOnFunction - Top level algorithm. 118 /// 119 bool JumpThreading::runOnFunction(Function &F) { 120 if (skipFunction(F)) 121 return false; 122 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 123 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 124 std::unique_ptr<BlockFrequencyInfo> BFI; 125 std::unique_ptr<BranchProbabilityInfo> BPI; 126 bool HasProfileData = F.getEntryCount().hasValue(); 127 if (HasProfileData) { 128 LoopInfo LI{DominatorTree(F)}; 129 BPI.reset(new BranchProbabilityInfo(F, LI)); 130 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 131 } 132 return Impl.runImpl(F, TLI, LVI, HasProfileData, std::move(BFI), 133 std::move(BPI)); 134 } 135 136 PreservedAnalyses JumpThreadingPass::run(Function &F, 137 AnalysisManager<Function> &AM) { 138 139 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 140 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 141 std::unique_ptr<BlockFrequencyInfo> BFI; 142 std::unique_ptr<BranchProbabilityInfo> BPI; 143 bool HasProfileData = F.getEntryCount().hasValue(); 144 if (HasProfileData) { 145 LoopInfo LI{DominatorTree(F)}; 146 BPI.reset(new BranchProbabilityInfo(F, LI)); 147 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 148 } 149 bool Changed = 150 runImpl(F, &TLI, &LVI, HasProfileData, std::move(BFI), std::move(BPI)); 151 if (!Changed) 152 return PreservedAnalyses::all(); 153 PreservedAnalyses PA; 154 // FIXME: Not preserving LVI! We need it to be invalidated so that we 155 // don't run into issues like PR28400. Is there a better solution? 156 PA.preserve<GlobalsAA>(); 157 return PA; 158 } 159 160 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 161 LazyValueInfo *LVI_, bool HasProfileData_, 162 std::unique_ptr<BlockFrequencyInfo> BFI_, 163 std::unique_ptr<BranchProbabilityInfo> BPI_) { 164 165 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 166 TLI = TLI_; 167 LVI = LVI_; 168 BFI.reset(); 169 BPI.reset(); 170 // When profile data is available, we need to update edge weights after 171 // successful jump threading, which requires both BPI and BFI being available. 172 HasProfileData = HasProfileData_; 173 if (HasProfileData) { 174 BPI = std::move(BPI_); 175 BFI = std::move(BFI_); 176 } 177 178 // Remove unreachable blocks from function as they may result in infinite 179 // loop. We do threading if we found something profitable. Jump threading a 180 // branch can create other opportunities. If these opportunities form a cycle 181 // i.e. if any jump threading is undoing previous threading in the path, then 182 // we will loop forever. We take care of this issue by not jump threading for 183 // back edges. This works for normal cases but not for unreachable blocks as 184 // they may have cycle with no back edge. 185 bool EverChanged = false; 186 EverChanged |= removeUnreachableBlocks(F, LVI); 187 188 FindLoopHeaders(F); 189 190 bool Changed; 191 do { 192 Changed = false; 193 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 194 BasicBlock *BB = &*I; 195 // Thread all of the branches we can over this block. 196 while (ProcessBlock(BB)) 197 Changed = true; 198 199 ++I; 200 201 // If the block is trivially dead, zap it. This eliminates the successor 202 // edges which simplifies the CFG. 203 if (pred_empty(BB) && 204 BB != &BB->getParent()->getEntryBlock()) { 205 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 206 << "' with terminator: " << *BB->getTerminator() << '\n'); 207 LoopHeaders.erase(BB); 208 LVI->eraseBlock(BB); 209 DeleteDeadBlock(BB); 210 Changed = true; 211 continue; 212 } 213 214 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 215 216 // Can't thread an unconditional jump, but if the block is "almost 217 // empty", we can replace uses of it with uses of the successor and make 218 // this dead. 219 // We should not eliminate the loop header either, because eliminating 220 // a loop header might later prevent LoopSimplify from transforming nested 221 // loops into simplified form. 222 if (BI && BI->isUnconditional() && 223 BB != &BB->getParent()->getEntryBlock() && 224 // If the terminator is the only non-phi instruction, try to nuke it. 225 BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB)) { 226 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 227 // block, we have to make sure it isn't in the LoopHeaders set. We 228 // reinsert afterward if needed. 229 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 230 BasicBlock *Succ = BI->getSuccessor(0); 231 232 // FIXME: It is always conservatively correct to drop the info 233 // for a block even if it doesn't get erased. This isn't totally 234 // awesome, but it allows us to use AssertingVH to prevent nasty 235 // dangling pointer issues within LazyValueInfo. 236 LVI->eraseBlock(BB); 237 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 238 Changed = true; 239 // If we deleted BB and BB was the header of a loop, then the 240 // successor is now the header of the loop. 241 BB = Succ; 242 } 243 244 if (ErasedFromLoopHeaders) 245 LoopHeaders.insert(BB); 246 } 247 } 248 EverChanged |= Changed; 249 } while (Changed); 250 251 LoopHeaders.clear(); 252 return EverChanged; 253 } 254 255 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 256 /// thread across it. Stop scanning the block when passing the threshold. 257 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB, 258 unsigned Threshold) { 259 /// Ignore PHI nodes, these will be flattened when duplication happens. 260 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 261 262 // FIXME: THREADING will delete values that are just used to compute the 263 // branch, so they shouldn't count against the duplication cost. 264 265 unsigned Bonus = 0; 266 const TerminatorInst *BBTerm = BB->getTerminator(); 267 // Threading through a switch statement is particularly profitable. If this 268 // block ends in a switch, decrease its cost to make it more likely to happen. 269 if (isa<SwitchInst>(BBTerm)) 270 Bonus = 6; 271 272 // The same holds for indirect branches, but slightly more so. 273 if (isa<IndirectBrInst>(BBTerm)) 274 Bonus = 8; 275 276 // Bump the threshold up so the early exit from the loop doesn't skip the 277 // terminator-based Size adjustment at the end. 278 Threshold += Bonus; 279 280 // Sum up the cost of each instruction until we get to the terminator. Don't 281 // include the terminator because the copy won't include it. 282 unsigned Size = 0; 283 for (; !isa<TerminatorInst>(I); ++I) { 284 285 // Stop scanning the block if we've reached the threshold. 286 if (Size > Threshold) 287 return Size; 288 289 // Debugger intrinsics don't incur code size. 290 if (isa<DbgInfoIntrinsic>(I)) continue; 291 292 // If this is a pointer->pointer bitcast, it is free. 293 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 294 continue; 295 296 // Bail out if this instruction gives back a token type, it is not possible 297 // to duplicate it if it is used outside this BB. 298 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 299 return ~0U; 300 301 // All other instructions count for at least one unit. 302 ++Size; 303 304 // Calls are more expensive. If they are non-intrinsic calls, we model them 305 // as having cost of 4. If they are a non-vector intrinsic, we model them 306 // as having cost of 2 total, and if they are a vector intrinsic, we model 307 // them as having cost 1. 308 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 309 if (CI->cannotDuplicate() || CI->isConvergent()) 310 // Blocks with NoDuplicate are modelled as having infinite cost, so they 311 // are never duplicated. 312 return ~0U; 313 else if (!isa<IntrinsicInst>(CI)) 314 Size += 3; 315 else if (!CI->getType()->isVectorTy()) 316 Size += 1; 317 } 318 } 319 320 return Size > Bonus ? Size - Bonus : 0; 321 } 322 323 /// FindLoopHeaders - We do not want jump threading to turn proper loop 324 /// structures into irreducible loops. Doing this breaks up the loop nesting 325 /// hierarchy and pessimizes later transformations. To prevent this from 326 /// happening, we first have to find the loop headers. Here we approximate this 327 /// by finding targets of backedges in the CFG. 328 /// 329 /// Note that there definitely are cases when we want to allow threading of 330 /// edges across a loop header. For example, threading a jump from outside the 331 /// loop (the preheader) to an exit block of the loop is definitely profitable. 332 /// It is also almost always profitable to thread backedges from within the loop 333 /// to exit blocks, and is often profitable to thread backedges to other blocks 334 /// within the loop (forming a nested loop). This simple analysis is not rich 335 /// enough to track all of these properties and keep it up-to-date as the CFG 336 /// mutates, so we don't allow any of these transformations. 337 /// 338 void JumpThreadingPass::FindLoopHeaders(Function &F) { 339 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 340 FindFunctionBackedges(F, Edges); 341 342 for (const auto &Edge : Edges) 343 LoopHeaders.insert(Edge.second); 344 } 345 346 /// getKnownConstant - Helper method to determine if we can thread over a 347 /// terminator with the given value as its condition, and if so what value to 348 /// use for that. What kind of value this is depends on whether we want an 349 /// integer or a block address, but an undef is always accepted. 350 /// Returns null if Val is null or not an appropriate constant. 351 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 352 if (!Val) 353 return nullptr; 354 355 // Undef is "known" enough. 356 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 357 return U; 358 359 if (Preference == WantBlockAddress) 360 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 361 362 return dyn_cast<ConstantInt>(Val); 363 } 364 365 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 366 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 367 /// in any of our predecessors. If so, return the known list of value and pred 368 /// BB in the result vector. 369 /// 370 /// This returns true if there were any known values. 371 /// 372 bool JumpThreadingPass::ComputeValueKnownInPredecessors( 373 Value *V, BasicBlock *BB, PredValueInfo &Result, 374 ConstantPreference Preference, Instruction *CxtI) { 375 // This method walks up use-def chains recursively. Because of this, we could 376 // get into an infinite loop going around loops in the use-def chain. To 377 // prevent this, keep track of what (value, block) pairs we've already visited 378 // and terminate the search if we loop back to them 379 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 380 return false; 381 382 // An RAII help to remove this pair from the recursion set once the recursion 383 // stack pops back out again. 384 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 385 386 // If V is a constant, then it is known in all predecessors. 387 if (Constant *KC = getKnownConstant(V, Preference)) { 388 for (BasicBlock *Pred : predecessors(BB)) 389 Result.push_back(std::make_pair(KC, Pred)); 390 391 return !Result.empty(); 392 } 393 394 // If V is a non-instruction value, or an instruction in a different block, 395 // then it can't be derived from a PHI. 396 Instruction *I = dyn_cast<Instruction>(V); 397 if (!I || I->getParent() != BB) { 398 399 // Okay, if this is a live-in value, see if it has a known value at the end 400 // of any of our predecessors. 401 // 402 // FIXME: This should be an edge property, not a block end property. 403 /// TODO: Per PR2563, we could infer value range information about a 404 /// predecessor based on its terminator. 405 // 406 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 407 // "I" is a non-local compare-with-a-constant instruction. This would be 408 // able to handle value inequalities better, for example if the compare is 409 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 410 // Perhaps getConstantOnEdge should be smart enough to do this? 411 412 for (BasicBlock *P : predecessors(BB)) { 413 // If the value is known by LazyValueInfo to be a constant in a 414 // predecessor, use that information to try to thread this block. 415 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 416 if (Constant *KC = getKnownConstant(PredCst, Preference)) 417 Result.push_back(std::make_pair(KC, P)); 418 } 419 420 return !Result.empty(); 421 } 422 423 /// If I is a PHI node, then we know the incoming values for any constants. 424 if (PHINode *PN = dyn_cast<PHINode>(I)) { 425 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 426 Value *InVal = PN->getIncomingValue(i); 427 if (Constant *KC = getKnownConstant(InVal, Preference)) { 428 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 429 } else { 430 Constant *CI = LVI->getConstantOnEdge(InVal, 431 PN->getIncomingBlock(i), 432 BB, CxtI); 433 if (Constant *KC = getKnownConstant(CI, Preference)) 434 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 435 } 436 } 437 438 return !Result.empty(); 439 } 440 441 // Handle Cast instructions. Only see through Cast when the source operand is 442 // PHI or Cmp and the source type is i1 to save the compilation time. 443 if (CastInst *CI = dyn_cast<CastInst>(I)) { 444 Value *Source = CI->getOperand(0); 445 if (!Source->getType()->isIntegerTy(1)) 446 return false; 447 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 448 return false; 449 ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI); 450 if (Result.empty()) 451 return false; 452 453 // Convert the known values. 454 for (auto &R : Result) 455 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 456 457 return true; 458 } 459 460 PredValueInfoTy LHSVals, RHSVals; 461 462 // Handle some boolean conditions. 463 if (I->getType()->getPrimitiveSizeInBits() == 1) { 464 assert(Preference == WantInteger && "One-bit non-integer type?"); 465 // X | true -> true 466 // X & false -> false 467 if (I->getOpcode() == Instruction::Or || 468 I->getOpcode() == Instruction::And) { 469 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 470 WantInteger, CxtI); 471 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 472 WantInteger, CxtI); 473 474 if (LHSVals.empty() && RHSVals.empty()) 475 return false; 476 477 ConstantInt *InterestingVal; 478 if (I->getOpcode() == Instruction::Or) 479 InterestingVal = ConstantInt::getTrue(I->getContext()); 480 else 481 InterestingVal = ConstantInt::getFalse(I->getContext()); 482 483 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 484 485 // Scan for the sentinel. If we find an undef, force it to the 486 // interesting value: x|undef -> true and x&undef -> false. 487 for (const auto &LHSVal : LHSVals) 488 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 489 Result.emplace_back(InterestingVal, LHSVal.second); 490 LHSKnownBBs.insert(LHSVal.second); 491 } 492 for (const auto &RHSVal : RHSVals) 493 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 494 // If we already inferred a value for this block on the LHS, don't 495 // re-add it. 496 if (!LHSKnownBBs.count(RHSVal.second)) 497 Result.emplace_back(InterestingVal, RHSVal.second); 498 } 499 500 return !Result.empty(); 501 } 502 503 // Handle the NOT form of XOR. 504 if (I->getOpcode() == Instruction::Xor && 505 isa<ConstantInt>(I->getOperand(1)) && 506 cast<ConstantInt>(I->getOperand(1))->isOne()) { 507 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 508 WantInteger, CxtI); 509 if (Result.empty()) 510 return false; 511 512 // Invert the known values. 513 for (auto &R : Result) 514 R.first = ConstantExpr::getNot(R.first); 515 516 return true; 517 } 518 519 // Try to simplify some other binary operator values. 520 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 521 assert(Preference != WantBlockAddress 522 && "A binary operator creating a block address?"); 523 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 524 PredValueInfoTy LHSVals; 525 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 526 WantInteger, CxtI); 527 528 // Try to use constant folding to simplify the binary operator. 529 for (const auto &LHSVal : LHSVals) { 530 Constant *V = LHSVal.first; 531 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 532 533 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 534 Result.push_back(std::make_pair(KC, LHSVal.second)); 535 } 536 } 537 538 return !Result.empty(); 539 } 540 541 // Handle compare with phi operand, where the PHI is defined in this block. 542 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 543 assert(Preference == WantInteger && "Compares only produce integers"); 544 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 545 if (PN && PN->getParent() == BB) { 546 const DataLayout &DL = PN->getModule()->getDataLayout(); 547 // We can do this simplification if any comparisons fold to true or false. 548 // See if any do. 549 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 550 BasicBlock *PredBB = PN->getIncomingBlock(i); 551 Value *LHS = PN->getIncomingValue(i); 552 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 553 554 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL); 555 if (!Res) { 556 if (!isa<Constant>(RHS)) 557 continue; 558 559 LazyValueInfo::Tristate 560 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 561 cast<Constant>(RHS), PredBB, BB, 562 CxtI ? CxtI : Cmp); 563 if (ResT == LazyValueInfo::Unknown) 564 continue; 565 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 566 } 567 568 if (Constant *KC = getKnownConstant(Res, WantInteger)) 569 Result.push_back(std::make_pair(KC, PredBB)); 570 } 571 572 return !Result.empty(); 573 } 574 575 // If comparing a live-in value against a constant, see if we know the 576 // live-in value on any predecessors. 577 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 578 if (!isa<Instruction>(Cmp->getOperand(0)) || 579 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 580 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 581 582 for (BasicBlock *P : predecessors(BB)) { 583 // If the value is known by LazyValueInfo to be a constant in a 584 // predecessor, use that information to try to thread this block. 585 LazyValueInfo::Tristate Res = 586 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 587 RHSCst, P, BB, CxtI ? CxtI : Cmp); 588 if (Res == LazyValueInfo::Unknown) 589 continue; 590 591 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 592 Result.push_back(std::make_pair(ResC, P)); 593 } 594 595 return !Result.empty(); 596 } 597 598 // Try to find a constant value for the LHS of a comparison, 599 // and evaluate it statically if we can. 600 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 601 PredValueInfoTy LHSVals; 602 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 603 WantInteger, CxtI); 604 605 for (const auto &LHSVal : LHSVals) { 606 Constant *V = LHSVal.first; 607 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 608 V, CmpConst); 609 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 610 Result.push_back(std::make_pair(KC, LHSVal.second)); 611 } 612 613 return !Result.empty(); 614 } 615 } 616 } 617 618 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 619 // Handle select instructions where at least one operand is a known constant 620 // and we can figure out the condition value for any predecessor block. 621 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 622 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 623 PredValueInfoTy Conds; 624 if ((TrueVal || FalseVal) && 625 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 626 WantInteger, CxtI)) { 627 for (auto &C : Conds) { 628 Constant *Cond = C.first; 629 630 // Figure out what value to use for the condition. 631 bool KnownCond; 632 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 633 // A known boolean. 634 KnownCond = CI->isOne(); 635 } else { 636 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 637 // Either operand will do, so be sure to pick the one that's a known 638 // constant. 639 // FIXME: Do this more cleverly if both values are known constants? 640 KnownCond = (TrueVal != nullptr); 641 } 642 643 // See if the select has a known constant value for this predecessor. 644 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 645 Result.push_back(std::make_pair(Val, C.second)); 646 } 647 648 return !Result.empty(); 649 } 650 } 651 652 // If all else fails, see if LVI can figure out a constant value for us. 653 Constant *CI = LVI->getConstant(V, BB, CxtI); 654 if (Constant *KC = getKnownConstant(CI, Preference)) { 655 for (BasicBlock *Pred : predecessors(BB)) 656 Result.push_back(std::make_pair(KC, Pred)); 657 } 658 659 return !Result.empty(); 660 } 661 662 663 664 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 665 /// in an undefined jump, decide which block is best to revector to. 666 /// 667 /// Since we can pick an arbitrary destination, we pick the successor with the 668 /// fewest predecessors. This should reduce the in-degree of the others. 669 /// 670 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 671 TerminatorInst *BBTerm = BB->getTerminator(); 672 unsigned MinSucc = 0; 673 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 674 // Compute the successor with the minimum number of predecessors. 675 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 676 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 677 TestBB = BBTerm->getSuccessor(i); 678 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 679 if (NumPreds < MinNumPreds) { 680 MinSucc = i; 681 MinNumPreds = NumPreds; 682 } 683 } 684 685 return MinSucc; 686 } 687 688 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 689 if (!BB->hasAddressTaken()) return false; 690 691 // If the block has its address taken, it may be a tree of dead constants 692 // hanging off of it. These shouldn't keep the block alive. 693 BlockAddress *BA = BlockAddress::get(BB); 694 BA->removeDeadConstantUsers(); 695 return !BA->use_empty(); 696 } 697 698 /// ProcessBlock - If there are any predecessors whose control can be threaded 699 /// through to a successor, transform them now. 700 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 701 // If the block is trivially dead, just return and let the caller nuke it. 702 // This simplifies other transformations. 703 if (pred_empty(BB) && 704 BB != &BB->getParent()->getEntryBlock()) 705 return false; 706 707 // If this block has a single predecessor, and if that pred has a single 708 // successor, merge the blocks. This encourages recursive jump threading 709 // because now the condition in this block can be threaded through 710 // predecessors of our predecessor block. 711 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 712 const TerminatorInst *TI = SinglePred->getTerminator(); 713 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 714 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 715 // If SinglePred was a loop header, BB becomes one. 716 if (LoopHeaders.erase(SinglePred)) 717 LoopHeaders.insert(BB); 718 719 LVI->eraseBlock(SinglePred); 720 MergeBasicBlockIntoOnlyPred(BB); 721 722 return true; 723 } 724 } 725 726 if (TryToUnfoldSelectInCurrBB(BB)) 727 return true; 728 729 // What kind of constant we're looking for. 730 ConstantPreference Preference = WantInteger; 731 732 // Look to see if the terminator is a conditional branch, switch or indirect 733 // branch, if not we can't thread it. 734 Value *Condition; 735 Instruction *Terminator = BB->getTerminator(); 736 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 737 // Can't thread an unconditional jump. 738 if (BI->isUnconditional()) return false; 739 Condition = BI->getCondition(); 740 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 741 Condition = SI->getCondition(); 742 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 743 // Can't thread indirect branch with no successors. 744 if (IB->getNumSuccessors() == 0) return false; 745 Condition = IB->getAddress()->stripPointerCasts(); 746 Preference = WantBlockAddress; 747 } else { 748 return false; // Must be an invoke. 749 } 750 751 // Run constant folding to see if we can reduce the condition to a simple 752 // constant. 753 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 754 Value *SimpleVal = 755 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 756 if (SimpleVal) { 757 I->replaceAllUsesWith(SimpleVal); 758 I->eraseFromParent(); 759 Condition = SimpleVal; 760 } 761 } 762 763 // If the terminator is branching on an undef, we can pick any of the 764 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 765 if (isa<UndefValue>(Condition)) { 766 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 767 768 // Fold the branch/switch. 769 TerminatorInst *BBTerm = BB->getTerminator(); 770 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 771 if (i == BestSucc) continue; 772 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 773 } 774 775 DEBUG(dbgs() << " In block '" << BB->getName() 776 << "' folding undef terminator: " << *BBTerm << '\n'); 777 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 778 BBTerm->eraseFromParent(); 779 return true; 780 } 781 782 // If the terminator of this block is branching on a constant, simplify the 783 // terminator to an unconditional branch. This can occur due to threading in 784 // other blocks. 785 if (getKnownConstant(Condition, Preference)) { 786 DEBUG(dbgs() << " In block '" << BB->getName() 787 << "' folding terminator: " << *BB->getTerminator() << '\n'); 788 ++NumFolds; 789 ConstantFoldTerminator(BB, true); 790 return true; 791 } 792 793 Instruction *CondInst = dyn_cast<Instruction>(Condition); 794 795 // All the rest of our checks depend on the condition being an instruction. 796 if (!CondInst) { 797 // FIXME: Unify this with code below. 798 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 799 return true; 800 return false; 801 } 802 803 804 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 805 // If we're branching on a conditional, LVI might be able to determine 806 // it's value at the branch instruction. We only handle comparisons 807 // against a constant at this time. 808 // TODO: This should be extended to handle switches as well. 809 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 810 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 811 if (CondBr && CondConst && CondBr->isConditional()) { 812 LazyValueInfo::Tristate Ret = 813 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 814 CondConst, CondBr); 815 if (Ret != LazyValueInfo::Unknown) { 816 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 817 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 818 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 819 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 820 CondBr->eraseFromParent(); 821 if (CondCmp->use_empty()) 822 CondCmp->eraseFromParent(); 823 else if (CondCmp->getParent() == BB) { 824 // If the fact we just learned is true for all uses of the 825 // condition, replace it with a constant value 826 auto *CI = Ret == LazyValueInfo::True ? 827 ConstantInt::getTrue(CondCmp->getType()) : 828 ConstantInt::getFalse(CondCmp->getType()); 829 CondCmp->replaceAllUsesWith(CI); 830 CondCmp->eraseFromParent(); 831 } 832 return true; 833 } 834 } 835 836 if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB)) 837 return true; 838 } 839 840 // Check for some cases that are worth simplifying. Right now we want to look 841 // for loads that are used by a switch or by the condition for the branch. If 842 // we see one, check to see if it's partially redundant. If so, insert a PHI 843 // which can then be used to thread the values. 844 // 845 Value *SimplifyValue = CondInst; 846 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 847 if (isa<Constant>(CondCmp->getOperand(1))) 848 SimplifyValue = CondCmp->getOperand(0); 849 850 // TODO: There are other places where load PRE would be profitable, such as 851 // more complex comparisons. 852 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 853 if (SimplifyPartiallyRedundantLoad(LI)) 854 return true; 855 856 857 // Handle a variety of cases where we are branching on something derived from 858 // a PHI node in the current block. If we can prove that any predecessors 859 // compute a predictable value based on a PHI node, thread those predecessors. 860 // 861 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 862 return true; 863 864 // If this is an otherwise-unfoldable branch on a phi node in the current 865 // block, see if we can simplify. 866 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 867 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 868 return ProcessBranchOnPHI(PN); 869 870 871 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 872 if (CondInst->getOpcode() == Instruction::Xor && 873 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 874 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 875 876 // Search for a stronger dominating condition that can be used to simplify a 877 // conditional branch leaving BB. 878 if (ProcessImpliedCondition(BB)) 879 return true; 880 881 return false; 882 } 883 884 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 885 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 886 if (!BI || !BI->isConditional()) 887 return false; 888 889 Value *Cond = BI->getCondition(); 890 BasicBlock *CurrentBB = BB; 891 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 892 unsigned Iter = 0; 893 894 auto &DL = BB->getModule()->getDataLayout(); 895 896 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 897 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 898 if (!PBI || !PBI->isConditional()) 899 return false; 900 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 901 return false; 902 903 bool FalseDest = PBI->getSuccessor(1) == CurrentBB; 904 Optional<bool> Implication = 905 isImpliedCondition(PBI->getCondition(), Cond, DL, FalseDest); 906 if (Implication) { 907 BI->getSuccessor(*Implication ? 1 : 0)->removePredecessor(BB); 908 BranchInst::Create(BI->getSuccessor(*Implication ? 0 : 1), BI); 909 BI->eraseFromParent(); 910 return true; 911 } 912 CurrentBB = CurrentPred; 913 CurrentPred = CurrentBB->getSinglePredecessor(); 914 } 915 916 return false; 917 } 918 919 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 920 /// load instruction, eliminate it by replacing it with a PHI node. This is an 921 /// important optimization that encourages jump threading, and needs to be run 922 /// interlaced with other jump threading tasks. 923 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 924 // Don't hack volatile/atomic loads. 925 if (!LI->isSimple()) return false; 926 927 // If the load is defined in a block with exactly one predecessor, it can't be 928 // partially redundant. 929 BasicBlock *LoadBB = LI->getParent(); 930 if (LoadBB->getSinglePredecessor()) 931 return false; 932 933 // If the load is defined in an EH pad, it can't be partially redundant, 934 // because the edges between the invoke and the EH pad cannot have other 935 // instructions between them. 936 if (LoadBB->isEHPad()) 937 return false; 938 939 Value *LoadedPtr = LI->getOperand(0); 940 941 // If the loaded operand is defined in the LoadBB, it can't be available. 942 // TODO: Could do simple PHI translation, that would be fun :) 943 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 944 if (PtrOp->getParent() == LoadBB) 945 return false; 946 947 // Scan a few instructions up from the load, to see if it is obviously live at 948 // the entry to its block. 949 BasicBlock::iterator BBIt(LI); 950 951 if (Value *AvailableVal = 952 FindAvailableLoadedValue(LI, LoadBB, BBIt, DefMaxInstsToScan)) { 953 // If the value of the load is locally available within the block, just use 954 // it. This frequently occurs for reg2mem'd allocas. 955 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 956 957 // If the returned value is the load itself, replace with an undef. This can 958 // only happen in dead loops. 959 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 960 if (AvailableVal->getType() != LI->getType()) 961 AvailableVal = 962 CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI); 963 LI->replaceAllUsesWith(AvailableVal); 964 LI->eraseFromParent(); 965 return true; 966 } 967 968 // Otherwise, if we scanned the whole block and got to the top of the block, 969 // we know the block is locally transparent to the load. If not, something 970 // might clobber its value. 971 if (BBIt != LoadBB->begin()) 972 return false; 973 974 // If all of the loads and stores that feed the value have the same AA tags, 975 // then we can propagate them onto any newly inserted loads. 976 AAMDNodes AATags; 977 LI->getAAMetadata(AATags); 978 979 SmallPtrSet<BasicBlock*, 8> PredsScanned; 980 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 981 AvailablePredsTy AvailablePreds; 982 BasicBlock *OneUnavailablePred = nullptr; 983 984 // If we got here, the loaded value is transparent through to the start of the 985 // block. Check to see if it is available in any of the predecessor blocks. 986 for (BasicBlock *PredBB : predecessors(LoadBB)) { 987 // If we already scanned this predecessor, skip it. 988 if (!PredsScanned.insert(PredBB).second) 989 continue; 990 991 // Scan the predecessor to see if the value is available in the pred. 992 BBIt = PredBB->end(); 993 AAMDNodes ThisAATags; 994 Value *PredAvailable = FindAvailableLoadedValue(LI, PredBB, BBIt, 995 DefMaxInstsToScan, 996 nullptr, &ThisAATags); 997 if (!PredAvailable) { 998 OneUnavailablePred = PredBB; 999 continue; 1000 } 1001 1002 // If AA tags disagree or are not present, forget about them. 1003 if (AATags != ThisAATags) AATags = AAMDNodes(); 1004 1005 // If so, this load is partially redundant. Remember this info so that we 1006 // can create a PHI node. 1007 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1008 } 1009 1010 // If the loaded value isn't available in any predecessor, it isn't partially 1011 // redundant. 1012 if (AvailablePreds.empty()) return false; 1013 1014 // Okay, the loaded value is available in at least one (and maybe all!) 1015 // predecessors. If the value is unavailable in more than one unique 1016 // predecessor, we want to insert a merge block for those common predecessors. 1017 // This ensures that we only have to insert one reload, thus not increasing 1018 // code size. 1019 BasicBlock *UnavailablePred = nullptr; 1020 1021 // If there is exactly one predecessor where the value is unavailable, the 1022 // already computed 'OneUnavailablePred' block is it. If it ends in an 1023 // unconditional branch, we know that it isn't a critical edge. 1024 if (PredsScanned.size() == AvailablePreds.size()+1 && 1025 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1026 UnavailablePred = OneUnavailablePred; 1027 } else if (PredsScanned.size() != AvailablePreds.size()) { 1028 // Otherwise, we had multiple unavailable predecessors or we had a critical 1029 // edge from the one. 1030 SmallVector<BasicBlock*, 8> PredsToSplit; 1031 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1032 1033 for (const auto &AvailablePred : AvailablePreds) 1034 AvailablePredSet.insert(AvailablePred.first); 1035 1036 // Add all the unavailable predecessors to the PredsToSplit list. 1037 for (BasicBlock *P : predecessors(LoadBB)) { 1038 // If the predecessor is an indirect goto, we can't split the edge. 1039 if (isa<IndirectBrInst>(P->getTerminator())) 1040 return false; 1041 1042 if (!AvailablePredSet.count(P)) 1043 PredsToSplit.push_back(P); 1044 } 1045 1046 // Split them out to their own block. 1047 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1048 } 1049 1050 // If the value isn't available in all predecessors, then there will be 1051 // exactly one where it isn't available. Insert a load on that edge and add 1052 // it to the AvailablePreds list. 1053 if (UnavailablePred) { 1054 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1055 "Can't handle critical edge here!"); 1056 LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 1057 LI->getAlignment(), 1058 UnavailablePred->getTerminator()); 1059 NewVal->setDebugLoc(LI->getDebugLoc()); 1060 if (AATags) 1061 NewVal->setAAMetadata(AATags); 1062 1063 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1064 } 1065 1066 // Now we know that each predecessor of this block has a value in 1067 // AvailablePreds, sort them for efficient access as we're walking the preds. 1068 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1069 1070 // Create a PHI node at the start of the block for the PRE'd load value. 1071 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1072 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 1073 &LoadBB->front()); 1074 PN->takeName(LI); 1075 PN->setDebugLoc(LI->getDebugLoc()); 1076 1077 // Insert new entries into the PHI for each predecessor. A single block may 1078 // have multiple entries here. 1079 for (pred_iterator PI = PB; PI != PE; ++PI) { 1080 BasicBlock *P = *PI; 1081 AvailablePredsTy::iterator I = 1082 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1083 std::make_pair(P, (Value*)nullptr)); 1084 1085 assert(I != AvailablePreds.end() && I->first == P && 1086 "Didn't find entry for predecessor!"); 1087 1088 // If we have an available predecessor but it requires casting, insert the 1089 // cast in the predecessor and use the cast. Note that we have to update the 1090 // AvailablePreds vector as we go so that all of the PHI entries for this 1091 // predecessor use the same bitcast. 1092 Value *&PredV = I->second; 1093 if (PredV->getType() != LI->getType()) 1094 PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "", 1095 P->getTerminator()); 1096 1097 PN->addIncoming(PredV, I->first); 1098 } 1099 1100 //cerr << "PRE: " << *LI << *PN << "\n"; 1101 1102 LI->replaceAllUsesWith(PN); 1103 LI->eraseFromParent(); 1104 1105 return true; 1106 } 1107 1108 /// FindMostPopularDest - The specified list contains multiple possible 1109 /// threadable destinations. Pick the one that occurs the most frequently in 1110 /// the list. 1111 static BasicBlock * 1112 FindMostPopularDest(BasicBlock *BB, 1113 const SmallVectorImpl<std::pair<BasicBlock*, 1114 BasicBlock*> > &PredToDestList) { 1115 assert(!PredToDestList.empty()); 1116 1117 // Determine popularity. If there are multiple possible destinations, we 1118 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1119 // blocks with known and real destinations to threading undef. We'll handle 1120 // them later if interesting. 1121 DenseMap<BasicBlock*, unsigned> DestPopularity; 1122 for (const auto &PredToDest : PredToDestList) 1123 if (PredToDest.second) 1124 DestPopularity[PredToDest.second]++; 1125 1126 // Find the most popular dest. 1127 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1128 BasicBlock *MostPopularDest = DPI->first; 1129 unsigned Popularity = DPI->second; 1130 SmallVector<BasicBlock*, 4> SamePopularity; 1131 1132 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1133 // If the popularity of this entry isn't higher than the popularity we've 1134 // seen so far, ignore it. 1135 if (DPI->second < Popularity) 1136 ; // ignore. 1137 else if (DPI->second == Popularity) { 1138 // If it is the same as what we've seen so far, keep track of it. 1139 SamePopularity.push_back(DPI->first); 1140 } else { 1141 // If it is more popular, remember it. 1142 SamePopularity.clear(); 1143 MostPopularDest = DPI->first; 1144 Popularity = DPI->second; 1145 } 1146 } 1147 1148 // Okay, now we know the most popular destination. If there is more than one 1149 // destination, we need to determine one. This is arbitrary, but we need 1150 // to make a deterministic decision. Pick the first one that appears in the 1151 // successor list. 1152 if (!SamePopularity.empty()) { 1153 SamePopularity.push_back(MostPopularDest); 1154 TerminatorInst *TI = BB->getTerminator(); 1155 for (unsigned i = 0; ; ++i) { 1156 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1157 1158 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1159 TI->getSuccessor(i)) == SamePopularity.end()) 1160 continue; 1161 1162 MostPopularDest = TI->getSuccessor(i); 1163 break; 1164 } 1165 } 1166 1167 // Okay, we have finally picked the most popular destination. 1168 return MostPopularDest; 1169 } 1170 1171 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1172 ConstantPreference Preference, 1173 Instruction *CxtI) { 1174 // If threading this would thread across a loop header, don't even try to 1175 // thread the edge. 1176 if (LoopHeaders.count(BB)) 1177 return false; 1178 1179 PredValueInfoTy PredValues; 1180 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1181 return false; 1182 1183 assert(!PredValues.empty() && 1184 "ComputeValueKnownInPredecessors returned true with no values"); 1185 1186 DEBUG(dbgs() << "IN BB: " << *BB; 1187 for (const auto &PredValue : PredValues) { 1188 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1189 << *PredValue.first 1190 << " for pred '" << PredValue.second->getName() << "'.\n"; 1191 }); 1192 1193 // Decide what we want to thread through. Convert our list of known values to 1194 // a list of known destinations for each pred. This also discards duplicate 1195 // predecessors and keeps track of the undefined inputs (which are represented 1196 // as a null dest in the PredToDestList). 1197 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1198 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1199 1200 BasicBlock *OnlyDest = nullptr; 1201 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1202 1203 for (const auto &PredValue : PredValues) { 1204 BasicBlock *Pred = PredValue.second; 1205 if (!SeenPreds.insert(Pred).second) 1206 continue; // Duplicate predecessor entry. 1207 1208 // If the predecessor ends with an indirect goto, we can't change its 1209 // destination. 1210 if (isa<IndirectBrInst>(Pred->getTerminator())) 1211 continue; 1212 1213 Constant *Val = PredValue.first; 1214 1215 BasicBlock *DestBB; 1216 if (isa<UndefValue>(Val)) 1217 DestBB = nullptr; 1218 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1219 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1220 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1221 DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor(); 1222 } else { 1223 assert(isa<IndirectBrInst>(BB->getTerminator()) 1224 && "Unexpected terminator"); 1225 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1226 } 1227 1228 // If we have exactly one destination, remember it for efficiency below. 1229 if (PredToDestList.empty()) 1230 OnlyDest = DestBB; 1231 else if (OnlyDest != DestBB) 1232 OnlyDest = MultipleDestSentinel; 1233 1234 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1235 } 1236 1237 // If all edges were unthreadable, we fail. 1238 if (PredToDestList.empty()) 1239 return false; 1240 1241 // Determine which is the most common successor. If we have many inputs and 1242 // this block is a switch, we want to start by threading the batch that goes 1243 // to the most popular destination first. If we only know about one 1244 // threadable destination (the common case) we can avoid this. 1245 BasicBlock *MostPopularDest = OnlyDest; 1246 1247 if (MostPopularDest == MultipleDestSentinel) 1248 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1249 1250 // Now that we know what the most popular destination is, factor all 1251 // predecessors that will jump to it into a single predecessor. 1252 SmallVector<BasicBlock*, 16> PredsToFactor; 1253 for (const auto &PredToDest : PredToDestList) 1254 if (PredToDest.second == MostPopularDest) { 1255 BasicBlock *Pred = PredToDest.first; 1256 1257 // This predecessor may be a switch or something else that has multiple 1258 // edges to the block. Factor each of these edges by listing them 1259 // according to # occurrences in PredsToFactor. 1260 for (BasicBlock *Succ : successors(Pred)) 1261 if (Succ == BB) 1262 PredsToFactor.push_back(Pred); 1263 } 1264 1265 // If the threadable edges are branching on an undefined value, we get to pick 1266 // the destination that these predecessors should get to. 1267 if (!MostPopularDest) 1268 MostPopularDest = BB->getTerminator()-> 1269 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1270 1271 // Ok, try to thread it! 1272 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1273 } 1274 1275 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1276 /// a PHI node in the current block. See if there are any simplifications we 1277 /// can do based on inputs to the phi node. 1278 /// 1279 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1280 BasicBlock *BB = PN->getParent(); 1281 1282 // TODO: We could make use of this to do it once for blocks with common PHI 1283 // values. 1284 SmallVector<BasicBlock*, 1> PredBBs; 1285 PredBBs.resize(1); 1286 1287 // If any of the predecessor blocks end in an unconditional branch, we can 1288 // *duplicate* the conditional branch into that block in order to further 1289 // encourage jump threading and to eliminate cases where we have branch on a 1290 // phi of an icmp (branch on icmp is much better). 1291 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1292 BasicBlock *PredBB = PN->getIncomingBlock(i); 1293 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1294 if (PredBr->isUnconditional()) { 1295 PredBBs[0] = PredBB; 1296 // Try to duplicate BB into PredBB. 1297 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1298 return true; 1299 } 1300 } 1301 1302 return false; 1303 } 1304 1305 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1306 /// a xor instruction in the current block. See if there are any 1307 /// simplifications we can do based on inputs to the xor. 1308 /// 1309 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1310 BasicBlock *BB = BO->getParent(); 1311 1312 // If either the LHS or RHS of the xor is a constant, don't do this 1313 // optimization. 1314 if (isa<ConstantInt>(BO->getOperand(0)) || 1315 isa<ConstantInt>(BO->getOperand(1))) 1316 return false; 1317 1318 // If the first instruction in BB isn't a phi, we won't be able to infer 1319 // anything special about any particular predecessor. 1320 if (!isa<PHINode>(BB->front())) 1321 return false; 1322 1323 // If we have a xor as the branch input to this block, and we know that the 1324 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1325 // the condition into the predecessor and fix that value to true, saving some 1326 // logical ops on that path and encouraging other paths to simplify. 1327 // 1328 // This copies something like this: 1329 // 1330 // BB: 1331 // %X = phi i1 [1], [%X'] 1332 // %Y = icmp eq i32 %A, %B 1333 // %Z = xor i1 %X, %Y 1334 // br i1 %Z, ... 1335 // 1336 // Into: 1337 // BB': 1338 // %Y = icmp ne i32 %A, %B 1339 // br i1 %Y, ... 1340 1341 PredValueInfoTy XorOpValues; 1342 bool isLHS = true; 1343 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1344 WantInteger, BO)) { 1345 assert(XorOpValues.empty()); 1346 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1347 WantInteger, BO)) 1348 return false; 1349 isLHS = false; 1350 } 1351 1352 assert(!XorOpValues.empty() && 1353 "ComputeValueKnownInPredecessors returned true with no values"); 1354 1355 // Scan the information to see which is most popular: true or false. The 1356 // predecessors can be of the set true, false, or undef. 1357 unsigned NumTrue = 0, NumFalse = 0; 1358 for (const auto &XorOpValue : XorOpValues) { 1359 if (isa<UndefValue>(XorOpValue.first)) 1360 // Ignore undefs for the count. 1361 continue; 1362 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1363 ++NumFalse; 1364 else 1365 ++NumTrue; 1366 } 1367 1368 // Determine which value to split on, true, false, or undef if neither. 1369 ConstantInt *SplitVal = nullptr; 1370 if (NumTrue > NumFalse) 1371 SplitVal = ConstantInt::getTrue(BB->getContext()); 1372 else if (NumTrue != 0 || NumFalse != 0) 1373 SplitVal = ConstantInt::getFalse(BB->getContext()); 1374 1375 // Collect all of the blocks that this can be folded into so that we can 1376 // factor this once and clone it once. 1377 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1378 for (const auto &XorOpValue : XorOpValues) { 1379 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1380 continue; 1381 1382 BlocksToFoldInto.push_back(XorOpValue.second); 1383 } 1384 1385 // If we inferred a value for all of the predecessors, then duplication won't 1386 // help us. However, we can just replace the LHS or RHS with the constant. 1387 if (BlocksToFoldInto.size() == 1388 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1389 if (!SplitVal) { 1390 // If all preds provide undef, just nuke the xor, because it is undef too. 1391 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1392 BO->eraseFromParent(); 1393 } else if (SplitVal->isZero()) { 1394 // If all preds provide 0, replace the xor with the other input. 1395 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1396 BO->eraseFromParent(); 1397 } else { 1398 // If all preds provide 1, set the computed value to 1. 1399 BO->setOperand(!isLHS, SplitVal); 1400 } 1401 1402 return true; 1403 } 1404 1405 // Try to duplicate BB into PredBB. 1406 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1407 } 1408 1409 1410 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1411 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1412 /// NewPred using the entries from OldPred (suitably mapped). 1413 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1414 BasicBlock *OldPred, 1415 BasicBlock *NewPred, 1416 DenseMap<Instruction*, Value*> &ValueMap) { 1417 for (BasicBlock::iterator PNI = PHIBB->begin(); 1418 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1419 // Ok, we have a PHI node. Figure out what the incoming value was for the 1420 // DestBlock. 1421 Value *IV = PN->getIncomingValueForBlock(OldPred); 1422 1423 // Remap the value if necessary. 1424 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1425 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1426 if (I != ValueMap.end()) 1427 IV = I->second; 1428 } 1429 1430 PN->addIncoming(IV, NewPred); 1431 } 1432 } 1433 1434 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1435 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1436 /// across BB. Transform the IR to reflect this change. 1437 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB, 1438 const SmallVectorImpl<BasicBlock *> &PredBBs, 1439 BasicBlock *SuccBB) { 1440 // If threading to the same block as we come from, we would infinite loop. 1441 if (SuccBB == BB) { 1442 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1443 << "' - would thread to self!\n"); 1444 return false; 1445 } 1446 1447 // If threading this would thread across a loop header, don't thread the edge. 1448 // See the comments above FindLoopHeaders for justifications and caveats. 1449 if (LoopHeaders.count(BB)) { 1450 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1451 << "' to dest BB '" << SuccBB->getName() 1452 << "' - it might create an irreducible loop!\n"); 1453 return false; 1454 } 1455 1456 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1457 if (JumpThreadCost > BBDupThreshold) { 1458 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1459 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1460 return false; 1461 } 1462 1463 // And finally, do it! Start by factoring the predecessors if needed. 1464 BasicBlock *PredBB; 1465 if (PredBBs.size() == 1) 1466 PredBB = PredBBs[0]; 1467 else { 1468 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1469 << " common predecessors.\n"); 1470 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1471 } 1472 1473 // And finally, do it! 1474 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1475 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1476 << ", across block:\n " 1477 << *BB << "\n"); 1478 1479 LVI->threadEdge(PredBB, BB, SuccBB); 1480 1481 // We are going to have to map operands from the original BB block to the new 1482 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1483 // account for entry from PredBB. 1484 DenseMap<Instruction*, Value*> ValueMapping; 1485 1486 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1487 BB->getName()+".thread", 1488 BB->getParent(), BB); 1489 NewBB->moveAfter(PredBB); 1490 1491 // Set the block frequency of NewBB. 1492 if (HasProfileData) { 1493 auto NewBBFreq = 1494 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1495 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1496 } 1497 1498 BasicBlock::iterator BI = BB->begin(); 1499 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1500 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1501 1502 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1503 // mapping and using it to remap operands in the cloned instructions. 1504 for (; !isa<TerminatorInst>(BI); ++BI) { 1505 Instruction *New = BI->clone(); 1506 New->setName(BI->getName()); 1507 NewBB->getInstList().push_back(New); 1508 ValueMapping[&*BI] = New; 1509 1510 // Remap operands to patch up intra-block references. 1511 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1512 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1513 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1514 if (I != ValueMapping.end()) 1515 New->setOperand(i, I->second); 1516 } 1517 } 1518 1519 // We didn't copy the terminator from BB over to NewBB, because there is now 1520 // an unconditional jump to SuccBB. Insert the unconditional jump. 1521 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 1522 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1523 1524 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1525 // PHI nodes for NewBB now. 1526 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1527 1528 // If there were values defined in BB that are used outside the block, then we 1529 // now have to update all uses of the value to use either the original value, 1530 // the cloned value, or some PHI derived value. This can require arbitrary 1531 // PHI insertion, of which we are prepared to do, clean these up now. 1532 SSAUpdater SSAUpdate; 1533 SmallVector<Use*, 16> UsesToRename; 1534 for (Instruction &I : *BB) { 1535 // Scan all uses of this instruction to see if it is used outside of its 1536 // block, and if so, record them in UsesToRename. 1537 for (Use &U : I.uses()) { 1538 Instruction *User = cast<Instruction>(U.getUser()); 1539 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1540 if (UserPN->getIncomingBlock(U) == BB) 1541 continue; 1542 } else if (User->getParent() == BB) 1543 continue; 1544 1545 UsesToRename.push_back(&U); 1546 } 1547 1548 // If there are no uses outside the block, we're done with this instruction. 1549 if (UsesToRename.empty()) 1550 continue; 1551 1552 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1553 1554 // We found a use of I outside of BB. Rename all uses of I that are outside 1555 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1556 // with the two values we know. 1557 SSAUpdate.Initialize(I.getType(), I.getName()); 1558 SSAUpdate.AddAvailableValue(BB, &I); 1559 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 1560 1561 while (!UsesToRename.empty()) 1562 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1563 DEBUG(dbgs() << "\n"); 1564 } 1565 1566 1567 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1568 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1569 // us to simplify any PHI nodes in BB. 1570 TerminatorInst *PredTerm = PredBB->getTerminator(); 1571 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1572 if (PredTerm->getSuccessor(i) == BB) { 1573 BB->removePredecessor(PredBB, true); 1574 PredTerm->setSuccessor(i, NewBB); 1575 } 1576 1577 // At this point, the IR is fully up to date and consistent. Do a quick scan 1578 // over the new instructions and zap any that are constants or dead. This 1579 // frequently happens because of phi translation. 1580 SimplifyInstructionsInBlock(NewBB, TLI); 1581 1582 // Update the edge weight from BB to SuccBB, which should be less than before. 1583 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 1584 1585 // Threaded an edge! 1586 ++NumThreads; 1587 return true; 1588 } 1589 1590 /// Create a new basic block that will be the predecessor of BB and successor of 1591 /// all blocks in Preds. When profile data is availble, update the frequency of 1592 /// this new block. 1593 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 1594 ArrayRef<BasicBlock *> Preds, 1595 const char *Suffix) { 1596 // Collect the frequencies of all predecessors of BB, which will be used to 1597 // update the edge weight on BB->SuccBB. 1598 BlockFrequency PredBBFreq(0); 1599 if (HasProfileData) 1600 for (auto Pred : Preds) 1601 PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB); 1602 1603 BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix); 1604 1605 // Set the block frequency of the newly created PredBB, which is the sum of 1606 // frequencies of Preds. 1607 if (HasProfileData) 1608 BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency()); 1609 return PredBB; 1610 } 1611 1612 /// Update the block frequency of BB and branch weight and the metadata on the 1613 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 1614 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 1615 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 1616 BasicBlock *BB, 1617 BasicBlock *NewBB, 1618 BasicBlock *SuccBB) { 1619 if (!HasProfileData) 1620 return; 1621 1622 assert(BFI && BPI && "BFI & BPI should have been created here"); 1623 1624 // As the edge from PredBB to BB is deleted, we have to update the block 1625 // frequency of BB. 1626 auto BBOrigFreq = BFI->getBlockFreq(BB); 1627 auto NewBBFreq = BFI->getBlockFreq(NewBB); 1628 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 1629 auto BBNewFreq = BBOrigFreq - NewBBFreq; 1630 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 1631 1632 // Collect updated outgoing edges' frequencies from BB and use them to update 1633 // edge probabilities. 1634 SmallVector<uint64_t, 4> BBSuccFreq; 1635 for (BasicBlock *Succ : successors(BB)) { 1636 auto SuccFreq = (Succ == SuccBB) 1637 ? BB2SuccBBFreq - NewBBFreq 1638 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 1639 BBSuccFreq.push_back(SuccFreq.getFrequency()); 1640 } 1641 1642 uint64_t MaxBBSuccFreq = 1643 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 1644 1645 SmallVector<BranchProbability, 4> BBSuccProbs; 1646 if (MaxBBSuccFreq == 0) 1647 BBSuccProbs.assign(BBSuccFreq.size(), 1648 {1, static_cast<unsigned>(BBSuccFreq.size())}); 1649 else { 1650 for (uint64_t Freq : BBSuccFreq) 1651 BBSuccProbs.push_back( 1652 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 1653 // Normalize edge probabilities so that they sum up to one. 1654 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 1655 BBSuccProbs.end()); 1656 } 1657 1658 // Update edge probabilities in BPI. 1659 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 1660 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 1661 1662 if (BBSuccProbs.size() >= 2) { 1663 SmallVector<uint32_t, 4> Weights; 1664 for (auto Prob : BBSuccProbs) 1665 Weights.push_back(Prob.getNumerator()); 1666 1667 auto TI = BB->getTerminator(); 1668 TI->setMetadata( 1669 LLVMContext::MD_prof, 1670 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 1671 } 1672 } 1673 1674 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1675 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1676 /// If we can duplicate the contents of BB up into PredBB do so now, this 1677 /// improves the odds that the branch will be on an analyzable instruction like 1678 /// a compare. 1679 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 1680 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 1681 assert(!PredBBs.empty() && "Can't handle an empty set"); 1682 1683 // If BB is a loop header, then duplicating this block outside the loop would 1684 // cause us to transform this into an irreducible loop, don't do this. 1685 // See the comments above FindLoopHeaders for justifications and caveats. 1686 if (LoopHeaders.count(BB)) { 1687 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1688 << "' into predecessor block '" << PredBBs[0]->getName() 1689 << "' - it might create an irreducible loop!\n"); 1690 return false; 1691 } 1692 1693 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1694 if (DuplicationCost > BBDupThreshold) { 1695 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1696 << "' - Cost is too high: " << DuplicationCost << "\n"); 1697 return false; 1698 } 1699 1700 // And finally, do it! Start by factoring the predecessors if needed. 1701 BasicBlock *PredBB; 1702 if (PredBBs.size() == 1) 1703 PredBB = PredBBs[0]; 1704 else { 1705 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1706 << " common predecessors.\n"); 1707 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1708 } 1709 1710 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1711 // of PredBB. 1712 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1713 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1714 << DuplicationCost << " block is:" << *BB << "\n"); 1715 1716 // Unless PredBB ends with an unconditional branch, split the edge so that we 1717 // can just clone the bits from BB into the end of the new PredBB. 1718 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1719 1720 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 1721 PredBB = SplitEdge(PredBB, BB); 1722 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1723 } 1724 1725 // We are going to have to map operands from the original BB block into the 1726 // PredBB block. Evaluate PHI nodes in BB. 1727 DenseMap<Instruction*, Value*> ValueMapping; 1728 1729 BasicBlock::iterator BI = BB->begin(); 1730 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1731 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1732 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1733 // mapping and using it to remap operands in the cloned instructions. 1734 for (; BI != BB->end(); ++BI) { 1735 Instruction *New = BI->clone(); 1736 1737 // Remap operands to patch up intra-block references. 1738 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1739 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1740 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1741 if (I != ValueMapping.end()) 1742 New->setOperand(i, I->second); 1743 } 1744 1745 // If this instruction can be simplified after the operands are updated, 1746 // just use the simplified value instead. This frequently happens due to 1747 // phi translation. 1748 if (Value *IV = 1749 SimplifyInstruction(New, BB->getModule()->getDataLayout())) { 1750 ValueMapping[&*BI] = IV; 1751 if (!New->mayHaveSideEffects()) { 1752 delete New; 1753 New = nullptr; 1754 } 1755 } else { 1756 ValueMapping[&*BI] = New; 1757 } 1758 if (New) { 1759 // Otherwise, insert the new instruction into the block. 1760 New->setName(BI->getName()); 1761 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 1762 } 1763 } 1764 1765 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1766 // add entries to the PHI nodes for branch from PredBB now. 1767 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1768 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1769 ValueMapping); 1770 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1771 ValueMapping); 1772 1773 // If there were values defined in BB that are used outside the block, then we 1774 // now have to update all uses of the value to use either the original value, 1775 // the cloned value, or some PHI derived value. This can require arbitrary 1776 // PHI insertion, of which we are prepared to do, clean these up now. 1777 SSAUpdater SSAUpdate; 1778 SmallVector<Use*, 16> UsesToRename; 1779 for (Instruction &I : *BB) { 1780 // Scan all uses of this instruction to see if it is used outside of its 1781 // block, and if so, record them in UsesToRename. 1782 for (Use &U : I.uses()) { 1783 Instruction *User = cast<Instruction>(U.getUser()); 1784 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1785 if (UserPN->getIncomingBlock(U) == BB) 1786 continue; 1787 } else if (User->getParent() == BB) 1788 continue; 1789 1790 UsesToRename.push_back(&U); 1791 } 1792 1793 // If there are no uses outside the block, we're done with this instruction. 1794 if (UsesToRename.empty()) 1795 continue; 1796 1797 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1798 1799 // We found a use of I outside of BB. Rename all uses of I that are outside 1800 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1801 // with the two values we know. 1802 SSAUpdate.Initialize(I.getType(), I.getName()); 1803 SSAUpdate.AddAvailableValue(BB, &I); 1804 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); 1805 1806 while (!UsesToRename.empty()) 1807 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1808 DEBUG(dbgs() << "\n"); 1809 } 1810 1811 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1812 // that we nuked. 1813 BB->removePredecessor(PredBB, true); 1814 1815 // Remove the unconditional branch at the end of the PredBB block. 1816 OldPredBranch->eraseFromParent(); 1817 1818 ++NumDupes; 1819 return true; 1820 } 1821 1822 /// TryToUnfoldSelect - Look for blocks of the form 1823 /// bb1: 1824 /// %a = select 1825 /// br bb 1826 /// 1827 /// bb2: 1828 /// %p = phi [%a, %bb] ... 1829 /// %c = icmp %p 1830 /// br i1 %c 1831 /// 1832 /// And expand the select into a branch structure if one of its arms allows %c 1833 /// to be folded. This later enables threading from bb1 over bb2. 1834 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 1835 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1836 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 1837 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 1838 1839 if (!CondBr || !CondBr->isConditional() || !CondLHS || 1840 CondLHS->getParent() != BB) 1841 return false; 1842 1843 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 1844 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 1845 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 1846 1847 // Look if one of the incoming values is a select in the corresponding 1848 // predecessor. 1849 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 1850 continue; 1851 1852 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 1853 if (!PredTerm || !PredTerm->isUnconditional()) 1854 continue; 1855 1856 // Now check if one of the select values would allow us to constant fold the 1857 // terminator in BB. We don't do the transform if both sides fold, those 1858 // cases will be threaded in any case. 1859 LazyValueInfo::Tristate LHSFolds = 1860 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 1861 CondRHS, Pred, BB, CondCmp); 1862 LazyValueInfo::Tristate RHSFolds = 1863 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 1864 CondRHS, Pred, BB, CondCmp); 1865 if ((LHSFolds != LazyValueInfo::Unknown || 1866 RHSFolds != LazyValueInfo::Unknown) && 1867 LHSFolds != RHSFolds) { 1868 // Expand the select. 1869 // 1870 // Pred -- 1871 // | v 1872 // | NewBB 1873 // | | 1874 // |----- 1875 // v 1876 // BB 1877 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 1878 BB->getParent(), BB); 1879 // Move the unconditional branch to NewBB. 1880 PredTerm->removeFromParent(); 1881 NewBB->getInstList().insert(NewBB->end(), PredTerm); 1882 // Create a conditional branch and update PHI nodes. 1883 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 1884 CondLHS->setIncomingValue(I, SI->getFalseValue()); 1885 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 1886 // The select is now dead. 1887 SI->eraseFromParent(); 1888 1889 // Update any other PHI nodes in BB. 1890 for (BasicBlock::iterator BI = BB->begin(); 1891 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 1892 if (Phi != CondLHS) 1893 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 1894 return true; 1895 } 1896 } 1897 return false; 1898 } 1899 1900 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select in the same BB of the form 1901 /// bb: 1902 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 1903 /// %s = select p, trueval, falseval 1904 /// 1905 /// And expand the select into a branch structure. This later enables 1906 /// jump-threading over bb in this pass. 1907 /// 1908 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 1909 /// select if the associated PHI has at least one constant. If the unfolded 1910 /// select is not jump-threaded, it will be folded again in the later 1911 /// optimizations. 1912 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 1913 // If threading this would thread across a loop header, don't thread the edge. 1914 // See the comments above FindLoopHeaders for justifications and caveats. 1915 if (LoopHeaders.count(BB)) 1916 return false; 1917 1918 // Look for a Phi/Select pair in the same basic block. The Phi feeds the 1919 // condition of the Select and at least one of the incoming values is a 1920 // constant. 1921 for (BasicBlock::iterator BI = BB->begin(); 1922 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 1923 unsigned NumPHIValues = PN->getNumIncomingValues(); 1924 if (NumPHIValues == 0 || !PN->hasOneUse()) 1925 continue; 1926 1927 SelectInst *SI = dyn_cast<SelectInst>(PN->user_back()); 1928 if (!SI || SI->getParent() != BB) 1929 continue; 1930 1931 Value *Cond = SI->getCondition(); 1932 if (!Cond || Cond != PN || !Cond->getType()->isIntegerTy(1)) 1933 continue; 1934 1935 bool HasConst = false; 1936 for (unsigned i = 0; i != NumPHIValues; ++i) { 1937 if (PN->getIncomingBlock(i) == BB) 1938 return false; 1939 if (isa<ConstantInt>(PN->getIncomingValue(i))) 1940 HasConst = true; 1941 } 1942 1943 if (HasConst) { 1944 // Expand the select. 1945 TerminatorInst *Term = 1946 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 1947 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 1948 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 1949 NewPN->addIncoming(SI->getFalseValue(), BB); 1950 SI->replaceAllUsesWith(NewPN); 1951 SI->eraseFromParent(); 1952 return true; 1953 } 1954 } 1955 1956 return false; 1957 } 1958