1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Jump Threading pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Scalar/JumpThreading.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/CFG.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/DomTreeUpdater.h" 28 #include "llvm/Analysis/GlobalsModRef.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/LazyValueInfo.h" 32 #include "llvm/Analysis/Loads.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/MDBuilder.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/PassManager.h" 54 #include "llvm/IR/PatternMatch.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/Use.h" 57 #include "llvm/IR/User.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/InitializePasses.h" 60 #include "llvm/Pass.h" 61 #include "llvm/Support/BlockFrequency.h" 62 #include "llvm/Support/BranchProbability.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Transforms/Scalar.h" 68 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 69 #include "llvm/Transforms/Utils/Cloning.h" 70 #include "llvm/Transforms/Utils/Local.h" 71 #include "llvm/Transforms/Utils/SSAUpdater.h" 72 #include "llvm/Transforms/Utils/ValueMapper.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <iterator> 78 #include <memory> 79 #include <utility> 80 81 using namespace llvm; 82 using namespace jumpthreading; 83 84 #define DEBUG_TYPE "jump-threading" 85 86 STATISTIC(NumThreads, "Number of jumps threaded"); 87 STATISTIC(NumFolds, "Number of terminators folded"); 88 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 89 90 static cl::opt<unsigned> 91 BBDuplicateThreshold("jump-threading-threshold", 92 cl::desc("Max block size to duplicate for jump threading"), 93 cl::init(6), cl::Hidden); 94 95 static cl::opt<unsigned> 96 ImplicationSearchThreshold( 97 "jump-threading-implication-search-threshold", 98 cl::desc("The number of predecessors to search for a stronger " 99 "condition to use to thread over a weaker condition"), 100 cl::init(3), cl::Hidden); 101 102 static cl::opt<bool> PrintLVIAfterJumpThreading( 103 "print-lvi-after-jump-threading", 104 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 105 cl::Hidden); 106 107 static cl::opt<bool> ThreadAcrossLoopHeaders( 108 "jump-threading-across-loop-headers", 109 cl::desc("Allow JumpThreading to thread across loop headers, for testing"), 110 cl::init(false), cl::Hidden); 111 112 113 namespace { 114 115 /// This pass performs 'jump threading', which looks at blocks that have 116 /// multiple predecessors and multiple successors. If one or more of the 117 /// predecessors of the block can be proven to always jump to one of the 118 /// successors, we forward the edge from the predecessor to the successor by 119 /// duplicating the contents of this block. 120 /// 121 /// An example of when this can occur is code like this: 122 /// 123 /// if () { ... 124 /// X = 4; 125 /// } 126 /// if (X < 3) { 127 /// 128 /// In this case, the unconditional branch at the end of the first if can be 129 /// revectored to the false side of the second if. 130 class JumpThreading : public FunctionPass { 131 JumpThreadingPass Impl; 132 133 public: 134 static char ID; // Pass identification 135 136 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 137 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 138 } 139 140 bool runOnFunction(Function &F) override; 141 142 void getAnalysisUsage(AnalysisUsage &AU) const override { 143 AU.addRequired<DominatorTreeWrapperPass>(); 144 AU.addPreserved<DominatorTreeWrapperPass>(); 145 AU.addRequired<AAResultsWrapperPass>(); 146 AU.addRequired<LazyValueInfoWrapperPass>(); 147 AU.addPreserved<LazyValueInfoWrapperPass>(); 148 AU.addPreserved<GlobalsAAWrapperPass>(); 149 AU.addRequired<TargetLibraryInfoWrapperPass>(); 150 } 151 152 void releaseMemory() override { Impl.releaseMemory(); } 153 }; 154 155 } // end anonymous namespace 156 157 char JumpThreading::ID = 0; 158 159 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 160 "Jump Threading", false, false) 161 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 162 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 163 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 164 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 165 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 166 "Jump Threading", false, false) 167 168 // Public interface to the Jump Threading pass 169 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { 170 return new JumpThreading(Threshold); 171 } 172 173 JumpThreadingPass::JumpThreadingPass(int T) { 174 DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 175 } 176 177 // Update branch probability information according to conditional 178 // branch probability. This is usually made possible for cloned branches 179 // in inline instances by the context specific profile in the caller. 180 // For instance, 181 // 182 // [Block PredBB] 183 // [Branch PredBr] 184 // if (t) { 185 // Block A; 186 // } else { 187 // Block B; 188 // } 189 // 190 // [Block BB] 191 // cond = PN([true, %A], [..., %B]); // PHI node 192 // [Branch CondBr] 193 // if (cond) { 194 // ... // P(cond == true) = 1% 195 // } 196 // 197 // Here we know that when block A is taken, cond must be true, which means 198 // P(cond == true | A) = 1 199 // 200 // Given that P(cond == true) = P(cond == true | A) * P(A) + 201 // P(cond == true | B) * P(B) 202 // we get: 203 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 204 // 205 // which gives us: 206 // P(A) is less than P(cond == true), i.e. 207 // P(t == true) <= P(cond == true) 208 // 209 // In other words, if we know P(cond == true) is unlikely, we know 210 // that P(t == true) is also unlikely. 211 // 212 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 213 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 214 if (!CondBr) 215 return; 216 217 BranchProbability BP; 218 uint64_t TrueWeight, FalseWeight; 219 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 220 return; 221 222 // Returns the outgoing edge of the dominating predecessor block 223 // that leads to the PhiNode's incoming block: 224 auto GetPredOutEdge = 225 [](BasicBlock *IncomingBB, 226 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 227 auto *PredBB = IncomingBB; 228 auto *SuccBB = PhiBB; 229 SmallPtrSet<BasicBlock *, 16> Visited; 230 while (true) { 231 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 232 if (PredBr && PredBr->isConditional()) 233 return {PredBB, SuccBB}; 234 Visited.insert(PredBB); 235 auto *SinglePredBB = PredBB->getSinglePredecessor(); 236 if (!SinglePredBB) 237 return {nullptr, nullptr}; 238 239 // Stop searching when SinglePredBB has been visited. It means we see 240 // an unreachable loop. 241 if (Visited.count(SinglePredBB)) 242 return {nullptr, nullptr}; 243 244 SuccBB = PredBB; 245 PredBB = SinglePredBB; 246 } 247 }; 248 249 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 250 Value *PhiOpnd = PN->getIncomingValue(i); 251 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 252 253 if (!CI || !CI->getType()->isIntegerTy(1)) 254 continue; 255 256 BP = (CI->isOne() ? BranchProbability::getBranchProbability( 257 TrueWeight, TrueWeight + FalseWeight) 258 : BranchProbability::getBranchProbability( 259 FalseWeight, TrueWeight + FalseWeight)); 260 261 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 262 if (!PredOutEdge.first) 263 return; 264 265 BasicBlock *PredBB = PredOutEdge.first; 266 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 267 if (!PredBr) 268 return; 269 270 uint64_t PredTrueWeight, PredFalseWeight; 271 // FIXME: We currently only set the profile data when it is missing. 272 // With PGO, this can be used to refine even existing profile data with 273 // context information. This needs to be done after more performance 274 // testing. 275 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 276 continue; 277 278 // We can not infer anything useful when BP >= 50%, because BP is the 279 // upper bound probability value. 280 if (BP >= BranchProbability(50, 100)) 281 continue; 282 283 SmallVector<uint32_t, 2> Weights; 284 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 285 Weights.push_back(BP.getNumerator()); 286 Weights.push_back(BP.getCompl().getNumerator()); 287 } else { 288 Weights.push_back(BP.getCompl().getNumerator()); 289 Weights.push_back(BP.getNumerator()); 290 } 291 PredBr->setMetadata(LLVMContext::MD_prof, 292 MDBuilder(PredBr->getParent()->getContext()) 293 .createBranchWeights(Weights)); 294 } 295 } 296 297 /// runOnFunction - Toplevel algorithm. 298 bool JumpThreading::runOnFunction(Function &F) { 299 if (skipFunction(F)) 300 return false; 301 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 302 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 303 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 304 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 305 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); 306 std::unique_ptr<BlockFrequencyInfo> BFI; 307 std::unique_ptr<BranchProbabilityInfo> BPI; 308 if (F.hasProfileData()) { 309 LoopInfo LI{DominatorTree(F)}; 310 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 311 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 312 } 313 314 bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, F.hasProfileData(), 315 std::move(BFI), std::move(BPI)); 316 if (PrintLVIAfterJumpThreading) { 317 dbgs() << "LVI for function '" << F.getName() << "':\n"; 318 LVI->printLVI(F, DTU.getDomTree(), dbgs()); 319 } 320 return Changed; 321 } 322 323 PreservedAnalyses JumpThreadingPass::run(Function &F, 324 FunctionAnalysisManager &AM) { 325 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 326 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 327 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 328 auto &AA = AM.getResult<AAManager>(F); 329 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 330 331 std::unique_ptr<BlockFrequencyInfo> BFI; 332 std::unique_ptr<BranchProbabilityInfo> BPI; 333 if (F.hasProfileData()) { 334 LoopInfo LI{DominatorTree(F)}; 335 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 336 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 337 } 338 339 bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, F.hasProfileData(), 340 std::move(BFI), std::move(BPI)); 341 342 if (!Changed) 343 return PreservedAnalyses::all(); 344 PreservedAnalyses PA; 345 PA.preserve<GlobalsAA>(); 346 PA.preserve<DominatorTreeAnalysis>(); 347 PA.preserve<LazyValueAnalysis>(); 348 return PA; 349 } 350 351 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 352 LazyValueInfo *LVI_, AliasAnalysis *AA_, 353 DomTreeUpdater *DTU_, bool HasProfileData_, 354 std::unique_ptr<BlockFrequencyInfo> BFI_, 355 std::unique_ptr<BranchProbabilityInfo> BPI_) { 356 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 357 TLI = TLI_; 358 LVI = LVI_; 359 AA = AA_; 360 DTU = DTU_; 361 BFI.reset(); 362 BPI.reset(); 363 // When profile data is available, we need to update edge weights after 364 // successful jump threading, which requires both BPI and BFI being available. 365 HasProfileData = HasProfileData_; 366 auto *GuardDecl = F.getParent()->getFunction( 367 Intrinsic::getName(Intrinsic::experimental_guard)); 368 HasGuards = GuardDecl && !GuardDecl->use_empty(); 369 if (HasProfileData) { 370 BPI = std::move(BPI_); 371 BFI = std::move(BFI_); 372 } 373 374 // Reduce the number of instructions duplicated when optimizing strictly for 375 // size. 376 if (BBDuplicateThreshold.getNumOccurrences()) 377 BBDupThreshold = BBDuplicateThreshold; 378 else if (F.hasFnAttribute(Attribute::MinSize)) 379 BBDupThreshold = 3; 380 else 381 BBDupThreshold = DefaultBBDupThreshold; 382 383 // JumpThreading must not processes blocks unreachable from entry. It's a 384 // waste of compute time and can potentially lead to hangs. 385 SmallPtrSet<BasicBlock *, 16> Unreachable; 386 assert(DTU && "DTU isn't passed into JumpThreading before using it."); 387 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."); 388 DominatorTree &DT = DTU->getDomTree(); 389 for (auto &BB : F) 390 if (!DT.isReachableFromEntry(&BB)) 391 Unreachable.insert(&BB); 392 393 if (!ThreadAcrossLoopHeaders) 394 FindLoopHeaders(F); 395 396 bool EverChanged = false; 397 bool Changed; 398 do { 399 Changed = false; 400 for (auto &BB : F) { 401 if (Unreachable.count(&BB)) 402 continue; 403 while (ProcessBlock(&BB)) // Thread all of the branches we can over BB. 404 Changed = true; 405 406 // Jump threading may have introduced redundant debug values into BB 407 // which should be removed. 408 if (Changed) 409 RemoveRedundantDbgInstrs(&BB); 410 411 // Stop processing BB if it's the entry or is now deleted. The following 412 // routines attempt to eliminate BB and locating a suitable replacement 413 // for the entry is non-trivial. 414 if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB)) 415 continue; 416 417 if (pred_empty(&BB)) { 418 // When ProcessBlock makes BB unreachable it doesn't bother to fix up 419 // the instructions in it. We must remove BB to prevent invalid IR. 420 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 421 << "' with terminator: " << *BB.getTerminator() 422 << '\n'); 423 LoopHeaders.erase(&BB); 424 LVI->eraseBlock(&BB); 425 DeleteDeadBlock(&BB, DTU); 426 Changed = true; 427 continue; 428 } 429 430 // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB 431 // is "almost empty", we attempt to merge BB with its sole successor. 432 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 433 if (BI && BI->isUnconditional()) { 434 BasicBlock *Succ = BI->getSuccessor(0); 435 if ( 436 // The terminator must be the only non-phi instruction in BB. 437 BB.getFirstNonPHIOrDbg()->isTerminator() && 438 // Don't alter Loop headers and latches to ensure another pass can 439 // detect and transform nested loops later. 440 !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) && 441 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) { 442 RemoveRedundantDbgInstrs(Succ); 443 // BB is valid for cleanup here because we passed in DTU. F remains 444 // BB's parent until a DTU->getDomTree() event. 445 LVI->eraseBlock(&BB); 446 Changed = true; 447 } 448 } 449 } 450 EverChanged |= Changed; 451 } while (Changed); 452 453 LoopHeaders.clear(); 454 return EverChanged; 455 } 456 457 // Replace uses of Cond with ToVal when safe to do so. If all uses are 458 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 459 // because we may incorrectly replace uses when guards/assumes are uses of 460 // of `Cond` and we used the guards/assume to reason about the `Cond` value 461 // at the end of block. RAUW unconditionally replaces all uses 462 // including the guards/assumes themselves and the uses before the 463 // guard/assume. 464 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) { 465 assert(Cond->getType() == ToVal->getType()); 466 auto *BB = Cond->getParent(); 467 // We can unconditionally replace all uses in non-local blocks (i.e. uses 468 // strictly dominated by BB), since LVI information is true from the 469 // terminator of BB. 470 replaceNonLocalUsesWith(Cond, ToVal); 471 for (Instruction &I : reverse(*BB)) { 472 // Reached the Cond whose uses we are trying to replace, so there are no 473 // more uses. 474 if (&I == Cond) 475 break; 476 // We only replace uses in instructions that are guaranteed to reach the end 477 // of BB, where we know Cond is ToVal. 478 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 479 break; 480 I.replaceUsesOfWith(Cond, ToVal); 481 } 482 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 483 Cond->eraseFromParent(); 484 } 485 486 /// Return the cost of duplicating a piece of this block from first non-phi 487 /// and before StopAt instruction to thread across it. Stop scanning the block 488 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 489 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 490 Instruction *StopAt, 491 unsigned Threshold) { 492 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 493 /// Ignore PHI nodes, these will be flattened when duplication happens. 494 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 495 496 // FIXME: THREADING will delete values that are just used to compute the 497 // branch, so they shouldn't count against the duplication cost. 498 499 unsigned Bonus = 0; 500 if (BB->getTerminator() == StopAt) { 501 // Threading through a switch statement is particularly profitable. If this 502 // block ends in a switch, decrease its cost to make it more likely to 503 // happen. 504 if (isa<SwitchInst>(StopAt)) 505 Bonus = 6; 506 507 // The same holds for indirect branches, but slightly more so. 508 if (isa<IndirectBrInst>(StopAt)) 509 Bonus = 8; 510 } 511 512 // Bump the threshold up so the early exit from the loop doesn't skip the 513 // terminator-based Size adjustment at the end. 514 Threshold += Bonus; 515 516 // Sum up the cost of each instruction until we get to the terminator. Don't 517 // include the terminator because the copy won't include it. 518 unsigned Size = 0; 519 for (; &*I != StopAt; ++I) { 520 521 // Stop scanning the block if we've reached the threshold. 522 if (Size > Threshold) 523 return Size; 524 525 // Debugger intrinsics don't incur code size. 526 if (isa<DbgInfoIntrinsic>(I)) continue; 527 528 // If this is a pointer->pointer bitcast, it is free. 529 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 530 continue; 531 532 // Bail out if this instruction gives back a token type, it is not possible 533 // to duplicate it if it is used outside this BB. 534 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 535 return ~0U; 536 537 // All other instructions count for at least one unit. 538 ++Size; 539 540 // Calls are more expensive. If they are non-intrinsic calls, we model them 541 // as having cost of 4. If they are a non-vector intrinsic, we model them 542 // as having cost of 2 total, and if they are a vector intrinsic, we model 543 // them as having cost 1. 544 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 545 if (CI->cannotDuplicate() || CI->isConvergent()) 546 // Blocks with NoDuplicate are modelled as having infinite cost, so they 547 // are never duplicated. 548 return ~0U; 549 else if (!isa<IntrinsicInst>(CI)) 550 Size += 3; 551 else if (!CI->getType()->isVectorTy()) 552 Size += 1; 553 } 554 } 555 556 return Size > Bonus ? Size - Bonus : 0; 557 } 558 559 /// FindLoopHeaders - We do not want jump threading to turn proper loop 560 /// structures into irreducible loops. Doing this breaks up the loop nesting 561 /// hierarchy and pessimizes later transformations. To prevent this from 562 /// happening, we first have to find the loop headers. Here we approximate this 563 /// by finding targets of backedges in the CFG. 564 /// 565 /// Note that there definitely are cases when we want to allow threading of 566 /// edges across a loop header. For example, threading a jump from outside the 567 /// loop (the preheader) to an exit block of the loop is definitely profitable. 568 /// It is also almost always profitable to thread backedges from within the loop 569 /// to exit blocks, and is often profitable to thread backedges to other blocks 570 /// within the loop (forming a nested loop). This simple analysis is not rich 571 /// enough to track all of these properties and keep it up-to-date as the CFG 572 /// mutates, so we don't allow any of these transformations. 573 void JumpThreadingPass::FindLoopHeaders(Function &F) { 574 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 575 FindFunctionBackedges(F, Edges); 576 577 for (const auto &Edge : Edges) 578 LoopHeaders.insert(Edge.second); 579 } 580 581 /// getKnownConstant - Helper method to determine if we can thread over a 582 /// terminator with the given value as its condition, and if so what value to 583 /// use for that. What kind of value this is depends on whether we want an 584 /// integer or a block address, but an undef is always accepted. 585 /// Returns null if Val is null or not an appropriate constant. 586 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 587 if (!Val) 588 return nullptr; 589 590 // Undef is "known" enough. 591 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 592 return U; 593 594 if (Preference == WantBlockAddress) 595 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 596 597 return dyn_cast<ConstantInt>(Val); 598 } 599 600 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 601 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 602 /// in any of our predecessors. If so, return the known list of value and pred 603 /// BB in the result vector. 604 /// 605 /// This returns true if there were any known values. 606 bool JumpThreadingPass::ComputeValueKnownInPredecessorsImpl( 607 Value *V, BasicBlock *BB, PredValueInfo &Result, 608 ConstantPreference Preference, DenseSet<Value *> &RecursionSet, 609 Instruction *CxtI) { 610 // This method walks up use-def chains recursively. Because of this, we could 611 // get into an infinite loop going around loops in the use-def chain. To 612 // prevent this, keep track of what (value, block) pairs we've already visited 613 // and terminate the search if we loop back to them 614 if (!RecursionSet.insert(V).second) 615 return false; 616 617 // If V is a constant, then it is known in all predecessors. 618 if (Constant *KC = getKnownConstant(V, Preference)) { 619 for (BasicBlock *Pred : predecessors(BB)) 620 Result.emplace_back(KC, Pred); 621 622 return !Result.empty(); 623 } 624 625 // If V is a non-instruction value, or an instruction in a different block, 626 // then it can't be derived from a PHI. 627 Instruction *I = dyn_cast<Instruction>(V); 628 if (!I || I->getParent() != BB) { 629 630 // Okay, if this is a live-in value, see if it has a known value at the end 631 // of any of our predecessors. 632 // 633 // FIXME: This should be an edge property, not a block end property. 634 /// TODO: Per PR2563, we could infer value range information about a 635 /// predecessor based on its terminator. 636 // 637 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 638 // "I" is a non-local compare-with-a-constant instruction. This would be 639 // able to handle value inequalities better, for example if the compare is 640 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 641 // Perhaps getConstantOnEdge should be smart enough to do this? 642 for (BasicBlock *P : predecessors(BB)) { 643 // If the value is known by LazyValueInfo to be a constant in a 644 // predecessor, use that information to try to thread this block. 645 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 646 if (Constant *KC = getKnownConstant(PredCst, Preference)) 647 Result.emplace_back(KC, P); 648 } 649 650 return !Result.empty(); 651 } 652 653 /// If I is a PHI node, then we know the incoming values for any constants. 654 if (PHINode *PN = dyn_cast<PHINode>(I)) { 655 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 656 Value *InVal = PN->getIncomingValue(i); 657 if (Constant *KC = getKnownConstant(InVal, Preference)) { 658 Result.emplace_back(KC, PN->getIncomingBlock(i)); 659 } else { 660 Constant *CI = LVI->getConstantOnEdge(InVal, 661 PN->getIncomingBlock(i), 662 BB, CxtI); 663 if (Constant *KC = getKnownConstant(CI, Preference)) 664 Result.emplace_back(KC, PN->getIncomingBlock(i)); 665 } 666 } 667 668 return !Result.empty(); 669 } 670 671 // Handle Cast instructions. Only see through Cast when the source operand is 672 // PHI or Cmp to save the compilation time. 673 if (CastInst *CI = dyn_cast<CastInst>(I)) { 674 Value *Source = CI->getOperand(0); 675 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 676 return false; 677 ComputeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 678 RecursionSet, CxtI); 679 if (Result.empty()) 680 return false; 681 682 // Convert the known values. 683 for (auto &R : Result) 684 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 685 686 return true; 687 } 688 689 // Handle some boolean conditions. 690 if (I->getType()->getPrimitiveSizeInBits() == 1) { 691 assert(Preference == WantInteger && "One-bit non-integer type?"); 692 // X | true -> true 693 // X & false -> false 694 if (I->getOpcode() == Instruction::Or || 695 I->getOpcode() == Instruction::And) { 696 PredValueInfoTy LHSVals, RHSVals; 697 698 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 699 WantInteger, RecursionSet, CxtI); 700 ComputeValueKnownInPredecessorsImpl(I->getOperand(1), BB, RHSVals, 701 WantInteger, RecursionSet, CxtI); 702 703 if (LHSVals.empty() && RHSVals.empty()) 704 return false; 705 706 ConstantInt *InterestingVal; 707 if (I->getOpcode() == Instruction::Or) 708 InterestingVal = ConstantInt::getTrue(I->getContext()); 709 else 710 InterestingVal = ConstantInt::getFalse(I->getContext()); 711 712 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 713 714 // Scan for the sentinel. If we find an undef, force it to the 715 // interesting value: x|undef -> true and x&undef -> false. 716 for (const auto &LHSVal : LHSVals) 717 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 718 Result.emplace_back(InterestingVal, LHSVal.second); 719 LHSKnownBBs.insert(LHSVal.second); 720 } 721 for (const auto &RHSVal : RHSVals) 722 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 723 // If we already inferred a value for this block on the LHS, don't 724 // re-add it. 725 if (!LHSKnownBBs.count(RHSVal.second)) 726 Result.emplace_back(InterestingVal, RHSVal.second); 727 } 728 729 return !Result.empty(); 730 } 731 732 // Handle the NOT form of XOR. 733 if (I->getOpcode() == Instruction::Xor && 734 isa<ConstantInt>(I->getOperand(1)) && 735 cast<ConstantInt>(I->getOperand(1))->isOne()) { 736 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result, 737 WantInteger, RecursionSet, CxtI); 738 if (Result.empty()) 739 return false; 740 741 // Invert the known values. 742 for (auto &R : Result) 743 R.first = ConstantExpr::getNot(R.first); 744 745 return true; 746 } 747 748 // Try to simplify some other binary operator values. 749 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 750 assert(Preference != WantBlockAddress 751 && "A binary operator creating a block address?"); 752 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 753 PredValueInfoTy LHSVals; 754 ComputeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals, 755 WantInteger, RecursionSet, CxtI); 756 757 // Try to use constant folding to simplify the binary operator. 758 for (const auto &LHSVal : LHSVals) { 759 Constant *V = LHSVal.first; 760 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 761 762 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 763 Result.emplace_back(KC, LHSVal.second); 764 } 765 } 766 767 return !Result.empty(); 768 } 769 770 // Handle compare with phi operand, where the PHI is defined in this block. 771 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 772 assert(Preference == WantInteger && "Compares only produce integers"); 773 Type *CmpType = Cmp->getType(); 774 Value *CmpLHS = Cmp->getOperand(0); 775 Value *CmpRHS = Cmp->getOperand(1); 776 CmpInst::Predicate Pred = Cmp->getPredicate(); 777 778 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 779 if (!PN) 780 PN = dyn_cast<PHINode>(CmpRHS); 781 if (PN && PN->getParent() == BB) { 782 const DataLayout &DL = PN->getModule()->getDataLayout(); 783 // We can do this simplification if any comparisons fold to true or false. 784 // See if any do. 785 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 786 BasicBlock *PredBB = PN->getIncomingBlock(i); 787 Value *LHS, *RHS; 788 if (PN == CmpLHS) { 789 LHS = PN->getIncomingValue(i); 790 RHS = CmpRHS->DoPHITranslation(BB, PredBB); 791 } else { 792 LHS = CmpLHS->DoPHITranslation(BB, PredBB); 793 RHS = PN->getIncomingValue(i); 794 } 795 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 796 if (!Res) { 797 if (!isa<Constant>(RHS)) 798 continue; 799 800 // getPredicateOnEdge call will make no sense if LHS is defined in BB. 801 auto LHSInst = dyn_cast<Instruction>(LHS); 802 if (LHSInst && LHSInst->getParent() == BB) 803 continue; 804 805 LazyValueInfo::Tristate 806 ResT = LVI->getPredicateOnEdge(Pred, LHS, 807 cast<Constant>(RHS), PredBB, BB, 808 CxtI ? CxtI : Cmp); 809 if (ResT == LazyValueInfo::Unknown) 810 continue; 811 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 812 } 813 814 if (Constant *KC = getKnownConstant(Res, WantInteger)) 815 Result.emplace_back(KC, PredBB); 816 } 817 818 return !Result.empty(); 819 } 820 821 // If comparing a live-in value against a constant, see if we know the 822 // live-in value on any predecessors. 823 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 824 Constant *CmpConst = cast<Constant>(CmpRHS); 825 826 if (!isa<Instruction>(CmpLHS) || 827 cast<Instruction>(CmpLHS)->getParent() != BB) { 828 for (BasicBlock *P : predecessors(BB)) { 829 // If the value is known by LazyValueInfo to be a constant in a 830 // predecessor, use that information to try to thread this block. 831 LazyValueInfo::Tristate Res = 832 LVI->getPredicateOnEdge(Pred, CmpLHS, 833 CmpConst, P, BB, CxtI ? CxtI : Cmp); 834 if (Res == LazyValueInfo::Unknown) 835 continue; 836 837 Constant *ResC = ConstantInt::get(CmpType, Res); 838 Result.emplace_back(ResC, P); 839 } 840 841 return !Result.empty(); 842 } 843 844 // InstCombine can fold some forms of constant range checks into 845 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 846 // x as a live-in. 847 { 848 using namespace PatternMatch; 849 850 Value *AddLHS; 851 ConstantInt *AddConst; 852 if (isa<ConstantInt>(CmpConst) && 853 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 854 if (!isa<Instruction>(AddLHS) || 855 cast<Instruction>(AddLHS)->getParent() != BB) { 856 for (BasicBlock *P : predecessors(BB)) { 857 // If the value is known by LazyValueInfo to be a ConstantRange in 858 // a predecessor, use that information to try to thread this 859 // block. 860 ConstantRange CR = LVI->getConstantRangeOnEdge( 861 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 862 // Propagate the range through the addition. 863 CR = CR.add(AddConst->getValue()); 864 865 // Get the range where the compare returns true. 866 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 867 Pred, cast<ConstantInt>(CmpConst)->getValue()); 868 869 Constant *ResC; 870 if (CmpRange.contains(CR)) 871 ResC = ConstantInt::getTrue(CmpType); 872 else if (CmpRange.inverse().contains(CR)) 873 ResC = ConstantInt::getFalse(CmpType); 874 else 875 continue; 876 877 Result.emplace_back(ResC, P); 878 } 879 880 return !Result.empty(); 881 } 882 } 883 } 884 885 // Try to find a constant value for the LHS of a comparison, 886 // and evaluate it statically if we can. 887 PredValueInfoTy LHSVals; 888 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 889 WantInteger, RecursionSet, CxtI); 890 891 for (const auto &LHSVal : LHSVals) { 892 Constant *V = LHSVal.first; 893 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 894 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 895 Result.emplace_back(KC, LHSVal.second); 896 } 897 898 return !Result.empty(); 899 } 900 } 901 902 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 903 // Handle select instructions where at least one operand is a known constant 904 // and we can figure out the condition value for any predecessor block. 905 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 906 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 907 PredValueInfoTy Conds; 908 if ((TrueVal || FalseVal) && 909 ComputeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds, 910 WantInteger, RecursionSet, CxtI)) { 911 for (auto &C : Conds) { 912 Constant *Cond = C.first; 913 914 // Figure out what value to use for the condition. 915 bool KnownCond; 916 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 917 // A known boolean. 918 KnownCond = CI->isOne(); 919 } else { 920 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 921 // Either operand will do, so be sure to pick the one that's a known 922 // constant. 923 // FIXME: Do this more cleverly if both values are known constants? 924 KnownCond = (TrueVal != nullptr); 925 } 926 927 // See if the select has a known constant value for this predecessor. 928 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 929 Result.emplace_back(Val, C.second); 930 } 931 932 return !Result.empty(); 933 } 934 } 935 936 // If all else fails, see if LVI can figure out a constant value for us. 937 Constant *CI = LVI->getConstant(V, BB, CxtI); 938 if (Constant *KC = getKnownConstant(CI, Preference)) { 939 for (BasicBlock *Pred : predecessors(BB)) 940 Result.emplace_back(KC, Pred); 941 } 942 943 return !Result.empty(); 944 } 945 946 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 947 /// in an undefined jump, decide which block is best to revector to. 948 /// 949 /// Since we can pick an arbitrary destination, we pick the successor with the 950 /// fewest predecessors. This should reduce the in-degree of the others. 951 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 952 Instruction *BBTerm = BB->getTerminator(); 953 unsigned MinSucc = 0; 954 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 955 // Compute the successor with the minimum number of predecessors. 956 unsigned MinNumPreds = pred_size(TestBB); 957 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 958 TestBB = BBTerm->getSuccessor(i); 959 unsigned NumPreds = pred_size(TestBB); 960 if (NumPreds < MinNumPreds) { 961 MinSucc = i; 962 MinNumPreds = NumPreds; 963 } 964 } 965 966 return MinSucc; 967 } 968 969 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 970 if (!BB->hasAddressTaken()) return false; 971 972 // If the block has its address taken, it may be a tree of dead constants 973 // hanging off of it. These shouldn't keep the block alive. 974 BlockAddress *BA = BlockAddress::get(BB); 975 BA->removeDeadConstantUsers(); 976 return !BA->use_empty(); 977 } 978 979 /// ProcessBlock - If there are any predecessors whose control can be threaded 980 /// through to a successor, transform them now. 981 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 982 // If the block is trivially dead, just return and let the caller nuke it. 983 // This simplifies other transformations. 984 if (DTU->isBBPendingDeletion(BB) || 985 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 986 return false; 987 988 // If this block has a single predecessor, and if that pred has a single 989 // successor, merge the blocks. This encourages recursive jump threading 990 // because now the condition in this block can be threaded through 991 // predecessors of our predecessor block. 992 if (MaybeMergeBasicBlockIntoOnlyPred(BB)) 993 return true; 994 995 if (TryToUnfoldSelectInCurrBB(BB)) 996 return true; 997 998 // Look if we can propagate guards to predecessors. 999 if (HasGuards && ProcessGuards(BB)) 1000 return true; 1001 1002 // What kind of constant we're looking for. 1003 ConstantPreference Preference = WantInteger; 1004 1005 // Look to see if the terminator is a conditional branch, switch or indirect 1006 // branch, if not we can't thread it. 1007 Value *Condition; 1008 Instruction *Terminator = BB->getTerminator(); 1009 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1010 // Can't thread an unconditional jump. 1011 if (BI->isUnconditional()) return false; 1012 Condition = BI->getCondition(); 1013 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1014 Condition = SI->getCondition(); 1015 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1016 // Can't thread indirect branch with no successors. 1017 if (IB->getNumSuccessors() == 0) return false; 1018 Condition = IB->getAddress()->stripPointerCasts(); 1019 Preference = WantBlockAddress; 1020 } else { 1021 return false; // Must be an invoke or callbr. 1022 } 1023 1024 // Run constant folding to see if we can reduce the condition to a simple 1025 // constant. 1026 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1027 Value *SimpleVal = 1028 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1029 if (SimpleVal) { 1030 I->replaceAllUsesWith(SimpleVal); 1031 if (isInstructionTriviallyDead(I, TLI)) 1032 I->eraseFromParent(); 1033 Condition = SimpleVal; 1034 } 1035 } 1036 1037 // If the terminator is branching on an undef, we can pick any of the 1038 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 1039 if (isa<UndefValue>(Condition)) { 1040 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 1041 std::vector<DominatorTree::UpdateType> Updates; 1042 1043 // Fold the branch/switch. 1044 Instruction *BBTerm = BB->getTerminator(); 1045 Updates.reserve(BBTerm->getNumSuccessors()); 1046 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1047 if (i == BestSucc) continue; 1048 BasicBlock *Succ = BBTerm->getSuccessor(i); 1049 Succ->removePredecessor(BB, true); 1050 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1051 } 1052 1053 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1054 << "' folding undef terminator: " << *BBTerm << '\n'); 1055 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1056 BBTerm->eraseFromParent(); 1057 DTU->applyUpdatesPermissive(Updates); 1058 return true; 1059 } 1060 1061 // If the terminator of this block is branching on a constant, simplify the 1062 // terminator to an unconditional branch. This can occur due to threading in 1063 // other blocks. 1064 if (getKnownConstant(Condition, Preference)) { 1065 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1066 << "' folding terminator: " << *BB->getTerminator() 1067 << '\n'); 1068 ++NumFolds; 1069 ConstantFoldTerminator(BB, true, nullptr, DTU); 1070 return true; 1071 } 1072 1073 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1074 1075 // All the rest of our checks depend on the condition being an instruction. 1076 if (!CondInst) { 1077 // FIXME: Unify this with code below. 1078 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 1079 return true; 1080 return false; 1081 } 1082 1083 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1084 // If we're branching on a conditional, LVI might be able to determine 1085 // it's value at the branch instruction. We only handle comparisons 1086 // against a constant at this time. 1087 // TODO: This should be extended to handle switches as well. 1088 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1089 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1090 if (CondBr && CondConst) { 1091 // We should have returned as soon as we turn a conditional branch to 1092 // unconditional. Because its no longer interesting as far as jump 1093 // threading is concerned. 1094 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1095 1096 LazyValueInfo::Tristate Ret = 1097 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1098 CondConst, CondBr); 1099 if (Ret != LazyValueInfo::Unknown) { 1100 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1101 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1102 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove); 1103 ToRemoveSucc->removePredecessor(BB, true); 1104 BranchInst *UncondBr = 1105 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1106 UncondBr->setDebugLoc(CondBr->getDebugLoc()); 1107 CondBr->eraseFromParent(); 1108 if (CondCmp->use_empty()) 1109 CondCmp->eraseFromParent(); 1110 // We can safely replace *some* uses of the CondInst if it has 1111 // exactly one value as returned by LVI. RAUW is incorrect in the 1112 // presence of guards and assumes, that have the `Cond` as the use. This 1113 // is because we use the guards/assume to reason about the `Cond` value 1114 // at the end of block, but RAUW unconditionally replaces all uses 1115 // including the guards/assumes themselves and the uses before the 1116 // guard/assume. 1117 else if (CondCmp->getParent() == BB) { 1118 auto *CI = Ret == LazyValueInfo::True ? 1119 ConstantInt::getTrue(CondCmp->getType()) : 1120 ConstantInt::getFalse(CondCmp->getType()); 1121 ReplaceFoldableUses(CondCmp, CI); 1122 } 1123 DTU->applyUpdatesPermissive( 1124 {{DominatorTree::Delete, BB, ToRemoveSucc}}); 1125 return true; 1126 } 1127 1128 // We did not manage to simplify this branch, try to see whether 1129 // CondCmp depends on a known phi-select pattern. 1130 if (TryToUnfoldSelect(CondCmp, BB)) 1131 return true; 1132 } 1133 } 1134 1135 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 1136 if (TryToUnfoldSelect(SI, BB)) 1137 return true; 1138 1139 // Check for some cases that are worth simplifying. Right now we want to look 1140 // for loads that are used by a switch or by the condition for the branch. If 1141 // we see one, check to see if it's partially redundant. If so, insert a PHI 1142 // which can then be used to thread the values. 1143 Value *SimplifyValue = CondInst; 1144 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1145 if (isa<Constant>(CondCmp->getOperand(1))) 1146 SimplifyValue = CondCmp->getOperand(0); 1147 1148 // TODO: There are other places where load PRE would be profitable, such as 1149 // more complex comparisons. 1150 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1151 if (SimplifyPartiallyRedundantLoad(LoadI)) 1152 return true; 1153 1154 // Before threading, try to propagate profile data backwards: 1155 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1156 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1157 updatePredecessorProfileMetadata(PN, BB); 1158 1159 // Handle a variety of cases where we are branching on something derived from 1160 // a PHI node in the current block. If we can prove that any predecessors 1161 // compute a predictable value based on a PHI node, thread those predecessors. 1162 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 1163 return true; 1164 1165 // If this is an otherwise-unfoldable branch on a phi node in the current 1166 // block, see if we can simplify. 1167 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1168 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1169 return ProcessBranchOnPHI(PN); 1170 1171 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1172 if (CondInst->getOpcode() == Instruction::Xor && 1173 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1174 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 1175 1176 // Search for a stronger dominating condition that can be used to simplify a 1177 // conditional branch leaving BB. 1178 if (ProcessImpliedCondition(BB)) 1179 return true; 1180 1181 return false; 1182 } 1183 1184 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 1185 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1186 if (!BI || !BI->isConditional()) 1187 return false; 1188 1189 Value *Cond = BI->getCondition(); 1190 BasicBlock *CurrentBB = BB; 1191 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1192 unsigned Iter = 0; 1193 1194 auto &DL = BB->getModule()->getDataLayout(); 1195 1196 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1197 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1198 if (!PBI || !PBI->isConditional()) 1199 return false; 1200 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1201 return false; 1202 1203 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1204 Optional<bool> Implication = 1205 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1206 if (Implication) { 1207 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1208 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1209 RemoveSucc->removePredecessor(BB); 1210 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI); 1211 UncondBI->setDebugLoc(BI->getDebugLoc()); 1212 BI->eraseFromParent(); 1213 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}}); 1214 return true; 1215 } 1216 CurrentBB = CurrentPred; 1217 CurrentPred = CurrentBB->getSinglePredecessor(); 1218 } 1219 1220 return false; 1221 } 1222 1223 /// Return true if Op is an instruction defined in the given block. 1224 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1225 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1226 if (OpInst->getParent() == BB) 1227 return true; 1228 return false; 1229 } 1230 1231 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1232 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1233 /// This is an important optimization that encourages jump threading, and needs 1234 /// to be run interlaced with other jump threading tasks. 1235 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1236 // Don't hack volatile and ordered loads. 1237 if (!LoadI->isUnordered()) return false; 1238 1239 // If the load is defined in a block with exactly one predecessor, it can't be 1240 // partially redundant. 1241 BasicBlock *LoadBB = LoadI->getParent(); 1242 if (LoadBB->getSinglePredecessor()) 1243 return false; 1244 1245 // If the load is defined in an EH pad, it can't be partially redundant, 1246 // because the edges between the invoke and the EH pad cannot have other 1247 // instructions between them. 1248 if (LoadBB->isEHPad()) 1249 return false; 1250 1251 Value *LoadedPtr = LoadI->getOperand(0); 1252 1253 // If the loaded operand is defined in the LoadBB and its not a phi, 1254 // it can't be available in predecessors. 1255 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1256 return false; 1257 1258 // Scan a few instructions up from the load, to see if it is obviously live at 1259 // the entry to its block. 1260 BasicBlock::iterator BBIt(LoadI); 1261 bool IsLoadCSE; 1262 if (Value *AvailableVal = FindAvailableLoadedValue( 1263 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1264 // If the value of the load is locally available within the block, just use 1265 // it. This frequently occurs for reg2mem'd allocas. 1266 1267 if (IsLoadCSE) { 1268 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1269 combineMetadataForCSE(NLoadI, LoadI, false); 1270 }; 1271 1272 // If the returned value is the load itself, replace with an undef. This can 1273 // only happen in dead loops. 1274 if (AvailableVal == LoadI) 1275 AvailableVal = UndefValue::get(LoadI->getType()); 1276 if (AvailableVal->getType() != LoadI->getType()) 1277 AvailableVal = CastInst::CreateBitOrPointerCast( 1278 AvailableVal, LoadI->getType(), "", LoadI); 1279 LoadI->replaceAllUsesWith(AvailableVal); 1280 LoadI->eraseFromParent(); 1281 return true; 1282 } 1283 1284 // Otherwise, if we scanned the whole block and got to the top of the block, 1285 // we know the block is locally transparent to the load. If not, something 1286 // might clobber its value. 1287 if (BBIt != LoadBB->begin()) 1288 return false; 1289 1290 // If all of the loads and stores that feed the value have the same AA tags, 1291 // then we can propagate them onto any newly inserted loads. 1292 AAMDNodes AATags; 1293 LoadI->getAAMetadata(AATags); 1294 1295 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1296 1297 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1298 1299 AvailablePredsTy AvailablePreds; 1300 BasicBlock *OneUnavailablePred = nullptr; 1301 SmallVector<LoadInst*, 8> CSELoads; 1302 1303 // If we got here, the loaded value is transparent through to the start of the 1304 // block. Check to see if it is available in any of the predecessor blocks. 1305 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1306 // If we already scanned this predecessor, skip it. 1307 if (!PredsScanned.insert(PredBB).second) 1308 continue; 1309 1310 BBIt = PredBB->end(); 1311 unsigned NumScanedInst = 0; 1312 Value *PredAvailable = nullptr; 1313 // NOTE: We don't CSE load that is volatile or anything stronger than 1314 // unordered, that should have been checked when we entered the function. 1315 assert(LoadI->isUnordered() && 1316 "Attempting to CSE volatile or atomic loads"); 1317 // If this is a load on a phi pointer, phi-translate it and search 1318 // for available load/store to the pointer in predecessors. 1319 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); 1320 PredAvailable = FindAvailablePtrLoadStore( 1321 Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt, 1322 DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst); 1323 1324 // If PredBB has a single predecessor, continue scanning through the 1325 // single predecessor. 1326 BasicBlock *SinglePredBB = PredBB; 1327 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1328 NumScanedInst < DefMaxInstsToScan) { 1329 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1330 if (SinglePredBB) { 1331 BBIt = SinglePredBB->end(); 1332 PredAvailable = FindAvailablePtrLoadStore( 1333 Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt, 1334 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1335 &NumScanedInst); 1336 } 1337 } 1338 1339 if (!PredAvailable) { 1340 OneUnavailablePred = PredBB; 1341 continue; 1342 } 1343 1344 if (IsLoadCSE) 1345 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1346 1347 // If so, this load is partially redundant. Remember this info so that we 1348 // can create a PHI node. 1349 AvailablePreds.emplace_back(PredBB, PredAvailable); 1350 } 1351 1352 // If the loaded value isn't available in any predecessor, it isn't partially 1353 // redundant. 1354 if (AvailablePreds.empty()) return false; 1355 1356 // Okay, the loaded value is available in at least one (and maybe all!) 1357 // predecessors. If the value is unavailable in more than one unique 1358 // predecessor, we want to insert a merge block for those common predecessors. 1359 // This ensures that we only have to insert one reload, thus not increasing 1360 // code size. 1361 BasicBlock *UnavailablePred = nullptr; 1362 1363 // If the value is unavailable in one of predecessors, we will end up 1364 // inserting a new instruction into them. It is only valid if all the 1365 // instructions before LoadI are guaranteed to pass execution to its 1366 // successor, or if LoadI is safe to speculate. 1367 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1368 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1369 // It requires domination tree analysis, so for this simple case it is an 1370 // overkill. 1371 if (PredsScanned.size() != AvailablePreds.size() && 1372 !isSafeToSpeculativelyExecute(LoadI)) 1373 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1374 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1375 return false; 1376 1377 // If there is exactly one predecessor where the value is unavailable, the 1378 // already computed 'OneUnavailablePred' block is it. If it ends in an 1379 // unconditional branch, we know that it isn't a critical edge. 1380 if (PredsScanned.size() == AvailablePreds.size()+1 && 1381 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1382 UnavailablePred = OneUnavailablePred; 1383 } else if (PredsScanned.size() != AvailablePreds.size()) { 1384 // Otherwise, we had multiple unavailable predecessors or we had a critical 1385 // edge from the one. 1386 SmallVector<BasicBlock*, 8> PredsToSplit; 1387 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1388 1389 for (const auto &AvailablePred : AvailablePreds) 1390 AvailablePredSet.insert(AvailablePred.first); 1391 1392 // Add all the unavailable predecessors to the PredsToSplit list. 1393 for (BasicBlock *P : predecessors(LoadBB)) { 1394 // If the predecessor is an indirect goto, we can't split the edge. 1395 // Same for CallBr. 1396 if (isa<IndirectBrInst>(P->getTerminator()) || 1397 isa<CallBrInst>(P->getTerminator())) 1398 return false; 1399 1400 if (!AvailablePredSet.count(P)) 1401 PredsToSplit.push_back(P); 1402 } 1403 1404 // Split them out to their own block. 1405 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1406 } 1407 1408 // If the value isn't available in all predecessors, then there will be 1409 // exactly one where it isn't available. Insert a load on that edge and add 1410 // it to the AvailablePreds list. 1411 if (UnavailablePred) { 1412 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1413 "Can't handle critical edge here!"); 1414 LoadInst *NewVal = new LoadInst( 1415 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1416 LoadI->getName() + ".pr", false, LoadI->getAlign(), 1417 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1418 UnavailablePred->getTerminator()); 1419 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1420 if (AATags) 1421 NewVal->setAAMetadata(AATags); 1422 1423 AvailablePreds.emplace_back(UnavailablePred, NewVal); 1424 } 1425 1426 // Now we know that each predecessor of this block has a value in 1427 // AvailablePreds, sort them for efficient access as we're walking the preds. 1428 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1429 1430 // Create a PHI node at the start of the block for the PRE'd load value. 1431 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1432 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", 1433 &LoadBB->front()); 1434 PN->takeName(LoadI); 1435 PN->setDebugLoc(LoadI->getDebugLoc()); 1436 1437 // Insert new entries into the PHI for each predecessor. A single block may 1438 // have multiple entries here. 1439 for (pred_iterator PI = PB; PI != PE; ++PI) { 1440 BasicBlock *P = *PI; 1441 AvailablePredsTy::iterator I = 1442 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr)); 1443 1444 assert(I != AvailablePreds.end() && I->first == P && 1445 "Didn't find entry for predecessor!"); 1446 1447 // If we have an available predecessor but it requires casting, insert the 1448 // cast in the predecessor and use the cast. Note that we have to update the 1449 // AvailablePreds vector as we go so that all of the PHI entries for this 1450 // predecessor use the same bitcast. 1451 Value *&PredV = I->second; 1452 if (PredV->getType() != LoadI->getType()) 1453 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1454 P->getTerminator()); 1455 1456 PN->addIncoming(PredV, I->first); 1457 } 1458 1459 for (LoadInst *PredLoadI : CSELoads) { 1460 combineMetadataForCSE(PredLoadI, LoadI, true); 1461 } 1462 1463 LoadI->replaceAllUsesWith(PN); 1464 LoadI->eraseFromParent(); 1465 1466 return true; 1467 } 1468 1469 /// FindMostPopularDest - The specified list contains multiple possible 1470 /// threadable destinations. Pick the one that occurs the most frequently in 1471 /// the list. 1472 static BasicBlock * 1473 FindMostPopularDest(BasicBlock *BB, 1474 const SmallVectorImpl<std::pair<BasicBlock *, 1475 BasicBlock *>> &PredToDestList) { 1476 assert(!PredToDestList.empty()); 1477 1478 // Determine popularity. If there are multiple possible destinations, we 1479 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1480 // blocks with known and real destinations to threading undef. We'll handle 1481 // them later if interesting. 1482 MapVector<BasicBlock *, unsigned> DestPopularity; 1483 1484 // Populate DestPopularity with the successors in the order they appear in the 1485 // successor list. This way, we ensure determinism by iterating it in the 1486 // same order in std::max_element below. We map nullptr to 0 so that we can 1487 // return nullptr when PredToDestList contains nullptr only. 1488 DestPopularity[nullptr] = 0; 1489 for (auto *SuccBB : successors(BB)) 1490 DestPopularity[SuccBB] = 0; 1491 1492 for (const auto &PredToDest : PredToDestList) 1493 if (PredToDest.second) 1494 DestPopularity[PredToDest.second]++; 1495 1496 // Find the most popular dest. 1497 using VT = decltype(DestPopularity)::value_type; 1498 auto MostPopular = std::max_element( 1499 DestPopularity.begin(), DestPopularity.end(), 1500 [](const VT &L, const VT &R) { return L.second < R.second; }); 1501 1502 // Okay, we have finally picked the most popular destination. 1503 return MostPopular->first; 1504 } 1505 1506 // Try to evaluate the value of V when the control flows from PredPredBB to 1507 // BB->getSinglePredecessor() and then on to BB. 1508 Constant *JumpThreadingPass::EvaluateOnPredecessorEdge(BasicBlock *BB, 1509 BasicBlock *PredPredBB, 1510 Value *V) { 1511 BasicBlock *PredBB = BB->getSinglePredecessor(); 1512 assert(PredBB && "Expected a single predecessor"); 1513 1514 if (Constant *Cst = dyn_cast<Constant>(V)) { 1515 return Cst; 1516 } 1517 1518 // Consult LVI if V is not an instruction in BB or PredBB. 1519 Instruction *I = dyn_cast<Instruction>(V); 1520 if (!I || (I->getParent() != BB && I->getParent() != PredBB)) { 1521 return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr); 1522 } 1523 1524 // Look into a PHI argument. 1525 if (PHINode *PHI = dyn_cast<PHINode>(V)) { 1526 if (PHI->getParent() == PredBB) 1527 return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB)); 1528 return nullptr; 1529 } 1530 1531 // If we have a CmpInst, try to fold it for each incoming edge into PredBB. 1532 if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) { 1533 if (CondCmp->getParent() == BB) { 1534 Constant *Op0 = 1535 EvaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0)); 1536 Constant *Op1 = 1537 EvaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1)); 1538 if (Op0 && Op1) { 1539 return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1); 1540 } 1541 } 1542 return nullptr; 1543 } 1544 1545 return nullptr; 1546 } 1547 1548 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1549 ConstantPreference Preference, 1550 Instruction *CxtI) { 1551 // If threading this would thread across a loop header, don't even try to 1552 // thread the edge. 1553 if (LoopHeaders.count(BB)) 1554 return false; 1555 1556 PredValueInfoTy PredValues; 1557 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, 1558 CxtI)) { 1559 // We don't have known values in predecessors. See if we can thread through 1560 // BB and its sole predecessor. 1561 return MaybeThreadThroughTwoBasicBlocks(BB, Cond); 1562 } 1563 1564 assert(!PredValues.empty() && 1565 "ComputeValueKnownInPredecessors returned true with no values"); 1566 1567 LLVM_DEBUG(dbgs() << "IN BB: " << *BB; 1568 for (const auto &PredValue : PredValues) { 1569 dbgs() << " BB '" << BB->getName() 1570 << "': FOUND condition = " << *PredValue.first 1571 << " for pred '" << PredValue.second->getName() << "'.\n"; 1572 }); 1573 1574 // Decide what we want to thread through. Convert our list of known values to 1575 // a list of known destinations for each pred. This also discards duplicate 1576 // predecessors and keeps track of the undefined inputs (which are represented 1577 // as a null dest in the PredToDestList). 1578 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1579 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1580 1581 BasicBlock *OnlyDest = nullptr; 1582 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1583 Constant *OnlyVal = nullptr; 1584 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1585 1586 for (const auto &PredValue : PredValues) { 1587 BasicBlock *Pred = PredValue.second; 1588 if (!SeenPreds.insert(Pred).second) 1589 continue; // Duplicate predecessor entry. 1590 1591 Constant *Val = PredValue.first; 1592 1593 BasicBlock *DestBB; 1594 if (isa<UndefValue>(Val)) 1595 DestBB = nullptr; 1596 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1597 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1598 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1599 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1600 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1601 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1602 } else { 1603 assert(isa<IndirectBrInst>(BB->getTerminator()) 1604 && "Unexpected terminator"); 1605 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1606 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1607 } 1608 1609 // If we have exactly one destination, remember it for efficiency below. 1610 if (PredToDestList.empty()) { 1611 OnlyDest = DestBB; 1612 OnlyVal = Val; 1613 } else { 1614 if (OnlyDest != DestBB) 1615 OnlyDest = MultipleDestSentinel; 1616 // It possible we have same destination, but different value, e.g. default 1617 // case in switchinst. 1618 if (Val != OnlyVal) 1619 OnlyVal = MultipleVal; 1620 } 1621 1622 // If the predecessor ends with an indirect goto, we can't change its 1623 // destination. Same for CallBr. 1624 if (isa<IndirectBrInst>(Pred->getTerminator()) || 1625 isa<CallBrInst>(Pred->getTerminator())) 1626 continue; 1627 1628 PredToDestList.emplace_back(Pred, DestBB); 1629 } 1630 1631 // If all edges were unthreadable, we fail. 1632 if (PredToDestList.empty()) 1633 return false; 1634 1635 // If all the predecessors go to a single known successor, we want to fold, 1636 // not thread. By doing so, we do not need to duplicate the current block and 1637 // also miss potential opportunities in case we dont/cant duplicate. 1638 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1639 if (BB->hasNPredecessors(PredToDestList.size())) { 1640 bool SeenFirstBranchToOnlyDest = false; 1641 std::vector <DominatorTree::UpdateType> Updates; 1642 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1643 for (BasicBlock *SuccBB : successors(BB)) { 1644 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1645 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1646 } else { 1647 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1648 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1649 } 1650 } 1651 1652 // Finally update the terminator. 1653 Instruction *Term = BB->getTerminator(); 1654 BranchInst::Create(OnlyDest, Term); 1655 Term->eraseFromParent(); 1656 DTU->applyUpdatesPermissive(Updates); 1657 1658 // If the condition is now dead due to the removal of the old terminator, 1659 // erase it. 1660 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1661 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1662 CondInst->eraseFromParent(); 1663 // We can safely replace *some* uses of the CondInst if it has 1664 // exactly one value as returned by LVI. RAUW is incorrect in the 1665 // presence of guards and assumes, that have the `Cond` as the use. This 1666 // is because we use the guards/assume to reason about the `Cond` value 1667 // at the end of block, but RAUW unconditionally replaces all uses 1668 // including the guards/assumes themselves and the uses before the 1669 // guard/assume. 1670 else if (OnlyVal && OnlyVal != MultipleVal && 1671 CondInst->getParent() == BB) 1672 ReplaceFoldableUses(CondInst, OnlyVal); 1673 } 1674 return true; 1675 } 1676 } 1677 1678 // Determine which is the most common successor. If we have many inputs and 1679 // this block is a switch, we want to start by threading the batch that goes 1680 // to the most popular destination first. If we only know about one 1681 // threadable destination (the common case) we can avoid this. 1682 BasicBlock *MostPopularDest = OnlyDest; 1683 1684 if (MostPopularDest == MultipleDestSentinel) { 1685 // Remove any loop headers from the Dest list, ThreadEdge conservatively 1686 // won't process them, but we might have other destination that are eligible 1687 // and we still want to process. 1688 erase_if(PredToDestList, 1689 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1690 return LoopHeaders.count(PredToDest.second) != 0; 1691 }); 1692 1693 if (PredToDestList.empty()) 1694 return false; 1695 1696 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1697 } 1698 1699 // Now that we know what the most popular destination is, factor all 1700 // predecessors that will jump to it into a single predecessor. 1701 SmallVector<BasicBlock*, 16> PredsToFactor; 1702 for (const auto &PredToDest : PredToDestList) 1703 if (PredToDest.second == MostPopularDest) { 1704 BasicBlock *Pred = PredToDest.first; 1705 1706 // This predecessor may be a switch or something else that has multiple 1707 // edges to the block. Factor each of these edges by listing them 1708 // according to # occurrences in PredsToFactor. 1709 for (BasicBlock *Succ : successors(Pred)) 1710 if (Succ == BB) 1711 PredsToFactor.push_back(Pred); 1712 } 1713 1714 // If the threadable edges are branching on an undefined value, we get to pick 1715 // the destination that these predecessors should get to. 1716 if (!MostPopularDest) 1717 MostPopularDest = BB->getTerminator()-> 1718 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1719 1720 // Ok, try to thread it! 1721 return TryThreadEdge(BB, PredsToFactor, MostPopularDest); 1722 } 1723 1724 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1725 /// a PHI node in the current block. See if there are any simplifications we 1726 /// can do based on inputs to the phi node. 1727 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1728 BasicBlock *BB = PN->getParent(); 1729 1730 // TODO: We could make use of this to do it once for blocks with common PHI 1731 // values. 1732 SmallVector<BasicBlock*, 1> PredBBs; 1733 PredBBs.resize(1); 1734 1735 // If any of the predecessor blocks end in an unconditional branch, we can 1736 // *duplicate* the conditional branch into that block in order to further 1737 // encourage jump threading and to eliminate cases where we have branch on a 1738 // phi of an icmp (branch on icmp is much better). 1739 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1740 BasicBlock *PredBB = PN->getIncomingBlock(i); 1741 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1742 if (PredBr->isUnconditional()) { 1743 PredBBs[0] = PredBB; 1744 // Try to duplicate BB into PredBB. 1745 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1746 return true; 1747 } 1748 } 1749 1750 return false; 1751 } 1752 1753 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1754 /// a xor instruction in the current block. See if there are any 1755 /// simplifications we can do based on inputs to the xor. 1756 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1757 BasicBlock *BB = BO->getParent(); 1758 1759 // If either the LHS or RHS of the xor is a constant, don't do this 1760 // optimization. 1761 if (isa<ConstantInt>(BO->getOperand(0)) || 1762 isa<ConstantInt>(BO->getOperand(1))) 1763 return false; 1764 1765 // If the first instruction in BB isn't a phi, we won't be able to infer 1766 // anything special about any particular predecessor. 1767 if (!isa<PHINode>(BB->front())) 1768 return false; 1769 1770 // If this BB is a landing pad, we won't be able to split the edge into it. 1771 if (BB->isEHPad()) 1772 return false; 1773 1774 // If we have a xor as the branch input to this block, and we know that the 1775 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1776 // the condition into the predecessor and fix that value to true, saving some 1777 // logical ops on that path and encouraging other paths to simplify. 1778 // 1779 // This copies something like this: 1780 // 1781 // BB: 1782 // %X = phi i1 [1], [%X'] 1783 // %Y = icmp eq i32 %A, %B 1784 // %Z = xor i1 %X, %Y 1785 // br i1 %Z, ... 1786 // 1787 // Into: 1788 // BB': 1789 // %Y = icmp ne i32 %A, %B 1790 // br i1 %Y, ... 1791 1792 PredValueInfoTy XorOpValues; 1793 bool isLHS = true; 1794 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1795 WantInteger, BO)) { 1796 assert(XorOpValues.empty()); 1797 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1798 WantInteger, BO)) 1799 return false; 1800 isLHS = false; 1801 } 1802 1803 assert(!XorOpValues.empty() && 1804 "ComputeValueKnownInPredecessors returned true with no values"); 1805 1806 // Scan the information to see which is most popular: true or false. The 1807 // predecessors can be of the set true, false, or undef. 1808 unsigned NumTrue = 0, NumFalse = 0; 1809 for (const auto &XorOpValue : XorOpValues) { 1810 if (isa<UndefValue>(XorOpValue.first)) 1811 // Ignore undefs for the count. 1812 continue; 1813 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1814 ++NumFalse; 1815 else 1816 ++NumTrue; 1817 } 1818 1819 // Determine which value to split on, true, false, or undef if neither. 1820 ConstantInt *SplitVal = nullptr; 1821 if (NumTrue > NumFalse) 1822 SplitVal = ConstantInt::getTrue(BB->getContext()); 1823 else if (NumTrue != 0 || NumFalse != 0) 1824 SplitVal = ConstantInt::getFalse(BB->getContext()); 1825 1826 // Collect all of the blocks that this can be folded into so that we can 1827 // factor this once and clone it once. 1828 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1829 for (const auto &XorOpValue : XorOpValues) { 1830 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1831 continue; 1832 1833 BlocksToFoldInto.push_back(XorOpValue.second); 1834 } 1835 1836 // If we inferred a value for all of the predecessors, then duplication won't 1837 // help us. However, we can just replace the LHS or RHS with the constant. 1838 if (BlocksToFoldInto.size() == 1839 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1840 if (!SplitVal) { 1841 // If all preds provide undef, just nuke the xor, because it is undef too. 1842 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1843 BO->eraseFromParent(); 1844 } else if (SplitVal->isZero()) { 1845 // If all preds provide 0, replace the xor with the other input. 1846 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1847 BO->eraseFromParent(); 1848 } else { 1849 // If all preds provide 1, set the computed value to 1. 1850 BO->setOperand(!isLHS, SplitVal); 1851 } 1852 1853 return true; 1854 } 1855 1856 // Try to duplicate BB into PredBB. 1857 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1858 } 1859 1860 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1861 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1862 /// NewPred using the entries from OldPred (suitably mapped). 1863 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1864 BasicBlock *OldPred, 1865 BasicBlock *NewPred, 1866 DenseMap<Instruction*, Value*> &ValueMap) { 1867 for (PHINode &PN : PHIBB->phis()) { 1868 // Ok, we have a PHI node. Figure out what the incoming value was for the 1869 // DestBlock. 1870 Value *IV = PN.getIncomingValueForBlock(OldPred); 1871 1872 // Remap the value if necessary. 1873 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1874 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1875 if (I != ValueMap.end()) 1876 IV = I->second; 1877 } 1878 1879 PN.addIncoming(IV, NewPred); 1880 } 1881 } 1882 1883 /// Merge basic block BB into its sole predecessor if possible. 1884 bool JumpThreadingPass::MaybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) { 1885 BasicBlock *SinglePred = BB->getSinglePredecessor(); 1886 if (!SinglePred) 1887 return false; 1888 1889 const Instruction *TI = SinglePred->getTerminator(); 1890 if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 || 1891 SinglePred == BB || hasAddressTakenAndUsed(BB)) 1892 return false; 1893 1894 // If SinglePred was a loop header, BB becomes one. 1895 if (LoopHeaders.erase(SinglePred)) 1896 LoopHeaders.insert(BB); 1897 1898 LVI->eraseBlock(SinglePred); 1899 MergeBasicBlockIntoOnlyPred(BB, DTU); 1900 1901 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by 1902 // BB code within one basic block `BB`), we need to invalidate the LVI 1903 // information associated with BB, because the LVI information need not be 1904 // true for all of BB after the merge. For example, 1905 // Before the merge, LVI info and code is as follows: 1906 // SinglePred: <LVI info1 for %p val> 1907 // %y = use of %p 1908 // call @exit() // need not transfer execution to successor. 1909 // assume(%p) // from this point on %p is true 1910 // br label %BB 1911 // BB: <LVI info2 for %p val, i.e. %p is true> 1912 // %x = use of %p 1913 // br label exit 1914 // 1915 // Note that this LVI info for blocks BB and SinglPred is correct for %p 1916 // (info2 and info1 respectively). After the merge and the deletion of the 1917 // LVI info1 for SinglePred. We have the following code: 1918 // BB: <LVI info2 for %p val> 1919 // %y = use of %p 1920 // call @exit() 1921 // assume(%p) 1922 // %x = use of %p <-- LVI info2 is correct from here onwards. 1923 // br label exit 1924 // LVI info2 for BB is incorrect at the beginning of BB. 1925 1926 // Invalidate LVI information for BB if the LVI is not provably true for 1927 // all of BB. 1928 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 1929 LVI->eraseBlock(BB); 1930 return true; 1931 } 1932 1933 /// Update the SSA form. NewBB contains instructions that are copied from BB. 1934 /// ValueMapping maps old values in BB to new ones in NewBB. 1935 void JumpThreadingPass::UpdateSSA( 1936 BasicBlock *BB, BasicBlock *NewBB, 1937 DenseMap<Instruction *, Value *> &ValueMapping) { 1938 // If there were values defined in BB that are used outside the block, then we 1939 // now have to update all uses of the value to use either the original value, 1940 // the cloned value, or some PHI derived value. This can require arbitrary 1941 // PHI insertion, of which we are prepared to do, clean these up now. 1942 SSAUpdater SSAUpdate; 1943 SmallVector<Use *, 16> UsesToRename; 1944 1945 for (Instruction &I : *BB) { 1946 // Scan all uses of this instruction to see if it is used outside of its 1947 // block, and if so, record them in UsesToRename. 1948 for (Use &U : I.uses()) { 1949 Instruction *User = cast<Instruction>(U.getUser()); 1950 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1951 if (UserPN->getIncomingBlock(U) == BB) 1952 continue; 1953 } else if (User->getParent() == BB) 1954 continue; 1955 1956 UsesToRename.push_back(&U); 1957 } 1958 1959 // If there are no uses outside the block, we're done with this instruction. 1960 if (UsesToRename.empty()) 1961 continue; 1962 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1963 1964 // We found a use of I outside of BB. Rename all uses of I that are outside 1965 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1966 // with the two values we know. 1967 SSAUpdate.Initialize(I.getType(), I.getName()); 1968 SSAUpdate.AddAvailableValue(BB, &I); 1969 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 1970 1971 while (!UsesToRename.empty()) 1972 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1973 LLVM_DEBUG(dbgs() << "\n"); 1974 } 1975 } 1976 1977 /// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone 1978 /// arguments that come from PredBB. Return the map from the variables in the 1979 /// source basic block to the variables in the newly created basic block. 1980 DenseMap<Instruction *, Value *> 1981 JumpThreadingPass::CloneInstructions(BasicBlock::iterator BI, 1982 BasicBlock::iterator BE, BasicBlock *NewBB, 1983 BasicBlock *PredBB) { 1984 // We are going to have to map operands from the source basic block to the new 1985 // copy of the block 'NewBB'. If there are PHI nodes in the source basic 1986 // block, evaluate them to account for entry from PredBB. 1987 DenseMap<Instruction *, Value *> ValueMapping; 1988 1989 // Clone the phi nodes of the source basic block into NewBB. The resulting 1990 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater 1991 // might need to rewrite the operand of the cloned phi. 1992 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 1993 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB); 1994 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB); 1995 ValueMapping[PN] = NewPN; 1996 } 1997 1998 // Clone the non-phi instructions of the source basic block into NewBB, 1999 // keeping track of the mapping and using it to remap operands in the cloned 2000 // instructions. 2001 for (; BI != BE; ++BI) { 2002 Instruction *New = BI->clone(); 2003 New->setName(BI->getName()); 2004 NewBB->getInstList().push_back(New); 2005 ValueMapping[&*BI] = New; 2006 2007 // Remap operands to patch up intra-block references. 2008 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2009 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2010 DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst); 2011 if (I != ValueMapping.end()) 2012 New->setOperand(i, I->second); 2013 } 2014 } 2015 2016 return ValueMapping; 2017 } 2018 2019 /// Attempt to thread through two successive basic blocks. 2020 bool JumpThreadingPass::MaybeThreadThroughTwoBasicBlocks(BasicBlock *BB, 2021 Value *Cond) { 2022 // Consider: 2023 // 2024 // PredBB: 2025 // %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ] 2026 // %tobool = icmp eq i32 %cond, 0 2027 // br i1 %tobool, label %BB, label ... 2028 // 2029 // BB: 2030 // %cmp = icmp eq i32* %var, null 2031 // br i1 %cmp, label ..., label ... 2032 // 2033 // We don't know the value of %var at BB even if we know which incoming edge 2034 // we take to BB. However, once we duplicate PredBB for each of its incoming 2035 // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of 2036 // PredBB. Then we can thread edges PredBB1->BB and PredBB2->BB through BB. 2037 2038 // Require that BB end with a Branch for simplicity. 2039 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2040 if (!CondBr) 2041 return false; 2042 2043 // BB must have exactly one predecessor. 2044 BasicBlock *PredBB = BB->getSinglePredecessor(); 2045 if (!PredBB) 2046 return false; 2047 2048 // Require that PredBB end with a conditional Branch. If PredBB ends with an 2049 // unconditional branch, we should be merging PredBB and BB instead. For 2050 // simplicity, we don't deal with a switch. 2051 BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2052 if (!PredBBBranch || PredBBBranch->isUnconditional()) 2053 return false; 2054 2055 // If PredBB has exactly one incoming edge, we don't gain anything by copying 2056 // PredBB. 2057 if (PredBB->getSinglePredecessor()) 2058 return false; 2059 2060 // Don't thread through PredBB if it contains a successor edge to itself, in 2061 // which case we would infinite loop. Suppose we are threading an edge from 2062 // PredPredBB through PredBB and BB to SuccBB with PredBB containing a 2063 // successor edge to itself. If we allowed jump threading in this case, we 2064 // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread. Since 2065 // PredBB.thread has a successor edge to PredBB, we would immediately come up 2066 // with another jump threading opportunity from PredBB.thread through PredBB 2067 // and BB to SuccBB. This jump threading would repeatedly occur. That is, we 2068 // would keep peeling one iteration from PredBB. 2069 if (llvm::is_contained(successors(PredBB), PredBB)) 2070 return false; 2071 2072 // Don't thread across a loop header. 2073 if (LoopHeaders.count(PredBB)) 2074 return false; 2075 2076 // Avoid complication with duplicating EH pads. 2077 if (PredBB->isEHPad()) 2078 return false; 2079 2080 // Find a predecessor that we can thread. For simplicity, we only consider a 2081 // successor edge out of BB to which we thread exactly one incoming edge into 2082 // PredBB. 2083 unsigned ZeroCount = 0; 2084 unsigned OneCount = 0; 2085 BasicBlock *ZeroPred = nullptr; 2086 BasicBlock *OnePred = nullptr; 2087 for (BasicBlock *P : predecessors(PredBB)) { 2088 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>( 2089 EvaluateOnPredecessorEdge(BB, P, Cond))) { 2090 if (CI->isZero()) { 2091 ZeroCount++; 2092 ZeroPred = P; 2093 } else if (CI->isOne()) { 2094 OneCount++; 2095 OnePred = P; 2096 } 2097 } 2098 } 2099 2100 // Disregard complicated cases where we have to thread multiple edges. 2101 BasicBlock *PredPredBB; 2102 if (ZeroCount == 1) { 2103 PredPredBB = ZeroPred; 2104 } else if (OneCount == 1) { 2105 PredPredBB = OnePred; 2106 } else { 2107 return false; 2108 } 2109 2110 BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred); 2111 2112 // If threading to the same block as we come from, we would infinite loop. 2113 if (SuccBB == BB) { 2114 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2115 << "' - would thread to self!\n"); 2116 return false; 2117 } 2118 2119 // If threading this would thread across a loop header, don't thread the edge. 2120 // See the comments above FindLoopHeaders for justifications and caveats. 2121 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2122 LLVM_DEBUG({ 2123 bool BBIsHeader = LoopHeaders.count(BB); 2124 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2125 dbgs() << " Not threading across " 2126 << (BBIsHeader ? "loop header BB '" : "block BB '") 2127 << BB->getName() << "' to dest " 2128 << (SuccIsHeader ? "loop header BB '" : "block BB '") 2129 << SuccBB->getName() 2130 << "' - it might create an irreducible loop!\n"; 2131 }); 2132 return false; 2133 } 2134 2135 // Compute the cost of duplicating BB and PredBB. 2136 unsigned BBCost = 2137 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2138 unsigned PredBBCost = getJumpThreadDuplicationCost( 2139 PredBB, PredBB->getTerminator(), BBDupThreshold); 2140 2141 // Give up if costs are too high. We need to check BBCost and PredBBCost 2142 // individually before checking their sum because getJumpThreadDuplicationCost 2143 // return (unsigned)~0 for those basic blocks that cannot be duplicated. 2144 if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold || 2145 BBCost + PredBBCost > BBDupThreshold) { 2146 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2147 << "' - Cost is too high: " << PredBBCost 2148 << " for PredBB, " << BBCost << "for BB\n"); 2149 return false; 2150 } 2151 2152 // Now we are ready to duplicate PredBB. 2153 ThreadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB); 2154 return true; 2155 } 2156 2157 void JumpThreadingPass::ThreadThroughTwoBasicBlocks(BasicBlock *PredPredBB, 2158 BasicBlock *PredBB, 2159 BasicBlock *BB, 2160 BasicBlock *SuccBB) { 2161 LLVM_DEBUG(dbgs() << " Threading through '" << PredBB->getName() << "' and '" 2162 << BB->getName() << "'\n"); 2163 2164 BranchInst *CondBr = cast<BranchInst>(BB->getTerminator()); 2165 BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator()); 2166 2167 BasicBlock *NewBB = 2168 BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread", 2169 PredBB->getParent(), PredBB); 2170 NewBB->moveAfter(PredBB); 2171 2172 // Set the block frequency of NewBB. 2173 if (HasProfileData) { 2174 auto NewBBFreq = BFI->getBlockFreq(PredPredBB) * 2175 BPI->getEdgeProbability(PredPredBB, PredBB); 2176 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2177 } 2178 2179 // We are going to have to map operands from the original BB block to the new 2180 // copy of the block 'NewBB'. If there are PHI nodes in PredBB, evaluate them 2181 // to account for entry from PredPredBB. 2182 DenseMap<Instruction *, Value *> ValueMapping = 2183 CloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB); 2184 2185 // Update the terminator of PredPredBB to jump to NewBB instead of PredBB. 2186 // This eliminates predecessors from PredPredBB, which requires us to simplify 2187 // any PHI nodes in PredBB. 2188 Instruction *PredPredTerm = PredPredBB->getTerminator(); 2189 for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i) 2190 if (PredPredTerm->getSuccessor(i) == PredBB) { 2191 PredBB->removePredecessor(PredPredBB, true); 2192 PredPredTerm->setSuccessor(i, NewBB); 2193 } 2194 2195 AddPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB, 2196 ValueMapping); 2197 AddPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB, 2198 ValueMapping); 2199 2200 DTU->applyUpdatesPermissive( 2201 {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)}, 2202 {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)}, 2203 {DominatorTree::Insert, PredPredBB, NewBB}, 2204 {DominatorTree::Delete, PredPredBB, PredBB}}); 2205 2206 UpdateSSA(PredBB, NewBB, ValueMapping); 2207 2208 // Clean up things like PHI nodes with single operands, dead instructions, 2209 // etc. 2210 SimplifyInstructionsInBlock(NewBB, TLI); 2211 SimplifyInstructionsInBlock(PredBB, TLI); 2212 2213 SmallVector<BasicBlock *, 1> PredsToFactor; 2214 PredsToFactor.push_back(NewBB); 2215 ThreadEdge(BB, PredsToFactor, SuccBB); 2216 } 2217 2218 /// TryThreadEdge - Thread an edge if it's safe and profitable to do so. 2219 bool JumpThreadingPass::TryThreadEdge( 2220 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs, 2221 BasicBlock *SuccBB) { 2222 // If threading to the same block as we come from, we would infinite loop. 2223 if (SuccBB == BB) { 2224 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2225 << "' - would thread to self!\n"); 2226 return false; 2227 } 2228 2229 // If threading this would thread across a loop header, don't thread the edge. 2230 // See the comments above FindLoopHeaders for justifications and caveats. 2231 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2232 LLVM_DEBUG({ 2233 bool BBIsHeader = LoopHeaders.count(BB); 2234 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2235 dbgs() << " Not threading across " 2236 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 2237 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 2238 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 2239 }); 2240 return false; 2241 } 2242 2243 unsigned JumpThreadCost = 2244 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2245 if (JumpThreadCost > BBDupThreshold) { 2246 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2247 << "' - Cost is too high: " << JumpThreadCost << "\n"); 2248 return false; 2249 } 2250 2251 ThreadEdge(BB, PredBBs, SuccBB); 2252 return true; 2253 } 2254 2255 /// ThreadEdge - We have decided that it is safe and profitable to factor the 2256 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 2257 /// across BB. Transform the IR to reflect this change. 2258 void JumpThreadingPass::ThreadEdge(BasicBlock *BB, 2259 const SmallVectorImpl<BasicBlock *> &PredBBs, 2260 BasicBlock *SuccBB) { 2261 assert(SuccBB != BB && "Don't create an infinite loop"); 2262 2263 assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) && 2264 "Don't thread across loop headers"); 2265 2266 // And finally, do it! Start by factoring the predecessors if needed. 2267 BasicBlock *PredBB; 2268 if (PredBBs.size() == 1) 2269 PredBB = PredBBs[0]; 2270 else { 2271 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2272 << " common predecessors.\n"); 2273 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 2274 } 2275 2276 // And finally, do it! 2277 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() 2278 << "' to '" << SuccBB->getName() 2279 << ", across block:\n " << *BB << "\n"); 2280 2281 LVI->threadEdge(PredBB, BB, SuccBB); 2282 2283 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 2284 BB->getName()+".thread", 2285 BB->getParent(), BB); 2286 NewBB->moveAfter(PredBB); 2287 2288 // Set the block frequency of NewBB. 2289 if (HasProfileData) { 2290 auto NewBBFreq = 2291 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 2292 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2293 } 2294 2295 // Copy all the instructions from BB to NewBB except the terminator. 2296 DenseMap<Instruction *, Value *> ValueMapping = 2297 CloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB); 2298 2299 // We didn't copy the terminator from BB over to NewBB, because there is now 2300 // an unconditional jump to SuccBB. Insert the unconditional jump. 2301 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 2302 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 2303 2304 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 2305 // PHI nodes for NewBB now. 2306 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 2307 2308 // Update the terminator of PredBB to jump to NewBB instead of BB. This 2309 // eliminates predecessors from BB, which requires us to simplify any PHI 2310 // nodes in BB. 2311 Instruction *PredTerm = PredBB->getTerminator(); 2312 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2313 if (PredTerm->getSuccessor(i) == BB) { 2314 BB->removePredecessor(PredBB, true); 2315 PredTerm->setSuccessor(i, NewBB); 2316 } 2317 2318 // Enqueue required DT updates. 2319 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB}, 2320 {DominatorTree::Insert, PredBB, NewBB}, 2321 {DominatorTree::Delete, PredBB, BB}}); 2322 2323 UpdateSSA(BB, NewBB, ValueMapping); 2324 2325 // At this point, the IR is fully up to date and consistent. Do a quick scan 2326 // over the new instructions and zap any that are constants or dead. This 2327 // frequently happens because of phi translation. 2328 SimplifyInstructionsInBlock(NewBB, TLI); 2329 2330 // Update the edge weight from BB to SuccBB, which should be less than before. 2331 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 2332 2333 // Threaded an edge! 2334 ++NumThreads; 2335 } 2336 2337 /// Create a new basic block that will be the predecessor of BB and successor of 2338 /// all blocks in Preds. When profile data is available, update the frequency of 2339 /// this new block. 2340 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 2341 ArrayRef<BasicBlock *> Preds, 2342 const char *Suffix) { 2343 SmallVector<BasicBlock *, 2> NewBBs; 2344 2345 // Collect the frequencies of all predecessors of BB, which will be used to 2346 // update the edge weight of the result of splitting predecessors. 2347 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2348 if (HasProfileData) 2349 for (auto Pred : Preds) 2350 FreqMap.insert(std::make_pair( 2351 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2352 2353 // In the case when BB is a LandingPad block we create 2 new predecessors 2354 // instead of just one. 2355 if (BB->isLandingPad()) { 2356 std::string NewName = std::string(Suffix) + ".split-lp"; 2357 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2358 } else { 2359 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2360 } 2361 2362 std::vector<DominatorTree::UpdateType> Updates; 2363 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2364 for (auto NewBB : NewBBs) { 2365 BlockFrequency NewBBFreq(0); 2366 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2367 for (auto Pred : predecessors(NewBB)) { 2368 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2369 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2370 if (HasProfileData) // Update frequencies between Pred -> NewBB. 2371 NewBBFreq += FreqMap.lookup(Pred); 2372 } 2373 if (HasProfileData) // Apply the summed frequency to NewBB. 2374 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2375 } 2376 2377 DTU->applyUpdatesPermissive(Updates); 2378 return NewBBs[0]; 2379 } 2380 2381 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2382 const Instruction *TI = BB->getTerminator(); 2383 assert(TI->getNumSuccessors() > 1 && "not a split"); 2384 2385 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 2386 if (!WeightsNode) 2387 return false; 2388 2389 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 2390 if (MDName->getString() != "branch_weights") 2391 return false; 2392 2393 // Ensure there are weights for all of the successors. Note that the first 2394 // operand to the metadata node is a name, not a weight. 2395 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2396 } 2397 2398 /// Update the block frequency of BB and branch weight and the metadata on the 2399 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2400 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2401 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2402 BasicBlock *BB, 2403 BasicBlock *NewBB, 2404 BasicBlock *SuccBB) { 2405 if (!HasProfileData) 2406 return; 2407 2408 assert(BFI && BPI && "BFI & BPI should have been created here"); 2409 2410 // As the edge from PredBB to BB is deleted, we have to update the block 2411 // frequency of BB. 2412 auto BBOrigFreq = BFI->getBlockFreq(BB); 2413 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2414 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2415 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2416 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2417 2418 // Collect updated outgoing edges' frequencies from BB and use them to update 2419 // edge probabilities. 2420 SmallVector<uint64_t, 4> BBSuccFreq; 2421 for (BasicBlock *Succ : successors(BB)) { 2422 auto SuccFreq = (Succ == SuccBB) 2423 ? BB2SuccBBFreq - NewBBFreq 2424 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2425 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2426 } 2427 2428 uint64_t MaxBBSuccFreq = 2429 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2430 2431 SmallVector<BranchProbability, 4> BBSuccProbs; 2432 if (MaxBBSuccFreq == 0) 2433 BBSuccProbs.assign(BBSuccFreq.size(), 2434 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2435 else { 2436 for (uint64_t Freq : BBSuccFreq) 2437 BBSuccProbs.push_back( 2438 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2439 // Normalize edge probabilities so that they sum up to one. 2440 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2441 BBSuccProbs.end()); 2442 } 2443 2444 // Update edge probabilities in BPI. 2445 BPI->setEdgeProbability(BB, BBSuccProbs); 2446 2447 // Update the profile metadata as well. 2448 // 2449 // Don't do this if the profile of the transformed blocks was statically 2450 // estimated. (This could occur despite the function having an entry 2451 // frequency in completely cold parts of the CFG.) 2452 // 2453 // In this case we don't want to suggest to subsequent passes that the 2454 // calculated weights are fully consistent. Consider this graph: 2455 // 2456 // check_1 2457 // 50% / | 2458 // eq_1 | 50% 2459 // \ | 2460 // check_2 2461 // 50% / | 2462 // eq_2 | 50% 2463 // \ | 2464 // check_3 2465 // 50% / | 2466 // eq_3 | 50% 2467 // \ | 2468 // 2469 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2470 // the overall probabilities are inconsistent; the total probability that the 2471 // value is either 1, 2 or 3 is 150%. 2472 // 2473 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2474 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2475 // the loop exit edge. Then based solely on static estimation we would assume 2476 // the loop was extremely hot. 2477 // 2478 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2479 // shouldn't make edges extremely likely or unlikely based solely on static 2480 // estimation. 2481 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2482 SmallVector<uint32_t, 4> Weights; 2483 for (auto Prob : BBSuccProbs) 2484 Weights.push_back(Prob.getNumerator()); 2485 2486 auto TI = BB->getTerminator(); 2487 TI->setMetadata( 2488 LLVMContext::MD_prof, 2489 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2490 } 2491 } 2492 2493 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2494 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2495 /// If we can duplicate the contents of BB up into PredBB do so now, this 2496 /// improves the odds that the branch will be on an analyzable instruction like 2497 /// a compare. 2498 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 2499 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2500 assert(!PredBBs.empty() && "Can't handle an empty set"); 2501 2502 // If BB is a loop header, then duplicating this block outside the loop would 2503 // cause us to transform this into an irreducible loop, don't do this. 2504 // See the comments above FindLoopHeaders for justifications and caveats. 2505 if (LoopHeaders.count(BB)) { 2506 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2507 << "' into predecessor block '" << PredBBs[0]->getName() 2508 << "' - it might create an irreducible loop!\n"); 2509 return false; 2510 } 2511 2512 unsigned DuplicationCost = 2513 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2514 if (DuplicationCost > BBDupThreshold) { 2515 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2516 << "' - Cost is too high: " << DuplicationCost << "\n"); 2517 return false; 2518 } 2519 2520 // And finally, do it! Start by factoring the predecessors if needed. 2521 std::vector<DominatorTree::UpdateType> Updates; 2522 BasicBlock *PredBB; 2523 if (PredBBs.size() == 1) 2524 PredBB = PredBBs[0]; 2525 else { 2526 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2527 << " common predecessors.\n"); 2528 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 2529 } 2530 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2531 2532 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2533 // of PredBB. 2534 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName() 2535 << "' into end of '" << PredBB->getName() 2536 << "' to eliminate branch on phi. Cost: " 2537 << DuplicationCost << " block is:" << *BB << "\n"); 2538 2539 // Unless PredBB ends with an unconditional branch, split the edge so that we 2540 // can just clone the bits from BB into the end of the new PredBB. 2541 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2542 2543 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2544 BasicBlock *OldPredBB = PredBB; 2545 PredBB = SplitEdge(OldPredBB, BB); 2546 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2547 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2548 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2549 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2550 } 2551 2552 // We are going to have to map operands from the original BB block into the 2553 // PredBB block. Evaluate PHI nodes in BB. 2554 DenseMap<Instruction*, Value*> ValueMapping; 2555 2556 BasicBlock::iterator BI = BB->begin(); 2557 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2558 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2559 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2560 // mapping and using it to remap operands in the cloned instructions. 2561 for (; BI != BB->end(); ++BI) { 2562 Instruction *New = BI->clone(); 2563 2564 // Remap operands to patch up intra-block references. 2565 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2566 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2567 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2568 if (I != ValueMapping.end()) 2569 New->setOperand(i, I->second); 2570 } 2571 2572 // If this instruction can be simplified after the operands are updated, 2573 // just use the simplified value instead. This frequently happens due to 2574 // phi translation. 2575 if (Value *IV = SimplifyInstruction( 2576 New, 2577 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2578 ValueMapping[&*BI] = IV; 2579 if (!New->mayHaveSideEffects()) { 2580 New->deleteValue(); 2581 New = nullptr; 2582 } 2583 } else { 2584 ValueMapping[&*BI] = New; 2585 } 2586 if (New) { 2587 // Otherwise, insert the new instruction into the block. 2588 New->setName(BI->getName()); 2589 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2590 // Update Dominance from simplified New instruction operands. 2591 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2592 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2593 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2594 } 2595 } 2596 2597 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2598 // add entries to the PHI nodes for branch from PredBB now. 2599 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2600 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2601 ValueMapping); 2602 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2603 ValueMapping); 2604 2605 UpdateSSA(BB, PredBB, ValueMapping); 2606 2607 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2608 // that we nuked. 2609 BB->removePredecessor(PredBB, true); 2610 2611 // Remove the unconditional branch at the end of the PredBB block. 2612 OldPredBranch->eraseFromParent(); 2613 DTU->applyUpdatesPermissive(Updates); 2614 2615 ++NumDupes; 2616 return true; 2617 } 2618 2619 // Pred is a predecessor of BB with an unconditional branch to BB. SI is 2620 // a Select instruction in Pred. BB has other predecessors and SI is used in 2621 // a PHI node in BB. SI has no other use. 2622 // A new basic block, NewBB, is created and SI is converted to compare and 2623 // conditional branch. SI is erased from parent. 2624 void JumpThreadingPass::UnfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, 2625 SelectInst *SI, PHINode *SIUse, 2626 unsigned Idx) { 2627 // Expand the select. 2628 // 2629 // Pred -- 2630 // | v 2631 // | NewBB 2632 // | | 2633 // |----- 2634 // v 2635 // BB 2636 BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator()); 2637 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2638 BB->getParent(), BB); 2639 // Move the unconditional branch to NewBB. 2640 PredTerm->removeFromParent(); 2641 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2642 // Create a conditional branch and update PHI nodes. 2643 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2644 SIUse->setIncomingValue(Idx, SI->getFalseValue()); 2645 SIUse->addIncoming(SI->getTrueValue(), NewBB); 2646 2647 // The select is now dead. 2648 SI->eraseFromParent(); 2649 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB}, 2650 {DominatorTree::Insert, Pred, NewBB}}); 2651 2652 // Update any other PHI nodes in BB. 2653 for (BasicBlock::iterator BI = BB->begin(); 2654 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2655 if (Phi != SIUse) 2656 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2657 } 2658 2659 bool JumpThreadingPass::TryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) { 2660 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition()); 2661 2662 if (!CondPHI || CondPHI->getParent() != BB) 2663 return false; 2664 2665 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) { 2666 BasicBlock *Pred = CondPHI->getIncomingBlock(I); 2667 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I)); 2668 2669 // The second and third condition can be potentially relaxed. Currently 2670 // the conditions help to simplify the code and allow us to reuse existing 2671 // code, developed for TryToUnfoldSelect(CmpInst *, BasicBlock *) 2672 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse()) 2673 continue; 2674 2675 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2676 if (!PredTerm || !PredTerm->isUnconditional()) 2677 continue; 2678 2679 UnfoldSelectInstr(Pred, BB, PredSI, CondPHI, I); 2680 return true; 2681 } 2682 return false; 2683 } 2684 2685 /// TryToUnfoldSelect - Look for blocks of the form 2686 /// bb1: 2687 /// %a = select 2688 /// br bb2 2689 /// 2690 /// bb2: 2691 /// %p = phi [%a, %bb1] ... 2692 /// %c = icmp %p 2693 /// br i1 %c 2694 /// 2695 /// And expand the select into a branch structure if one of its arms allows %c 2696 /// to be folded. This later enables threading from bb1 over bb2. 2697 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2698 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2699 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2700 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2701 2702 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2703 CondLHS->getParent() != BB) 2704 return false; 2705 2706 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2707 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2708 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2709 2710 // Look if one of the incoming values is a select in the corresponding 2711 // predecessor. 2712 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2713 continue; 2714 2715 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2716 if (!PredTerm || !PredTerm->isUnconditional()) 2717 continue; 2718 2719 // Now check if one of the select values would allow us to constant fold the 2720 // terminator in BB. We don't do the transform if both sides fold, those 2721 // cases will be threaded in any case. 2722 LazyValueInfo::Tristate LHSFolds = 2723 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2724 CondRHS, Pred, BB, CondCmp); 2725 LazyValueInfo::Tristate RHSFolds = 2726 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2727 CondRHS, Pred, BB, CondCmp); 2728 if ((LHSFolds != LazyValueInfo::Unknown || 2729 RHSFolds != LazyValueInfo::Unknown) && 2730 LHSFolds != RHSFolds) { 2731 UnfoldSelectInstr(Pred, BB, SI, CondLHS, I); 2732 return true; 2733 } 2734 } 2735 return false; 2736 } 2737 2738 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2739 /// same BB in the form 2740 /// bb: 2741 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2742 /// %s = select %p, trueval, falseval 2743 /// 2744 /// or 2745 /// 2746 /// bb: 2747 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2748 /// %c = cmp %p, 0 2749 /// %s = select %c, trueval, falseval 2750 /// 2751 /// And expand the select into a branch structure. This later enables 2752 /// jump-threading over bb in this pass. 2753 /// 2754 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2755 /// select if the associated PHI has at least one constant. If the unfolded 2756 /// select is not jump-threaded, it will be folded again in the later 2757 /// optimizations. 2758 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2759 // This transform can introduce a UB (a conditional branch that depends on a 2760 // poison value) that was not present in the original program. See 2761 // @TryToUnfoldSelectInCurrBB test in test/Transforms/JumpThreading/select.ll. 2762 // Disable this transform under MemorySanitizer. 2763 // FIXME: either delete it or replace with a valid transform. This issue is 2764 // not limited to MemorySanitizer (but has only been observed as an MSan false 2765 // positive in practice so far). 2766 if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 2767 return false; 2768 2769 // If threading this would thread across a loop header, don't thread the edge. 2770 // See the comments above FindLoopHeaders for justifications and caveats. 2771 if (LoopHeaders.count(BB)) 2772 return false; 2773 2774 for (BasicBlock::iterator BI = BB->begin(); 2775 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2776 // Look for a Phi having at least one constant incoming value. 2777 if (llvm::all_of(PN->incoming_values(), 2778 [](Value *V) { return !isa<ConstantInt>(V); })) 2779 continue; 2780 2781 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2782 // Check if SI is in BB and use V as condition. 2783 if (SI->getParent() != BB) 2784 return false; 2785 Value *Cond = SI->getCondition(); 2786 return (Cond && Cond == V && Cond->getType()->isIntegerTy(1)); 2787 }; 2788 2789 SelectInst *SI = nullptr; 2790 for (Use &U : PN->uses()) { 2791 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2792 // Look for a ICmp in BB that compares PN with a constant and is the 2793 // condition of a Select. 2794 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2795 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2796 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2797 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2798 SI = SelectI; 2799 break; 2800 } 2801 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2802 // Look for a Select in BB that uses PN as condition. 2803 if (isUnfoldCandidate(SelectI, U.get())) { 2804 SI = SelectI; 2805 break; 2806 } 2807 } 2808 } 2809 2810 if (!SI) 2811 continue; 2812 // Expand the select. 2813 Instruction *Term = 2814 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 2815 BasicBlock *SplitBB = SI->getParent(); 2816 BasicBlock *NewBB = Term->getParent(); 2817 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2818 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2819 NewPN->addIncoming(SI->getFalseValue(), BB); 2820 SI->replaceAllUsesWith(NewPN); 2821 SI->eraseFromParent(); 2822 // NewBB and SplitBB are newly created blocks which require insertion. 2823 std::vector<DominatorTree::UpdateType> Updates; 2824 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2825 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2826 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2827 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2828 // BB's successors were moved to SplitBB, update DTU accordingly. 2829 for (auto *Succ : successors(SplitBB)) { 2830 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2831 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2832 } 2833 DTU->applyUpdatesPermissive(Updates); 2834 return true; 2835 } 2836 return false; 2837 } 2838 2839 /// Try to propagate a guard from the current BB into one of its predecessors 2840 /// in case if another branch of execution implies that the condition of this 2841 /// guard is always true. Currently we only process the simplest case that 2842 /// looks like: 2843 /// 2844 /// Start: 2845 /// %cond = ... 2846 /// br i1 %cond, label %T1, label %F1 2847 /// T1: 2848 /// br label %Merge 2849 /// F1: 2850 /// br label %Merge 2851 /// Merge: 2852 /// %condGuard = ... 2853 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2854 /// 2855 /// And cond either implies condGuard or !condGuard. In this case all the 2856 /// instructions before the guard can be duplicated in both branches, and the 2857 /// guard is then threaded to one of them. 2858 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) { 2859 using namespace PatternMatch; 2860 2861 // We only want to deal with two predecessors. 2862 BasicBlock *Pred1, *Pred2; 2863 auto PI = pred_begin(BB), PE = pred_end(BB); 2864 if (PI == PE) 2865 return false; 2866 Pred1 = *PI++; 2867 if (PI == PE) 2868 return false; 2869 Pred2 = *PI++; 2870 if (PI != PE) 2871 return false; 2872 if (Pred1 == Pred2) 2873 return false; 2874 2875 // Try to thread one of the guards of the block. 2876 // TODO: Look up deeper than to immediate predecessor? 2877 auto *Parent = Pred1->getSinglePredecessor(); 2878 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2879 return false; 2880 2881 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2882 for (auto &I : *BB) 2883 if (isGuard(&I) && ThreadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2884 return true; 2885 2886 return false; 2887 } 2888 2889 /// Try to propagate the guard from BB which is the lower block of a diamond 2890 /// to one of its branches, in case if diamond's condition implies guard's 2891 /// condition. 2892 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2893 BranchInst *BI) { 2894 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2895 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2896 Value *GuardCond = Guard->getArgOperand(0); 2897 Value *BranchCond = BI->getCondition(); 2898 BasicBlock *TrueDest = BI->getSuccessor(0); 2899 BasicBlock *FalseDest = BI->getSuccessor(1); 2900 2901 auto &DL = BB->getModule()->getDataLayout(); 2902 bool TrueDestIsSafe = false; 2903 bool FalseDestIsSafe = false; 2904 2905 // True dest is safe if BranchCond => GuardCond. 2906 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 2907 if (Impl && *Impl) 2908 TrueDestIsSafe = true; 2909 else { 2910 // False dest is safe if !BranchCond => GuardCond. 2911 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 2912 if (Impl && *Impl) 2913 FalseDestIsSafe = true; 2914 } 2915 2916 if (!TrueDestIsSafe && !FalseDestIsSafe) 2917 return false; 2918 2919 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 2920 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 2921 2922 ValueToValueMapTy UnguardedMapping, GuardedMapping; 2923 Instruction *AfterGuard = Guard->getNextNode(); 2924 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 2925 if (Cost > BBDupThreshold) 2926 return false; 2927 // Duplicate all instructions before the guard and the guard itself to the 2928 // branch where implication is not proved. 2929 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 2930 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU); 2931 assert(GuardedBlock && "Could not create the guarded block?"); 2932 // Duplicate all instructions before the guard in the unguarded branch. 2933 // Since we have successfully duplicated the guarded block and this block 2934 // has fewer instructions, we expect it to succeed. 2935 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 2936 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU); 2937 assert(UnguardedBlock && "Could not create the unguarded block?"); 2938 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 2939 << GuardedBlock->getName() << "\n"); 2940 // Some instructions before the guard may still have uses. For them, we need 2941 // to create Phi nodes merging their copies in both guarded and unguarded 2942 // branches. Those instructions that have no uses can be just removed. 2943 SmallVector<Instruction *, 4> ToRemove; 2944 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 2945 if (!isa<PHINode>(&*BI)) 2946 ToRemove.push_back(&*BI); 2947 2948 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 2949 assert(InsertionPoint && "Empty block?"); 2950 // Substitute with Phis & remove. 2951 for (auto *Inst : reverse(ToRemove)) { 2952 if (!Inst->use_empty()) { 2953 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 2954 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 2955 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 2956 NewPN->insertBefore(InsertionPoint); 2957 Inst->replaceAllUsesWith(NewPN); 2958 } 2959 Inst->eraseFromParent(); 2960 } 2961 return true; 2962 } 2963