1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Jump Threading pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Scalar/JumpThreading.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/BlockFrequencyInfo.h" 23 #include "llvm/Analysis/BranchProbabilityInfo.h" 24 #include "llvm/Analysis/CFG.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/GlobalsModRef.h" 27 #include "llvm/Analysis/GuardUtils.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/LazyValueInfo.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/MemoryLocation.h" 33 #include "llvm/Analysis/PostDominators.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DebugInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/PassManager.h" 56 #include "llvm/IR/PatternMatch.h" 57 #include "llvm/IR/ProfDataUtils.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Use.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/Support/BlockFrequency.h" 62 #include "llvm/Support/BranchProbability.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/Cloning.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include "llvm/Transforms/Utils/SSAUpdater.h" 71 #include "llvm/Transforms/Utils/ValueMapper.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <iterator> 76 #include <memory> 77 #include <utility> 78 79 using namespace llvm; 80 using namespace jumpthreading; 81 82 #define DEBUG_TYPE "jump-threading" 83 84 STATISTIC(NumThreads, "Number of jumps threaded"); 85 STATISTIC(NumFolds, "Number of terminators folded"); 86 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 87 88 static cl::opt<unsigned> 89 BBDuplicateThreshold("jump-threading-threshold", 90 cl::desc("Max block size to duplicate for jump threading"), 91 cl::init(6), cl::Hidden); 92 93 static cl::opt<unsigned> 94 ImplicationSearchThreshold( 95 "jump-threading-implication-search-threshold", 96 cl::desc("The number of predecessors to search for a stronger " 97 "condition to use to thread over a weaker condition"), 98 cl::init(3), cl::Hidden); 99 100 static cl::opt<unsigned> PhiDuplicateThreshold( 101 "jump-threading-phi-threshold", 102 cl::desc("Max PHIs in BB to duplicate for jump threading"), cl::init(76), 103 cl::Hidden); 104 105 static cl::opt<bool> ThreadAcrossLoopHeaders( 106 "jump-threading-across-loop-headers", 107 cl::desc("Allow JumpThreading to thread across loop headers, for testing"), 108 cl::init(false), cl::Hidden); 109 110 JumpThreadingPass::JumpThreadingPass(int T) { 111 DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 112 } 113 114 // Update branch probability information according to conditional 115 // branch probability. This is usually made possible for cloned branches 116 // in inline instances by the context specific profile in the caller. 117 // For instance, 118 // 119 // [Block PredBB] 120 // [Branch PredBr] 121 // if (t) { 122 // Block A; 123 // } else { 124 // Block B; 125 // } 126 // 127 // [Block BB] 128 // cond = PN([true, %A], [..., %B]); // PHI node 129 // [Branch CondBr] 130 // if (cond) { 131 // ... // P(cond == true) = 1% 132 // } 133 // 134 // Here we know that when block A is taken, cond must be true, which means 135 // P(cond == true | A) = 1 136 // 137 // Given that P(cond == true) = P(cond == true | A) * P(A) + 138 // P(cond == true | B) * P(B) 139 // we get: 140 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 141 // 142 // which gives us: 143 // P(A) is less than P(cond == true), i.e. 144 // P(t == true) <= P(cond == true) 145 // 146 // In other words, if we know P(cond == true) is unlikely, we know 147 // that P(t == true) is also unlikely. 148 // 149 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 150 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 151 if (!CondBr) 152 return; 153 154 uint64_t TrueWeight, FalseWeight; 155 if (!extractBranchWeights(*CondBr, TrueWeight, FalseWeight)) 156 return; 157 158 if (TrueWeight + FalseWeight == 0) 159 // Zero branch_weights do not give a hint for getting branch probabilities. 160 // Technically it would result in division by zero denominator, which is 161 // TrueWeight + FalseWeight. 162 return; 163 164 // Returns the outgoing edge of the dominating predecessor block 165 // that leads to the PhiNode's incoming block: 166 auto GetPredOutEdge = 167 [](BasicBlock *IncomingBB, 168 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 169 auto *PredBB = IncomingBB; 170 auto *SuccBB = PhiBB; 171 SmallPtrSet<BasicBlock *, 16> Visited; 172 while (true) { 173 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 174 if (PredBr && PredBr->isConditional()) 175 return {PredBB, SuccBB}; 176 Visited.insert(PredBB); 177 auto *SinglePredBB = PredBB->getSinglePredecessor(); 178 if (!SinglePredBB) 179 return {nullptr, nullptr}; 180 181 // Stop searching when SinglePredBB has been visited. It means we see 182 // an unreachable loop. 183 if (Visited.count(SinglePredBB)) 184 return {nullptr, nullptr}; 185 186 SuccBB = PredBB; 187 PredBB = SinglePredBB; 188 } 189 }; 190 191 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 192 Value *PhiOpnd = PN->getIncomingValue(i); 193 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 194 195 if (!CI || !CI->getType()->isIntegerTy(1)) 196 continue; 197 198 BranchProbability BP = 199 (CI->isOne() ? BranchProbability::getBranchProbability( 200 TrueWeight, TrueWeight + FalseWeight) 201 : BranchProbability::getBranchProbability( 202 FalseWeight, TrueWeight + FalseWeight)); 203 204 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 205 if (!PredOutEdge.first) 206 return; 207 208 BasicBlock *PredBB = PredOutEdge.first; 209 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 210 if (!PredBr) 211 return; 212 213 uint64_t PredTrueWeight, PredFalseWeight; 214 // FIXME: We currently only set the profile data when it is missing. 215 // With PGO, this can be used to refine even existing profile data with 216 // context information. This needs to be done after more performance 217 // testing. 218 if (extractBranchWeights(*PredBr, PredTrueWeight, PredFalseWeight)) 219 continue; 220 221 // We can not infer anything useful when BP >= 50%, because BP is the 222 // upper bound probability value. 223 if (BP >= BranchProbability(50, 100)) 224 continue; 225 226 uint32_t Weights[2]; 227 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 228 Weights[0] = BP.getNumerator(); 229 Weights[1] = BP.getCompl().getNumerator(); 230 } else { 231 Weights[0] = BP.getCompl().getNumerator(); 232 Weights[1] = BP.getNumerator(); 233 } 234 setBranchWeights(*PredBr, Weights, hasBranchWeightOrigin(*PredBr)); 235 } 236 } 237 238 PreservedAnalyses JumpThreadingPass::run(Function &F, 239 FunctionAnalysisManager &AM) { 240 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 241 // Jump Threading has no sense for the targets with divergent CF 242 if (TTI.hasBranchDivergence(&F)) 243 return PreservedAnalyses::all(); 244 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 245 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 246 auto &AA = AM.getResult<AAManager>(F); 247 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 248 249 bool Changed = 250 runImpl(F, &AM, &TLI, &TTI, &LVI, &AA, 251 std::make_unique<DomTreeUpdater>( 252 &DT, nullptr, DomTreeUpdater::UpdateStrategy::Lazy), 253 std::nullopt, std::nullopt); 254 255 if (!Changed) 256 return PreservedAnalyses::all(); 257 258 259 getDomTreeUpdater()->flush(); 260 261 #if defined(EXPENSIVE_CHECKS) 262 assert(getDomTreeUpdater()->getDomTree().verify( 263 DominatorTree::VerificationLevel::Full) && 264 "DT broken after JumpThreading"); 265 assert((!getDomTreeUpdater()->hasPostDomTree() || 266 getDomTreeUpdater()->getPostDomTree().verify( 267 PostDominatorTree::VerificationLevel::Full)) && 268 "PDT broken after JumpThreading"); 269 #else 270 assert(getDomTreeUpdater()->getDomTree().verify( 271 DominatorTree::VerificationLevel::Fast) && 272 "DT broken after JumpThreading"); 273 assert((!getDomTreeUpdater()->hasPostDomTree() || 274 getDomTreeUpdater()->getPostDomTree().verify( 275 PostDominatorTree::VerificationLevel::Fast)) && 276 "PDT broken after JumpThreading"); 277 #endif 278 279 return getPreservedAnalysis(); 280 } 281 282 bool JumpThreadingPass::runImpl(Function &F_, FunctionAnalysisManager *FAM_, 283 TargetLibraryInfo *TLI_, 284 TargetTransformInfo *TTI_, LazyValueInfo *LVI_, 285 AliasAnalysis *AA_, 286 std::unique_ptr<DomTreeUpdater> DTU_, 287 std::optional<BlockFrequencyInfo *> BFI_, 288 std::optional<BranchProbabilityInfo *> BPI_) { 289 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F_.getName() << "'\n"); 290 F = &F_; 291 FAM = FAM_; 292 TLI = TLI_; 293 TTI = TTI_; 294 LVI = LVI_; 295 AA = AA_; 296 DTU = std::move(DTU_); 297 BFI = BFI_; 298 BPI = BPI_; 299 auto *GuardDecl = F->getParent()->getFunction( 300 Intrinsic::getName(Intrinsic::experimental_guard)); 301 HasGuards = GuardDecl && !GuardDecl->use_empty(); 302 303 // Reduce the number of instructions duplicated when optimizing strictly for 304 // size. 305 if (BBDuplicateThreshold.getNumOccurrences()) 306 BBDupThreshold = BBDuplicateThreshold; 307 else if (F->hasFnAttribute(Attribute::MinSize)) 308 BBDupThreshold = 3; 309 else 310 BBDupThreshold = DefaultBBDupThreshold; 311 312 // JumpThreading must not processes blocks unreachable from entry. It's a 313 // waste of compute time and can potentially lead to hangs. 314 SmallPtrSet<BasicBlock *, 16> Unreachable; 315 assert(DTU && "DTU isn't passed into JumpThreading before using it."); 316 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."); 317 DominatorTree &DT = DTU->getDomTree(); 318 for (auto &BB : *F) 319 if (!DT.isReachableFromEntry(&BB)) 320 Unreachable.insert(&BB); 321 322 if (!ThreadAcrossLoopHeaders) 323 findLoopHeaders(*F); 324 325 bool EverChanged = false; 326 bool Changed; 327 do { 328 Changed = false; 329 for (auto &BB : *F) { 330 if (Unreachable.count(&BB)) 331 continue; 332 while (processBlock(&BB)) // Thread all of the branches we can over BB. 333 Changed = ChangedSinceLastAnalysisUpdate = true; 334 335 // Jump threading may have introduced redundant debug values into BB 336 // which should be removed. 337 if (Changed) 338 RemoveRedundantDbgInstrs(&BB); 339 340 // Stop processing BB if it's the entry or is now deleted. The following 341 // routines attempt to eliminate BB and locating a suitable replacement 342 // for the entry is non-trivial. 343 if (&BB == &F->getEntryBlock() || DTU->isBBPendingDeletion(&BB)) 344 continue; 345 346 if (pred_empty(&BB)) { 347 // When processBlock makes BB unreachable it doesn't bother to fix up 348 // the instructions in it. We must remove BB to prevent invalid IR. 349 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 350 << "' with terminator: " << *BB.getTerminator() 351 << '\n'); 352 LoopHeaders.erase(&BB); 353 LVI->eraseBlock(&BB); 354 DeleteDeadBlock(&BB, DTU.get()); 355 Changed = ChangedSinceLastAnalysisUpdate = true; 356 continue; 357 } 358 359 // processBlock doesn't thread BBs with unconditional TIs. However, if BB 360 // is "almost empty", we attempt to merge BB with its sole successor. 361 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 362 if (BI && BI->isUnconditional()) { 363 BasicBlock *Succ = BI->getSuccessor(0); 364 if ( 365 // The terminator must be the only non-phi instruction in BB. 366 BB.getFirstNonPHIOrDbg(true)->isTerminator() && 367 // Don't alter Loop headers and latches to ensure another pass can 368 // detect and transform nested loops later. 369 !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) && 370 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU.get())) { 371 RemoveRedundantDbgInstrs(Succ); 372 // BB is valid for cleanup here because we passed in DTU. F remains 373 // BB's parent until a DTU->getDomTree() event. 374 LVI->eraseBlock(&BB); 375 Changed = ChangedSinceLastAnalysisUpdate = true; 376 } 377 } 378 } 379 EverChanged |= Changed; 380 } while (Changed); 381 382 LoopHeaders.clear(); 383 return EverChanged; 384 } 385 386 // Replace uses of Cond with ToVal when safe to do so. If all uses are 387 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 388 // because we may incorrectly replace uses when guards/assumes are uses of 389 // of `Cond` and we used the guards/assume to reason about the `Cond` value 390 // at the end of block. RAUW unconditionally replaces all uses 391 // including the guards/assumes themselves and the uses before the 392 // guard/assume. 393 static bool replaceFoldableUses(Instruction *Cond, Value *ToVal, 394 BasicBlock *KnownAtEndOfBB) { 395 bool Changed = false; 396 assert(Cond->getType() == ToVal->getType()); 397 // We can unconditionally replace all uses in non-local blocks (i.e. uses 398 // strictly dominated by BB), since LVI information is true from the 399 // terminator of BB. 400 if (Cond->getParent() == KnownAtEndOfBB) 401 Changed |= replaceNonLocalUsesWith(Cond, ToVal); 402 for (Instruction &I : reverse(*KnownAtEndOfBB)) { 403 // Replace any debug-info record users of Cond with ToVal. 404 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) 405 DVR.replaceVariableLocationOp(Cond, ToVal, true); 406 407 // Reached the Cond whose uses we are trying to replace, so there are no 408 // more uses. 409 if (&I == Cond) 410 break; 411 // We only replace uses in instructions that are guaranteed to reach the end 412 // of BB, where we know Cond is ToVal. 413 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 414 break; 415 Changed |= I.replaceUsesOfWith(Cond, ToVal); 416 } 417 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) { 418 Cond->eraseFromParent(); 419 Changed = true; 420 } 421 return Changed; 422 } 423 424 /// Return the cost of duplicating a piece of this block from first non-phi 425 /// and before StopAt instruction to thread across it. Stop scanning the block 426 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 427 static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI, 428 BasicBlock *BB, 429 Instruction *StopAt, 430 unsigned Threshold) { 431 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 432 433 // Do not duplicate the BB if it has a lot of PHI nodes. 434 // If a threadable chain is too long then the number of PHI nodes can add up, 435 // leading to a substantial increase in compile time when rewriting the SSA. 436 unsigned PhiCount = 0; 437 Instruction *FirstNonPHI = nullptr; 438 for (Instruction &I : *BB) { 439 if (!isa<PHINode>(&I)) { 440 FirstNonPHI = &I; 441 break; 442 } 443 if (++PhiCount > PhiDuplicateThreshold) 444 return ~0U; 445 } 446 447 /// Ignore PHI nodes, these will be flattened when duplication happens. 448 BasicBlock::const_iterator I(FirstNonPHI); 449 450 // FIXME: THREADING will delete values that are just used to compute the 451 // branch, so they shouldn't count against the duplication cost. 452 453 unsigned Bonus = 0; 454 if (BB->getTerminator() == StopAt) { 455 // Threading through a switch statement is particularly profitable. If this 456 // block ends in a switch, decrease its cost to make it more likely to 457 // happen. 458 if (isa<SwitchInst>(StopAt)) 459 Bonus = 6; 460 461 // The same holds for indirect branches, but slightly more so. 462 if (isa<IndirectBrInst>(StopAt)) 463 Bonus = 8; 464 } 465 466 // Bump the threshold up so the early exit from the loop doesn't skip the 467 // terminator-based Size adjustment at the end. 468 Threshold += Bonus; 469 470 // Sum up the cost of each instruction until we get to the terminator. Don't 471 // include the terminator because the copy won't include it. 472 unsigned Size = 0; 473 for (; &*I != StopAt; ++I) { 474 475 // Stop scanning the block if we've reached the threshold. 476 if (Size > Threshold) 477 return Size; 478 479 // Bail out if this instruction gives back a token type, it is not possible 480 // to duplicate it if it is used outside this BB. 481 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 482 return ~0U; 483 484 // Blocks with NoDuplicate are modelled as having infinite cost, so they 485 // are never duplicated. 486 if (const CallInst *CI = dyn_cast<CallInst>(I)) 487 if (CI->cannotDuplicate() || CI->isConvergent()) 488 return ~0U; 489 490 if (TTI->getInstructionCost(&*I, TargetTransformInfo::TCK_SizeAndLatency) == 491 TargetTransformInfo::TCC_Free) 492 continue; 493 494 // All other instructions count for at least one unit. 495 ++Size; 496 497 // Calls are more expensive. If they are non-intrinsic calls, we model them 498 // as having cost of 4. If they are a non-vector intrinsic, we model them 499 // as having cost of 2 total, and if they are a vector intrinsic, we model 500 // them as having cost 1. 501 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 502 if (!isa<IntrinsicInst>(CI)) 503 Size += 3; 504 else if (!CI->getType()->isVectorTy()) 505 Size += 1; 506 } 507 } 508 509 return Size > Bonus ? Size - Bonus : 0; 510 } 511 512 /// findLoopHeaders - We do not want jump threading to turn proper loop 513 /// structures into irreducible loops. Doing this breaks up the loop nesting 514 /// hierarchy and pessimizes later transformations. To prevent this from 515 /// happening, we first have to find the loop headers. Here we approximate this 516 /// by finding targets of backedges in the CFG. 517 /// 518 /// Note that there definitely are cases when we want to allow threading of 519 /// edges across a loop header. For example, threading a jump from outside the 520 /// loop (the preheader) to an exit block of the loop is definitely profitable. 521 /// It is also almost always profitable to thread backedges from within the loop 522 /// to exit blocks, and is often profitable to thread backedges to other blocks 523 /// within the loop (forming a nested loop). This simple analysis is not rich 524 /// enough to track all of these properties and keep it up-to-date as the CFG 525 /// mutates, so we don't allow any of these transformations. 526 void JumpThreadingPass::findLoopHeaders(Function &F) { 527 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 528 FindFunctionBackedges(F, Edges); 529 530 for (const auto &Edge : Edges) 531 LoopHeaders.insert(Edge.second); 532 } 533 534 /// getKnownConstant - Helper method to determine if we can thread over a 535 /// terminator with the given value as its condition, and if so what value to 536 /// use for that. What kind of value this is depends on whether we want an 537 /// integer or a block address, but an undef is always accepted. 538 /// Returns null if Val is null or not an appropriate constant. 539 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 540 if (!Val) 541 return nullptr; 542 543 // Undef is "known" enough. 544 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 545 return U; 546 547 if (Preference == WantBlockAddress) 548 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 549 550 return dyn_cast<ConstantInt>(Val); 551 } 552 553 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see 554 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 555 /// in any of our predecessors. If so, return the known list of value and pred 556 /// BB in the result vector. 557 /// 558 /// This returns true if there were any known values. 559 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl( 560 Value *V, BasicBlock *BB, PredValueInfo &Result, 561 ConstantPreference Preference, SmallPtrSet<Value *, 4> &RecursionSet, 562 Instruction *CxtI) { 563 const DataLayout &DL = BB->getModule()->getDataLayout(); 564 565 // This method walks up use-def chains recursively. Because of this, we could 566 // get into an infinite loop going around loops in the use-def chain. To 567 // prevent this, keep track of what (value, block) pairs we've already visited 568 // and terminate the search if we loop back to them 569 if (!RecursionSet.insert(V).second) 570 return false; 571 572 // If V is a constant, then it is known in all predecessors. 573 if (Constant *KC = getKnownConstant(V, Preference)) { 574 for (BasicBlock *Pred : predecessors(BB)) 575 Result.emplace_back(KC, Pred); 576 577 return !Result.empty(); 578 } 579 580 // If V is a non-instruction value, or an instruction in a different block, 581 // then it can't be derived from a PHI. 582 Instruction *I = dyn_cast<Instruction>(V); 583 if (!I || I->getParent() != BB) { 584 585 // Okay, if this is a live-in value, see if it has a known value at the any 586 // edge from our predecessors. 587 for (BasicBlock *P : predecessors(BB)) { 588 using namespace PatternMatch; 589 // If the value is known by LazyValueInfo to be a constant in a 590 // predecessor, use that information to try to thread this block. 591 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 592 // If I is a non-local compare-with-constant instruction, use more-rich 593 // 'getPredicateOnEdge' method. This would be able to handle value 594 // inequalities better, for example if the compare is "X < 4" and "X < 3" 595 // is known true but "X < 4" itself is not available. 596 CmpInst::Predicate Pred; 597 Value *Val; 598 Constant *Cst; 599 if (!PredCst && match(V, m_Cmp(Pred, m_Value(Val), m_Constant(Cst)))) { 600 auto Res = LVI->getPredicateOnEdge(Pred, Val, Cst, P, BB, CxtI); 601 if (Res != LazyValueInfo::Unknown) 602 PredCst = ConstantInt::getBool(V->getContext(), Res); 603 } 604 if (Constant *KC = getKnownConstant(PredCst, Preference)) 605 Result.emplace_back(KC, P); 606 } 607 608 return !Result.empty(); 609 } 610 611 /// If I is a PHI node, then we know the incoming values for any constants. 612 if (PHINode *PN = dyn_cast<PHINode>(I)) { 613 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 614 Value *InVal = PN->getIncomingValue(i); 615 if (Constant *KC = getKnownConstant(InVal, Preference)) { 616 Result.emplace_back(KC, PN->getIncomingBlock(i)); 617 } else { 618 Constant *CI = LVI->getConstantOnEdge(InVal, 619 PN->getIncomingBlock(i), 620 BB, CxtI); 621 if (Constant *KC = getKnownConstant(CI, Preference)) 622 Result.emplace_back(KC, PN->getIncomingBlock(i)); 623 } 624 } 625 626 return !Result.empty(); 627 } 628 629 // Handle Cast instructions. 630 if (CastInst *CI = dyn_cast<CastInst>(I)) { 631 Value *Source = CI->getOperand(0); 632 PredValueInfoTy Vals; 633 computeValueKnownInPredecessorsImpl(Source, BB, Vals, Preference, 634 RecursionSet, CxtI); 635 if (Vals.empty()) 636 return false; 637 638 // Convert the known values. 639 for (auto &Val : Vals) 640 if (Constant *Folded = ConstantFoldCastOperand(CI->getOpcode(), Val.first, 641 CI->getType(), DL)) 642 Result.emplace_back(Folded, Val.second); 643 644 return !Result.empty(); 645 } 646 647 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 648 Value *Source = FI->getOperand(0); 649 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 650 RecursionSet, CxtI); 651 652 erase_if(Result, [](auto &Pair) { 653 return !isGuaranteedNotToBeUndefOrPoison(Pair.first); 654 }); 655 656 return !Result.empty(); 657 } 658 659 // Handle some boolean conditions. 660 if (I->getType()->getPrimitiveSizeInBits() == 1) { 661 using namespace PatternMatch; 662 if (Preference != WantInteger) 663 return false; 664 // X | true -> true 665 // X & false -> false 666 Value *Op0, *Op1; 667 if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 668 match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 669 PredValueInfoTy LHSVals, RHSVals; 670 671 computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger, 672 RecursionSet, CxtI); 673 computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger, 674 RecursionSet, CxtI); 675 676 if (LHSVals.empty() && RHSVals.empty()) 677 return false; 678 679 ConstantInt *InterestingVal; 680 if (match(I, m_LogicalOr())) 681 InterestingVal = ConstantInt::getTrue(I->getContext()); 682 else 683 InterestingVal = ConstantInt::getFalse(I->getContext()); 684 685 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 686 687 // Scan for the sentinel. If we find an undef, force it to the 688 // interesting value: x|undef -> true and x&undef -> false. 689 for (const auto &LHSVal : LHSVals) 690 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 691 Result.emplace_back(InterestingVal, LHSVal.second); 692 LHSKnownBBs.insert(LHSVal.second); 693 } 694 for (const auto &RHSVal : RHSVals) 695 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 696 // If we already inferred a value for this block on the LHS, don't 697 // re-add it. 698 if (!LHSKnownBBs.count(RHSVal.second)) 699 Result.emplace_back(InterestingVal, RHSVal.second); 700 } 701 702 return !Result.empty(); 703 } 704 705 // Handle the NOT form of XOR. 706 if (I->getOpcode() == Instruction::Xor && 707 isa<ConstantInt>(I->getOperand(1)) && 708 cast<ConstantInt>(I->getOperand(1))->isOne()) { 709 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result, 710 WantInteger, RecursionSet, CxtI); 711 if (Result.empty()) 712 return false; 713 714 // Invert the known values. 715 for (auto &R : Result) 716 R.first = ConstantExpr::getNot(R.first); 717 718 return true; 719 } 720 721 // Try to simplify some other binary operator values. 722 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 723 if (Preference != WantInteger) 724 return false; 725 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 726 PredValueInfoTy LHSVals; 727 computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals, 728 WantInteger, RecursionSet, CxtI); 729 730 // Try to use constant folding to simplify the binary operator. 731 for (const auto &LHSVal : LHSVals) { 732 Constant *V = LHSVal.first; 733 Constant *Folded = 734 ConstantFoldBinaryOpOperands(BO->getOpcode(), V, CI, DL); 735 736 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 737 Result.emplace_back(KC, LHSVal.second); 738 } 739 } 740 741 return !Result.empty(); 742 } 743 744 // Handle compare with phi operand, where the PHI is defined in this block. 745 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 746 if (Preference != WantInteger) 747 return false; 748 Type *CmpType = Cmp->getType(); 749 Value *CmpLHS = Cmp->getOperand(0); 750 Value *CmpRHS = Cmp->getOperand(1); 751 CmpInst::Predicate Pred = Cmp->getPredicate(); 752 753 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 754 if (!PN) 755 PN = dyn_cast<PHINode>(CmpRHS); 756 // Do not perform phi translation across a loop header phi, because this 757 // may result in comparison of values from two different loop iterations. 758 // FIXME: This check is broken if LoopHeaders is not populated. 759 if (PN && PN->getParent() == BB && !LoopHeaders.contains(BB)) { 760 const DataLayout &DL = PN->getModule()->getDataLayout(); 761 // We can do this simplification if any comparisons fold to true or false. 762 // See if any do. 763 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 764 BasicBlock *PredBB = PN->getIncomingBlock(i); 765 Value *LHS, *RHS; 766 if (PN == CmpLHS) { 767 LHS = PN->getIncomingValue(i); 768 RHS = CmpRHS->DoPHITranslation(BB, PredBB); 769 } else { 770 LHS = CmpLHS->DoPHITranslation(BB, PredBB); 771 RHS = PN->getIncomingValue(i); 772 } 773 Value *Res = simplifyCmpInst(Pred, LHS, RHS, {DL}); 774 if (!Res) { 775 if (!isa<Constant>(RHS)) 776 continue; 777 778 // getPredicateOnEdge call will make no sense if LHS is defined in BB. 779 auto LHSInst = dyn_cast<Instruction>(LHS); 780 if (LHSInst && LHSInst->getParent() == BB) 781 continue; 782 783 LazyValueInfo::Tristate 784 ResT = LVI->getPredicateOnEdge(Pred, LHS, 785 cast<Constant>(RHS), PredBB, BB, 786 CxtI ? CxtI : Cmp); 787 if (ResT == LazyValueInfo::Unknown) 788 continue; 789 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 790 } 791 792 if (Constant *KC = getKnownConstant(Res, WantInteger)) 793 Result.emplace_back(KC, PredBB); 794 } 795 796 return !Result.empty(); 797 } 798 799 // If comparing a live-in value against a constant, see if we know the 800 // live-in value on any predecessors. 801 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 802 Constant *CmpConst = cast<Constant>(CmpRHS); 803 804 if (!isa<Instruction>(CmpLHS) || 805 cast<Instruction>(CmpLHS)->getParent() != BB) { 806 for (BasicBlock *P : predecessors(BB)) { 807 // If the value is known by LazyValueInfo to be a constant in a 808 // predecessor, use that information to try to thread this block. 809 LazyValueInfo::Tristate Res = 810 LVI->getPredicateOnEdge(Pred, CmpLHS, 811 CmpConst, P, BB, CxtI ? CxtI : Cmp); 812 if (Res == LazyValueInfo::Unknown) 813 continue; 814 815 Constant *ResC = ConstantInt::get(CmpType, Res); 816 Result.emplace_back(ResC, P); 817 } 818 819 return !Result.empty(); 820 } 821 822 // InstCombine can fold some forms of constant range checks into 823 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 824 // x as a live-in. 825 { 826 using namespace PatternMatch; 827 828 Value *AddLHS; 829 ConstantInt *AddConst; 830 if (isa<ConstantInt>(CmpConst) && 831 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 832 if (!isa<Instruction>(AddLHS) || 833 cast<Instruction>(AddLHS)->getParent() != BB) { 834 for (BasicBlock *P : predecessors(BB)) { 835 // If the value is known by LazyValueInfo to be a ConstantRange in 836 // a predecessor, use that information to try to thread this 837 // block. 838 ConstantRange CR = LVI->getConstantRangeOnEdge( 839 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 840 // Propagate the range through the addition. 841 CR = CR.add(AddConst->getValue()); 842 843 // Get the range where the compare returns true. 844 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 845 Pred, cast<ConstantInt>(CmpConst)->getValue()); 846 847 Constant *ResC; 848 if (CmpRange.contains(CR)) 849 ResC = ConstantInt::getTrue(CmpType); 850 else if (CmpRange.inverse().contains(CR)) 851 ResC = ConstantInt::getFalse(CmpType); 852 else 853 continue; 854 855 Result.emplace_back(ResC, P); 856 } 857 858 return !Result.empty(); 859 } 860 } 861 } 862 863 // Try to find a constant value for the LHS of a comparison, 864 // and evaluate it statically if we can. 865 PredValueInfoTy LHSVals; 866 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 867 WantInteger, RecursionSet, CxtI); 868 869 for (const auto &LHSVal : LHSVals) { 870 Constant *V = LHSVal.first; 871 Constant *Folded = 872 ConstantFoldCompareInstOperands(Pred, V, CmpConst, DL); 873 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 874 Result.emplace_back(KC, LHSVal.second); 875 } 876 877 return !Result.empty(); 878 } 879 } 880 881 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 882 // Handle select instructions where at least one operand is a known constant 883 // and we can figure out the condition value for any predecessor block. 884 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 885 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 886 PredValueInfoTy Conds; 887 if ((TrueVal || FalseVal) && 888 computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds, 889 WantInteger, RecursionSet, CxtI)) { 890 for (auto &C : Conds) { 891 Constant *Cond = C.first; 892 893 // Figure out what value to use for the condition. 894 bool KnownCond; 895 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 896 // A known boolean. 897 KnownCond = CI->isOne(); 898 } else { 899 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 900 // Either operand will do, so be sure to pick the one that's a known 901 // constant. 902 // FIXME: Do this more cleverly if both values are known constants? 903 KnownCond = (TrueVal != nullptr); 904 } 905 906 // See if the select has a known constant value for this predecessor. 907 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 908 Result.emplace_back(Val, C.second); 909 } 910 911 return !Result.empty(); 912 } 913 } 914 915 // If all else fails, see if LVI can figure out a constant value for us. 916 assert(CxtI->getParent() == BB && "CxtI should be in BB"); 917 Constant *CI = LVI->getConstant(V, CxtI); 918 if (Constant *KC = getKnownConstant(CI, Preference)) { 919 for (BasicBlock *Pred : predecessors(BB)) 920 Result.emplace_back(KC, Pred); 921 } 922 923 return !Result.empty(); 924 } 925 926 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 927 /// in an undefined jump, decide which block is best to revector to. 928 /// 929 /// Since we can pick an arbitrary destination, we pick the successor with the 930 /// fewest predecessors. This should reduce the in-degree of the others. 931 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) { 932 Instruction *BBTerm = BB->getTerminator(); 933 unsigned MinSucc = 0; 934 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 935 // Compute the successor with the minimum number of predecessors. 936 unsigned MinNumPreds = pred_size(TestBB); 937 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 938 TestBB = BBTerm->getSuccessor(i); 939 unsigned NumPreds = pred_size(TestBB); 940 if (NumPreds < MinNumPreds) { 941 MinSucc = i; 942 MinNumPreds = NumPreds; 943 } 944 } 945 946 return MinSucc; 947 } 948 949 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 950 if (!BB->hasAddressTaken()) return false; 951 952 // If the block has its address taken, it may be a tree of dead constants 953 // hanging off of it. These shouldn't keep the block alive. 954 BlockAddress *BA = BlockAddress::get(BB); 955 BA->removeDeadConstantUsers(); 956 return !BA->use_empty(); 957 } 958 959 /// processBlock - If there are any predecessors whose control can be threaded 960 /// through to a successor, transform them now. 961 bool JumpThreadingPass::processBlock(BasicBlock *BB) { 962 // If the block is trivially dead, just return and let the caller nuke it. 963 // This simplifies other transformations. 964 if (DTU->isBBPendingDeletion(BB) || 965 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 966 return false; 967 968 // If this block has a single predecessor, and if that pred has a single 969 // successor, merge the blocks. This encourages recursive jump threading 970 // because now the condition in this block can be threaded through 971 // predecessors of our predecessor block. 972 if (maybeMergeBasicBlockIntoOnlyPred(BB)) 973 return true; 974 975 if (tryToUnfoldSelectInCurrBB(BB)) 976 return true; 977 978 // Look if we can propagate guards to predecessors. 979 if (HasGuards && processGuards(BB)) 980 return true; 981 982 // What kind of constant we're looking for. 983 ConstantPreference Preference = WantInteger; 984 985 // Look to see if the terminator is a conditional branch, switch or indirect 986 // branch, if not we can't thread it. 987 Value *Condition; 988 Instruction *Terminator = BB->getTerminator(); 989 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 990 // Can't thread an unconditional jump. 991 if (BI->isUnconditional()) return false; 992 Condition = BI->getCondition(); 993 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 994 Condition = SI->getCondition(); 995 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 996 // Can't thread indirect branch with no successors. 997 if (IB->getNumSuccessors() == 0) return false; 998 Condition = IB->getAddress()->stripPointerCasts(); 999 Preference = WantBlockAddress; 1000 } else { 1001 return false; // Must be an invoke or callbr. 1002 } 1003 1004 // Keep track if we constant folded the condition in this invocation. 1005 bool ConstantFolded = false; 1006 1007 // Run constant folding to see if we can reduce the condition to a simple 1008 // constant. 1009 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1010 Value *SimpleVal = 1011 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1012 if (SimpleVal) { 1013 I->replaceAllUsesWith(SimpleVal); 1014 if (isInstructionTriviallyDead(I, TLI)) 1015 I->eraseFromParent(); 1016 Condition = SimpleVal; 1017 ConstantFolded = true; 1018 } 1019 } 1020 1021 // If the terminator is branching on an undef or freeze undef, we can pick any 1022 // of the successors to branch to. Let getBestDestForJumpOnUndef decide. 1023 auto *FI = dyn_cast<FreezeInst>(Condition); 1024 if (isa<UndefValue>(Condition) || 1025 (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) { 1026 unsigned BestSucc = getBestDestForJumpOnUndef(BB); 1027 std::vector<DominatorTree::UpdateType> Updates; 1028 1029 // Fold the branch/switch. 1030 Instruction *BBTerm = BB->getTerminator(); 1031 Updates.reserve(BBTerm->getNumSuccessors()); 1032 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1033 if (i == BestSucc) continue; 1034 BasicBlock *Succ = BBTerm->getSuccessor(i); 1035 Succ->removePredecessor(BB, true); 1036 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1037 } 1038 1039 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1040 << "' folding undef terminator: " << *BBTerm << '\n'); 1041 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm->getIterator()); 1042 ++NumFolds; 1043 BBTerm->eraseFromParent(); 1044 DTU->applyUpdatesPermissive(Updates); 1045 if (FI) 1046 FI->eraseFromParent(); 1047 return true; 1048 } 1049 1050 // If the terminator of this block is branching on a constant, simplify the 1051 // terminator to an unconditional branch. This can occur due to threading in 1052 // other blocks. 1053 if (getKnownConstant(Condition, Preference)) { 1054 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1055 << "' folding terminator: " << *BB->getTerminator() 1056 << '\n'); 1057 ++NumFolds; 1058 ConstantFoldTerminator(BB, true, nullptr, DTU.get()); 1059 if (auto *BPI = getBPI()) 1060 BPI->eraseBlock(BB); 1061 return true; 1062 } 1063 1064 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1065 1066 // All the rest of our checks depend on the condition being an instruction. 1067 if (!CondInst) { 1068 // FIXME: Unify this with code below. 1069 if (processThreadableEdges(Condition, BB, Preference, Terminator)) 1070 return true; 1071 return ConstantFolded; 1072 } 1073 1074 // Some of the following optimization can safely work on the unfrozen cond. 1075 Value *CondWithoutFreeze = CondInst; 1076 if (auto *FI = dyn_cast<FreezeInst>(CondInst)) 1077 CondWithoutFreeze = FI->getOperand(0); 1078 1079 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondWithoutFreeze)) { 1080 // If we're branching on a conditional, LVI might be able to determine 1081 // it's value at the branch instruction. We only handle comparisons 1082 // against a constant at this time. 1083 if (Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1))) { 1084 LazyValueInfo::Tristate Ret = 1085 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1086 CondConst, BB->getTerminator(), 1087 /*UseBlockValue=*/false); 1088 if (Ret != LazyValueInfo::Unknown) { 1089 // We can safely replace *some* uses of the CondInst if it has 1090 // exactly one value as returned by LVI. RAUW is incorrect in the 1091 // presence of guards and assumes, that have the `Cond` as the use. This 1092 // is because we use the guards/assume to reason about the `Cond` value 1093 // at the end of block, but RAUW unconditionally replaces all uses 1094 // including the guards/assumes themselves and the uses before the 1095 // guard/assume. 1096 auto *CI = Ret == LazyValueInfo::True ? 1097 ConstantInt::getTrue(CondCmp->getType()) : 1098 ConstantInt::getFalse(CondCmp->getType()); 1099 if (replaceFoldableUses(CondCmp, CI, BB)) 1100 return true; 1101 } 1102 1103 // We did not manage to simplify this branch, try to see whether 1104 // CondCmp depends on a known phi-select pattern. 1105 if (tryToUnfoldSelect(CondCmp, BB)) 1106 return true; 1107 } 1108 } 1109 1110 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 1111 if (tryToUnfoldSelect(SI, BB)) 1112 return true; 1113 1114 // Check for some cases that are worth simplifying. Right now we want to look 1115 // for loads that are used by a switch or by the condition for the branch. If 1116 // we see one, check to see if it's partially redundant. If so, insert a PHI 1117 // which can then be used to thread the values. 1118 Value *SimplifyValue = CondWithoutFreeze; 1119 1120 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1121 if (isa<Constant>(CondCmp->getOperand(1))) 1122 SimplifyValue = CondCmp->getOperand(0); 1123 1124 // TODO: There are other places where load PRE would be profitable, such as 1125 // more complex comparisons. 1126 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1127 if (simplifyPartiallyRedundantLoad(LoadI)) 1128 return true; 1129 1130 // Before threading, try to propagate profile data backwards: 1131 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1132 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1133 updatePredecessorProfileMetadata(PN, BB); 1134 1135 // Handle a variety of cases where we are branching on something derived from 1136 // a PHI node in the current block. If we can prove that any predecessors 1137 // compute a predictable value based on a PHI node, thread those predecessors. 1138 if (processThreadableEdges(CondInst, BB, Preference, Terminator)) 1139 return true; 1140 1141 // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in 1142 // the current block, see if we can simplify. 1143 PHINode *PN = dyn_cast<PHINode>(CondWithoutFreeze); 1144 if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1145 return processBranchOnPHI(PN); 1146 1147 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1148 if (CondInst->getOpcode() == Instruction::Xor && 1149 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1150 return processBranchOnXOR(cast<BinaryOperator>(CondInst)); 1151 1152 // Search for a stronger dominating condition that can be used to simplify a 1153 // conditional branch leaving BB. 1154 if (processImpliedCondition(BB)) 1155 return true; 1156 1157 return false; 1158 } 1159 1160 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) { 1161 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1162 if (!BI || !BI->isConditional()) 1163 return false; 1164 1165 Value *Cond = BI->getCondition(); 1166 // Assuming that predecessor's branch was taken, if pred's branch condition 1167 // (V) implies Cond, Cond can be either true, undef, or poison. In this case, 1168 // freeze(Cond) is either true or a nondeterministic value. 1169 // If freeze(Cond) has only one use, we can freely fold freeze(Cond) to true 1170 // without affecting other instructions. 1171 auto *FICond = dyn_cast<FreezeInst>(Cond); 1172 if (FICond && FICond->hasOneUse()) 1173 Cond = FICond->getOperand(0); 1174 else 1175 FICond = nullptr; 1176 1177 BasicBlock *CurrentBB = BB; 1178 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1179 unsigned Iter = 0; 1180 1181 auto &DL = BB->getModule()->getDataLayout(); 1182 1183 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1184 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1185 if (!PBI || !PBI->isConditional()) 1186 return false; 1187 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1188 return false; 1189 1190 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1191 std::optional<bool> Implication = 1192 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1193 1194 // If the branch condition of BB (which is Cond) and CurrentPred are 1195 // exactly the same freeze instruction, Cond can be folded into CondIsTrue. 1196 if (!Implication && FICond && isa<FreezeInst>(PBI->getCondition())) { 1197 if (cast<FreezeInst>(PBI->getCondition())->getOperand(0) == 1198 FICond->getOperand(0)) 1199 Implication = CondIsTrue; 1200 } 1201 1202 if (Implication) { 1203 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1204 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1205 RemoveSucc->removePredecessor(BB); 1206 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI->getIterator()); 1207 UncondBI->setDebugLoc(BI->getDebugLoc()); 1208 ++NumFolds; 1209 BI->eraseFromParent(); 1210 if (FICond) 1211 FICond->eraseFromParent(); 1212 1213 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}}); 1214 if (auto *BPI = getBPI()) 1215 BPI->eraseBlock(BB); 1216 return true; 1217 } 1218 CurrentBB = CurrentPred; 1219 CurrentPred = CurrentBB->getSinglePredecessor(); 1220 } 1221 1222 return false; 1223 } 1224 1225 /// Return true if Op is an instruction defined in the given block. 1226 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1227 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1228 if (OpInst->getParent() == BB) 1229 return true; 1230 return false; 1231 } 1232 1233 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1234 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1235 /// This is an important optimization that encourages jump threading, and needs 1236 /// to be run interlaced with other jump threading tasks. 1237 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1238 // Don't hack volatile and ordered loads. 1239 if (!LoadI->isUnordered()) return false; 1240 1241 // If the load is defined in a block with exactly one predecessor, it can't be 1242 // partially redundant. 1243 BasicBlock *LoadBB = LoadI->getParent(); 1244 if (LoadBB->getSinglePredecessor()) 1245 return false; 1246 1247 // If the load is defined in an EH pad, it can't be partially redundant, 1248 // because the edges between the invoke and the EH pad cannot have other 1249 // instructions between them. 1250 if (LoadBB->isEHPad()) 1251 return false; 1252 1253 Value *LoadedPtr = LoadI->getOperand(0); 1254 1255 // If the loaded operand is defined in the LoadBB and its not a phi, 1256 // it can't be available in predecessors. 1257 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1258 return false; 1259 1260 // Scan a few instructions up from the load, to see if it is obviously live at 1261 // the entry to its block. 1262 BasicBlock::iterator BBIt(LoadI); 1263 bool IsLoadCSE; 1264 BatchAAResults BatchAA(*AA); 1265 // The dominator tree is updated lazily and may not be valid at this point. 1266 BatchAA.disableDominatorTree(); 1267 if (Value *AvailableVal = FindAvailableLoadedValue( 1268 LoadI, LoadBB, BBIt, DefMaxInstsToScan, &BatchAA, &IsLoadCSE)) { 1269 // If the value of the load is locally available within the block, just use 1270 // it. This frequently occurs for reg2mem'd allocas. 1271 1272 if (IsLoadCSE) { 1273 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1274 combineMetadataForCSE(NLoadI, LoadI, false); 1275 LVI->forgetValue(NLoadI); 1276 }; 1277 1278 // If the returned value is the load itself, replace with poison. This can 1279 // only happen in dead loops. 1280 if (AvailableVal == LoadI) 1281 AvailableVal = PoisonValue::get(LoadI->getType()); 1282 if (AvailableVal->getType() != LoadI->getType()) { 1283 AvailableVal = CastInst::CreateBitOrPointerCast( 1284 AvailableVal, LoadI->getType(), "", LoadI->getIterator()); 1285 cast<Instruction>(AvailableVal)->setDebugLoc(LoadI->getDebugLoc()); 1286 } 1287 LoadI->replaceAllUsesWith(AvailableVal); 1288 LoadI->eraseFromParent(); 1289 return true; 1290 } 1291 1292 // Otherwise, if we scanned the whole block and got to the top of the block, 1293 // we know the block is locally transparent to the load. If not, something 1294 // might clobber its value. 1295 if (BBIt != LoadBB->begin()) 1296 return false; 1297 1298 // If all of the loads and stores that feed the value have the same AA tags, 1299 // then we can propagate them onto any newly inserted loads. 1300 AAMDNodes AATags = LoadI->getAAMetadata(); 1301 1302 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1303 1304 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1305 1306 AvailablePredsTy AvailablePreds; 1307 BasicBlock *OneUnavailablePred = nullptr; 1308 SmallVector<LoadInst*, 8> CSELoads; 1309 1310 // If we got here, the loaded value is transparent through to the start of the 1311 // block. Check to see if it is available in any of the predecessor blocks. 1312 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1313 // If we already scanned this predecessor, skip it. 1314 if (!PredsScanned.insert(PredBB).second) 1315 continue; 1316 1317 BBIt = PredBB->end(); 1318 unsigned NumScanedInst = 0; 1319 Value *PredAvailable = nullptr; 1320 // NOTE: We don't CSE load that is volatile or anything stronger than 1321 // unordered, that should have been checked when we entered the function. 1322 assert(LoadI->isUnordered() && 1323 "Attempting to CSE volatile or atomic loads"); 1324 // If this is a load on a phi pointer, phi-translate it and search 1325 // for available load/store to the pointer in predecessors. 1326 Type *AccessTy = LoadI->getType(); 1327 const auto &DL = LoadI->getModule()->getDataLayout(); 1328 MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB), 1329 LocationSize::precise(DL.getTypeStoreSize(AccessTy)), 1330 AATags); 1331 PredAvailable = findAvailablePtrLoadStore( 1332 Loc, AccessTy, LoadI->isAtomic(), PredBB, BBIt, DefMaxInstsToScan, 1333 &BatchAA, &IsLoadCSE, &NumScanedInst); 1334 1335 // If PredBB has a single predecessor, continue scanning through the 1336 // single predecessor. 1337 BasicBlock *SinglePredBB = PredBB; 1338 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1339 NumScanedInst < DefMaxInstsToScan) { 1340 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1341 if (SinglePredBB) { 1342 BBIt = SinglePredBB->end(); 1343 PredAvailable = findAvailablePtrLoadStore( 1344 Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt, 1345 (DefMaxInstsToScan - NumScanedInst), &BatchAA, &IsLoadCSE, 1346 &NumScanedInst); 1347 } 1348 } 1349 1350 if (!PredAvailable) { 1351 OneUnavailablePred = PredBB; 1352 continue; 1353 } 1354 1355 if (IsLoadCSE) 1356 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1357 1358 // If so, this load is partially redundant. Remember this info so that we 1359 // can create a PHI node. 1360 AvailablePreds.emplace_back(PredBB, PredAvailable); 1361 } 1362 1363 // If the loaded value isn't available in any predecessor, it isn't partially 1364 // redundant. 1365 if (AvailablePreds.empty()) return false; 1366 1367 // Okay, the loaded value is available in at least one (and maybe all!) 1368 // predecessors. If the value is unavailable in more than one unique 1369 // predecessor, we want to insert a merge block for those common predecessors. 1370 // This ensures that we only have to insert one reload, thus not increasing 1371 // code size. 1372 BasicBlock *UnavailablePred = nullptr; 1373 1374 // If the value is unavailable in one of predecessors, we will end up 1375 // inserting a new instruction into them. It is only valid if all the 1376 // instructions before LoadI are guaranteed to pass execution to its 1377 // successor, or if LoadI is safe to speculate. 1378 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1379 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1380 // It requires domination tree analysis, so for this simple case it is an 1381 // overkill. 1382 if (PredsScanned.size() != AvailablePreds.size() && 1383 !isSafeToSpeculativelyExecute(LoadI)) 1384 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1385 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1386 return false; 1387 1388 // If there is exactly one predecessor where the value is unavailable, the 1389 // already computed 'OneUnavailablePred' block is it. If it ends in an 1390 // unconditional branch, we know that it isn't a critical edge. 1391 if (PredsScanned.size() == AvailablePreds.size()+1 && 1392 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1393 UnavailablePred = OneUnavailablePred; 1394 } else if (PredsScanned.size() != AvailablePreds.size()) { 1395 // Otherwise, we had multiple unavailable predecessors or we had a critical 1396 // edge from the one. 1397 SmallVector<BasicBlock*, 8> PredsToSplit; 1398 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1399 1400 for (const auto &AvailablePred : AvailablePreds) 1401 AvailablePredSet.insert(AvailablePred.first); 1402 1403 // Add all the unavailable predecessors to the PredsToSplit list. 1404 for (BasicBlock *P : predecessors(LoadBB)) { 1405 // If the predecessor is an indirect goto, we can't split the edge. 1406 if (isa<IndirectBrInst>(P->getTerminator())) 1407 return false; 1408 1409 if (!AvailablePredSet.count(P)) 1410 PredsToSplit.push_back(P); 1411 } 1412 1413 // Split them out to their own block. 1414 UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1415 } 1416 1417 // If the value isn't available in all predecessors, then there will be 1418 // exactly one where it isn't available. Insert a load on that edge and add 1419 // it to the AvailablePreds list. 1420 if (UnavailablePred) { 1421 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1422 "Can't handle critical edge here!"); 1423 LoadInst *NewVal = new LoadInst( 1424 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1425 LoadI->getName() + ".pr", false, LoadI->getAlign(), 1426 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1427 UnavailablePred->getTerminator()->getIterator()); 1428 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1429 if (AATags) 1430 NewVal->setAAMetadata(AATags); 1431 1432 AvailablePreds.emplace_back(UnavailablePred, NewVal); 1433 } 1434 1435 // Now we know that each predecessor of this block has a value in 1436 // AvailablePreds, sort them for efficient access as we're walking the preds. 1437 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1438 1439 // Create a PHI node at the start of the block for the PRE'd load value. 1440 PHINode *PN = PHINode::Create(LoadI->getType(), pred_size(LoadBB), ""); 1441 PN->insertBefore(LoadBB->begin()); 1442 PN->takeName(LoadI); 1443 PN->setDebugLoc(LoadI->getDebugLoc()); 1444 1445 // Insert new entries into the PHI for each predecessor. A single block may 1446 // have multiple entries here. 1447 for (BasicBlock *P : predecessors(LoadBB)) { 1448 AvailablePredsTy::iterator I = 1449 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr)); 1450 1451 assert(I != AvailablePreds.end() && I->first == P && 1452 "Didn't find entry for predecessor!"); 1453 1454 // If we have an available predecessor but it requires casting, insert the 1455 // cast in the predecessor and use the cast. Note that we have to update the 1456 // AvailablePreds vector as we go so that all of the PHI entries for this 1457 // predecessor use the same bitcast. 1458 Value *&PredV = I->second; 1459 if (PredV->getType() != LoadI->getType()) 1460 PredV = CastInst::CreateBitOrPointerCast( 1461 PredV, LoadI->getType(), "", P->getTerminator()->getIterator()); 1462 1463 PN->addIncoming(PredV, I->first); 1464 } 1465 1466 for (LoadInst *PredLoadI : CSELoads) { 1467 combineMetadataForCSE(PredLoadI, LoadI, true); 1468 LVI->forgetValue(PredLoadI); 1469 } 1470 1471 LoadI->replaceAllUsesWith(PN); 1472 LoadI->eraseFromParent(); 1473 1474 return true; 1475 } 1476 1477 /// findMostPopularDest - The specified list contains multiple possible 1478 /// threadable destinations. Pick the one that occurs the most frequently in 1479 /// the list. 1480 static BasicBlock * 1481 findMostPopularDest(BasicBlock *BB, 1482 const SmallVectorImpl<std::pair<BasicBlock *, 1483 BasicBlock *>> &PredToDestList) { 1484 assert(!PredToDestList.empty()); 1485 1486 // Determine popularity. If there are multiple possible destinations, we 1487 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1488 // blocks with known and real destinations to threading undef. We'll handle 1489 // them later if interesting. 1490 MapVector<BasicBlock *, unsigned> DestPopularity; 1491 1492 // Populate DestPopularity with the successors in the order they appear in the 1493 // successor list. This way, we ensure determinism by iterating it in the 1494 // same order in llvm::max_element below. We map nullptr to 0 so that we can 1495 // return nullptr when PredToDestList contains nullptr only. 1496 DestPopularity[nullptr] = 0; 1497 for (auto *SuccBB : successors(BB)) 1498 DestPopularity[SuccBB] = 0; 1499 1500 for (const auto &PredToDest : PredToDestList) 1501 if (PredToDest.second) 1502 DestPopularity[PredToDest.second]++; 1503 1504 // Find the most popular dest. 1505 auto MostPopular = llvm::max_element(DestPopularity, llvm::less_second()); 1506 1507 // Okay, we have finally picked the most popular destination. 1508 return MostPopular->first; 1509 } 1510 1511 // Try to evaluate the value of V when the control flows from PredPredBB to 1512 // BB->getSinglePredecessor() and then on to BB. 1513 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB, 1514 BasicBlock *PredPredBB, 1515 Value *V, 1516 const DataLayout &DL) { 1517 BasicBlock *PredBB = BB->getSinglePredecessor(); 1518 assert(PredBB && "Expected a single predecessor"); 1519 1520 if (Constant *Cst = dyn_cast<Constant>(V)) { 1521 return Cst; 1522 } 1523 1524 // Consult LVI if V is not an instruction in BB or PredBB. 1525 Instruction *I = dyn_cast<Instruction>(V); 1526 if (!I || (I->getParent() != BB && I->getParent() != PredBB)) { 1527 return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr); 1528 } 1529 1530 // Look into a PHI argument. 1531 if (PHINode *PHI = dyn_cast<PHINode>(V)) { 1532 if (PHI->getParent() == PredBB) 1533 return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB)); 1534 return nullptr; 1535 } 1536 1537 // If we have a CmpInst, try to fold it for each incoming edge into PredBB. 1538 if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) { 1539 if (CondCmp->getParent() == BB) { 1540 Constant *Op0 = 1541 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0), DL); 1542 Constant *Op1 = 1543 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1), DL); 1544 if (Op0 && Op1) { 1545 return ConstantFoldCompareInstOperands(CondCmp->getPredicate(), Op0, 1546 Op1, DL); 1547 } 1548 } 1549 return nullptr; 1550 } 1551 1552 return nullptr; 1553 } 1554 1555 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB, 1556 ConstantPreference Preference, 1557 Instruction *CxtI) { 1558 // If threading this would thread across a loop header, don't even try to 1559 // thread the edge. 1560 if (LoopHeaders.count(BB)) 1561 return false; 1562 1563 PredValueInfoTy PredValues; 1564 if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference, 1565 CxtI)) { 1566 // We don't have known values in predecessors. See if we can thread through 1567 // BB and its sole predecessor. 1568 return maybethreadThroughTwoBasicBlocks(BB, Cond); 1569 } 1570 1571 assert(!PredValues.empty() && 1572 "computeValueKnownInPredecessors returned true with no values"); 1573 1574 LLVM_DEBUG(dbgs() << "IN BB: " << *BB; 1575 for (const auto &PredValue : PredValues) { 1576 dbgs() << " BB '" << BB->getName() 1577 << "': FOUND condition = " << *PredValue.first 1578 << " for pred '" << PredValue.second->getName() << "'.\n"; 1579 }); 1580 1581 // Decide what we want to thread through. Convert our list of known values to 1582 // a list of known destinations for each pred. This also discards duplicate 1583 // predecessors and keeps track of the undefined inputs (which are represented 1584 // as a null dest in the PredToDestList). 1585 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1586 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1587 1588 BasicBlock *OnlyDest = nullptr; 1589 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1590 Constant *OnlyVal = nullptr; 1591 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1592 1593 for (const auto &PredValue : PredValues) { 1594 BasicBlock *Pred = PredValue.second; 1595 if (!SeenPreds.insert(Pred).second) 1596 continue; // Duplicate predecessor entry. 1597 1598 Constant *Val = PredValue.first; 1599 1600 BasicBlock *DestBB; 1601 if (isa<UndefValue>(Val)) 1602 DestBB = nullptr; 1603 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1604 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1605 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1606 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1607 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1608 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1609 } else { 1610 assert(isa<IndirectBrInst>(BB->getTerminator()) 1611 && "Unexpected terminator"); 1612 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1613 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1614 } 1615 1616 // If we have exactly one destination, remember it for efficiency below. 1617 if (PredToDestList.empty()) { 1618 OnlyDest = DestBB; 1619 OnlyVal = Val; 1620 } else { 1621 if (OnlyDest != DestBB) 1622 OnlyDest = MultipleDestSentinel; 1623 // It possible we have same destination, but different value, e.g. default 1624 // case in switchinst. 1625 if (Val != OnlyVal) 1626 OnlyVal = MultipleVal; 1627 } 1628 1629 // If the predecessor ends with an indirect goto, we can't change its 1630 // destination. 1631 if (isa<IndirectBrInst>(Pred->getTerminator())) 1632 continue; 1633 1634 PredToDestList.emplace_back(Pred, DestBB); 1635 } 1636 1637 // If all edges were unthreadable, we fail. 1638 if (PredToDestList.empty()) 1639 return false; 1640 1641 // If all the predecessors go to a single known successor, we want to fold, 1642 // not thread. By doing so, we do not need to duplicate the current block and 1643 // also miss potential opportunities in case we dont/cant duplicate. 1644 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1645 if (BB->hasNPredecessors(PredToDestList.size())) { 1646 bool SeenFirstBranchToOnlyDest = false; 1647 std::vector <DominatorTree::UpdateType> Updates; 1648 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1649 for (BasicBlock *SuccBB : successors(BB)) { 1650 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1651 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1652 } else { 1653 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1654 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1655 } 1656 } 1657 1658 // Finally update the terminator. 1659 Instruction *Term = BB->getTerminator(); 1660 BranchInst::Create(OnlyDest, Term->getIterator()); 1661 ++NumFolds; 1662 Term->eraseFromParent(); 1663 DTU->applyUpdatesPermissive(Updates); 1664 if (auto *BPI = getBPI()) 1665 BPI->eraseBlock(BB); 1666 1667 // If the condition is now dead due to the removal of the old terminator, 1668 // erase it. 1669 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1670 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1671 CondInst->eraseFromParent(); 1672 // We can safely replace *some* uses of the CondInst if it has 1673 // exactly one value as returned by LVI. RAUW is incorrect in the 1674 // presence of guards and assumes, that have the `Cond` as the use. This 1675 // is because we use the guards/assume to reason about the `Cond` value 1676 // at the end of block, but RAUW unconditionally replaces all uses 1677 // including the guards/assumes themselves and the uses before the 1678 // guard/assume. 1679 else if (OnlyVal && OnlyVal != MultipleVal) 1680 replaceFoldableUses(CondInst, OnlyVal, BB); 1681 } 1682 return true; 1683 } 1684 } 1685 1686 // Determine which is the most common successor. If we have many inputs and 1687 // this block is a switch, we want to start by threading the batch that goes 1688 // to the most popular destination first. If we only know about one 1689 // threadable destination (the common case) we can avoid this. 1690 BasicBlock *MostPopularDest = OnlyDest; 1691 1692 if (MostPopularDest == MultipleDestSentinel) { 1693 // Remove any loop headers from the Dest list, threadEdge conservatively 1694 // won't process them, but we might have other destination that are eligible 1695 // and we still want to process. 1696 erase_if(PredToDestList, 1697 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1698 return LoopHeaders.contains(PredToDest.second); 1699 }); 1700 1701 if (PredToDestList.empty()) 1702 return false; 1703 1704 MostPopularDest = findMostPopularDest(BB, PredToDestList); 1705 } 1706 1707 // Now that we know what the most popular destination is, factor all 1708 // predecessors that will jump to it into a single predecessor. 1709 SmallVector<BasicBlock*, 16> PredsToFactor; 1710 for (const auto &PredToDest : PredToDestList) 1711 if (PredToDest.second == MostPopularDest) { 1712 BasicBlock *Pred = PredToDest.first; 1713 1714 // This predecessor may be a switch or something else that has multiple 1715 // edges to the block. Factor each of these edges by listing them 1716 // according to # occurrences in PredsToFactor. 1717 for (BasicBlock *Succ : successors(Pred)) 1718 if (Succ == BB) 1719 PredsToFactor.push_back(Pred); 1720 } 1721 1722 // If the threadable edges are branching on an undefined value, we get to pick 1723 // the destination that these predecessors should get to. 1724 if (!MostPopularDest) 1725 MostPopularDest = BB->getTerminator()-> 1726 getSuccessor(getBestDestForJumpOnUndef(BB)); 1727 1728 // Ok, try to thread it! 1729 return tryThreadEdge(BB, PredsToFactor, MostPopularDest); 1730 } 1731 1732 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on 1733 /// a PHI node (or freeze PHI) in the current block. See if there are any 1734 /// simplifications we can do based on inputs to the phi node. 1735 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) { 1736 BasicBlock *BB = PN->getParent(); 1737 1738 // TODO: We could make use of this to do it once for blocks with common PHI 1739 // values. 1740 SmallVector<BasicBlock*, 1> PredBBs; 1741 PredBBs.resize(1); 1742 1743 // If any of the predecessor blocks end in an unconditional branch, we can 1744 // *duplicate* the conditional branch into that block in order to further 1745 // encourage jump threading and to eliminate cases where we have branch on a 1746 // phi of an icmp (branch on icmp is much better). 1747 // This is still beneficial when a frozen phi is used as the branch condition 1748 // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp)) 1749 // to br(icmp(freeze ...)). 1750 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1751 BasicBlock *PredBB = PN->getIncomingBlock(i); 1752 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1753 if (PredBr->isUnconditional()) { 1754 PredBBs[0] = PredBB; 1755 // Try to duplicate BB into PredBB. 1756 if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1757 return true; 1758 } 1759 } 1760 1761 return false; 1762 } 1763 1764 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on 1765 /// a xor instruction in the current block. See if there are any 1766 /// simplifications we can do based on inputs to the xor. 1767 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) { 1768 BasicBlock *BB = BO->getParent(); 1769 1770 // If either the LHS or RHS of the xor is a constant, don't do this 1771 // optimization. 1772 if (isa<ConstantInt>(BO->getOperand(0)) || 1773 isa<ConstantInt>(BO->getOperand(1))) 1774 return false; 1775 1776 // If the first instruction in BB isn't a phi, we won't be able to infer 1777 // anything special about any particular predecessor. 1778 if (!isa<PHINode>(BB->front())) 1779 return false; 1780 1781 // If this BB is a landing pad, we won't be able to split the edge into it. 1782 if (BB->isEHPad()) 1783 return false; 1784 1785 // If we have a xor as the branch input to this block, and we know that the 1786 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1787 // the condition into the predecessor and fix that value to true, saving some 1788 // logical ops on that path and encouraging other paths to simplify. 1789 // 1790 // This copies something like this: 1791 // 1792 // BB: 1793 // %X = phi i1 [1], [%X'] 1794 // %Y = icmp eq i32 %A, %B 1795 // %Z = xor i1 %X, %Y 1796 // br i1 %Z, ... 1797 // 1798 // Into: 1799 // BB': 1800 // %Y = icmp ne i32 %A, %B 1801 // br i1 %Y, ... 1802 1803 PredValueInfoTy XorOpValues; 1804 bool isLHS = true; 1805 if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1806 WantInteger, BO)) { 1807 assert(XorOpValues.empty()); 1808 if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1809 WantInteger, BO)) 1810 return false; 1811 isLHS = false; 1812 } 1813 1814 assert(!XorOpValues.empty() && 1815 "computeValueKnownInPredecessors returned true with no values"); 1816 1817 // Scan the information to see which is most popular: true or false. The 1818 // predecessors can be of the set true, false, or undef. 1819 unsigned NumTrue = 0, NumFalse = 0; 1820 for (const auto &XorOpValue : XorOpValues) { 1821 if (isa<UndefValue>(XorOpValue.first)) 1822 // Ignore undefs for the count. 1823 continue; 1824 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1825 ++NumFalse; 1826 else 1827 ++NumTrue; 1828 } 1829 1830 // Determine which value to split on, true, false, or undef if neither. 1831 ConstantInt *SplitVal = nullptr; 1832 if (NumTrue > NumFalse) 1833 SplitVal = ConstantInt::getTrue(BB->getContext()); 1834 else if (NumTrue != 0 || NumFalse != 0) 1835 SplitVal = ConstantInt::getFalse(BB->getContext()); 1836 1837 // Collect all of the blocks that this can be folded into so that we can 1838 // factor this once and clone it once. 1839 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1840 for (const auto &XorOpValue : XorOpValues) { 1841 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1842 continue; 1843 1844 BlocksToFoldInto.push_back(XorOpValue.second); 1845 } 1846 1847 // If we inferred a value for all of the predecessors, then duplication won't 1848 // help us. However, we can just replace the LHS or RHS with the constant. 1849 if (BlocksToFoldInto.size() == 1850 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1851 if (!SplitVal) { 1852 // If all preds provide undef, just nuke the xor, because it is undef too. 1853 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1854 BO->eraseFromParent(); 1855 } else if (SplitVal->isZero() && BO != BO->getOperand(isLHS)) { 1856 // If all preds provide 0, replace the xor with the other input. 1857 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1858 BO->eraseFromParent(); 1859 } else { 1860 // If all preds provide 1, set the computed value to 1. 1861 BO->setOperand(!isLHS, SplitVal); 1862 } 1863 1864 return true; 1865 } 1866 1867 // If any of predecessors end with an indirect goto, we can't change its 1868 // destination. 1869 if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) { 1870 return isa<IndirectBrInst>(Pred->getTerminator()); 1871 })) 1872 return false; 1873 1874 // Try to duplicate BB into PredBB. 1875 return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1876 } 1877 1878 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1879 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1880 /// NewPred using the entries from OldPred (suitably mapped). 1881 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1882 BasicBlock *OldPred, 1883 BasicBlock *NewPred, 1884 ValueToValueMapTy &ValueMap) { 1885 for (PHINode &PN : PHIBB->phis()) { 1886 // Ok, we have a PHI node. Figure out what the incoming value was for the 1887 // DestBlock. 1888 Value *IV = PN.getIncomingValueForBlock(OldPred); 1889 1890 // Remap the value if necessary. 1891 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1892 ValueToValueMapTy::iterator I = ValueMap.find(Inst); 1893 if (I != ValueMap.end()) 1894 IV = I->second; 1895 } 1896 1897 PN.addIncoming(IV, NewPred); 1898 } 1899 } 1900 1901 /// Merge basic block BB into its sole predecessor if possible. 1902 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) { 1903 BasicBlock *SinglePred = BB->getSinglePredecessor(); 1904 if (!SinglePred) 1905 return false; 1906 1907 const Instruction *TI = SinglePred->getTerminator(); 1908 if (TI->isSpecialTerminator() || TI->getNumSuccessors() != 1 || 1909 SinglePred == BB || hasAddressTakenAndUsed(BB)) 1910 return false; 1911 1912 // If SinglePred was a loop header, BB becomes one. 1913 if (LoopHeaders.erase(SinglePred)) 1914 LoopHeaders.insert(BB); 1915 1916 LVI->eraseBlock(SinglePred); 1917 MergeBasicBlockIntoOnlyPred(BB, DTU.get()); 1918 1919 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by 1920 // BB code within one basic block `BB`), we need to invalidate the LVI 1921 // information associated with BB, because the LVI information need not be 1922 // true for all of BB after the merge. For example, 1923 // Before the merge, LVI info and code is as follows: 1924 // SinglePred: <LVI info1 for %p val> 1925 // %y = use of %p 1926 // call @exit() // need not transfer execution to successor. 1927 // assume(%p) // from this point on %p is true 1928 // br label %BB 1929 // BB: <LVI info2 for %p val, i.e. %p is true> 1930 // %x = use of %p 1931 // br label exit 1932 // 1933 // Note that this LVI info for blocks BB and SinglPred is correct for %p 1934 // (info2 and info1 respectively). After the merge and the deletion of the 1935 // LVI info1 for SinglePred. We have the following code: 1936 // BB: <LVI info2 for %p val> 1937 // %y = use of %p 1938 // call @exit() 1939 // assume(%p) 1940 // %x = use of %p <-- LVI info2 is correct from here onwards. 1941 // br label exit 1942 // LVI info2 for BB is incorrect at the beginning of BB. 1943 1944 // Invalidate LVI information for BB if the LVI is not provably true for 1945 // all of BB. 1946 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 1947 LVI->eraseBlock(BB); 1948 return true; 1949 } 1950 1951 /// Update the SSA form. NewBB contains instructions that are copied from BB. 1952 /// ValueMapping maps old values in BB to new ones in NewBB. 1953 void JumpThreadingPass::updateSSA(BasicBlock *BB, BasicBlock *NewBB, 1954 ValueToValueMapTy &ValueMapping) { 1955 // If there were values defined in BB that are used outside the block, then we 1956 // now have to update all uses of the value to use either the original value, 1957 // the cloned value, or some PHI derived value. This can require arbitrary 1958 // PHI insertion, of which we are prepared to do, clean these up now. 1959 SSAUpdater SSAUpdate; 1960 SmallVector<Use *, 16> UsesToRename; 1961 SmallVector<DbgValueInst *, 4> DbgValues; 1962 SmallVector<DbgVariableRecord *, 4> DbgVariableRecords; 1963 1964 for (Instruction &I : *BB) { 1965 // Scan all uses of this instruction to see if it is used outside of its 1966 // block, and if so, record them in UsesToRename. 1967 for (Use &U : I.uses()) { 1968 Instruction *User = cast<Instruction>(U.getUser()); 1969 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1970 if (UserPN->getIncomingBlock(U) == BB) 1971 continue; 1972 } else if (User->getParent() == BB) 1973 continue; 1974 1975 UsesToRename.push_back(&U); 1976 } 1977 1978 // Find debug values outside of the block 1979 findDbgValues(DbgValues, &I, &DbgVariableRecords); 1980 llvm::erase_if(DbgValues, [&](const DbgValueInst *DbgVal) { 1981 return DbgVal->getParent() == BB; 1982 }); 1983 llvm::erase_if(DbgVariableRecords, [&](const DbgVariableRecord *DbgVarRec) { 1984 return DbgVarRec->getParent() == BB; 1985 }); 1986 1987 // If there are no uses outside the block, we're done with this instruction. 1988 if (UsesToRename.empty() && DbgValues.empty() && DbgVariableRecords.empty()) 1989 continue; 1990 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1991 1992 // We found a use of I outside of BB. Rename all uses of I that are outside 1993 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1994 // with the two values we know. 1995 SSAUpdate.Initialize(I.getType(), I.getName()); 1996 SSAUpdate.AddAvailableValue(BB, &I); 1997 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 1998 1999 while (!UsesToRename.empty()) 2000 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2001 if (!DbgValues.empty() || !DbgVariableRecords.empty()) { 2002 SSAUpdate.UpdateDebugValues(&I, DbgValues); 2003 SSAUpdate.UpdateDebugValues(&I, DbgVariableRecords); 2004 DbgValues.clear(); 2005 DbgVariableRecords.clear(); 2006 } 2007 2008 LLVM_DEBUG(dbgs() << "\n"); 2009 } 2010 } 2011 2012 /// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone 2013 /// arguments that come from PredBB. Return the map from the variables in the 2014 /// source basic block to the variables in the newly created basic block. 2015 2016 void JumpThreadingPass::cloneInstructions(ValueToValueMapTy &ValueMapping, 2017 BasicBlock::iterator BI, 2018 BasicBlock::iterator BE, 2019 BasicBlock *NewBB, 2020 BasicBlock *PredBB) { 2021 // We are going to have to map operands from the source basic block to the new 2022 // copy of the block 'NewBB'. If there are PHI nodes in the source basic 2023 // block, evaluate them to account for entry from PredBB. 2024 2025 // Retargets llvm.dbg.value to any renamed variables. 2026 auto RetargetDbgValueIfPossible = [&](Instruction *NewInst) -> bool { 2027 auto DbgInstruction = dyn_cast<DbgValueInst>(NewInst); 2028 if (!DbgInstruction) 2029 return false; 2030 2031 SmallSet<std::pair<Value *, Value *>, 16> OperandsToRemap; 2032 for (auto DbgOperand : DbgInstruction->location_ops()) { 2033 auto DbgOperandInstruction = dyn_cast<Instruction>(DbgOperand); 2034 if (!DbgOperandInstruction) 2035 continue; 2036 2037 auto I = ValueMapping.find(DbgOperandInstruction); 2038 if (I != ValueMapping.end()) { 2039 OperandsToRemap.insert( 2040 std::pair<Value *, Value *>(DbgOperand, I->second)); 2041 } 2042 } 2043 2044 for (auto &[OldOp, MappedOp] : OperandsToRemap) 2045 DbgInstruction->replaceVariableLocationOp(OldOp, MappedOp); 2046 return true; 2047 }; 2048 2049 // Duplicate implementation of the above dbg.value code, using 2050 // DbgVariableRecords instead. 2051 auto RetargetDbgVariableRecordIfPossible = [&](DbgVariableRecord *DVR) { 2052 SmallSet<std::pair<Value *, Value *>, 16> OperandsToRemap; 2053 for (auto *Op : DVR->location_ops()) { 2054 Instruction *OpInst = dyn_cast<Instruction>(Op); 2055 if (!OpInst) 2056 continue; 2057 2058 auto I = ValueMapping.find(OpInst); 2059 if (I != ValueMapping.end()) 2060 OperandsToRemap.insert({OpInst, I->second}); 2061 } 2062 2063 for (auto &[OldOp, MappedOp] : OperandsToRemap) 2064 DVR->replaceVariableLocationOp(OldOp, MappedOp); 2065 }; 2066 2067 BasicBlock *RangeBB = BI->getParent(); 2068 2069 // Clone the phi nodes of the source basic block into NewBB. The resulting 2070 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater 2071 // might need to rewrite the operand of the cloned phi. 2072 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2073 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB); 2074 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB); 2075 ValueMapping[PN] = NewPN; 2076 } 2077 2078 // Clone noalias scope declarations in the threaded block. When threading a 2079 // loop exit, we would otherwise end up with two idential scope declarations 2080 // visible at the same time. 2081 SmallVector<MDNode *> NoAliasScopes; 2082 DenseMap<MDNode *, MDNode *> ClonedScopes; 2083 LLVMContext &Context = PredBB->getContext(); 2084 identifyNoAliasScopesToClone(BI, BE, NoAliasScopes); 2085 cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context); 2086 2087 auto CloneAndRemapDbgInfo = [&](Instruction *NewInst, Instruction *From) { 2088 auto DVRRange = NewInst->cloneDebugInfoFrom(From); 2089 for (DbgVariableRecord &DVR : filterDbgVars(DVRRange)) 2090 RetargetDbgVariableRecordIfPossible(&DVR); 2091 }; 2092 2093 // Clone the non-phi instructions of the source basic block into NewBB, 2094 // keeping track of the mapping and using it to remap operands in the cloned 2095 // instructions. 2096 for (; BI != BE; ++BI) { 2097 Instruction *New = BI->clone(); 2098 New->setName(BI->getName()); 2099 New->insertInto(NewBB, NewBB->end()); 2100 ValueMapping[&*BI] = New; 2101 adaptNoAliasScopes(New, ClonedScopes, Context); 2102 2103 CloneAndRemapDbgInfo(New, &*BI); 2104 2105 if (RetargetDbgValueIfPossible(New)) 2106 continue; 2107 2108 // Remap operands to patch up intra-block references. 2109 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2110 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2111 ValueToValueMapTy::iterator I = ValueMapping.find(Inst); 2112 if (I != ValueMapping.end()) 2113 New->setOperand(i, I->second); 2114 } 2115 } 2116 2117 // There may be DbgVariableRecords on the terminator, clone directly from 2118 // marker to marker as there isn't an instruction there. 2119 if (BE != RangeBB->end() && BE->hasDbgRecords()) { 2120 // Dump them at the end. 2121 DbgMarker *Marker = RangeBB->getMarker(BE); 2122 DbgMarker *EndMarker = NewBB->createMarker(NewBB->end()); 2123 auto DVRRange = EndMarker->cloneDebugInfoFrom(Marker, std::nullopt); 2124 for (DbgVariableRecord &DVR : filterDbgVars(DVRRange)) 2125 RetargetDbgVariableRecordIfPossible(&DVR); 2126 } 2127 2128 return; 2129 } 2130 2131 /// Attempt to thread through two successive basic blocks. 2132 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB, 2133 Value *Cond) { 2134 // Consider: 2135 // 2136 // PredBB: 2137 // %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ] 2138 // %tobool = icmp eq i32 %cond, 0 2139 // br i1 %tobool, label %BB, label ... 2140 // 2141 // BB: 2142 // %cmp = icmp eq i32* %var, null 2143 // br i1 %cmp, label ..., label ... 2144 // 2145 // We don't know the value of %var at BB even if we know which incoming edge 2146 // we take to BB. However, once we duplicate PredBB for each of its incoming 2147 // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of 2148 // PredBB. Then we can thread edges PredBB1->BB and PredBB2->BB through BB. 2149 2150 // Require that BB end with a Branch for simplicity. 2151 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2152 if (!CondBr) 2153 return false; 2154 2155 // BB must have exactly one predecessor. 2156 BasicBlock *PredBB = BB->getSinglePredecessor(); 2157 if (!PredBB) 2158 return false; 2159 2160 // Require that PredBB end with a conditional Branch. If PredBB ends with an 2161 // unconditional branch, we should be merging PredBB and BB instead. For 2162 // simplicity, we don't deal with a switch. 2163 BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2164 if (!PredBBBranch || PredBBBranch->isUnconditional()) 2165 return false; 2166 2167 // If PredBB has exactly one incoming edge, we don't gain anything by copying 2168 // PredBB. 2169 if (PredBB->getSinglePredecessor()) 2170 return false; 2171 2172 // Don't thread through PredBB if it contains a successor edge to itself, in 2173 // which case we would infinite loop. Suppose we are threading an edge from 2174 // PredPredBB through PredBB and BB to SuccBB with PredBB containing a 2175 // successor edge to itself. If we allowed jump threading in this case, we 2176 // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread. Since 2177 // PredBB.thread has a successor edge to PredBB, we would immediately come up 2178 // with another jump threading opportunity from PredBB.thread through PredBB 2179 // and BB to SuccBB. This jump threading would repeatedly occur. That is, we 2180 // would keep peeling one iteration from PredBB. 2181 if (llvm::is_contained(successors(PredBB), PredBB)) 2182 return false; 2183 2184 // Don't thread across a loop header. 2185 if (LoopHeaders.count(PredBB)) 2186 return false; 2187 2188 // Avoid complication with duplicating EH pads. 2189 if (PredBB->isEHPad()) 2190 return false; 2191 2192 // Find a predecessor that we can thread. For simplicity, we only consider a 2193 // successor edge out of BB to which we thread exactly one incoming edge into 2194 // PredBB. 2195 unsigned ZeroCount = 0; 2196 unsigned OneCount = 0; 2197 BasicBlock *ZeroPred = nullptr; 2198 BasicBlock *OnePred = nullptr; 2199 const DataLayout &DL = BB->getModule()->getDataLayout(); 2200 for (BasicBlock *P : predecessors(PredBB)) { 2201 // If PredPred ends with IndirectBrInst, we can't handle it. 2202 if (isa<IndirectBrInst>(P->getTerminator())) 2203 continue; 2204 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>( 2205 evaluateOnPredecessorEdge(BB, P, Cond, DL))) { 2206 if (CI->isZero()) { 2207 ZeroCount++; 2208 ZeroPred = P; 2209 } else if (CI->isOne()) { 2210 OneCount++; 2211 OnePred = P; 2212 } 2213 } 2214 } 2215 2216 // Disregard complicated cases where we have to thread multiple edges. 2217 BasicBlock *PredPredBB; 2218 if (ZeroCount == 1) { 2219 PredPredBB = ZeroPred; 2220 } else if (OneCount == 1) { 2221 PredPredBB = OnePred; 2222 } else { 2223 return false; 2224 } 2225 2226 BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred); 2227 2228 // If threading to the same block as we come from, we would infinite loop. 2229 if (SuccBB == BB) { 2230 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2231 << "' - would thread to self!\n"); 2232 return false; 2233 } 2234 2235 // If threading this would thread across a loop header, don't thread the edge. 2236 // See the comments above findLoopHeaders for justifications and caveats. 2237 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2238 LLVM_DEBUG({ 2239 bool BBIsHeader = LoopHeaders.count(BB); 2240 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2241 dbgs() << " Not threading across " 2242 << (BBIsHeader ? "loop header BB '" : "block BB '") 2243 << BB->getName() << "' to dest " 2244 << (SuccIsHeader ? "loop header BB '" : "block BB '") 2245 << SuccBB->getName() 2246 << "' - it might create an irreducible loop!\n"; 2247 }); 2248 return false; 2249 } 2250 2251 // Compute the cost of duplicating BB and PredBB. 2252 unsigned BBCost = getJumpThreadDuplicationCost( 2253 TTI, BB, BB->getTerminator(), BBDupThreshold); 2254 unsigned PredBBCost = getJumpThreadDuplicationCost( 2255 TTI, PredBB, PredBB->getTerminator(), BBDupThreshold); 2256 2257 // Give up if costs are too high. We need to check BBCost and PredBBCost 2258 // individually before checking their sum because getJumpThreadDuplicationCost 2259 // return (unsigned)~0 for those basic blocks that cannot be duplicated. 2260 if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold || 2261 BBCost + PredBBCost > BBDupThreshold) { 2262 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2263 << "' - Cost is too high: " << PredBBCost 2264 << " for PredBB, " << BBCost << "for BB\n"); 2265 return false; 2266 } 2267 2268 // Now we are ready to duplicate PredBB. 2269 threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB); 2270 return true; 2271 } 2272 2273 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB, 2274 BasicBlock *PredBB, 2275 BasicBlock *BB, 2276 BasicBlock *SuccBB) { 2277 LLVM_DEBUG(dbgs() << " Threading through '" << PredBB->getName() << "' and '" 2278 << BB->getName() << "'\n"); 2279 2280 // Build BPI/BFI before any changes are made to IR. 2281 bool HasProfile = doesBlockHaveProfileData(BB); 2282 auto *BFI = getOrCreateBFI(HasProfile); 2283 auto *BPI = getOrCreateBPI(BFI != nullptr); 2284 2285 BranchInst *CondBr = cast<BranchInst>(BB->getTerminator()); 2286 BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator()); 2287 2288 BasicBlock *NewBB = 2289 BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread", 2290 PredBB->getParent(), PredBB); 2291 NewBB->moveAfter(PredBB); 2292 2293 // Set the block frequency of NewBB. 2294 if (BFI) { 2295 assert(BPI && "It's expected BPI to exist along with BFI"); 2296 auto NewBBFreq = BFI->getBlockFreq(PredPredBB) * 2297 BPI->getEdgeProbability(PredPredBB, PredBB); 2298 BFI->setBlockFreq(NewBB, NewBBFreq); 2299 } 2300 2301 // We are going to have to map operands from the original BB block to the new 2302 // copy of the block 'NewBB'. If there are PHI nodes in PredBB, evaluate them 2303 // to account for entry from PredPredBB. 2304 ValueToValueMapTy ValueMapping; 2305 cloneInstructions(ValueMapping, PredBB->begin(), PredBB->end(), NewBB, 2306 PredPredBB); 2307 2308 // Copy the edge probabilities from PredBB to NewBB. 2309 if (BPI) 2310 BPI->copyEdgeProbabilities(PredBB, NewBB); 2311 2312 // Update the terminator of PredPredBB to jump to NewBB instead of PredBB. 2313 // This eliminates predecessors from PredPredBB, which requires us to simplify 2314 // any PHI nodes in PredBB. 2315 Instruction *PredPredTerm = PredPredBB->getTerminator(); 2316 for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i) 2317 if (PredPredTerm->getSuccessor(i) == PredBB) { 2318 PredBB->removePredecessor(PredPredBB, true); 2319 PredPredTerm->setSuccessor(i, NewBB); 2320 } 2321 2322 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB, 2323 ValueMapping); 2324 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB, 2325 ValueMapping); 2326 2327 DTU->applyUpdatesPermissive( 2328 {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)}, 2329 {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)}, 2330 {DominatorTree::Insert, PredPredBB, NewBB}, 2331 {DominatorTree::Delete, PredPredBB, PredBB}}); 2332 2333 updateSSA(PredBB, NewBB, ValueMapping); 2334 2335 // Clean up things like PHI nodes with single operands, dead instructions, 2336 // etc. 2337 SimplifyInstructionsInBlock(NewBB, TLI); 2338 SimplifyInstructionsInBlock(PredBB, TLI); 2339 2340 SmallVector<BasicBlock *, 1> PredsToFactor; 2341 PredsToFactor.push_back(NewBB); 2342 threadEdge(BB, PredsToFactor, SuccBB); 2343 } 2344 2345 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so. 2346 bool JumpThreadingPass::tryThreadEdge( 2347 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs, 2348 BasicBlock *SuccBB) { 2349 // If threading to the same block as we come from, we would infinite loop. 2350 if (SuccBB == BB) { 2351 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2352 << "' - would thread to self!\n"); 2353 return false; 2354 } 2355 2356 // If threading this would thread across a loop header, don't thread the edge. 2357 // See the comments above findLoopHeaders for justifications and caveats. 2358 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2359 LLVM_DEBUG({ 2360 bool BBIsHeader = LoopHeaders.count(BB); 2361 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2362 dbgs() << " Not threading across " 2363 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 2364 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 2365 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 2366 }); 2367 return false; 2368 } 2369 2370 unsigned JumpThreadCost = getJumpThreadDuplicationCost( 2371 TTI, BB, BB->getTerminator(), BBDupThreshold); 2372 if (JumpThreadCost > BBDupThreshold) { 2373 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2374 << "' - Cost is too high: " << JumpThreadCost << "\n"); 2375 return false; 2376 } 2377 2378 threadEdge(BB, PredBBs, SuccBB); 2379 return true; 2380 } 2381 2382 /// threadEdge - We have decided that it is safe and profitable to factor the 2383 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 2384 /// across BB. Transform the IR to reflect this change. 2385 void JumpThreadingPass::threadEdge(BasicBlock *BB, 2386 const SmallVectorImpl<BasicBlock *> &PredBBs, 2387 BasicBlock *SuccBB) { 2388 assert(SuccBB != BB && "Don't create an infinite loop"); 2389 2390 assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) && 2391 "Don't thread across loop headers"); 2392 2393 // Build BPI/BFI before any changes are made to IR. 2394 bool HasProfile = doesBlockHaveProfileData(BB); 2395 auto *BFI = getOrCreateBFI(HasProfile); 2396 auto *BPI = getOrCreateBPI(BFI != nullptr); 2397 2398 // And finally, do it! Start by factoring the predecessors if needed. 2399 BasicBlock *PredBB; 2400 if (PredBBs.size() == 1) 2401 PredBB = PredBBs[0]; 2402 else { 2403 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2404 << " common predecessors.\n"); 2405 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2406 } 2407 2408 // And finally, do it! 2409 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() 2410 << "' to '" << SuccBB->getName() 2411 << ", across block:\n " << *BB << "\n"); 2412 2413 LVI->threadEdge(PredBB, BB, SuccBB); 2414 2415 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 2416 BB->getName()+".thread", 2417 BB->getParent(), BB); 2418 NewBB->moveAfter(PredBB); 2419 2420 // Set the block frequency of NewBB. 2421 if (BFI) { 2422 assert(BPI && "It's expected BPI to exist along with BFI"); 2423 auto NewBBFreq = 2424 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 2425 BFI->setBlockFreq(NewBB, NewBBFreq); 2426 } 2427 2428 // Copy all the instructions from BB to NewBB except the terminator. 2429 ValueToValueMapTy ValueMapping; 2430 cloneInstructions(ValueMapping, BB->begin(), std::prev(BB->end()), NewBB, 2431 PredBB); 2432 2433 // We didn't copy the terminator from BB over to NewBB, because there is now 2434 // an unconditional jump to SuccBB. Insert the unconditional jump. 2435 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 2436 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 2437 2438 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 2439 // PHI nodes for NewBB now. 2440 addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 2441 2442 // Update the terminator of PredBB to jump to NewBB instead of BB. This 2443 // eliminates predecessors from BB, which requires us to simplify any PHI 2444 // nodes in BB. 2445 Instruction *PredTerm = PredBB->getTerminator(); 2446 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2447 if (PredTerm->getSuccessor(i) == BB) { 2448 BB->removePredecessor(PredBB, true); 2449 PredTerm->setSuccessor(i, NewBB); 2450 } 2451 2452 // Enqueue required DT updates. 2453 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB}, 2454 {DominatorTree::Insert, PredBB, NewBB}, 2455 {DominatorTree::Delete, PredBB, BB}}); 2456 2457 updateSSA(BB, NewBB, ValueMapping); 2458 2459 // At this point, the IR is fully up to date and consistent. Do a quick scan 2460 // over the new instructions and zap any that are constants or dead. This 2461 // frequently happens because of phi translation. 2462 SimplifyInstructionsInBlock(NewBB, TLI); 2463 2464 // Update the edge weight from BB to SuccBB, which should be less than before. 2465 updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB, BFI, BPI, HasProfile); 2466 2467 // Threaded an edge! 2468 ++NumThreads; 2469 } 2470 2471 /// Create a new basic block that will be the predecessor of BB and successor of 2472 /// all blocks in Preds. When profile data is available, update the frequency of 2473 /// this new block. 2474 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB, 2475 ArrayRef<BasicBlock *> Preds, 2476 const char *Suffix) { 2477 SmallVector<BasicBlock *, 2> NewBBs; 2478 2479 // Collect the frequencies of all predecessors of BB, which will be used to 2480 // update the edge weight of the result of splitting predecessors. 2481 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2482 auto *BFI = getBFI(); 2483 if (BFI) { 2484 auto *BPI = getOrCreateBPI(true); 2485 for (auto *Pred : Preds) 2486 FreqMap.insert(std::make_pair( 2487 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2488 } 2489 2490 // In the case when BB is a LandingPad block we create 2 new predecessors 2491 // instead of just one. 2492 if (BB->isLandingPad()) { 2493 std::string NewName = std::string(Suffix) + ".split-lp"; 2494 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2495 } else { 2496 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2497 } 2498 2499 std::vector<DominatorTree::UpdateType> Updates; 2500 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2501 for (auto *NewBB : NewBBs) { 2502 BlockFrequency NewBBFreq(0); 2503 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2504 for (auto *Pred : predecessors(NewBB)) { 2505 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2506 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2507 if (BFI) // Update frequencies between Pred -> NewBB. 2508 NewBBFreq += FreqMap.lookup(Pred); 2509 } 2510 if (BFI) // Apply the summed frequency to NewBB. 2511 BFI->setBlockFreq(NewBB, NewBBFreq); 2512 } 2513 2514 DTU->applyUpdatesPermissive(Updates); 2515 return NewBBs[0]; 2516 } 2517 2518 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2519 const Instruction *TI = BB->getTerminator(); 2520 if (!TI || TI->getNumSuccessors() < 2) 2521 return false; 2522 2523 return hasValidBranchWeightMD(*TI); 2524 } 2525 2526 /// Update the block frequency of BB and branch weight and the metadata on the 2527 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2528 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2529 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2530 BasicBlock *BB, 2531 BasicBlock *NewBB, 2532 BasicBlock *SuccBB, 2533 BlockFrequencyInfo *BFI, 2534 BranchProbabilityInfo *BPI, 2535 bool HasProfile) { 2536 assert(((BFI && BPI) || (!BFI && !BFI)) && 2537 "Both BFI & BPI should either be set or unset"); 2538 2539 if (!BFI) { 2540 assert(!HasProfile && 2541 "It's expected to have BFI/BPI when profile info exists"); 2542 return; 2543 } 2544 2545 // As the edge from PredBB to BB is deleted, we have to update the block 2546 // frequency of BB. 2547 auto BBOrigFreq = BFI->getBlockFreq(BB); 2548 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2549 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2550 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2551 BFI->setBlockFreq(BB, BBNewFreq); 2552 2553 // Collect updated outgoing edges' frequencies from BB and use them to update 2554 // edge probabilities. 2555 SmallVector<uint64_t, 4> BBSuccFreq; 2556 for (BasicBlock *Succ : successors(BB)) { 2557 auto SuccFreq = (Succ == SuccBB) 2558 ? BB2SuccBBFreq - NewBBFreq 2559 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2560 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2561 } 2562 2563 uint64_t MaxBBSuccFreq = *llvm::max_element(BBSuccFreq); 2564 2565 SmallVector<BranchProbability, 4> BBSuccProbs; 2566 if (MaxBBSuccFreq == 0) 2567 BBSuccProbs.assign(BBSuccFreq.size(), 2568 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2569 else { 2570 for (uint64_t Freq : BBSuccFreq) 2571 BBSuccProbs.push_back( 2572 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2573 // Normalize edge probabilities so that they sum up to one. 2574 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2575 BBSuccProbs.end()); 2576 } 2577 2578 // Update edge probabilities in BPI. 2579 BPI->setEdgeProbability(BB, BBSuccProbs); 2580 2581 // Update the profile metadata as well. 2582 // 2583 // Don't do this if the profile of the transformed blocks was statically 2584 // estimated. (This could occur despite the function having an entry 2585 // frequency in completely cold parts of the CFG.) 2586 // 2587 // In this case we don't want to suggest to subsequent passes that the 2588 // calculated weights are fully consistent. Consider this graph: 2589 // 2590 // check_1 2591 // 50% / | 2592 // eq_1 | 50% 2593 // \ | 2594 // check_2 2595 // 50% / | 2596 // eq_2 | 50% 2597 // \ | 2598 // check_3 2599 // 50% / | 2600 // eq_3 | 50% 2601 // \ | 2602 // 2603 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2604 // the overall probabilities are inconsistent; the total probability that the 2605 // value is either 1, 2 or 3 is 150%. 2606 // 2607 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2608 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2609 // the loop exit edge. Then based solely on static estimation we would assume 2610 // the loop was extremely hot. 2611 // 2612 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2613 // shouldn't make edges extremely likely or unlikely based solely on static 2614 // estimation. 2615 if (BBSuccProbs.size() >= 2 && HasProfile) { 2616 SmallVector<uint32_t, 4> Weights; 2617 for (auto Prob : BBSuccProbs) 2618 Weights.push_back(Prob.getNumerator()); 2619 2620 auto TI = BB->getTerminator(); 2621 setBranchWeights(*TI, Weights, hasBranchWeightOrigin(*TI)); 2622 } 2623 } 2624 2625 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2626 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2627 /// If we can duplicate the contents of BB up into PredBB do so now, this 2628 /// improves the odds that the branch will be on an analyzable instruction like 2629 /// a compare. 2630 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred( 2631 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2632 assert(!PredBBs.empty() && "Can't handle an empty set"); 2633 2634 // If BB is a loop header, then duplicating this block outside the loop would 2635 // cause us to transform this into an irreducible loop, don't do this. 2636 // See the comments above findLoopHeaders for justifications and caveats. 2637 if (LoopHeaders.count(BB)) { 2638 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2639 << "' into predecessor block '" << PredBBs[0]->getName() 2640 << "' - it might create an irreducible loop!\n"); 2641 return false; 2642 } 2643 2644 unsigned DuplicationCost = getJumpThreadDuplicationCost( 2645 TTI, BB, BB->getTerminator(), BBDupThreshold); 2646 if (DuplicationCost > BBDupThreshold) { 2647 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2648 << "' - Cost is too high: " << DuplicationCost << "\n"); 2649 return false; 2650 } 2651 2652 // And finally, do it! Start by factoring the predecessors if needed. 2653 std::vector<DominatorTree::UpdateType> Updates; 2654 BasicBlock *PredBB; 2655 if (PredBBs.size() == 1) 2656 PredBB = PredBBs[0]; 2657 else { 2658 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2659 << " common predecessors.\n"); 2660 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2661 } 2662 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2663 2664 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2665 // of PredBB. 2666 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName() 2667 << "' into end of '" << PredBB->getName() 2668 << "' to eliminate branch on phi. Cost: " 2669 << DuplicationCost << " block is:" << *BB << "\n"); 2670 2671 // Unless PredBB ends with an unconditional branch, split the edge so that we 2672 // can just clone the bits from BB into the end of the new PredBB. 2673 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2674 2675 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2676 BasicBlock *OldPredBB = PredBB; 2677 PredBB = SplitEdge(OldPredBB, BB); 2678 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2679 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2680 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2681 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2682 } 2683 2684 // We are going to have to map operands from the original BB block into the 2685 // PredBB block. Evaluate PHI nodes in BB. 2686 ValueToValueMapTy ValueMapping; 2687 2688 BasicBlock::iterator BI = BB->begin(); 2689 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2690 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2691 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2692 // mapping and using it to remap operands in the cloned instructions. 2693 for (; BI != BB->end(); ++BI) { 2694 Instruction *New = BI->clone(); 2695 New->insertInto(PredBB, OldPredBranch->getIterator()); 2696 2697 // Remap operands to patch up intra-block references. 2698 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2699 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2700 ValueToValueMapTy::iterator I = ValueMapping.find(Inst); 2701 if (I != ValueMapping.end()) 2702 New->setOperand(i, I->second); 2703 } 2704 2705 // Remap debug variable operands. 2706 remapDebugVariable(ValueMapping, New); 2707 2708 // If this instruction can be simplified after the operands are updated, 2709 // just use the simplified value instead. This frequently happens due to 2710 // phi translation. 2711 if (Value *IV = simplifyInstruction( 2712 New, 2713 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2714 ValueMapping[&*BI] = IV; 2715 if (!New->mayHaveSideEffects()) { 2716 New->eraseFromParent(); 2717 New = nullptr; 2718 // Clone debug-info on the elided instruction to the destination 2719 // position. 2720 OldPredBranch->cloneDebugInfoFrom(&*BI, std::nullopt, true); 2721 } 2722 } else { 2723 ValueMapping[&*BI] = New; 2724 } 2725 if (New) { 2726 // Otherwise, insert the new instruction into the block. 2727 New->setName(BI->getName()); 2728 // Clone across any debug-info attached to the old instruction. 2729 New->cloneDebugInfoFrom(&*BI); 2730 // Update Dominance from simplified New instruction operands. 2731 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2732 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2733 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2734 } 2735 } 2736 2737 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2738 // add entries to the PHI nodes for branch from PredBB now. 2739 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2740 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2741 ValueMapping); 2742 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2743 ValueMapping); 2744 2745 updateSSA(BB, PredBB, ValueMapping); 2746 2747 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2748 // that we nuked. 2749 BB->removePredecessor(PredBB, true); 2750 2751 // Remove the unconditional branch at the end of the PredBB block. 2752 OldPredBranch->eraseFromParent(); 2753 if (auto *BPI = getBPI()) 2754 BPI->copyEdgeProbabilities(BB, PredBB); 2755 DTU->applyUpdatesPermissive(Updates); 2756 2757 ++NumDupes; 2758 return true; 2759 } 2760 2761 // Pred is a predecessor of BB with an unconditional branch to BB. SI is 2762 // a Select instruction in Pred. BB has other predecessors and SI is used in 2763 // a PHI node in BB. SI has no other use. 2764 // A new basic block, NewBB, is created and SI is converted to compare and 2765 // conditional branch. SI is erased from parent. 2766 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, 2767 SelectInst *SI, PHINode *SIUse, 2768 unsigned Idx) { 2769 // Expand the select. 2770 // 2771 // Pred -- 2772 // | v 2773 // | NewBB 2774 // | | 2775 // |----- 2776 // v 2777 // BB 2778 BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator()); 2779 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2780 BB->getParent(), BB); 2781 // Move the unconditional branch to NewBB. 2782 PredTerm->removeFromParent(); 2783 PredTerm->insertInto(NewBB, NewBB->end()); 2784 // Create a conditional branch and update PHI nodes. 2785 auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2786 BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc()); 2787 BI->copyMetadata(*SI, {LLVMContext::MD_prof}); 2788 SIUse->setIncomingValue(Idx, SI->getFalseValue()); 2789 SIUse->addIncoming(SI->getTrueValue(), NewBB); 2790 2791 uint64_t TrueWeight = 1; 2792 uint64_t FalseWeight = 1; 2793 // Copy probabilities from 'SI' to created conditional branch in 'Pred'. 2794 if (extractBranchWeights(*SI, TrueWeight, FalseWeight) && 2795 (TrueWeight + FalseWeight) != 0) { 2796 SmallVector<BranchProbability, 2> BP; 2797 BP.emplace_back(BranchProbability::getBranchProbability( 2798 TrueWeight, TrueWeight + FalseWeight)); 2799 BP.emplace_back(BranchProbability::getBranchProbability( 2800 FalseWeight, TrueWeight + FalseWeight)); 2801 // Update BPI if exists. 2802 if (auto *BPI = getBPI()) 2803 BPI->setEdgeProbability(Pred, BP); 2804 } 2805 // Set the block frequency of NewBB. 2806 if (auto *BFI = getBFI()) { 2807 if ((TrueWeight + FalseWeight) == 0) { 2808 TrueWeight = 1; 2809 FalseWeight = 1; 2810 } 2811 BranchProbability PredToNewBBProb = BranchProbability::getBranchProbability( 2812 TrueWeight, TrueWeight + FalseWeight); 2813 auto NewBBFreq = BFI->getBlockFreq(Pred) * PredToNewBBProb; 2814 BFI->setBlockFreq(NewBB, NewBBFreq); 2815 } 2816 2817 // The select is now dead. 2818 SI->eraseFromParent(); 2819 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB}, 2820 {DominatorTree::Insert, Pred, NewBB}}); 2821 2822 // Update any other PHI nodes in BB. 2823 for (BasicBlock::iterator BI = BB->begin(); 2824 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2825 if (Phi != SIUse) 2826 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2827 } 2828 2829 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) { 2830 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition()); 2831 2832 if (!CondPHI || CondPHI->getParent() != BB) 2833 return false; 2834 2835 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) { 2836 BasicBlock *Pred = CondPHI->getIncomingBlock(I); 2837 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I)); 2838 2839 // The second and third condition can be potentially relaxed. Currently 2840 // the conditions help to simplify the code and allow us to reuse existing 2841 // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *) 2842 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse()) 2843 continue; 2844 2845 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2846 if (!PredTerm || !PredTerm->isUnconditional()) 2847 continue; 2848 2849 unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I); 2850 return true; 2851 } 2852 return false; 2853 } 2854 2855 /// tryToUnfoldSelect - Look for blocks of the form 2856 /// bb1: 2857 /// %a = select 2858 /// br bb2 2859 /// 2860 /// bb2: 2861 /// %p = phi [%a, %bb1] ... 2862 /// %c = icmp %p 2863 /// br i1 %c 2864 /// 2865 /// And expand the select into a branch structure if one of its arms allows %c 2866 /// to be folded. This later enables threading from bb1 over bb2. 2867 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2868 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2869 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2870 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2871 2872 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2873 CondLHS->getParent() != BB) 2874 return false; 2875 2876 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2877 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2878 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2879 2880 // Look if one of the incoming values is a select in the corresponding 2881 // predecessor. 2882 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2883 continue; 2884 2885 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2886 if (!PredTerm || !PredTerm->isUnconditional()) 2887 continue; 2888 2889 // Now check if one of the select values would allow us to constant fold the 2890 // terminator in BB. We don't do the transform if both sides fold, those 2891 // cases will be threaded in any case. 2892 LazyValueInfo::Tristate LHSFolds = 2893 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2894 CondRHS, Pred, BB, CondCmp); 2895 LazyValueInfo::Tristate RHSFolds = 2896 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2897 CondRHS, Pred, BB, CondCmp); 2898 if ((LHSFolds != LazyValueInfo::Unknown || 2899 RHSFolds != LazyValueInfo::Unknown) && 2900 LHSFolds != RHSFolds) { 2901 unfoldSelectInstr(Pred, BB, SI, CondLHS, I); 2902 return true; 2903 } 2904 } 2905 return false; 2906 } 2907 2908 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2909 /// same BB in the form 2910 /// bb: 2911 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2912 /// %s = select %p, trueval, falseval 2913 /// 2914 /// or 2915 /// 2916 /// bb: 2917 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2918 /// %c = cmp %p, 0 2919 /// %s = select %c, trueval, falseval 2920 /// 2921 /// And expand the select into a branch structure. This later enables 2922 /// jump-threading over bb in this pass. 2923 /// 2924 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2925 /// select if the associated PHI has at least one constant. If the unfolded 2926 /// select is not jump-threaded, it will be folded again in the later 2927 /// optimizations. 2928 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2929 // This transform would reduce the quality of msan diagnostics. 2930 // Disable this transform under MemorySanitizer. 2931 if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 2932 return false; 2933 2934 // If threading this would thread across a loop header, don't thread the edge. 2935 // See the comments above findLoopHeaders for justifications and caveats. 2936 if (LoopHeaders.count(BB)) 2937 return false; 2938 2939 for (BasicBlock::iterator BI = BB->begin(); 2940 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2941 // Look for a Phi having at least one constant incoming value. 2942 if (llvm::all_of(PN->incoming_values(), 2943 [](Value *V) { return !isa<ConstantInt>(V); })) 2944 continue; 2945 2946 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2947 using namespace PatternMatch; 2948 2949 // Check if SI is in BB and use V as condition. 2950 if (SI->getParent() != BB) 2951 return false; 2952 Value *Cond = SI->getCondition(); 2953 bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr())); 2954 return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr; 2955 }; 2956 2957 SelectInst *SI = nullptr; 2958 for (Use &U : PN->uses()) { 2959 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2960 // Look for a ICmp in BB that compares PN with a constant and is the 2961 // condition of a Select. 2962 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2963 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2964 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2965 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2966 SI = SelectI; 2967 break; 2968 } 2969 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2970 // Look for a Select in BB that uses PN as condition. 2971 if (isUnfoldCandidate(SelectI, U.get())) { 2972 SI = SelectI; 2973 break; 2974 } 2975 } 2976 } 2977 2978 if (!SI) 2979 continue; 2980 // Expand the select. 2981 Value *Cond = SI->getCondition(); 2982 if (!isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI)) 2983 Cond = new FreezeInst(Cond, "cond.fr", SI->getIterator()); 2984 MDNode *BranchWeights = getBranchWeightMDNode(*SI); 2985 Instruction *Term = 2986 SplitBlockAndInsertIfThen(Cond, SI, false, BranchWeights); 2987 BasicBlock *SplitBB = SI->getParent(); 2988 BasicBlock *NewBB = Term->getParent(); 2989 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI->getIterator()); 2990 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2991 NewPN->addIncoming(SI->getFalseValue(), BB); 2992 NewPN->setDebugLoc(SI->getDebugLoc()); 2993 SI->replaceAllUsesWith(NewPN); 2994 SI->eraseFromParent(); 2995 // NewBB and SplitBB are newly created blocks which require insertion. 2996 std::vector<DominatorTree::UpdateType> Updates; 2997 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2998 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2999 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 3000 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 3001 // BB's successors were moved to SplitBB, update DTU accordingly. 3002 for (auto *Succ : successors(SplitBB)) { 3003 Updates.push_back({DominatorTree::Delete, BB, Succ}); 3004 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 3005 } 3006 DTU->applyUpdatesPermissive(Updates); 3007 return true; 3008 } 3009 return false; 3010 } 3011 3012 /// Try to propagate a guard from the current BB into one of its predecessors 3013 /// in case if another branch of execution implies that the condition of this 3014 /// guard is always true. Currently we only process the simplest case that 3015 /// looks like: 3016 /// 3017 /// Start: 3018 /// %cond = ... 3019 /// br i1 %cond, label %T1, label %F1 3020 /// T1: 3021 /// br label %Merge 3022 /// F1: 3023 /// br label %Merge 3024 /// Merge: 3025 /// %condGuard = ... 3026 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 3027 /// 3028 /// And cond either implies condGuard or !condGuard. In this case all the 3029 /// instructions before the guard can be duplicated in both branches, and the 3030 /// guard is then threaded to one of them. 3031 bool JumpThreadingPass::processGuards(BasicBlock *BB) { 3032 using namespace PatternMatch; 3033 3034 // We only want to deal with two predecessors. 3035 BasicBlock *Pred1, *Pred2; 3036 auto PI = pred_begin(BB), PE = pred_end(BB); 3037 if (PI == PE) 3038 return false; 3039 Pred1 = *PI++; 3040 if (PI == PE) 3041 return false; 3042 Pred2 = *PI++; 3043 if (PI != PE) 3044 return false; 3045 if (Pred1 == Pred2) 3046 return false; 3047 3048 // Try to thread one of the guards of the block. 3049 // TODO: Look up deeper than to immediate predecessor? 3050 auto *Parent = Pred1->getSinglePredecessor(); 3051 if (!Parent || Parent != Pred2->getSinglePredecessor()) 3052 return false; 3053 3054 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 3055 for (auto &I : *BB) 3056 if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI)) 3057 return true; 3058 3059 return false; 3060 } 3061 3062 /// Try to propagate the guard from BB which is the lower block of a diamond 3063 /// to one of its branches, in case if diamond's condition implies guard's 3064 /// condition. 3065 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard, 3066 BranchInst *BI) { 3067 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 3068 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 3069 Value *GuardCond = Guard->getArgOperand(0); 3070 Value *BranchCond = BI->getCondition(); 3071 BasicBlock *TrueDest = BI->getSuccessor(0); 3072 BasicBlock *FalseDest = BI->getSuccessor(1); 3073 3074 auto &DL = BB->getModule()->getDataLayout(); 3075 bool TrueDestIsSafe = false; 3076 bool FalseDestIsSafe = false; 3077 3078 // True dest is safe if BranchCond => GuardCond. 3079 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 3080 if (Impl && *Impl) 3081 TrueDestIsSafe = true; 3082 else { 3083 // False dest is safe if !BranchCond => GuardCond. 3084 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 3085 if (Impl && *Impl) 3086 FalseDestIsSafe = true; 3087 } 3088 3089 if (!TrueDestIsSafe && !FalseDestIsSafe) 3090 return false; 3091 3092 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 3093 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 3094 3095 ValueToValueMapTy UnguardedMapping, GuardedMapping; 3096 Instruction *AfterGuard = Guard->getNextNode(); 3097 unsigned Cost = 3098 getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold); 3099 if (Cost > BBDupThreshold) 3100 return false; 3101 // Duplicate all instructions before the guard and the guard itself to the 3102 // branch where implication is not proved. 3103 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 3104 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU); 3105 assert(GuardedBlock && "Could not create the guarded block?"); 3106 // Duplicate all instructions before the guard in the unguarded branch. 3107 // Since we have successfully duplicated the guarded block and this block 3108 // has fewer instructions, we expect it to succeed. 3109 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 3110 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU); 3111 assert(UnguardedBlock && "Could not create the unguarded block?"); 3112 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 3113 << GuardedBlock->getName() << "\n"); 3114 // Some instructions before the guard may still have uses. For them, we need 3115 // to create Phi nodes merging their copies in both guarded and unguarded 3116 // branches. Those instructions that have no uses can be just removed. 3117 SmallVector<Instruction *, 4> ToRemove; 3118 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 3119 if (!isa<PHINode>(&*BI)) 3120 ToRemove.push_back(&*BI); 3121 3122 BasicBlock::iterator InsertionPoint = BB->getFirstInsertionPt(); 3123 assert(InsertionPoint != BB->end() && "Empty block?"); 3124 // Substitute with Phis & remove. 3125 for (auto *Inst : reverse(ToRemove)) { 3126 if (!Inst->use_empty()) { 3127 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 3128 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 3129 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 3130 NewPN->setDebugLoc(Inst->getDebugLoc()); 3131 NewPN->insertBefore(InsertionPoint); 3132 Inst->replaceAllUsesWith(NewPN); 3133 } 3134 Inst->dropDbgRecords(); 3135 Inst->eraseFromParent(); 3136 } 3137 return true; 3138 } 3139 3140 PreservedAnalyses JumpThreadingPass::getPreservedAnalysis() const { 3141 PreservedAnalyses PA; 3142 PA.preserve<LazyValueAnalysis>(); 3143 PA.preserve<DominatorTreeAnalysis>(); 3144 3145 // TODO: We would like to preserve BPI/BFI. Enable once all paths update them. 3146 // TODO: Would be nice to verify BPI/BFI consistency as well. 3147 return PA; 3148 } 3149 3150 template <typename AnalysisT> 3151 typename AnalysisT::Result *JumpThreadingPass::runExternalAnalysis() { 3152 assert(FAM && "Can't run external analysis without FunctionAnalysisManager"); 3153 3154 // If there were no changes since last call to 'runExternalAnalysis' then all 3155 // analysis is either up to date or explicitly invalidated. Just go ahead and 3156 // run the "external" analysis. 3157 if (!ChangedSinceLastAnalysisUpdate) { 3158 assert(!DTU->hasPendingUpdates() && 3159 "Lost update of 'ChangedSinceLastAnalysisUpdate'?"); 3160 // Run the "external" analysis. 3161 return &FAM->getResult<AnalysisT>(*F); 3162 } 3163 ChangedSinceLastAnalysisUpdate = false; 3164 3165 auto PA = getPreservedAnalysis(); 3166 // TODO: This shouldn't be needed once 'getPreservedAnalysis' reports BPI/BFI 3167 // as preserved. 3168 PA.preserve<BranchProbabilityAnalysis>(); 3169 PA.preserve<BlockFrequencyAnalysis>(); 3170 // Report everything except explicitly preserved as invalid. 3171 FAM->invalidate(*F, PA); 3172 // Update DT/PDT. 3173 DTU->flush(); 3174 // Make sure DT/PDT are valid before running "external" analysis. 3175 assert(DTU->getDomTree().verify(DominatorTree::VerificationLevel::Fast)); 3176 assert((!DTU->hasPostDomTree() || 3177 DTU->getPostDomTree().verify( 3178 PostDominatorTree::VerificationLevel::Fast))); 3179 // Run the "external" analysis. 3180 auto *Result = &FAM->getResult<AnalysisT>(*F); 3181 // Update analysis JumpThreading depends on and not explicitly preserved. 3182 TTI = &FAM->getResult<TargetIRAnalysis>(*F); 3183 TLI = &FAM->getResult<TargetLibraryAnalysis>(*F); 3184 AA = &FAM->getResult<AAManager>(*F); 3185 3186 return Result; 3187 } 3188 3189 BranchProbabilityInfo *JumpThreadingPass::getBPI() { 3190 if (!BPI) { 3191 assert(FAM && "Can't create BPI without FunctionAnalysisManager"); 3192 BPI = FAM->getCachedResult<BranchProbabilityAnalysis>(*F); 3193 } 3194 return *BPI; 3195 } 3196 3197 BlockFrequencyInfo *JumpThreadingPass::getBFI() { 3198 if (!BFI) { 3199 assert(FAM && "Can't create BFI without FunctionAnalysisManager"); 3200 BFI = FAM->getCachedResult<BlockFrequencyAnalysis>(*F); 3201 } 3202 return *BFI; 3203 } 3204 3205 // Important note on validity of BPI/BFI. JumpThreading tries to preserve 3206 // BPI/BFI as it goes. Thus if cached instance exists it will be updated. 3207 // Otherwise, new instance of BPI/BFI is created (up to date by definition). 3208 BranchProbabilityInfo *JumpThreadingPass::getOrCreateBPI(bool Force) { 3209 auto *Res = getBPI(); 3210 if (Res) 3211 return Res; 3212 3213 if (Force) 3214 BPI = runExternalAnalysis<BranchProbabilityAnalysis>(); 3215 3216 return *BPI; 3217 } 3218 3219 BlockFrequencyInfo *JumpThreadingPass::getOrCreateBFI(bool Force) { 3220 auto *Res = getBFI(); 3221 if (Res) 3222 return Res; 3223 3224 if (Force) 3225 BFI = runExternalAnalysis<BlockFrequencyAnalysis>(); 3226 3227 return *BFI; 3228 } 3229