xref: /llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision eef95f2746c3347b8dad19091ffb82a88d73acd3)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BlockFrequencyInfo.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/Analysis/CFG.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/DomTreeUpdater.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/GuardUtils.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/LazyValueInfo.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/PatternMatch.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Use.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/InitializePasses.h"
59 #include "llvm/Pass.h"
60 #include "llvm/Support/BlockFrequency.h"
61 #include "llvm/Support/BranchProbability.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Transforms/Scalar.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/Cloning.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/SSAUpdater.h"
71 #include "llvm/Transforms/Utils/ValueMapper.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <memory>
78 #include <utility>
79 
80 using namespace llvm;
81 using namespace jumpthreading;
82 
83 #define DEBUG_TYPE "jump-threading"
84 
85 STATISTIC(NumThreads, "Number of jumps threaded");
86 STATISTIC(NumFolds,   "Number of terminators folded");
87 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
88 
89 static cl::opt<unsigned>
90 BBDuplicateThreshold("jump-threading-threshold",
91           cl::desc("Max block size to duplicate for jump threading"),
92           cl::init(6), cl::Hidden);
93 
94 static cl::opt<unsigned>
95 ImplicationSearchThreshold(
96   "jump-threading-implication-search-threshold",
97   cl::desc("The number of predecessors to search for a stronger "
98            "condition to use to thread over a weaker condition"),
99   cl::init(3), cl::Hidden);
100 
101 static cl::opt<bool> PrintLVIAfterJumpThreading(
102     "print-lvi-after-jump-threading",
103     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
104     cl::Hidden);
105 
106 static cl::opt<bool> ThreadAcrossLoopHeaders(
107     "jump-threading-across-loop-headers",
108     cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
109     cl::init(false), cl::Hidden);
110 
111 
112 namespace {
113 
114   /// This pass performs 'jump threading', which looks at blocks that have
115   /// multiple predecessors and multiple successors.  If one or more of the
116   /// predecessors of the block can be proven to always jump to one of the
117   /// successors, we forward the edge from the predecessor to the successor by
118   /// duplicating the contents of this block.
119   ///
120   /// An example of when this can occur is code like this:
121   ///
122   ///   if () { ...
123   ///     X = 4;
124   ///   }
125   ///   if (X < 3) {
126   ///
127   /// In this case, the unconditional branch at the end of the first if can be
128   /// revectored to the false side of the second if.
129   class JumpThreading : public FunctionPass {
130     JumpThreadingPass Impl;
131 
132   public:
133     static char ID; // Pass identification
134 
135     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
136       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
137     }
138 
139     bool runOnFunction(Function &F) override;
140 
141     void getAnalysisUsage(AnalysisUsage &AU) const override {
142       AU.addRequired<DominatorTreeWrapperPass>();
143       AU.addPreserved<DominatorTreeWrapperPass>();
144       AU.addRequired<AAResultsWrapperPass>();
145       AU.addRequired<LazyValueInfoWrapperPass>();
146       AU.addPreserved<LazyValueInfoWrapperPass>();
147       AU.addPreserved<GlobalsAAWrapperPass>();
148       AU.addRequired<TargetLibraryInfoWrapperPass>();
149     }
150 
151     void releaseMemory() override { Impl.releaseMemory(); }
152   };
153 
154 } // end anonymous namespace
155 
156 char JumpThreading::ID = 0;
157 
158 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
159                 "Jump Threading", false, false)
160 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
161 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
162 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
163 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
164 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
165                 "Jump Threading", false, false)
166 
167 // Public interface to the Jump Threading pass
168 FunctionPass *llvm::createJumpThreadingPass(int Threshold) {
169   return new JumpThreading(Threshold);
170 }
171 
172 JumpThreadingPass::JumpThreadingPass(int T) {
173   DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
174 }
175 
176 // Update branch probability information according to conditional
177 // branch probability. This is usually made possible for cloned branches
178 // in inline instances by the context specific profile in the caller.
179 // For instance,
180 //
181 //  [Block PredBB]
182 //  [Branch PredBr]
183 //  if (t) {
184 //     Block A;
185 //  } else {
186 //     Block B;
187 //  }
188 //
189 //  [Block BB]
190 //  cond = PN([true, %A], [..., %B]); // PHI node
191 //  [Branch CondBr]
192 //  if (cond) {
193 //    ...  // P(cond == true) = 1%
194 //  }
195 //
196 //  Here we know that when block A is taken, cond must be true, which means
197 //      P(cond == true | A) = 1
198 //
199 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
200 //                               P(cond == true | B) * P(B)
201 //  we get:
202 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
203 //
204 //  which gives us:
205 //     P(A) is less than P(cond == true), i.e.
206 //     P(t == true) <= P(cond == true)
207 //
208 //  In other words, if we know P(cond == true) is unlikely, we know
209 //  that P(t == true) is also unlikely.
210 //
211 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
212   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
213   if (!CondBr)
214     return;
215 
216   BranchProbability BP;
217   uint64_t TrueWeight, FalseWeight;
218   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
219     return;
220 
221   // Returns the outgoing edge of the dominating predecessor block
222   // that leads to the PhiNode's incoming block:
223   auto GetPredOutEdge =
224       [](BasicBlock *IncomingBB,
225          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
226     auto *PredBB = IncomingBB;
227     auto *SuccBB = PhiBB;
228     SmallPtrSet<BasicBlock *, 16> Visited;
229     while (true) {
230       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
231       if (PredBr && PredBr->isConditional())
232         return {PredBB, SuccBB};
233       Visited.insert(PredBB);
234       auto *SinglePredBB = PredBB->getSinglePredecessor();
235       if (!SinglePredBB)
236         return {nullptr, nullptr};
237 
238       // Stop searching when SinglePredBB has been visited. It means we see
239       // an unreachable loop.
240       if (Visited.count(SinglePredBB))
241         return {nullptr, nullptr};
242 
243       SuccBB = PredBB;
244       PredBB = SinglePredBB;
245     }
246   };
247 
248   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
249     Value *PhiOpnd = PN->getIncomingValue(i);
250     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
251 
252     if (!CI || !CI->getType()->isIntegerTy(1))
253       continue;
254 
255     BP = (CI->isOne() ? BranchProbability::getBranchProbability(
256                             TrueWeight, TrueWeight + FalseWeight)
257                       : BranchProbability::getBranchProbability(
258                             FalseWeight, TrueWeight + FalseWeight));
259 
260     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
261     if (!PredOutEdge.first)
262       return;
263 
264     BasicBlock *PredBB = PredOutEdge.first;
265     BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
266     if (!PredBr)
267       return;
268 
269     uint64_t PredTrueWeight, PredFalseWeight;
270     // FIXME: We currently only set the profile data when it is missing.
271     // With PGO, this can be used to refine even existing profile data with
272     // context information. This needs to be done after more performance
273     // testing.
274     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
275       continue;
276 
277     // We can not infer anything useful when BP >= 50%, because BP is the
278     // upper bound probability value.
279     if (BP >= BranchProbability(50, 100))
280       continue;
281 
282     SmallVector<uint32_t, 2> Weights;
283     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
284       Weights.push_back(BP.getNumerator());
285       Weights.push_back(BP.getCompl().getNumerator());
286     } else {
287       Weights.push_back(BP.getCompl().getNumerator());
288       Weights.push_back(BP.getNumerator());
289     }
290     PredBr->setMetadata(LLVMContext::MD_prof,
291                         MDBuilder(PredBr->getParent()->getContext())
292                             .createBranchWeights(Weights));
293   }
294 }
295 
296 /// runOnFunction - Toplevel algorithm.
297 bool JumpThreading::runOnFunction(Function &F) {
298   if (skipFunction(F))
299     return false;
300   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
301   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
302   // DT if it's available.
303   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
304   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
305   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
306   DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
307   std::unique_ptr<BlockFrequencyInfo> BFI;
308   std::unique_ptr<BranchProbabilityInfo> BPI;
309   if (F.hasProfileData()) {
310     LoopInfo LI{DominatorTree(F)};
311     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
312     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
313   }
314 
315   bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, F.hasProfileData(),
316                               std::move(BFI), std::move(BPI));
317   if (PrintLVIAfterJumpThreading) {
318     dbgs() << "LVI for function '" << F.getName() << "':\n";
319     LVI->printLVI(F, *DT, dbgs());
320   }
321   return Changed;
322 }
323 
324 PreservedAnalyses JumpThreadingPass::run(Function &F,
325                                          FunctionAnalysisManager &AM) {
326   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
327   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
328   // DT if it's available.
329   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
330   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
331   auto &AA = AM.getResult<AAManager>(F);
332   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
333 
334   std::unique_ptr<BlockFrequencyInfo> BFI;
335   std::unique_ptr<BranchProbabilityInfo> BPI;
336   if (F.hasProfileData()) {
337     LoopInfo LI{DominatorTree(F)};
338     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
339     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
340   }
341 
342   bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, F.hasProfileData(),
343                          std::move(BFI), std::move(BPI));
344 
345   if (!Changed)
346     return PreservedAnalyses::all();
347   PreservedAnalyses PA;
348   PA.preserve<GlobalsAA>();
349   PA.preserve<DominatorTreeAnalysis>();
350   PA.preserve<LazyValueAnalysis>();
351   return PA;
352 }
353 
354 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
355                                 LazyValueInfo *LVI_, AliasAnalysis *AA_,
356                                 DomTreeUpdater *DTU_, bool HasProfileData_,
357                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
358                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
359   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
360   TLI = TLI_;
361   LVI = LVI_;
362   AA = AA_;
363   DTU = DTU_;
364   BFI.reset();
365   BPI.reset();
366   // When profile data is available, we need to update edge weights after
367   // successful jump threading, which requires both BPI and BFI being available.
368   HasProfileData = HasProfileData_;
369   auto *GuardDecl = F.getParent()->getFunction(
370       Intrinsic::getName(Intrinsic::experimental_guard));
371   HasGuards = GuardDecl && !GuardDecl->use_empty();
372   if (HasProfileData) {
373     BPI = std::move(BPI_);
374     BFI = std::move(BFI_);
375   }
376 
377   // Reduce the number of instructions duplicated when optimizing strictly for
378   // size.
379   if (BBDuplicateThreshold.getNumOccurrences())
380     BBDupThreshold = BBDuplicateThreshold;
381   else if (F.hasFnAttribute(Attribute::MinSize))
382     BBDupThreshold = 3;
383   else
384     BBDupThreshold = DefaultBBDupThreshold;
385 
386   // JumpThreading must not processes blocks unreachable from entry. It's a
387   // waste of compute time and can potentially lead to hangs.
388   SmallPtrSet<BasicBlock *, 16> Unreachable;
389   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
390   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
391   DominatorTree &DT = DTU->getDomTree();
392   for (auto &BB : F)
393     if (!DT.isReachableFromEntry(&BB))
394       Unreachable.insert(&BB);
395 
396   if (!ThreadAcrossLoopHeaders)
397     FindLoopHeaders(F);
398 
399   bool EverChanged = false;
400   bool Changed;
401   do {
402     Changed = false;
403     for (auto &BB : F) {
404       if (Unreachable.count(&BB))
405         continue;
406       while (ProcessBlock(&BB)) // Thread all of the branches we can over BB.
407         Changed = true;
408 
409       // Jump threading may have introduced redundant debug values into BB
410       // which should be removed.
411       if (Changed)
412         RemoveRedundantDbgInstrs(&BB);
413 
414       // Stop processing BB if it's the entry or is now deleted. The following
415       // routines attempt to eliminate BB and locating a suitable replacement
416       // for the entry is non-trivial.
417       if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
418         continue;
419 
420       if (pred_empty(&BB)) {
421         // When ProcessBlock makes BB unreachable it doesn't bother to fix up
422         // the instructions in it. We must remove BB to prevent invalid IR.
423         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
424                           << "' with terminator: " << *BB.getTerminator()
425                           << '\n');
426         LoopHeaders.erase(&BB);
427         LVI->eraseBlock(&BB);
428         DeleteDeadBlock(&BB, DTU);
429         Changed = true;
430         continue;
431       }
432 
433       // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB
434       // is "almost empty", we attempt to merge BB with its sole successor.
435       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
436       if (BI && BI->isUnconditional()) {
437         BasicBlock *Succ = BI->getSuccessor(0);
438         if (
439             // The terminator must be the only non-phi instruction in BB.
440             BB.getFirstNonPHIOrDbg()->isTerminator() &&
441             // Don't alter Loop headers and latches to ensure another pass can
442             // detect and transform nested loops later.
443             !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
444             TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
445           RemoveRedundantDbgInstrs(Succ);
446           // BB is valid for cleanup here because we passed in DTU. F remains
447           // BB's parent until a DTU->getDomTree() event.
448           LVI->eraseBlock(&BB);
449           Changed = true;
450         }
451       }
452     }
453     EverChanged |= Changed;
454   } while (Changed);
455 
456   LoopHeaders.clear();
457   // Flush only the Dominator Tree.
458   DTU->getDomTree();
459   LVI->enableDT();
460   return EverChanged;
461 }
462 
463 // Replace uses of Cond with ToVal when safe to do so. If all uses are
464 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
465 // because we may incorrectly replace uses when guards/assumes are uses of
466 // of `Cond` and we used the guards/assume to reason about the `Cond` value
467 // at the end of block. RAUW unconditionally replaces all uses
468 // including the guards/assumes themselves and the uses before the
469 // guard/assume.
470 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) {
471   assert(Cond->getType() == ToVal->getType());
472   auto *BB = Cond->getParent();
473   // We can unconditionally replace all uses in non-local blocks (i.e. uses
474   // strictly dominated by BB), since LVI information is true from the
475   // terminator of BB.
476   replaceNonLocalUsesWith(Cond, ToVal);
477   for (Instruction &I : reverse(*BB)) {
478     // Reached the Cond whose uses we are trying to replace, so there are no
479     // more uses.
480     if (&I == Cond)
481       break;
482     // We only replace uses in instructions that are guaranteed to reach the end
483     // of BB, where we know Cond is ToVal.
484     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
485       break;
486     I.replaceUsesOfWith(Cond, ToVal);
487   }
488   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
489     Cond->eraseFromParent();
490 }
491 
492 /// Return the cost of duplicating a piece of this block from first non-phi
493 /// and before StopAt instruction to thread across it. Stop scanning the block
494 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
495 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
496                                              Instruction *StopAt,
497                                              unsigned Threshold) {
498   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
499   /// Ignore PHI nodes, these will be flattened when duplication happens.
500   BasicBlock::const_iterator I(BB->getFirstNonPHI());
501 
502   // FIXME: THREADING will delete values that are just used to compute the
503   // branch, so they shouldn't count against the duplication cost.
504 
505   unsigned Bonus = 0;
506   if (BB->getTerminator() == StopAt) {
507     // Threading through a switch statement is particularly profitable.  If this
508     // block ends in a switch, decrease its cost to make it more likely to
509     // happen.
510     if (isa<SwitchInst>(StopAt))
511       Bonus = 6;
512 
513     // The same holds for indirect branches, but slightly more so.
514     if (isa<IndirectBrInst>(StopAt))
515       Bonus = 8;
516   }
517 
518   // Bump the threshold up so the early exit from the loop doesn't skip the
519   // terminator-based Size adjustment at the end.
520   Threshold += Bonus;
521 
522   // Sum up the cost of each instruction until we get to the terminator.  Don't
523   // include the terminator because the copy won't include it.
524   unsigned Size = 0;
525   for (; &*I != StopAt; ++I) {
526 
527     // Stop scanning the block if we've reached the threshold.
528     if (Size > Threshold)
529       return Size;
530 
531     // Debugger intrinsics don't incur code size.
532     if (isa<DbgInfoIntrinsic>(I)) continue;
533 
534     // If this is a pointer->pointer bitcast, it is free.
535     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
536       continue;
537 
538     // Bail out if this instruction gives back a token type, it is not possible
539     // to duplicate it if it is used outside this BB.
540     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
541       return ~0U;
542 
543     // All other instructions count for at least one unit.
544     ++Size;
545 
546     // Calls are more expensive.  If they are non-intrinsic calls, we model them
547     // as having cost of 4.  If they are a non-vector intrinsic, we model them
548     // as having cost of 2 total, and if they are a vector intrinsic, we model
549     // them as having cost 1.
550     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
551       if (CI->cannotDuplicate() || CI->isConvergent())
552         // Blocks with NoDuplicate are modelled as having infinite cost, so they
553         // are never duplicated.
554         return ~0U;
555       else if (!isa<IntrinsicInst>(CI))
556         Size += 3;
557       else if (!CI->getType()->isVectorTy())
558         Size += 1;
559     }
560   }
561 
562   return Size > Bonus ? Size - Bonus : 0;
563 }
564 
565 /// FindLoopHeaders - We do not want jump threading to turn proper loop
566 /// structures into irreducible loops.  Doing this breaks up the loop nesting
567 /// hierarchy and pessimizes later transformations.  To prevent this from
568 /// happening, we first have to find the loop headers.  Here we approximate this
569 /// by finding targets of backedges in the CFG.
570 ///
571 /// Note that there definitely are cases when we want to allow threading of
572 /// edges across a loop header.  For example, threading a jump from outside the
573 /// loop (the preheader) to an exit block of the loop is definitely profitable.
574 /// It is also almost always profitable to thread backedges from within the loop
575 /// to exit blocks, and is often profitable to thread backedges to other blocks
576 /// within the loop (forming a nested loop).  This simple analysis is not rich
577 /// enough to track all of these properties and keep it up-to-date as the CFG
578 /// mutates, so we don't allow any of these transformations.
579 void JumpThreadingPass::FindLoopHeaders(Function &F) {
580   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
581   FindFunctionBackedges(F, Edges);
582 
583   for (const auto &Edge : Edges)
584     LoopHeaders.insert(Edge.second);
585 }
586 
587 /// getKnownConstant - Helper method to determine if we can thread over a
588 /// terminator with the given value as its condition, and if so what value to
589 /// use for that. What kind of value this is depends on whether we want an
590 /// integer or a block address, but an undef is always accepted.
591 /// Returns null if Val is null or not an appropriate constant.
592 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
593   if (!Val)
594     return nullptr;
595 
596   // Undef is "known" enough.
597   if (UndefValue *U = dyn_cast<UndefValue>(Val))
598     return U;
599 
600   if (Preference == WantBlockAddress)
601     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
602 
603   return dyn_cast<ConstantInt>(Val);
604 }
605 
606 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
607 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
608 /// in any of our predecessors.  If so, return the known list of value and pred
609 /// BB in the result vector.
610 ///
611 /// This returns true if there were any known values.
612 bool JumpThreadingPass::ComputeValueKnownInPredecessorsImpl(
613     Value *V, BasicBlock *BB, PredValueInfo &Result,
614     ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
615     Instruction *CxtI) {
616   // This method walks up use-def chains recursively.  Because of this, we could
617   // get into an infinite loop going around loops in the use-def chain.  To
618   // prevent this, keep track of what (value, block) pairs we've already visited
619   // and terminate the search if we loop back to them
620   if (!RecursionSet.insert(V).second)
621     return false;
622 
623   // If V is a constant, then it is known in all predecessors.
624   if (Constant *KC = getKnownConstant(V, Preference)) {
625     for (BasicBlock *Pred : predecessors(BB))
626       Result.push_back(std::make_pair(KC, Pred));
627 
628     return !Result.empty();
629   }
630 
631   // If V is a non-instruction value, or an instruction in a different block,
632   // then it can't be derived from a PHI.
633   Instruction *I = dyn_cast<Instruction>(V);
634   if (!I || I->getParent() != BB) {
635 
636     // Okay, if this is a live-in value, see if it has a known value at the end
637     // of any of our predecessors.
638     //
639     // FIXME: This should be an edge property, not a block end property.
640     /// TODO: Per PR2563, we could infer value range information about a
641     /// predecessor based on its terminator.
642     //
643     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
644     // "I" is a non-local compare-with-a-constant instruction.  This would be
645     // able to handle value inequalities better, for example if the compare is
646     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
647     // Perhaps getConstantOnEdge should be smart enough to do this?
648 
649     if (DTU->hasPendingDomTreeUpdates())
650       LVI->disableDT();
651     else
652       LVI->enableDT();
653     for (BasicBlock *P : predecessors(BB)) {
654       // If the value is known by LazyValueInfo to be a constant in a
655       // predecessor, use that information to try to thread this block.
656       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
657       if (Constant *KC = getKnownConstant(PredCst, Preference))
658         Result.push_back(std::make_pair(KC, P));
659     }
660 
661     return !Result.empty();
662   }
663 
664   /// If I is a PHI node, then we know the incoming values for any constants.
665   if (PHINode *PN = dyn_cast<PHINode>(I)) {
666     if (DTU->hasPendingDomTreeUpdates())
667       LVI->disableDT();
668     else
669       LVI->enableDT();
670     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
671       Value *InVal = PN->getIncomingValue(i);
672       if (Constant *KC = getKnownConstant(InVal, Preference)) {
673         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
674       } else {
675         Constant *CI = LVI->getConstantOnEdge(InVal,
676                                               PN->getIncomingBlock(i),
677                                               BB, CxtI);
678         if (Constant *KC = getKnownConstant(CI, Preference))
679           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
680       }
681     }
682 
683     return !Result.empty();
684   }
685 
686   // Handle Cast instructions.  Only see through Cast when the source operand is
687   // PHI or Cmp to save the compilation time.
688   if (CastInst *CI = dyn_cast<CastInst>(I)) {
689     Value *Source = CI->getOperand(0);
690     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
691       return false;
692     ComputeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
693                                         RecursionSet, CxtI);
694     if (Result.empty())
695       return false;
696 
697     // Convert the known values.
698     for (auto &R : Result)
699       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
700 
701     return true;
702   }
703 
704   // Handle some boolean conditions.
705   if (I->getType()->getPrimitiveSizeInBits() == 1) {
706     assert(Preference == WantInteger && "One-bit non-integer type?");
707     // X | true -> true
708     // X & false -> false
709     if (I->getOpcode() == Instruction::Or ||
710         I->getOpcode() == Instruction::And) {
711       PredValueInfoTy LHSVals, RHSVals;
712 
713       ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
714                                       WantInteger, RecursionSet, CxtI);
715       ComputeValueKnownInPredecessorsImpl(I->getOperand(1), BB, RHSVals,
716                                           WantInteger, RecursionSet, CxtI);
717 
718       if (LHSVals.empty() && RHSVals.empty())
719         return false;
720 
721       ConstantInt *InterestingVal;
722       if (I->getOpcode() == Instruction::Or)
723         InterestingVal = ConstantInt::getTrue(I->getContext());
724       else
725         InterestingVal = ConstantInt::getFalse(I->getContext());
726 
727       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
728 
729       // Scan for the sentinel.  If we find an undef, force it to the
730       // interesting value: x|undef -> true and x&undef -> false.
731       for (const auto &LHSVal : LHSVals)
732         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
733           Result.emplace_back(InterestingVal, LHSVal.second);
734           LHSKnownBBs.insert(LHSVal.second);
735         }
736       for (const auto &RHSVal : RHSVals)
737         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
738           // If we already inferred a value for this block on the LHS, don't
739           // re-add it.
740           if (!LHSKnownBBs.count(RHSVal.second))
741             Result.emplace_back(InterestingVal, RHSVal.second);
742         }
743 
744       return !Result.empty();
745     }
746 
747     // Handle the NOT form of XOR.
748     if (I->getOpcode() == Instruction::Xor &&
749         isa<ConstantInt>(I->getOperand(1)) &&
750         cast<ConstantInt>(I->getOperand(1))->isOne()) {
751       ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
752                                           WantInteger, RecursionSet, CxtI);
753       if (Result.empty())
754         return false;
755 
756       // Invert the known values.
757       for (auto &R : Result)
758         R.first = ConstantExpr::getNot(R.first);
759 
760       return true;
761     }
762 
763   // Try to simplify some other binary operator values.
764   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
765     assert(Preference != WantBlockAddress
766             && "A binary operator creating a block address?");
767     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
768       PredValueInfoTy LHSVals;
769       ComputeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
770                                           WantInteger, RecursionSet, CxtI);
771 
772       // Try to use constant folding to simplify the binary operator.
773       for (const auto &LHSVal : LHSVals) {
774         Constant *V = LHSVal.first;
775         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
776 
777         if (Constant *KC = getKnownConstant(Folded, WantInteger))
778           Result.push_back(std::make_pair(KC, LHSVal.second));
779       }
780     }
781 
782     return !Result.empty();
783   }
784 
785   // Handle compare with phi operand, where the PHI is defined in this block.
786   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
787     assert(Preference == WantInteger && "Compares only produce integers");
788     Type *CmpType = Cmp->getType();
789     Value *CmpLHS = Cmp->getOperand(0);
790     Value *CmpRHS = Cmp->getOperand(1);
791     CmpInst::Predicate Pred = Cmp->getPredicate();
792 
793     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
794     if (!PN)
795       PN = dyn_cast<PHINode>(CmpRHS);
796     if (PN && PN->getParent() == BB) {
797       const DataLayout &DL = PN->getModule()->getDataLayout();
798       // We can do this simplification if any comparisons fold to true or false.
799       // See if any do.
800       if (DTU->hasPendingDomTreeUpdates())
801         LVI->disableDT();
802       else
803         LVI->enableDT();
804       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
805         BasicBlock *PredBB = PN->getIncomingBlock(i);
806         Value *LHS, *RHS;
807         if (PN == CmpLHS) {
808           LHS = PN->getIncomingValue(i);
809           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
810         } else {
811           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
812           RHS = PN->getIncomingValue(i);
813         }
814         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
815         if (!Res) {
816           if (!isa<Constant>(RHS))
817             continue;
818 
819           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
820           auto LHSInst = dyn_cast<Instruction>(LHS);
821           if (LHSInst && LHSInst->getParent() == BB)
822             continue;
823 
824           LazyValueInfo::Tristate
825             ResT = LVI->getPredicateOnEdge(Pred, LHS,
826                                            cast<Constant>(RHS), PredBB, BB,
827                                            CxtI ? CxtI : Cmp);
828           if (ResT == LazyValueInfo::Unknown)
829             continue;
830           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
831         }
832 
833         if (Constant *KC = getKnownConstant(Res, WantInteger))
834           Result.push_back(std::make_pair(KC, PredBB));
835       }
836 
837       return !Result.empty();
838     }
839 
840     // If comparing a live-in value against a constant, see if we know the
841     // live-in value on any predecessors.
842     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
843       Constant *CmpConst = cast<Constant>(CmpRHS);
844 
845       if (!isa<Instruction>(CmpLHS) ||
846           cast<Instruction>(CmpLHS)->getParent() != BB) {
847         if (DTU->hasPendingDomTreeUpdates())
848           LVI->disableDT();
849         else
850           LVI->enableDT();
851         for (BasicBlock *P : predecessors(BB)) {
852           // If the value is known by LazyValueInfo to be a constant in a
853           // predecessor, use that information to try to thread this block.
854           LazyValueInfo::Tristate Res =
855             LVI->getPredicateOnEdge(Pred, CmpLHS,
856                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
857           if (Res == LazyValueInfo::Unknown)
858             continue;
859 
860           Constant *ResC = ConstantInt::get(CmpType, Res);
861           Result.push_back(std::make_pair(ResC, P));
862         }
863 
864         return !Result.empty();
865       }
866 
867       // InstCombine can fold some forms of constant range checks into
868       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
869       // x as a live-in.
870       {
871         using namespace PatternMatch;
872 
873         Value *AddLHS;
874         ConstantInt *AddConst;
875         if (isa<ConstantInt>(CmpConst) &&
876             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
877           if (!isa<Instruction>(AddLHS) ||
878               cast<Instruction>(AddLHS)->getParent() != BB) {
879             if (DTU->hasPendingDomTreeUpdates())
880               LVI->disableDT();
881             else
882               LVI->enableDT();
883             for (BasicBlock *P : predecessors(BB)) {
884               // If the value is known by LazyValueInfo to be a ConstantRange in
885               // a predecessor, use that information to try to thread this
886               // block.
887               ConstantRange CR = LVI->getConstantRangeOnEdge(
888                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
889               // Propagate the range through the addition.
890               CR = CR.add(AddConst->getValue());
891 
892               // Get the range where the compare returns true.
893               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
894                   Pred, cast<ConstantInt>(CmpConst)->getValue());
895 
896               Constant *ResC;
897               if (CmpRange.contains(CR))
898                 ResC = ConstantInt::getTrue(CmpType);
899               else if (CmpRange.inverse().contains(CR))
900                 ResC = ConstantInt::getFalse(CmpType);
901               else
902                 continue;
903 
904               Result.push_back(std::make_pair(ResC, P));
905             }
906 
907             return !Result.empty();
908           }
909         }
910       }
911 
912       // Try to find a constant value for the LHS of a comparison,
913       // and evaluate it statically if we can.
914       PredValueInfoTy LHSVals;
915       ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
916                                           WantInteger, RecursionSet, CxtI);
917 
918       for (const auto &LHSVal : LHSVals) {
919         Constant *V = LHSVal.first;
920         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
921         if (Constant *KC = getKnownConstant(Folded, WantInteger))
922           Result.push_back(std::make_pair(KC, LHSVal.second));
923       }
924 
925       return !Result.empty();
926     }
927   }
928 
929   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
930     // Handle select instructions where at least one operand is a known constant
931     // and we can figure out the condition value for any predecessor block.
932     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
933     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
934     PredValueInfoTy Conds;
935     if ((TrueVal || FalseVal) &&
936         ComputeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
937                                             WantInteger, RecursionSet, CxtI)) {
938       for (auto &C : Conds) {
939         Constant *Cond = C.first;
940 
941         // Figure out what value to use for the condition.
942         bool KnownCond;
943         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
944           // A known boolean.
945           KnownCond = CI->isOne();
946         } else {
947           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
948           // Either operand will do, so be sure to pick the one that's a known
949           // constant.
950           // FIXME: Do this more cleverly if both values are known constants?
951           KnownCond = (TrueVal != nullptr);
952         }
953 
954         // See if the select has a known constant value for this predecessor.
955         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
956           Result.push_back(std::make_pair(Val, C.second));
957       }
958 
959       return !Result.empty();
960     }
961   }
962 
963   // If all else fails, see if LVI can figure out a constant value for us.
964   if (DTU->hasPendingDomTreeUpdates())
965     LVI->disableDT();
966   else
967     LVI->enableDT();
968   Constant *CI = LVI->getConstant(V, BB, CxtI);
969   if (Constant *KC = getKnownConstant(CI, Preference)) {
970     for (BasicBlock *Pred : predecessors(BB))
971       Result.push_back(std::make_pair(KC, Pred));
972   }
973 
974   return !Result.empty();
975 }
976 
977 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
978 /// in an undefined jump, decide which block is best to revector to.
979 ///
980 /// Since we can pick an arbitrary destination, we pick the successor with the
981 /// fewest predecessors.  This should reduce the in-degree of the others.
982 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
983   Instruction *BBTerm = BB->getTerminator();
984   unsigned MinSucc = 0;
985   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
986   // Compute the successor with the minimum number of predecessors.
987   unsigned MinNumPreds = pred_size(TestBB);
988   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
989     TestBB = BBTerm->getSuccessor(i);
990     unsigned NumPreds = pred_size(TestBB);
991     if (NumPreds < MinNumPreds) {
992       MinSucc = i;
993       MinNumPreds = NumPreds;
994     }
995   }
996 
997   return MinSucc;
998 }
999 
1000 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
1001   if (!BB->hasAddressTaken()) return false;
1002 
1003   // If the block has its address taken, it may be a tree of dead constants
1004   // hanging off of it.  These shouldn't keep the block alive.
1005   BlockAddress *BA = BlockAddress::get(BB);
1006   BA->removeDeadConstantUsers();
1007   return !BA->use_empty();
1008 }
1009 
1010 /// ProcessBlock - If there are any predecessors whose control can be threaded
1011 /// through to a successor, transform them now.
1012 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
1013   // If the block is trivially dead, just return and let the caller nuke it.
1014   // This simplifies other transformations.
1015   if (DTU->isBBPendingDeletion(BB) ||
1016       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
1017     return false;
1018 
1019   // If this block has a single predecessor, and if that pred has a single
1020   // successor, merge the blocks.  This encourages recursive jump threading
1021   // because now the condition in this block can be threaded through
1022   // predecessors of our predecessor block.
1023   if (MaybeMergeBasicBlockIntoOnlyPred(BB))
1024     return true;
1025 
1026   if (TryToUnfoldSelectInCurrBB(BB))
1027     return true;
1028 
1029   // Look if we can propagate guards to predecessors.
1030   if (HasGuards && ProcessGuards(BB))
1031     return true;
1032 
1033   // What kind of constant we're looking for.
1034   ConstantPreference Preference = WantInteger;
1035 
1036   // Look to see if the terminator is a conditional branch, switch or indirect
1037   // branch, if not we can't thread it.
1038   Value *Condition;
1039   Instruction *Terminator = BB->getTerminator();
1040   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1041     // Can't thread an unconditional jump.
1042     if (BI->isUnconditional()) return false;
1043     Condition = BI->getCondition();
1044   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1045     Condition = SI->getCondition();
1046   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1047     // Can't thread indirect branch with no successors.
1048     if (IB->getNumSuccessors() == 0) return false;
1049     Condition = IB->getAddress()->stripPointerCasts();
1050     Preference = WantBlockAddress;
1051   } else {
1052     return false; // Must be an invoke or callbr.
1053   }
1054 
1055   // Run constant folding to see if we can reduce the condition to a simple
1056   // constant.
1057   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1058     Value *SimpleVal =
1059         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1060     if (SimpleVal) {
1061       I->replaceAllUsesWith(SimpleVal);
1062       if (isInstructionTriviallyDead(I, TLI))
1063         I->eraseFromParent();
1064       Condition = SimpleVal;
1065     }
1066   }
1067 
1068   // If the terminator is branching on an undef, we can pick any of the
1069   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
1070   if (isa<UndefValue>(Condition)) {
1071     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
1072     std::vector<DominatorTree::UpdateType> Updates;
1073 
1074     // Fold the branch/switch.
1075     Instruction *BBTerm = BB->getTerminator();
1076     Updates.reserve(BBTerm->getNumSuccessors());
1077     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1078       if (i == BestSucc) continue;
1079       BasicBlock *Succ = BBTerm->getSuccessor(i);
1080       Succ->removePredecessor(BB, true);
1081       Updates.push_back({DominatorTree::Delete, BB, Succ});
1082     }
1083 
1084     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1085                       << "' folding undef terminator: " << *BBTerm << '\n');
1086     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1087     BBTerm->eraseFromParent();
1088     DTU->applyUpdatesPermissive(Updates);
1089     return true;
1090   }
1091 
1092   // If the terminator of this block is branching on a constant, simplify the
1093   // terminator to an unconditional branch.  This can occur due to threading in
1094   // other blocks.
1095   if (getKnownConstant(Condition, Preference)) {
1096     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1097                       << "' folding terminator: " << *BB->getTerminator()
1098                       << '\n');
1099     ++NumFolds;
1100     ConstantFoldTerminator(BB, true, nullptr, DTU);
1101     return true;
1102   }
1103 
1104   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1105 
1106   // All the rest of our checks depend on the condition being an instruction.
1107   if (!CondInst) {
1108     // FIXME: Unify this with code below.
1109     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
1110       return true;
1111     return false;
1112   }
1113 
1114   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1115     // If we're branching on a conditional, LVI might be able to determine
1116     // it's value at the branch instruction.  We only handle comparisons
1117     // against a constant at this time.
1118     // TODO: This should be extended to handle switches as well.
1119     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1120     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1121     if (CondBr && CondConst) {
1122       // We should have returned as soon as we turn a conditional branch to
1123       // unconditional. Because its no longer interesting as far as jump
1124       // threading is concerned.
1125       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1126 
1127       if (DTU->hasPendingDomTreeUpdates())
1128         LVI->disableDT();
1129       else
1130         LVI->enableDT();
1131       LazyValueInfo::Tristate Ret =
1132         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1133                             CondConst, CondBr);
1134       if (Ret != LazyValueInfo::Unknown) {
1135         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1136         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1137         BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1138         ToRemoveSucc->removePredecessor(BB, true);
1139         BranchInst *UncondBr =
1140           BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1141         UncondBr->setDebugLoc(CondBr->getDebugLoc());
1142         CondBr->eraseFromParent();
1143         if (CondCmp->use_empty())
1144           CondCmp->eraseFromParent();
1145         // We can safely replace *some* uses of the CondInst if it has
1146         // exactly one value as returned by LVI. RAUW is incorrect in the
1147         // presence of guards and assumes, that have the `Cond` as the use. This
1148         // is because we use the guards/assume to reason about the `Cond` value
1149         // at the end of block, but RAUW unconditionally replaces all uses
1150         // including the guards/assumes themselves and the uses before the
1151         // guard/assume.
1152         else if (CondCmp->getParent() == BB) {
1153           auto *CI = Ret == LazyValueInfo::True ?
1154             ConstantInt::getTrue(CondCmp->getType()) :
1155             ConstantInt::getFalse(CondCmp->getType());
1156           ReplaceFoldableUses(CondCmp, CI);
1157         }
1158         DTU->applyUpdatesPermissive(
1159             {{DominatorTree::Delete, BB, ToRemoveSucc}});
1160         return true;
1161       }
1162 
1163       // We did not manage to simplify this branch, try to see whether
1164       // CondCmp depends on a known phi-select pattern.
1165       if (TryToUnfoldSelect(CondCmp, BB))
1166         return true;
1167     }
1168   }
1169 
1170   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1171     if (TryToUnfoldSelect(SI, BB))
1172       return true;
1173 
1174   // Check for some cases that are worth simplifying.  Right now we want to look
1175   // for loads that are used by a switch or by the condition for the branch.  If
1176   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1177   // which can then be used to thread the values.
1178   Value *SimplifyValue = CondInst;
1179   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1180     if (isa<Constant>(CondCmp->getOperand(1)))
1181       SimplifyValue = CondCmp->getOperand(0);
1182 
1183   // TODO: There are other places where load PRE would be profitable, such as
1184   // more complex comparisons.
1185   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1186     if (SimplifyPartiallyRedundantLoad(LoadI))
1187       return true;
1188 
1189   // Before threading, try to propagate profile data backwards:
1190   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1191     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1192       updatePredecessorProfileMetadata(PN, BB);
1193 
1194   // Handle a variety of cases where we are branching on something derived from
1195   // a PHI node in the current block.  If we can prove that any predecessors
1196   // compute a predictable value based on a PHI node, thread those predecessors.
1197   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
1198     return true;
1199 
1200   // If this is an otherwise-unfoldable branch on a phi node in the current
1201   // block, see if we can simplify.
1202   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1203     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1204       return ProcessBranchOnPHI(PN);
1205 
1206   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1207   if (CondInst->getOpcode() == Instruction::Xor &&
1208       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1209     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
1210 
1211   // Search for a stronger dominating condition that can be used to simplify a
1212   // conditional branch leaving BB.
1213   if (ProcessImpliedCondition(BB))
1214     return true;
1215 
1216   return false;
1217 }
1218 
1219 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
1220   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1221   if (!BI || !BI->isConditional())
1222     return false;
1223 
1224   Value *Cond = BI->getCondition();
1225   BasicBlock *CurrentBB = BB;
1226   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1227   unsigned Iter = 0;
1228 
1229   auto &DL = BB->getModule()->getDataLayout();
1230 
1231   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1232     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1233     if (!PBI || !PBI->isConditional())
1234       return false;
1235     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1236       return false;
1237 
1238     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1239     Optional<bool> Implication =
1240         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1241     if (Implication) {
1242       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1243       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1244       RemoveSucc->removePredecessor(BB);
1245       BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
1246       UncondBI->setDebugLoc(BI->getDebugLoc());
1247       BI->eraseFromParent();
1248       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1249       return true;
1250     }
1251     CurrentBB = CurrentPred;
1252     CurrentPred = CurrentBB->getSinglePredecessor();
1253   }
1254 
1255   return false;
1256 }
1257 
1258 /// Return true if Op is an instruction defined in the given block.
1259 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1260   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1261     if (OpInst->getParent() == BB)
1262       return true;
1263   return false;
1264 }
1265 
1266 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1267 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1268 /// This is an important optimization that encourages jump threading, and needs
1269 /// to be run interlaced with other jump threading tasks.
1270 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1271   // Don't hack volatile and ordered loads.
1272   if (!LoadI->isUnordered()) return false;
1273 
1274   // If the load is defined in a block with exactly one predecessor, it can't be
1275   // partially redundant.
1276   BasicBlock *LoadBB = LoadI->getParent();
1277   if (LoadBB->getSinglePredecessor())
1278     return false;
1279 
1280   // If the load is defined in an EH pad, it can't be partially redundant,
1281   // because the edges between the invoke and the EH pad cannot have other
1282   // instructions between them.
1283   if (LoadBB->isEHPad())
1284     return false;
1285 
1286   Value *LoadedPtr = LoadI->getOperand(0);
1287 
1288   // If the loaded operand is defined in the LoadBB and its not a phi,
1289   // it can't be available in predecessors.
1290   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1291     return false;
1292 
1293   // Scan a few instructions up from the load, to see if it is obviously live at
1294   // the entry to its block.
1295   BasicBlock::iterator BBIt(LoadI);
1296   bool IsLoadCSE;
1297   if (Value *AvailableVal = FindAvailableLoadedValue(
1298           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1299     // If the value of the load is locally available within the block, just use
1300     // it.  This frequently occurs for reg2mem'd allocas.
1301 
1302     if (IsLoadCSE) {
1303       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1304       combineMetadataForCSE(NLoadI, LoadI, false);
1305     };
1306 
1307     // If the returned value is the load itself, replace with an undef. This can
1308     // only happen in dead loops.
1309     if (AvailableVal == LoadI)
1310       AvailableVal = UndefValue::get(LoadI->getType());
1311     if (AvailableVal->getType() != LoadI->getType())
1312       AvailableVal = CastInst::CreateBitOrPointerCast(
1313           AvailableVal, LoadI->getType(), "", LoadI);
1314     LoadI->replaceAllUsesWith(AvailableVal);
1315     LoadI->eraseFromParent();
1316     return true;
1317   }
1318 
1319   // Otherwise, if we scanned the whole block and got to the top of the block,
1320   // we know the block is locally transparent to the load.  If not, something
1321   // might clobber its value.
1322   if (BBIt != LoadBB->begin())
1323     return false;
1324 
1325   // If all of the loads and stores that feed the value have the same AA tags,
1326   // then we can propagate them onto any newly inserted loads.
1327   AAMDNodes AATags;
1328   LoadI->getAAMetadata(AATags);
1329 
1330   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1331 
1332   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1333 
1334   AvailablePredsTy AvailablePreds;
1335   BasicBlock *OneUnavailablePred = nullptr;
1336   SmallVector<LoadInst*, 8> CSELoads;
1337 
1338   // If we got here, the loaded value is transparent through to the start of the
1339   // block.  Check to see if it is available in any of the predecessor blocks.
1340   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1341     // If we already scanned this predecessor, skip it.
1342     if (!PredsScanned.insert(PredBB).second)
1343       continue;
1344 
1345     BBIt = PredBB->end();
1346     unsigned NumScanedInst = 0;
1347     Value *PredAvailable = nullptr;
1348     // NOTE: We don't CSE load that is volatile or anything stronger than
1349     // unordered, that should have been checked when we entered the function.
1350     assert(LoadI->isUnordered() &&
1351            "Attempting to CSE volatile or atomic loads");
1352     // If this is a load on a phi pointer, phi-translate it and search
1353     // for available load/store to the pointer in predecessors.
1354     Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
1355     PredAvailable = FindAvailablePtrLoadStore(
1356         Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt,
1357         DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst);
1358 
1359     // If PredBB has a single predecessor, continue scanning through the
1360     // single predecessor.
1361     BasicBlock *SinglePredBB = PredBB;
1362     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1363            NumScanedInst < DefMaxInstsToScan) {
1364       SinglePredBB = SinglePredBB->getSinglePredecessor();
1365       if (SinglePredBB) {
1366         BBIt = SinglePredBB->end();
1367         PredAvailable = FindAvailablePtrLoadStore(
1368             Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt,
1369             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1370             &NumScanedInst);
1371       }
1372     }
1373 
1374     if (!PredAvailable) {
1375       OneUnavailablePred = PredBB;
1376       continue;
1377     }
1378 
1379     if (IsLoadCSE)
1380       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1381 
1382     // If so, this load is partially redundant.  Remember this info so that we
1383     // can create a PHI node.
1384     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1385   }
1386 
1387   // If the loaded value isn't available in any predecessor, it isn't partially
1388   // redundant.
1389   if (AvailablePreds.empty()) return false;
1390 
1391   // Okay, the loaded value is available in at least one (and maybe all!)
1392   // predecessors.  If the value is unavailable in more than one unique
1393   // predecessor, we want to insert a merge block for those common predecessors.
1394   // This ensures that we only have to insert one reload, thus not increasing
1395   // code size.
1396   BasicBlock *UnavailablePred = nullptr;
1397 
1398   // If the value is unavailable in one of predecessors, we will end up
1399   // inserting a new instruction into them. It is only valid if all the
1400   // instructions before LoadI are guaranteed to pass execution to its
1401   // successor, or if LoadI is safe to speculate.
1402   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1403   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1404   // It requires domination tree analysis, so for this simple case it is an
1405   // overkill.
1406   if (PredsScanned.size() != AvailablePreds.size() &&
1407       !isSafeToSpeculativelyExecute(LoadI))
1408     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1409       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1410         return false;
1411 
1412   // If there is exactly one predecessor where the value is unavailable, the
1413   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1414   // unconditional branch, we know that it isn't a critical edge.
1415   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1416       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1417     UnavailablePred = OneUnavailablePred;
1418   } else if (PredsScanned.size() != AvailablePreds.size()) {
1419     // Otherwise, we had multiple unavailable predecessors or we had a critical
1420     // edge from the one.
1421     SmallVector<BasicBlock*, 8> PredsToSplit;
1422     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1423 
1424     for (const auto &AvailablePred : AvailablePreds)
1425       AvailablePredSet.insert(AvailablePred.first);
1426 
1427     // Add all the unavailable predecessors to the PredsToSplit list.
1428     for (BasicBlock *P : predecessors(LoadBB)) {
1429       // If the predecessor is an indirect goto, we can't split the edge.
1430       // Same for CallBr.
1431       if (isa<IndirectBrInst>(P->getTerminator()) ||
1432           isa<CallBrInst>(P->getTerminator()))
1433         return false;
1434 
1435       if (!AvailablePredSet.count(P))
1436         PredsToSplit.push_back(P);
1437     }
1438 
1439     // Split them out to their own block.
1440     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1441   }
1442 
1443   // If the value isn't available in all predecessors, then there will be
1444   // exactly one where it isn't available.  Insert a load on that edge and add
1445   // it to the AvailablePreds list.
1446   if (UnavailablePred) {
1447     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1448            "Can't handle critical edge here!");
1449     LoadInst *NewVal = new LoadInst(
1450         LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1451         LoadI->getName() + ".pr", false, LoadI->getAlign(),
1452         LoadI->getOrdering(), LoadI->getSyncScopeID(),
1453         UnavailablePred->getTerminator());
1454     NewVal->setDebugLoc(LoadI->getDebugLoc());
1455     if (AATags)
1456       NewVal->setAAMetadata(AATags);
1457 
1458     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1459   }
1460 
1461   // Now we know that each predecessor of this block has a value in
1462   // AvailablePreds, sort them for efficient access as we're walking the preds.
1463   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1464 
1465   // Create a PHI node at the start of the block for the PRE'd load value.
1466   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1467   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1468                                 &LoadBB->front());
1469   PN->takeName(LoadI);
1470   PN->setDebugLoc(LoadI->getDebugLoc());
1471 
1472   // Insert new entries into the PHI for each predecessor.  A single block may
1473   // have multiple entries here.
1474   for (pred_iterator PI = PB; PI != PE; ++PI) {
1475     BasicBlock *P = *PI;
1476     AvailablePredsTy::iterator I =
1477         llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1478 
1479     assert(I != AvailablePreds.end() && I->first == P &&
1480            "Didn't find entry for predecessor!");
1481 
1482     // If we have an available predecessor but it requires casting, insert the
1483     // cast in the predecessor and use the cast. Note that we have to update the
1484     // AvailablePreds vector as we go so that all of the PHI entries for this
1485     // predecessor use the same bitcast.
1486     Value *&PredV = I->second;
1487     if (PredV->getType() != LoadI->getType())
1488       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1489                                                P->getTerminator());
1490 
1491     PN->addIncoming(PredV, I->first);
1492   }
1493 
1494   for (LoadInst *PredLoadI : CSELoads) {
1495     combineMetadataForCSE(PredLoadI, LoadI, true);
1496   }
1497 
1498   LoadI->replaceAllUsesWith(PN);
1499   LoadI->eraseFromParent();
1500 
1501   return true;
1502 }
1503 
1504 /// FindMostPopularDest - The specified list contains multiple possible
1505 /// threadable destinations.  Pick the one that occurs the most frequently in
1506 /// the list.
1507 static BasicBlock *
1508 FindMostPopularDest(BasicBlock *BB,
1509                     const SmallVectorImpl<std::pair<BasicBlock *,
1510                                           BasicBlock *>> &PredToDestList) {
1511   assert(!PredToDestList.empty());
1512 
1513   // Determine popularity.  If there are multiple possible destinations, we
1514   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1515   // blocks with known and real destinations to threading undef.  We'll handle
1516   // them later if interesting.
1517   DenseMap<BasicBlock*, unsigned> DestPopularity;
1518   for (const auto &PredToDest : PredToDestList)
1519     if (PredToDest.second)
1520       DestPopularity[PredToDest.second]++;
1521 
1522   if (DestPopularity.empty())
1523     return nullptr;
1524 
1525   // Find the most popular dest.
1526   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1527   BasicBlock *MostPopularDest = DPI->first;
1528   unsigned Popularity = DPI->second;
1529   SmallVector<BasicBlock*, 4> SamePopularity;
1530 
1531   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1532     // If the popularity of this entry isn't higher than the popularity we've
1533     // seen so far, ignore it.
1534     if (DPI->second < Popularity)
1535       ; // ignore.
1536     else if (DPI->second == Popularity) {
1537       // If it is the same as what we've seen so far, keep track of it.
1538       SamePopularity.push_back(DPI->first);
1539     } else {
1540       // If it is more popular, remember it.
1541       SamePopularity.clear();
1542       MostPopularDest = DPI->first;
1543       Popularity = DPI->second;
1544     }
1545   }
1546 
1547   // Okay, now we know the most popular destination.  If there is more than one
1548   // destination, we need to determine one.  This is arbitrary, but we need
1549   // to make a deterministic decision.  Pick the first one that appears in the
1550   // successor list.
1551   if (!SamePopularity.empty()) {
1552     SamePopularity.push_back(MostPopularDest);
1553     Instruction *TI = BB->getTerminator();
1554     for (unsigned i = 0; ; ++i) {
1555       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1556 
1557       if (!is_contained(SamePopularity, TI->getSuccessor(i)))
1558         continue;
1559 
1560       MostPopularDest = TI->getSuccessor(i);
1561       break;
1562     }
1563   }
1564 
1565   // Okay, we have finally picked the most popular destination.
1566   return MostPopularDest;
1567 }
1568 
1569 // Try to evaluate the value of V when the control flows from PredPredBB to
1570 // BB->getSinglePredecessor() and then on to BB.
1571 Constant *JumpThreadingPass::EvaluateOnPredecessorEdge(BasicBlock *BB,
1572                                                        BasicBlock *PredPredBB,
1573                                                        Value *V) {
1574   BasicBlock *PredBB = BB->getSinglePredecessor();
1575   assert(PredBB && "Expected a single predecessor");
1576 
1577   if (Constant *Cst = dyn_cast<Constant>(V)) {
1578     return Cst;
1579   }
1580 
1581   // Consult LVI if V is not an instruction in BB or PredBB.
1582   Instruction *I = dyn_cast<Instruction>(V);
1583   if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1584     if (DTU->hasPendingDomTreeUpdates())
1585       LVI->disableDT();
1586     else
1587       LVI->enableDT();
1588     return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1589   }
1590 
1591   // Look into a PHI argument.
1592   if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1593     if (PHI->getParent() == PredBB)
1594       return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1595     return nullptr;
1596   }
1597 
1598   // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1599   if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1600     if (CondCmp->getParent() == BB) {
1601       Constant *Op0 =
1602           EvaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
1603       Constant *Op1 =
1604           EvaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
1605       if (Op0 && Op1) {
1606         return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
1607       }
1608     }
1609     return nullptr;
1610   }
1611 
1612   return nullptr;
1613 }
1614 
1615 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1616                                                ConstantPreference Preference,
1617                                                Instruction *CxtI) {
1618   // If threading this would thread across a loop header, don't even try to
1619   // thread the edge.
1620   if (LoopHeaders.count(BB))
1621     return false;
1622 
1623   PredValueInfoTy PredValues;
1624   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1625                                        CxtI)) {
1626     // We don't have known values in predecessors.  See if we can thread through
1627     // BB and its sole predecessor.
1628     return MaybeThreadThroughTwoBasicBlocks(BB, Cond);
1629   }
1630 
1631   assert(!PredValues.empty() &&
1632          "ComputeValueKnownInPredecessors returned true with no values");
1633 
1634   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1635              for (const auto &PredValue : PredValues) {
1636                dbgs() << "  BB '" << BB->getName()
1637                       << "': FOUND condition = " << *PredValue.first
1638                       << " for pred '" << PredValue.second->getName() << "'.\n";
1639   });
1640 
1641   // Decide what we want to thread through.  Convert our list of known values to
1642   // a list of known destinations for each pred.  This also discards duplicate
1643   // predecessors and keeps track of the undefined inputs (which are represented
1644   // as a null dest in the PredToDestList).
1645   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1646   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1647 
1648   BasicBlock *OnlyDest = nullptr;
1649   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1650   Constant *OnlyVal = nullptr;
1651   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1652 
1653   for (const auto &PredValue : PredValues) {
1654     BasicBlock *Pred = PredValue.second;
1655     if (!SeenPreds.insert(Pred).second)
1656       continue;  // Duplicate predecessor entry.
1657 
1658     Constant *Val = PredValue.first;
1659 
1660     BasicBlock *DestBB;
1661     if (isa<UndefValue>(Val))
1662       DestBB = nullptr;
1663     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1664       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1665       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1666     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1667       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1668       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1669     } else {
1670       assert(isa<IndirectBrInst>(BB->getTerminator())
1671               && "Unexpected terminator");
1672       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1673       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1674     }
1675 
1676     // If we have exactly one destination, remember it for efficiency below.
1677     if (PredToDestList.empty()) {
1678       OnlyDest = DestBB;
1679       OnlyVal = Val;
1680     } else {
1681       if (OnlyDest != DestBB)
1682         OnlyDest = MultipleDestSentinel;
1683       // It possible we have same destination, but different value, e.g. default
1684       // case in switchinst.
1685       if (Val != OnlyVal)
1686         OnlyVal = MultipleVal;
1687     }
1688 
1689     // If the predecessor ends with an indirect goto, we can't change its
1690     // destination. Same for CallBr.
1691     if (isa<IndirectBrInst>(Pred->getTerminator()) ||
1692         isa<CallBrInst>(Pred->getTerminator()))
1693       continue;
1694 
1695     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1696   }
1697 
1698   // If all edges were unthreadable, we fail.
1699   if (PredToDestList.empty())
1700     return false;
1701 
1702   // If all the predecessors go to a single known successor, we want to fold,
1703   // not thread. By doing so, we do not need to duplicate the current block and
1704   // also miss potential opportunities in case we dont/cant duplicate.
1705   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1706     if (BB->hasNPredecessors(PredToDestList.size())) {
1707       bool SeenFirstBranchToOnlyDest = false;
1708       std::vector <DominatorTree::UpdateType> Updates;
1709       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1710       for (BasicBlock *SuccBB : successors(BB)) {
1711         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1712           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1713         } else {
1714           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1715           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1716         }
1717       }
1718 
1719       // Finally update the terminator.
1720       Instruction *Term = BB->getTerminator();
1721       BranchInst::Create(OnlyDest, Term);
1722       Term->eraseFromParent();
1723       DTU->applyUpdatesPermissive(Updates);
1724 
1725       // If the condition is now dead due to the removal of the old terminator,
1726       // erase it.
1727       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1728         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1729           CondInst->eraseFromParent();
1730         // We can safely replace *some* uses of the CondInst if it has
1731         // exactly one value as returned by LVI. RAUW is incorrect in the
1732         // presence of guards and assumes, that have the `Cond` as the use. This
1733         // is because we use the guards/assume to reason about the `Cond` value
1734         // at the end of block, but RAUW unconditionally replaces all uses
1735         // including the guards/assumes themselves and the uses before the
1736         // guard/assume.
1737         else if (OnlyVal && OnlyVal != MultipleVal &&
1738                  CondInst->getParent() == BB)
1739           ReplaceFoldableUses(CondInst, OnlyVal);
1740       }
1741       return true;
1742     }
1743   }
1744 
1745   // Determine which is the most common successor.  If we have many inputs and
1746   // this block is a switch, we want to start by threading the batch that goes
1747   // to the most popular destination first.  If we only know about one
1748   // threadable destination (the common case) we can avoid this.
1749   BasicBlock *MostPopularDest = OnlyDest;
1750 
1751   if (MostPopularDest == MultipleDestSentinel) {
1752     // Remove any loop headers from the Dest list, ThreadEdge conservatively
1753     // won't process them, but we might have other destination that are eligible
1754     // and we still want to process.
1755     erase_if(PredToDestList,
1756              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1757                return LoopHeaders.count(PredToDest.second) != 0;
1758              });
1759 
1760     if (PredToDestList.empty())
1761       return false;
1762 
1763     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1764   }
1765 
1766   // Now that we know what the most popular destination is, factor all
1767   // predecessors that will jump to it into a single predecessor.
1768   SmallVector<BasicBlock*, 16> PredsToFactor;
1769   for (const auto &PredToDest : PredToDestList)
1770     if (PredToDest.second == MostPopularDest) {
1771       BasicBlock *Pred = PredToDest.first;
1772 
1773       // This predecessor may be a switch or something else that has multiple
1774       // edges to the block.  Factor each of these edges by listing them
1775       // according to # occurrences in PredsToFactor.
1776       for (BasicBlock *Succ : successors(Pred))
1777         if (Succ == BB)
1778           PredsToFactor.push_back(Pred);
1779     }
1780 
1781   // If the threadable edges are branching on an undefined value, we get to pick
1782   // the destination that these predecessors should get to.
1783   if (!MostPopularDest)
1784     MostPopularDest = BB->getTerminator()->
1785                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1786 
1787   // Ok, try to thread it!
1788   return TryThreadEdge(BB, PredsToFactor, MostPopularDest);
1789 }
1790 
1791 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1792 /// a PHI node in the current block.  See if there are any simplifications we
1793 /// can do based on inputs to the phi node.
1794 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1795   BasicBlock *BB = PN->getParent();
1796 
1797   // TODO: We could make use of this to do it once for blocks with common PHI
1798   // values.
1799   SmallVector<BasicBlock*, 1> PredBBs;
1800   PredBBs.resize(1);
1801 
1802   // If any of the predecessor blocks end in an unconditional branch, we can
1803   // *duplicate* the conditional branch into that block in order to further
1804   // encourage jump threading and to eliminate cases where we have branch on a
1805   // phi of an icmp (branch on icmp is much better).
1806   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1807     BasicBlock *PredBB = PN->getIncomingBlock(i);
1808     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1809       if (PredBr->isUnconditional()) {
1810         PredBBs[0] = PredBB;
1811         // Try to duplicate BB into PredBB.
1812         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1813           return true;
1814       }
1815   }
1816 
1817   return false;
1818 }
1819 
1820 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1821 /// a xor instruction in the current block.  See if there are any
1822 /// simplifications we can do based on inputs to the xor.
1823 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1824   BasicBlock *BB = BO->getParent();
1825 
1826   // If either the LHS or RHS of the xor is a constant, don't do this
1827   // optimization.
1828   if (isa<ConstantInt>(BO->getOperand(0)) ||
1829       isa<ConstantInt>(BO->getOperand(1)))
1830     return false;
1831 
1832   // If the first instruction in BB isn't a phi, we won't be able to infer
1833   // anything special about any particular predecessor.
1834   if (!isa<PHINode>(BB->front()))
1835     return false;
1836 
1837   // If this BB is a landing pad, we won't be able to split the edge into it.
1838   if (BB->isEHPad())
1839     return false;
1840 
1841   // If we have a xor as the branch input to this block, and we know that the
1842   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1843   // the condition into the predecessor and fix that value to true, saving some
1844   // logical ops on that path and encouraging other paths to simplify.
1845   //
1846   // This copies something like this:
1847   //
1848   //  BB:
1849   //    %X = phi i1 [1],  [%X']
1850   //    %Y = icmp eq i32 %A, %B
1851   //    %Z = xor i1 %X, %Y
1852   //    br i1 %Z, ...
1853   //
1854   // Into:
1855   //  BB':
1856   //    %Y = icmp ne i32 %A, %B
1857   //    br i1 %Y, ...
1858 
1859   PredValueInfoTy XorOpValues;
1860   bool isLHS = true;
1861   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1862                                        WantInteger, BO)) {
1863     assert(XorOpValues.empty());
1864     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1865                                          WantInteger, BO))
1866       return false;
1867     isLHS = false;
1868   }
1869 
1870   assert(!XorOpValues.empty() &&
1871          "ComputeValueKnownInPredecessors returned true with no values");
1872 
1873   // Scan the information to see which is most popular: true or false.  The
1874   // predecessors can be of the set true, false, or undef.
1875   unsigned NumTrue = 0, NumFalse = 0;
1876   for (const auto &XorOpValue : XorOpValues) {
1877     if (isa<UndefValue>(XorOpValue.first))
1878       // Ignore undefs for the count.
1879       continue;
1880     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1881       ++NumFalse;
1882     else
1883       ++NumTrue;
1884   }
1885 
1886   // Determine which value to split on, true, false, or undef if neither.
1887   ConstantInt *SplitVal = nullptr;
1888   if (NumTrue > NumFalse)
1889     SplitVal = ConstantInt::getTrue(BB->getContext());
1890   else if (NumTrue != 0 || NumFalse != 0)
1891     SplitVal = ConstantInt::getFalse(BB->getContext());
1892 
1893   // Collect all of the blocks that this can be folded into so that we can
1894   // factor this once and clone it once.
1895   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1896   for (const auto &XorOpValue : XorOpValues) {
1897     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1898       continue;
1899 
1900     BlocksToFoldInto.push_back(XorOpValue.second);
1901   }
1902 
1903   // If we inferred a value for all of the predecessors, then duplication won't
1904   // help us.  However, we can just replace the LHS or RHS with the constant.
1905   if (BlocksToFoldInto.size() ==
1906       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1907     if (!SplitVal) {
1908       // If all preds provide undef, just nuke the xor, because it is undef too.
1909       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1910       BO->eraseFromParent();
1911     } else if (SplitVal->isZero()) {
1912       // If all preds provide 0, replace the xor with the other input.
1913       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1914       BO->eraseFromParent();
1915     } else {
1916       // If all preds provide 1, set the computed value to 1.
1917       BO->setOperand(!isLHS, SplitVal);
1918     }
1919 
1920     return true;
1921   }
1922 
1923   // Try to duplicate BB into PredBB.
1924   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1925 }
1926 
1927 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1928 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1929 /// NewPred using the entries from OldPred (suitably mapped).
1930 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1931                                             BasicBlock *OldPred,
1932                                             BasicBlock *NewPred,
1933                                      DenseMap<Instruction*, Value*> &ValueMap) {
1934   for (PHINode &PN : PHIBB->phis()) {
1935     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1936     // DestBlock.
1937     Value *IV = PN.getIncomingValueForBlock(OldPred);
1938 
1939     // Remap the value if necessary.
1940     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1941       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1942       if (I != ValueMap.end())
1943         IV = I->second;
1944     }
1945 
1946     PN.addIncoming(IV, NewPred);
1947   }
1948 }
1949 
1950 /// Merge basic block BB into its sole predecessor if possible.
1951 bool JumpThreadingPass::MaybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1952   BasicBlock *SinglePred = BB->getSinglePredecessor();
1953   if (!SinglePred)
1954     return false;
1955 
1956   const Instruction *TI = SinglePred->getTerminator();
1957   if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 ||
1958       SinglePred == BB || hasAddressTakenAndUsed(BB))
1959     return false;
1960 
1961   // If SinglePred was a loop header, BB becomes one.
1962   if (LoopHeaders.erase(SinglePred))
1963     LoopHeaders.insert(BB);
1964 
1965   LVI->eraseBlock(SinglePred);
1966   MergeBasicBlockIntoOnlyPred(BB, DTU);
1967 
1968   // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1969   // BB code within one basic block `BB`), we need to invalidate the LVI
1970   // information associated with BB, because the LVI information need not be
1971   // true for all of BB after the merge. For example,
1972   // Before the merge, LVI info and code is as follows:
1973   // SinglePred: <LVI info1 for %p val>
1974   // %y = use of %p
1975   // call @exit() // need not transfer execution to successor.
1976   // assume(%p) // from this point on %p is true
1977   // br label %BB
1978   // BB: <LVI info2 for %p val, i.e. %p is true>
1979   // %x = use of %p
1980   // br label exit
1981   //
1982   // Note that this LVI info for blocks BB and SinglPred is correct for %p
1983   // (info2 and info1 respectively). After the merge and the deletion of the
1984   // LVI info1 for SinglePred. We have the following code:
1985   // BB: <LVI info2 for %p val>
1986   // %y = use of %p
1987   // call @exit()
1988   // assume(%p)
1989   // %x = use of %p <-- LVI info2 is correct from here onwards.
1990   // br label exit
1991   // LVI info2 for BB is incorrect at the beginning of BB.
1992 
1993   // Invalidate LVI information for BB if the LVI is not provably true for
1994   // all of BB.
1995   if (!isGuaranteedToTransferExecutionToSuccessor(BB))
1996     LVI->eraseBlock(BB);
1997   return true;
1998 }
1999 
2000 /// Update the SSA form.  NewBB contains instructions that are copied from BB.
2001 /// ValueMapping maps old values in BB to new ones in NewBB.
2002 void JumpThreadingPass::UpdateSSA(
2003     BasicBlock *BB, BasicBlock *NewBB,
2004     DenseMap<Instruction *, Value *> &ValueMapping) {
2005   // If there were values defined in BB that are used outside the block, then we
2006   // now have to update all uses of the value to use either the original value,
2007   // the cloned value, or some PHI derived value.  This can require arbitrary
2008   // PHI insertion, of which we are prepared to do, clean these up now.
2009   SSAUpdater SSAUpdate;
2010   SmallVector<Use *, 16> UsesToRename;
2011 
2012   for (Instruction &I : *BB) {
2013     // Scan all uses of this instruction to see if it is used outside of its
2014     // block, and if so, record them in UsesToRename.
2015     for (Use &U : I.uses()) {
2016       Instruction *User = cast<Instruction>(U.getUser());
2017       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2018         if (UserPN->getIncomingBlock(U) == BB)
2019           continue;
2020       } else if (User->getParent() == BB)
2021         continue;
2022 
2023       UsesToRename.push_back(&U);
2024     }
2025 
2026     // If there are no uses outside the block, we're done with this instruction.
2027     if (UsesToRename.empty())
2028       continue;
2029     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2030 
2031     // We found a use of I outside of BB.  Rename all uses of I that are outside
2032     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2033     // with the two values we know.
2034     SSAUpdate.Initialize(I.getType(), I.getName());
2035     SSAUpdate.AddAvailableValue(BB, &I);
2036     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2037 
2038     while (!UsesToRename.empty())
2039       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2040     LLVM_DEBUG(dbgs() << "\n");
2041   }
2042 }
2043 
2044 /// Clone instructions in range [BI, BE) to NewBB.  For PHI nodes, we only clone
2045 /// arguments that come from PredBB.  Return the map from the variables in the
2046 /// source basic block to the variables in the newly created basic block.
2047 DenseMap<Instruction *, Value *>
2048 JumpThreadingPass::CloneInstructions(BasicBlock::iterator BI,
2049                                      BasicBlock::iterator BE, BasicBlock *NewBB,
2050                                      BasicBlock *PredBB) {
2051   // We are going to have to map operands from the source basic block to the new
2052   // copy of the block 'NewBB'.  If there are PHI nodes in the source basic
2053   // block, evaluate them to account for entry from PredBB.
2054   DenseMap<Instruction *, Value *> ValueMapping;
2055 
2056   // Clone the phi nodes of the source basic block into NewBB.  The resulting
2057   // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2058   // might need to rewrite the operand of the cloned phi.
2059   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2060     PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2061     NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2062     ValueMapping[PN] = NewPN;
2063   }
2064 
2065   // Clone the non-phi instructions of the source basic block into NewBB,
2066   // keeping track of the mapping and using it to remap operands in the cloned
2067   // instructions.
2068   for (; BI != BE; ++BI) {
2069     Instruction *New = BI->clone();
2070     New->setName(BI->getName());
2071     NewBB->getInstList().push_back(New);
2072     ValueMapping[&*BI] = New;
2073 
2074     // Remap operands to patch up intra-block references.
2075     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2076       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2077         DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
2078         if (I != ValueMapping.end())
2079           New->setOperand(i, I->second);
2080       }
2081   }
2082 
2083   return ValueMapping;
2084 }
2085 
2086 /// Attempt to thread through two successive basic blocks.
2087 bool JumpThreadingPass::MaybeThreadThroughTwoBasicBlocks(BasicBlock *BB,
2088                                                          Value *Cond) {
2089   // Consider:
2090   //
2091   // PredBB:
2092   //   %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2093   //   %tobool = icmp eq i32 %cond, 0
2094   //   br i1 %tobool, label %BB, label ...
2095   //
2096   // BB:
2097   //   %cmp = icmp eq i32* %var, null
2098   //   br i1 %cmp, label ..., label ...
2099   //
2100   // We don't know the value of %var at BB even if we know which incoming edge
2101   // we take to BB.  However, once we duplicate PredBB for each of its incoming
2102   // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2103   // PredBB.  Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2104 
2105   // Require that BB end with a Branch for simplicity.
2106   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2107   if (!CondBr)
2108     return false;
2109 
2110   // BB must have exactly one predecessor.
2111   BasicBlock *PredBB = BB->getSinglePredecessor();
2112   if (!PredBB)
2113     return false;
2114 
2115   // Require that PredBB end with a conditional Branch. If PredBB ends with an
2116   // unconditional branch, we should be merging PredBB and BB instead. For
2117   // simplicity, we don't deal with a switch.
2118   BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2119   if (!PredBBBranch || PredBBBranch->isUnconditional())
2120     return false;
2121 
2122   // If PredBB has exactly one incoming edge, we don't gain anything by copying
2123   // PredBB.
2124   if (PredBB->getSinglePredecessor())
2125     return false;
2126 
2127   // Don't thread through PredBB if it contains a successor edge to itself, in
2128   // which case we would infinite loop.  Suppose we are threading an edge from
2129   // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2130   // successor edge to itself.  If we allowed jump threading in this case, we
2131   // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread.  Since
2132   // PredBB.thread has a successor edge to PredBB, we would immediately come up
2133   // with another jump threading opportunity from PredBB.thread through PredBB
2134   // and BB to SuccBB.  This jump threading would repeatedly occur.  That is, we
2135   // would keep peeling one iteration from PredBB.
2136   if (llvm::is_contained(successors(PredBB), PredBB))
2137     return false;
2138 
2139   // Don't thread across a loop header.
2140   if (LoopHeaders.count(PredBB))
2141     return false;
2142 
2143   // Avoid complication with duplicating EH pads.
2144   if (PredBB->isEHPad())
2145     return false;
2146 
2147   // Find a predecessor that we can thread.  For simplicity, we only consider a
2148   // successor edge out of BB to which we thread exactly one incoming edge into
2149   // PredBB.
2150   unsigned ZeroCount = 0;
2151   unsigned OneCount = 0;
2152   BasicBlock *ZeroPred = nullptr;
2153   BasicBlock *OnePred = nullptr;
2154   for (BasicBlock *P : predecessors(PredBB)) {
2155     if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2156             EvaluateOnPredecessorEdge(BB, P, Cond))) {
2157       if (CI->isZero()) {
2158         ZeroCount++;
2159         ZeroPred = P;
2160       } else if (CI->isOne()) {
2161         OneCount++;
2162         OnePred = P;
2163       }
2164     }
2165   }
2166 
2167   // Disregard complicated cases where we have to thread multiple edges.
2168   BasicBlock *PredPredBB;
2169   if (ZeroCount == 1) {
2170     PredPredBB = ZeroPred;
2171   } else if (OneCount == 1) {
2172     PredPredBB = OnePred;
2173   } else {
2174     return false;
2175   }
2176 
2177   BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2178 
2179   // If threading to the same block as we come from, we would infinite loop.
2180   if (SuccBB == BB) {
2181     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2182                       << "' - would thread to self!\n");
2183     return false;
2184   }
2185 
2186   // If threading this would thread across a loop header, don't thread the edge.
2187   // See the comments above FindLoopHeaders for justifications and caveats.
2188   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2189     LLVM_DEBUG({
2190       bool BBIsHeader = LoopHeaders.count(BB);
2191       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2192       dbgs() << "  Not threading across "
2193              << (BBIsHeader ? "loop header BB '" : "block BB '")
2194              << BB->getName() << "' to dest "
2195              << (SuccIsHeader ? "loop header BB '" : "block BB '")
2196              << SuccBB->getName()
2197              << "' - it might create an irreducible loop!\n";
2198     });
2199     return false;
2200   }
2201 
2202   // Compute the cost of duplicating BB and PredBB.
2203   unsigned BBCost =
2204       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2205   unsigned PredBBCost = getJumpThreadDuplicationCost(
2206       PredBB, PredBB->getTerminator(), BBDupThreshold);
2207 
2208   // Give up if costs are too high.  We need to check BBCost and PredBBCost
2209   // individually before checking their sum because getJumpThreadDuplicationCost
2210   // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2211   if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2212       BBCost + PredBBCost > BBDupThreshold) {
2213     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2214                       << "' - Cost is too high: " << PredBBCost
2215                       << " for PredBB, " << BBCost << "for BB\n");
2216     return false;
2217   }
2218 
2219   // Now we are ready to duplicate PredBB.
2220   ThreadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2221   return true;
2222 }
2223 
2224 void JumpThreadingPass::ThreadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2225                                                     BasicBlock *PredBB,
2226                                                     BasicBlock *BB,
2227                                                     BasicBlock *SuccBB) {
2228   LLVM_DEBUG(dbgs() << "  Threading through '" << PredBB->getName() << "' and '"
2229                     << BB->getName() << "'\n");
2230 
2231   BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2232   BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2233 
2234   BasicBlock *NewBB =
2235       BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2236                          PredBB->getParent(), PredBB);
2237   NewBB->moveAfter(PredBB);
2238 
2239   // Set the block frequency of NewBB.
2240   if (HasProfileData) {
2241     auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2242                      BPI->getEdgeProbability(PredPredBB, PredBB);
2243     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2244   }
2245 
2246   // We are going to have to map operands from the original BB block to the new
2247   // copy of the block 'NewBB'.  If there are PHI nodes in PredBB, evaluate them
2248   // to account for entry from PredPredBB.
2249   DenseMap<Instruction *, Value *> ValueMapping =
2250       CloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
2251 
2252   // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2253   // This eliminates predecessors from PredPredBB, which requires us to simplify
2254   // any PHI nodes in PredBB.
2255   Instruction *PredPredTerm = PredPredBB->getTerminator();
2256   for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2257     if (PredPredTerm->getSuccessor(i) == PredBB) {
2258       PredBB->removePredecessor(PredPredBB, true);
2259       PredPredTerm->setSuccessor(i, NewBB);
2260     }
2261 
2262   AddPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2263                                   ValueMapping);
2264   AddPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2265                                   ValueMapping);
2266 
2267   DTU->applyUpdatesPermissive(
2268       {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2269        {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2270        {DominatorTree::Insert, PredPredBB, NewBB},
2271        {DominatorTree::Delete, PredPredBB, PredBB}});
2272 
2273   UpdateSSA(PredBB, NewBB, ValueMapping);
2274 
2275   // Clean up things like PHI nodes with single operands, dead instructions,
2276   // etc.
2277   SimplifyInstructionsInBlock(NewBB, TLI);
2278   SimplifyInstructionsInBlock(PredBB, TLI);
2279 
2280   SmallVector<BasicBlock *, 1> PredsToFactor;
2281   PredsToFactor.push_back(NewBB);
2282   ThreadEdge(BB, PredsToFactor, SuccBB);
2283 }
2284 
2285 /// TryThreadEdge - Thread an edge if it's safe and profitable to do so.
2286 bool JumpThreadingPass::TryThreadEdge(
2287     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2288     BasicBlock *SuccBB) {
2289   // If threading to the same block as we come from, we would infinite loop.
2290   if (SuccBB == BB) {
2291     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2292                       << "' - would thread to self!\n");
2293     return false;
2294   }
2295 
2296   // If threading this would thread across a loop header, don't thread the edge.
2297   // See the comments above FindLoopHeaders for justifications and caveats.
2298   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2299     LLVM_DEBUG({
2300       bool BBIsHeader = LoopHeaders.count(BB);
2301       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2302       dbgs() << "  Not threading across "
2303           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2304           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2305           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2306     });
2307     return false;
2308   }
2309 
2310   unsigned JumpThreadCost =
2311       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2312   if (JumpThreadCost > BBDupThreshold) {
2313     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2314                       << "' - Cost is too high: " << JumpThreadCost << "\n");
2315     return false;
2316   }
2317 
2318   ThreadEdge(BB, PredBBs, SuccBB);
2319   return true;
2320 }
2321 
2322 /// ThreadEdge - We have decided that it is safe and profitable to factor the
2323 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2324 /// across BB.  Transform the IR to reflect this change.
2325 void JumpThreadingPass::ThreadEdge(BasicBlock *BB,
2326                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
2327                                    BasicBlock *SuccBB) {
2328   assert(SuccBB != BB && "Don't create an infinite loop");
2329 
2330   assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2331          "Don't thread across loop headers");
2332 
2333   // And finally, do it!  Start by factoring the predecessors if needed.
2334   BasicBlock *PredBB;
2335   if (PredBBs.size() == 1)
2336     PredBB = PredBBs[0];
2337   else {
2338     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2339                       << " common predecessors.\n");
2340     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2341   }
2342 
2343   // And finally, do it!
2344   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
2345                     << "' to '" << SuccBB->getName()
2346                     << ", across block:\n    " << *BB << "\n");
2347 
2348   if (DTU->hasPendingDomTreeUpdates())
2349     LVI->disableDT();
2350   else
2351     LVI->enableDT();
2352   LVI->threadEdge(PredBB, BB, SuccBB);
2353 
2354   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2355                                          BB->getName()+".thread",
2356                                          BB->getParent(), BB);
2357   NewBB->moveAfter(PredBB);
2358 
2359   // Set the block frequency of NewBB.
2360   if (HasProfileData) {
2361     auto NewBBFreq =
2362         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2363     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2364   }
2365 
2366   // Copy all the instructions from BB to NewBB except the terminator.
2367   DenseMap<Instruction *, Value *> ValueMapping =
2368       CloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
2369 
2370   // We didn't copy the terminator from BB over to NewBB, because there is now
2371   // an unconditional jump to SuccBB.  Insert the unconditional jump.
2372   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2373   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2374 
2375   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2376   // PHI nodes for NewBB now.
2377   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2378 
2379   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2380   // eliminates predecessors from BB, which requires us to simplify any PHI
2381   // nodes in BB.
2382   Instruction *PredTerm = PredBB->getTerminator();
2383   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2384     if (PredTerm->getSuccessor(i) == BB) {
2385       BB->removePredecessor(PredBB, true);
2386       PredTerm->setSuccessor(i, NewBB);
2387     }
2388 
2389   // Enqueue required DT updates.
2390   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2391                                {DominatorTree::Insert, PredBB, NewBB},
2392                                {DominatorTree::Delete, PredBB, BB}});
2393 
2394   UpdateSSA(BB, NewBB, ValueMapping);
2395 
2396   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2397   // over the new instructions and zap any that are constants or dead.  This
2398   // frequently happens because of phi translation.
2399   SimplifyInstructionsInBlock(NewBB, TLI);
2400 
2401   // Update the edge weight from BB to SuccBB, which should be less than before.
2402   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2403 
2404   // Threaded an edge!
2405   ++NumThreads;
2406 }
2407 
2408 /// Create a new basic block that will be the predecessor of BB and successor of
2409 /// all blocks in Preds. When profile data is available, update the frequency of
2410 /// this new block.
2411 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
2412                                                ArrayRef<BasicBlock *> Preds,
2413                                                const char *Suffix) {
2414   SmallVector<BasicBlock *, 2> NewBBs;
2415 
2416   // Collect the frequencies of all predecessors of BB, which will be used to
2417   // update the edge weight of the result of splitting predecessors.
2418   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2419   if (HasProfileData)
2420     for (auto Pred : Preds)
2421       FreqMap.insert(std::make_pair(
2422           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2423 
2424   // In the case when BB is a LandingPad block we create 2 new predecessors
2425   // instead of just one.
2426   if (BB->isLandingPad()) {
2427     std::string NewName = std::string(Suffix) + ".split-lp";
2428     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2429   } else {
2430     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2431   }
2432 
2433   std::vector<DominatorTree::UpdateType> Updates;
2434   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2435   for (auto NewBB : NewBBs) {
2436     BlockFrequency NewBBFreq(0);
2437     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2438     for (auto Pred : predecessors(NewBB)) {
2439       Updates.push_back({DominatorTree::Delete, Pred, BB});
2440       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2441       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2442         NewBBFreq += FreqMap.lookup(Pred);
2443     }
2444     if (HasProfileData) // Apply the summed frequency to NewBB.
2445       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2446   }
2447 
2448   DTU->applyUpdatesPermissive(Updates);
2449   return NewBBs[0];
2450 }
2451 
2452 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2453   const Instruction *TI = BB->getTerminator();
2454   assert(TI->getNumSuccessors() > 1 && "not a split");
2455 
2456   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2457   if (!WeightsNode)
2458     return false;
2459 
2460   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2461   if (MDName->getString() != "branch_weights")
2462     return false;
2463 
2464   // Ensure there are weights for all of the successors. Note that the first
2465   // operand to the metadata node is a name, not a weight.
2466   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2467 }
2468 
2469 /// Update the block frequency of BB and branch weight and the metadata on the
2470 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2471 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2472 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2473                                                      BasicBlock *BB,
2474                                                      BasicBlock *NewBB,
2475                                                      BasicBlock *SuccBB) {
2476   if (!HasProfileData)
2477     return;
2478 
2479   assert(BFI && BPI && "BFI & BPI should have been created here");
2480 
2481   // As the edge from PredBB to BB is deleted, we have to update the block
2482   // frequency of BB.
2483   auto BBOrigFreq = BFI->getBlockFreq(BB);
2484   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2485   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2486   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2487   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2488 
2489   // Collect updated outgoing edges' frequencies from BB and use them to update
2490   // edge probabilities.
2491   SmallVector<uint64_t, 4> BBSuccFreq;
2492   for (BasicBlock *Succ : successors(BB)) {
2493     auto SuccFreq = (Succ == SuccBB)
2494                         ? BB2SuccBBFreq - NewBBFreq
2495                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2496     BBSuccFreq.push_back(SuccFreq.getFrequency());
2497   }
2498 
2499   uint64_t MaxBBSuccFreq =
2500       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2501 
2502   SmallVector<BranchProbability, 4> BBSuccProbs;
2503   if (MaxBBSuccFreq == 0)
2504     BBSuccProbs.assign(BBSuccFreq.size(),
2505                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2506   else {
2507     for (uint64_t Freq : BBSuccFreq)
2508       BBSuccProbs.push_back(
2509           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2510     // Normalize edge probabilities so that they sum up to one.
2511     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2512                                               BBSuccProbs.end());
2513   }
2514 
2515   // Update edge probabilities in BPI.
2516   BPI->setEdgeProbability(BB, BBSuccProbs);
2517 
2518   // Update the profile metadata as well.
2519   //
2520   // Don't do this if the profile of the transformed blocks was statically
2521   // estimated.  (This could occur despite the function having an entry
2522   // frequency in completely cold parts of the CFG.)
2523   //
2524   // In this case we don't want to suggest to subsequent passes that the
2525   // calculated weights are fully consistent.  Consider this graph:
2526   //
2527   //                 check_1
2528   //             50% /  |
2529   //             eq_1   | 50%
2530   //                 \  |
2531   //                 check_2
2532   //             50% /  |
2533   //             eq_2   | 50%
2534   //                 \  |
2535   //                 check_3
2536   //             50% /  |
2537   //             eq_3   | 50%
2538   //                 \  |
2539   //
2540   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2541   // the overall probabilities are inconsistent; the total probability that the
2542   // value is either 1, 2 or 3 is 150%.
2543   //
2544   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2545   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2546   // the loop exit edge.  Then based solely on static estimation we would assume
2547   // the loop was extremely hot.
2548   //
2549   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2550   // shouldn't make edges extremely likely or unlikely based solely on static
2551   // estimation.
2552   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2553     SmallVector<uint32_t, 4> Weights;
2554     for (auto Prob : BBSuccProbs)
2555       Weights.push_back(Prob.getNumerator());
2556 
2557     auto TI = BB->getTerminator();
2558     TI->setMetadata(
2559         LLVMContext::MD_prof,
2560         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2561   }
2562 }
2563 
2564 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2565 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2566 /// If we can duplicate the contents of BB up into PredBB do so now, this
2567 /// improves the odds that the branch will be on an analyzable instruction like
2568 /// a compare.
2569 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
2570     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2571   assert(!PredBBs.empty() && "Can't handle an empty set");
2572 
2573   // If BB is a loop header, then duplicating this block outside the loop would
2574   // cause us to transform this into an irreducible loop, don't do this.
2575   // See the comments above FindLoopHeaders for justifications and caveats.
2576   if (LoopHeaders.count(BB)) {
2577     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2578                       << "' into predecessor block '" << PredBBs[0]->getName()
2579                       << "' - it might create an irreducible loop!\n");
2580     return false;
2581   }
2582 
2583   unsigned DuplicationCost =
2584       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2585   if (DuplicationCost > BBDupThreshold) {
2586     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2587                       << "' - Cost is too high: " << DuplicationCost << "\n");
2588     return false;
2589   }
2590 
2591   // And finally, do it!  Start by factoring the predecessors if needed.
2592   std::vector<DominatorTree::UpdateType> Updates;
2593   BasicBlock *PredBB;
2594   if (PredBBs.size() == 1)
2595     PredBB = PredBBs[0];
2596   else {
2597     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2598                       << " common predecessors.\n");
2599     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2600   }
2601   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2602 
2603   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2604   // of PredBB.
2605   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2606                     << "' into end of '" << PredBB->getName()
2607                     << "' to eliminate branch on phi.  Cost: "
2608                     << DuplicationCost << " block is:" << *BB << "\n");
2609 
2610   // Unless PredBB ends with an unconditional branch, split the edge so that we
2611   // can just clone the bits from BB into the end of the new PredBB.
2612   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2613 
2614   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2615     BasicBlock *OldPredBB = PredBB;
2616     PredBB = SplitEdge(OldPredBB, BB);
2617     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2618     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2619     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2620     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2621   }
2622 
2623   // We are going to have to map operands from the original BB block into the
2624   // PredBB block.  Evaluate PHI nodes in BB.
2625   DenseMap<Instruction*, Value*> ValueMapping;
2626 
2627   BasicBlock::iterator BI = BB->begin();
2628   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2629     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2630   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2631   // mapping and using it to remap operands in the cloned instructions.
2632   for (; BI != BB->end(); ++BI) {
2633     Instruction *New = BI->clone();
2634 
2635     // Remap operands to patch up intra-block references.
2636     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2637       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2638         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2639         if (I != ValueMapping.end())
2640           New->setOperand(i, I->second);
2641       }
2642 
2643     // If this instruction can be simplified after the operands are updated,
2644     // just use the simplified value instead.  This frequently happens due to
2645     // phi translation.
2646     if (Value *IV = SimplifyInstruction(
2647             New,
2648             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2649       ValueMapping[&*BI] = IV;
2650       if (!New->mayHaveSideEffects()) {
2651         New->deleteValue();
2652         New = nullptr;
2653       }
2654     } else {
2655       ValueMapping[&*BI] = New;
2656     }
2657     if (New) {
2658       // Otherwise, insert the new instruction into the block.
2659       New->setName(BI->getName());
2660       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2661       // Update Dominance from simplified New instruction operands.
2662       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2663         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2664           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2665     }
2666   }
2667 
2668   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2669   // add entries to the PHI nodes for branch from PredBB now.
2670   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2671   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2672                                   ValueMapping);
2673   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2674                                   ValueMapping);
2675 
2676   UpdateSSA(BB, PredBB, ValueMapping);
2677 
2678   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2679   // that we nuked.
2680   BB->removePredecessor(PredBB, true);
2681 
2682   // Remove the unconditional branch at the end of the PredBB block.
2683   OldPredBranch->eraseFromParent();
2684   DTU->applyUpdatesPermissive(Updates);
2685 
2686   ++NumDupes;
2687   return true;
2688 }
2689 
2690 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2691 // a Select instruction in Pred. BB has other predecessors and SI is used in
2692 // a PHI node in BB. SI has no other use.
2693 // A new basic block, NewBB, is created and SI is converted to compare and
2694 // conditional branch. SI is erased from parent.
2695 void JumpThreadingPass::UnfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2696                                           SelectInst *SI, PHINode *SIUse,
2697                                           unsigned Idx) {
2698   // Expand the select.
2699   //
2700   // Pred --
2701   //  |    v
2702   //  |  NewBB
2703   //  |    |
2704   //  |-----
2705   //  v
2706   // BB
2707   BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2708   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2709                                          BB->getParent(), BB);
2710   // Move the unconditional branch to NewBB.
2711   PredTerm->removeFromParent();
2712   NewBB->getInstList().insert(NewBB->end(), PredTerm);
2713   // Create a conditional branch and update PHI nodes.
2714   BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2715   SIUse->setIncomingValue(Idx, SI->getFalseValue());
2716   SIUse->addIncoming(SI->getTrueValue(), NewBB);
2717 
2718   // The select is now dead.
2719   SI->eraseFromParent();
2720   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2721                                {DominatorTree::Insert, Pred, NewBB}});
2722 
2723   // Update any other PHI nodes in BB.
2724   for (BasicBlock::iterator BI = BB->begin();
2725        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2726     if (Phi != SIUse)
2727       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2728 }
2729 
2730 bool JumpThreadingPass::TryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2731   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2732 
2733   if (!CondPHI || CondPHI->getParent() != BB)
2734     return false;
2735 
2736   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2737     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2738     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2739 
2740     // The second and third condition can be potentially relaxed. Currently
2741     // the conditions help to simplify the code and allow us to reuse existing
2742     // code, developed for TryToUnfoldSelect(CmpInst *, BasicBlock *)
2743     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2744       continue;
2745 
2746     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2747     if (!PredTerm || !PredTerm->isUnconditional())
2748       continue;
2749 
2750     UnfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2751     return true;
2752   }
2753   return false;
2754 }
2755 
2756 /// TryToUnfoldSelect - Look for blocks of the form
2757 /// bb1:
2758 ///   %a = select
2759 ///   br bb2
2760 ///
2761 /// bb2:
2762 ///   %p = phi [%a, %bb1] ...
2763 ///   %c = icmp %p
2764 ///   br i1 %c
2765 ///
2766 /// And expand the select into a branch structure if one of its arms allows %c
2767 /// to be folded. This later enables threading from bb1 over bb2.
2768 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2769   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2770   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2771   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2772 
2773   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2774       CondLHS->getParent() != BB)
2775     return false;
2776 
2777   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2778     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2779     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2780 
2781     // Look if one of the incoming values is a select in the corresponding
2782     // predecessor.
2783     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2784       continue;
2785 
2786     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2787     if (!PredTerm || !PredTerm->isUnconditional())
2788       continue;
2789 
2790     // Now check if one of the select values would allow us to constant fold the
2791     // terminator in BB. We don't do the transform if both sides fold, those
2792     // cases will be threaded in any case.
2793     if (DTU->hasPendingDomTreeUpdates())
2794       LVI->disableDT();
2795     else
2796       LVI->enableDT();
2797     LazyValueInfo::Tristate LHSFolds =
2798         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2799                                 CondRHS, Pred, BB, CondCmp);
2800     LazyValueInfo::Tristate RHSFolds =
2801         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2802                                 CondRHS, Pred, BB, CondCmp);
2803     if ((LHSFolds != LazyValueInfo::Unknown ||
2804          RHSFolds != LazyValueInfo::Unknown) &&
2805         LHSFolds != RHSFolds) {
2806       UnfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2807       return true;
2808     }
2809   }
2810   return false;
2811 }
2812 
2813 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2814 /// same BB in the form
2815 /// bb:
2816 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2817 ///   %s = select %p, trueval, falseval
2818 ///
2819 /// or
2820 ///
2821 /// bb:
2822 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2823 ///   %c = cmp %p, 0
2824 ///   %s = select %c, trueval, falseval
2825 ///
2826 /// And expand the select into a branch structure. This later enables
2827 /// jump-threading over bb in this pass.
2828 ///
2829 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2830 /// select if the associated PHI has at least one constant.  If the unfolded
2831 /// select is not jump-threaded, it will be folded again in the later
2832 /// optimizations.
2833 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2834   // This transform can introduce a UB (a conditional branch that depends on a
2835   // poison value) that was not present in the original program. See
2836   // @TryToUnfoldSelectInCurrBB test in test/Transforms/JumpThreading/select.ll.
2837   // Disable this transform under MemorySanitizer.
2838   // FIXME: either delete it or replace with a valid transform. This issue is
2839   // not limited to MemorySanitizer (but has only been observed as an MSan false
2840   // positive in practice so far).
2841   if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2842     return false;
2843 
2844   // If threading this would thread across a loop header, don't thread the edge.
2845   // See the comments above FindLoopHeaders for justifications and caveats.
2846   if (LoopHeaders.count(BB))
2847     return false;
2848 
2849   for (BasicBlock::iterator BI = BB->begin();
2850        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2851     // Look for a Phi having at least one constant incoming value.
2852     if (llvm::all_of(PN->incoming_values(),
2853                      [](Value *V) { return !isa<ConstantInt>(V); }))
2854       continue;
2855 
2856     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2857       // Check if SI is in BB and use V as condition.
2858       if (SI->getParent() != BB)
2859         return false;
2860       Value *Cond = SI->getCondition();
2861       return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
2862     };
2863 
2864     SelectInst *SI = nullptr;
2865     for (Use &U : PN->uses()) {
2866       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2867         // Look for a ICmp in BB that compares PN with a constant and is the
2868         // condition of a Select.
2869         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2870             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2871           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2872             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2873               SI = SelectI;
2874               break;
2875             }
2876       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2877         // Look for a Select in BB that uses PN as condition.
2878         if (isUnfoldCandidate(SelectI, U.get())) {
2879           SI = SelectI;
2880           break;
2881         }
2882       }
2883     }
2884 
2885     if (!SI)
2886       continue;
2887     // Expand the select.
2888     Instruction *Term =
2889         SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
2890     BasicBlock *SplitBB = SI->getParent();
2891     BasicBlock *NewBB = Term->getParent();
2892     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2893     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2894     NewPN->addIncoming(SI->getFalseValue(), BB);
2895     SI->replaceAllUsesWith(NewPN);
2896     SI->eraseFromParent();
2897     // NewBB and SplitBB are newly created blocks which require insertion.
2898     std::vector<DominatorTree::UpdateType> Updates;
2899     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2900     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2901     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2902     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2903     // BB's successors were moved to SplitBB, update DTU accordingly.
2904     for (auto *Succ : successors(SplitBB)) {
2905       Updates.push_back({DominatorTree::Delete, BB, Succ});
2906       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2907     }
2908     DTU->applyUpdatesPermissive(Updates);
2909     return true;
2910   }
2911   return false;
2912 }
2913 
2914 /// Try to propagate a guard from the current BB into one of its predecessors
2915 /// in case if another branch of execution implies that the condition of this
2916 /// guard is always true. Currently we only process the simplest case that
2917 /// looks like:
2918 ///
2919 /// Start:
2920 ///   %cond = ...
2921 ///   br i1 %cond, label %T1, label %F1
2922 /// T1:
2923 ///   br label %Merge
2924 /// F1:
2925 ///   br label %Merge
2926 /// Merge:
2927 ///   %condGuard = ...
2928 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2929 ///
2930 /// And cond either implies condGuard or !condGuard. In this case all the
2931 /// instructions before the guard can be duplicated in both branches, and the
2932 /// guard is then threaded to one of them.
2933 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
2934   using namespace PatternMatch;
2935 
2936   // We only want to deal with two predecessors.
2937   BasicBlock *Pred1, *Pred2;
2938   auto PI = pred_begin(BB), PE = pred_end(BB);
2939   if (PI == PE)
2940     return false;
2941   Pred1 = *PI++;
2942   if (PI == PE)
2943     return false;
2944   Pred2 = *PI++;
2945   if (PI != PE)
2946     return false;
2947   if (Pred1 == Pred2)
2948     return false;
2949 
2950   // Try to thread one of the guards of the block.
2951   // TODO: Look up deeper than to immediate predecessor?
2952   auto *Parent = Pred1->getSinglePredecessor();
2953   if (!Parent || Parent != Pred2->getSinglePredecessor())
2954     return false;
2955 
2956   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2957     for (auto &I : *BB)
2958       if (isGuard(&I) && ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
2959         return true;
2960 
2961   return false;
2962 }
2963 
2964 /// Try to propagate the guard from BB which is the lower block of a diamond
2965 /// to one of its branches, in case if diamond's condition implies guard's
2966 /// condition.
2967 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2968                                     BranchInst *BI) {
2969   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2970   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2971   Value *GuardCond = Guard->getArgOperand(0);
2972   Value *BranchCond = BI->getCondition();
2973   BasicBlock *TrueDest = BI->getSuccessor(0);
2974   BasicBlock *FalseDest = BI->getSuccessor(1);
2975 
2976   auto &DL = BB->getModule()->getDataLayout();
2977   bool TrueDestIsSafe = false;
2978   bool FalseDestIsSafe = false;
2979 
2980   // True dest is safe if BranchCond => GuardCond.
2981   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
2982   if (Impl && *Impl)
2983     TrueDestIsSafe = true;
2984   else {
2985     // False dest is safe if !BranchCond => GuardCond.
2986     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
2987     if (Impl && *Impl)
2988       FalseDestIsSafe = true;
2989   }
2990 
2991   if (!TrueDestIsSafe && !FalseDestIsSafe)
2992     return false;
2993 
2994   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
2995   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
2996 
2997   ValueToValueMapTy UnguardedMapping, GuardedMapping;
2998   Instruction *AfterGuard = Guard->getNextNode();
2999   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
3000   if (Cost > BBDupThreshold)
3001     return false;
3002   // Duplicate all instructions before the guard and the guard itself to the
3003   // branch where implication is not proved.
3004   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
3005       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
3006   assert(GuardedBlock && "Could not create the guarded block?");
3007   // Duplicate all instructions before the guard in the unguarded branch.
3008   // Since we have successfully duplicated the guarded block and this block
3009   // has fewer instructions, we expect it to succeed.
3010   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
3011       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
3012   assert(UnguardedBlock && "Could not create the unguarded block?");
3013   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
3014                     << GuardedBlock->getName() << "\n");
3015   // Some instructions before the guard may still have uses. For them, we need
3016   // to create Phi nodes merging their copies in both guarded and unguarded
3017   // branches. Those instructions that have no uses can be just removed.
3018   SmallVector<Instruction *, 4> ToRemove;
3019   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
3020     if (!isa<PHINode>(&*BI))
3021       ToRemove.push_back(&*BI);
3022 
3023   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
3024   assert(InsertionPoint && "Empty block?");
3025   // Substitute with Phis & remove.
3026   for (auto *Inst : reverse(ToRemove)) {
3027     if (!Inst->use_empty()) {
3028       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
3029       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3030       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3031       NewPN->insertBefore(InsertionPoint);
3032       Inst->replaceAllUsesWith(NewPN);
3033     }
3034     Inst->eraseFromParent();
3035   }
3036   return true;
3037 }
3038