1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LazyValueInfo.h" 25 #include "llvm/Analysis/Loads.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Pass.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Local.h" 38 #include "llvm/Transforms/Utils/SSAUpdater.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "jump-threading" 42 43 STATISTIC(NumThreads, "Number of jumps threaded"); 44 STATISTIC(NumFolds, "Number of terminators folded"); 45 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 46 47 static cl::opt<unsigned> 48 BBDuplicateThreshold("jump-threading-threshold", 49 cl::desc("Max block size to duplicate for jump threading"), 50 cl::init(6), cl::Hidden); 51 52 namespace { 53 // These are at global scope so static functions can use them too. 54 typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo; 55 typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy; 56 57 // This is used to keep track of what kind of constant we're currently hoping 58 // to find. 59 enum ConstantPreference { 60 WantInteger, 61 WantBlockAddress 62 }; 63 64 /// This pass performs 'jump threading', which looks at blocks that have 65 /// multiple predecessors and multiple successors. If one or more of the 66 /// predecessors of the block can be proven to always jump to one of the 67 /// successors, we forward the edge from the predecessor to the successor by 68 /// duplicating the contents of this block. 69 /// 70 /// An example of when this can occur is code like this: 71 /// 72 /// if () { ... 73 /// X = 4; 74 /// } 75 /// if (X < 3) { 76 /// 77 /// In this case, the unconditional branch at the end of the first if can be 78 /// revectored to the false side of the second if. 79 /// 80 class JumpThreading : public FunctionPass { 81 TargetLibraryInfo *TLI; 82 LazyValueInfo *LVI; 83 #ifdef NDEBUG 84 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 85 #else 86 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 87 #endif 88 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; 89 90 unsigned BBDupThreshold; 91 92 // RAII helper for updating the recursion stack. 93 struct RecursionSetRemover { 94 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet; 95 std::pair<Value*, BasicBlock*> ThePair; 96 97 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S, 98 std::pair<Value*, BasicBlock*> P) 99 : TheSet(S), ThePair(P) { } 100 101 ~RecursionSetRemover() { 102 TheSet.erase(ThePair); 103 } 104 }; 105 public: 106 static char ID; // Pass identification 107 JumpThreading(int T = -1) : FunctionPass(ID) { 108 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 109 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 110 } 111 112 bool runOnFunction(Function &F) override; 113 114 void getAnalysisUsage(AnalysisUsage &AU) const override { 115 AU.addRequired<LazyValueInfo>(); 116 AU.addPreserved<LazyValueInfo>(); 117 AU.addRequired<TargetLibraryInfoWrapperPass>(); 118 } 119 120 void FindLoopHeaders(Function &F); 121 bool ProcessBlock(BasicBlock *BB); 122 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 123 BasicBlock *SuccBB); 124 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 125 const SmallVectorImpl<BasicBlock *> &PredBBs); 126 127 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 128 PredValueInfo &Result, 129 ConstantPreference Preference, 130 Instruction *CxtI = nullptr); 131 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 132 ConstantPreference Preference, 133 Instruction *CxtI = nullptr); 134 135 bool ProcessBranchOnPHI(PHINode *PN); 136 bool ProcessBranchOnXOR(BinaryOperator *BO); 137 138 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 139 bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB); 140 }; 141 } 142 143 char JumpThreading::ID = 0; 144 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 145 "Jump Threading", false, false) 146 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo) 147 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 148 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 149 "Jump Threading", false, false) 150 151 // Public interface to the Jump Threading pass 152 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); } 153 154 /// runOnFunction - Top level algorithm. 155 /// 156 bool JumpThreading::runOnFunction(Function &F) { 157 if (skipOptnoneFunction(F)) 158 return false; 159 160 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 161 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 162 LVI = &getAnalysis<LazyValueInfo>(); 163 164 // Remove unreachable blocks from function as they may result in infinite 165 // loop. We do threading if we found something profitable. Jump threading a 166 // branch can create other opportunities. If these opportunities form a cycle 167 // i.e. if any jump treading is undoing previous threading in the path, then 168 // we will loop forever. We take care of this issue by not jump threading for 169 // back edges. This works for normal cases but not for unreachable blocks as 170 // they may have cycle with no back edge. 171 removeUnreachableBlocks(F); 172 173 FindLoopHeaders(F); 174 175 bool Changed, EverChanged = false; 176 do { 177 Changed = false; 178 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 179 BasicBlock *BB = I; 180 // Thread all of the branches we can over this block. 181 while (ProcessBlock(BB)) 182 Changed = true; 183 184 ++I; 185 186 // If the block is trivially dead, zap it. This eliminates the successor 187 // edges which simplifies the CFG. 188 if (pred_empty(BB) && 189 BB != &BB->getParent()->getEntryBlock()) { 190 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 191 << "' with terminator: " << *BB->getTerminator() << '\n'); 192 LoopHeaders.erase(BB); 193 LVI->eraseBlock(BB); 194 DeleteDeadBlock(BB); 195 Changed = true; 196 continue; 197 } 198 199 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 200 201 // Can't thread an unconditional jump, but if the block is "almost 202 // empty", we can replace uses of it with uses of the successor and make 203 // this dead. 204 if (BI && BI->isUnconditional() && 205 BB != &BB->getParent()->getEntryBlock() && 206 // If the terminator is the only non-phi instruction, try to nuke it. 207 BB->getFirstNonPHIOrDbg()->isTerminator()) { 208 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 209 // block, we have to make sure it isn't in the LoopHeaders set. We 210 // reinsert afterward if needed. 211 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 212 BasicBlock *Succ = BI->getSuccessor(0); 213 214 // FIXME: It is always conservatively correct to drop the info 215 // for a block even if it doesn't get erased. This isn't totally 216 // awesome, but it allows us to use AssertingVH to prevent nasty 217 // dangling pointer issues within LazyValueInfo. 218 LVI->eraseBlock(BB); 219 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 220 Changed = true; 221 // If we deleted BB and BB was the header of a loop, then the 222 // successor is now the header of the loop. 223 BB = Succ; 224 } 225 226 if (ErasedFromLoopHeaders) 227 LoopHeaders.insert(BB); 228 } 229 } 230 EverChanged |= Changed; 231 } while (Changed); 232 233 LoopHeaders.clear(); 234 return EverChanged; 235 } 236 237 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 238 /// thread across it. Stop scanning the block when passing the threshold. 239 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB, 240 unsigned Threshold) { 241 /// Ignore PHI nodes, these will be flattened when duplication happens. 242 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 243 244 // FIXME: THREADING will delete values that are just used to compute the 245 // branch, so they shouldn't count against the duplication cost. 246 247 // Sum up the cost of each instruction until we get to the terminator. Don't 248 // include the terminator because the copy won't include it. 249 unsigned Size = 0; 250 for (; !isa<TerminatorInst>(I); ++I) { 251 252 // Stop scanning the block if we've reached the threshold. 253 if (Size > Threshold) 254 return Size; 255 256 // Debugger intrinsics don't incur code size. 257 if (isa<DbgInfoIntrinsic>(I)) continue; 258 259 // If this is a pointer->pointer bitcast, it is free. 260 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 261 continue; 262 263 // Bail out if this instruction gives back a token type, it is not possible 264 // to duplicate it if it used outside this BB. 265 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 266 return ~0U; 267 268 // All other instructions count for at least one unit. 269 ++Size; 270 271 // Calls are more expensive. If they are non-intrinsic calls, we model them 272 // as having cost of 4. If they are a non-vector intrinsic, we model them 273 // as having cost of 2 total, and if they are a vector intrinsic, we model 274 // them as having cost 1. 275 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 276 if (CI->cannotDuplicate() || CI->isConvergent()) 277 // Blocks with NoDuplicate are modelled as having infinite cost, so they 278 // are never duplicated. 279 return ~0U; 280 else if (!isa<IntrinsicInst>(CI)) 281 Size += 3; 282 else if (!CI->getType()->isVectorTy()) 283 Size += 1; 284 } 285 } 286 287 // Threading through a switch statement is particularly profitable. If this 288 // block ends in a switch, decrease its cost to make it more likely to happen. 289 if (isa<SwitchInst>(I)) 290 Size = Size > 6 ? Size-6 : 0; 291 292 // The same holds for indirect branches, but slightly more so. 293 if (isa<IndirectBrInst>(I)) 294 Size = Size > 8 ? Size-8 : 0; 295 296 return Size; 297 } 298 299 /// FindLoopHeaders - We do not want jump threading to turn proper loop 300 /// structures into irreducible loops. Doing this breaks up the loop nesting 301 /// hierarchy and pessimizes later transformations. To prevent this from 302 /// happening, we first have to find the loop headers. Here we approximate this 303 /// by finding targets of backedges in the CFG. 304 /// 305 /// Note that there definitely are cases when we want to allow threading of 306 /// edges across a loop header. For example, threading a jump from outside the 307 /// loop (the preheader) to an exit block of the loop is definitely profitable. 308 /// It is also almost always profitable to thread backedges from within the loop 309 /// to exit blocks, and is often profitable to thread backedges to other blocks 310 /// within the loop (forming a nested loop). This simple analysis is not rich 311 /// enough to track all of these properties and keep it up-to-date as the CFG 312 /// mutates, so we don't allow any of these transformations. 313 /// 314 void JumpThreading::FindLoopHeaders(Function &F) { 315 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 316 FindFunctionBackedges(F, Edges); 317 318 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 319 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 320 } 321 322 /// getKnownConstant - Helper method to determine if we can thread over a 323 /// terminator with the given value as its condition, and if so what value to 324 /// use for that. What kind of value this is depends on whether we want an 325 /// integer or a block address, but an undef is always accepted. 326 /// Returns null if Val is null or not an appropriate constant. 327 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 328 if (!Val) 329 return nullptr; 330 331 // Undef is "known" enough. 332 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 333 return U; 334 335 if (Preference == WantBlockAddress) 336 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 337 338 return dyn_cast<ConstantInt>(Val); 339 } 340 341 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 342 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 343 /// in any of our predecessors. If so, return the known list of value and pred 344 /// BB in the result vector. 345 /// 346 /// This returns true if there were any known values. 347 /// 348 bool JumpThreading:: 349 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, 350 ConstantPreference Preference, 351 Instruction *CxtI) { 352 // This method walks up use-def chains recursively. Because of this, we could 353 // get into an infinite loop going around loops in the use-def chain. To 354 // prevent this, keep track of what (value, block) pairs we've already visited 355 // and terminate the search if we loop back to them 356 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 357 return false; 358 359 // An RAII help to remove this pair from the recursion set once the recursion 360 // stack pops back out again. 361 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 362 363 // If V is a constant, then it is known in all predecessors. 364 if (Constant *KC = getKnownConstant(V, Preference)) { 365 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 366 Result.push_back(std::make_pair(KC, *PI)); 367 368 return true; 369 } 370 371 // If V is a non-instruction value, or an instruction in a different block, 372 // then it can't be derived from a PHI. 373 Instruction *I = dyn_cast<Instruction>(V); 374 if (!I || I->getParent() != BB) { 375 376 // Okay, if this is a live-in value, see if it has a known value at the end 377 // of any of our predecessors. 378 // 379 // FIXME: This should be an edge property, not a block end property. 380 /// TODO: Per PR2563, we could infer value range information about a 381 /// predecessor based on its terminator. 382 // 383 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 384 // "I" is a non-local compare-with-a-constant instruction. This would be 385 // able to handle value inequalities better, for example if the compare is 386 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 387 // Perhaps getConstantOnEdge should be smart enough to do this? 388 389 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 390 BasicBlock *P = *PI; 391 // If the value is known by LazyValueInfo to be a constant in a 392 // predecessor, use that information to try to thread this block. 393 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 394 if (Constant *KC = getKnownConstant(PredCst, Preference)) 395 Result.push_back(std::make_pair(KC, P)); 396 } 397 398 return !Result.empty(); 399 } 400 401 /// If I is a PHI node, then we know the incoming values for any constants. 402 if (PHINode *PN = dyn_cast<PHINode>(I)) { 403 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 404 Value *InVal = PN->getIncomingValue(i); 405 if (Constant *KC = getKnownConstant(InVal, Preference)) { 406 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 407 } else { 408 Constant *CI = LVI->getConstantOnEdge(InVal, 409 PN->getIncomingBlock(i), 410 BB, CxtI); 411 if (Constant *KC = getKnownConstant(CI, Preference)) 412 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 413 } 414 } 415 416 return !Result.empty(); 417 } 418 419 PredValueInfoTy LHSVals, RHSVals; 420 421 // Handle some boolean conditions. 422 if (I->getType()->getPrimitiveSizeInBits() == 1) { 423 assert(Preference == WantInteger && "One-bit non-integer type?"); 424 // X | true -> true 425 // X & false -> false 426 if (I->getOpcode() == Instruction::Or || 427 I->getOpcode() == Instruction::And) { 428 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 429 WantInteger, CxtI); 430 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 431 WantInteger, CxtI); 432 433 if (LHSVals.empty() && RHSVals.empty()) 434 return false; 435 436 ConstantInt *InterestingVal; 437 if (I->getOpcode() == Instruction::Or) 438 InterestingVal = ConstantInt::getTrue(I->getContext()); 439 else 440 InterestingVal = ConstantInt::getFalse(I->getContext()); 441 442 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 443 444 // Scan for the sentinel. If we find an undef, force it to the 445 // interesting value: x|undef -> true and x&undef -> false. 446 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 447 if (LHSVals[i].first == InterestingVal || 448 isa<UndefValue>(LHSVals[i].first)) { 449 Result.push_back(LHSVals[i]); 450 Result.back().first = InterestingVal; 451 LHSKnownBBs.insert(LHSVals[i].second); 452 } 453 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 454 if (RHSVals[i].first == InterestingVal || 455 isa<UndefValue>(RHSVals[i].first)) { 456 // If we already inferred a value for this block on the LHS, don't 457 // re-add it. 458 if (!LHSKnownBBs.count(RHSVals[i].second)) { 459 Result.push_back(RHSVals[i]); 460 Result.back().first = InterestingVal; 461 } 462 } 463 464 return !Result.empty(); 465 } 466 467 // Handle the NOT form of XOR. 468 if (I->getOpcode() == Instruction::Xor && 469 isa<ConstantInt>(I->getOperand(1)) && 470 cast<ConstantInt>(I->getOperand(1))->isOne()) { 471 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 472 WantInteger, CxtI); 473 if (Result.empty()) 474 return false; 475 476 // Invert the known values. 477 for (unsigned i = 0, e = Result.size(); i != e; ++i) 478 Result[i].first = ConstantExpr::getNot(Result[i].first); 479 480 return true; 481 } 482 483 // Try to simplify some other binary operator values. 484 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 485 assert(Preference != WantBlockAddress 486 && "A binary operator creating a block address?"); 487 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 488 PredValueInfoTy LHSVals; 489 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 490 WantInteger, CxtI); 491 492 // Try to use constant folding to simplify the binary operator. 493 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 494 Constant *V = LHSVals[i].first; 495 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 496 497 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 498 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 499 } 500 } 501 502 return !Result.empty(); 503 } 504 505 // Handle compare with phi operand, where the PHI is defined in this block. 506 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 507 assert(Preference == WantInteger && "Compares only produce integers"); 508 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 509 if (PN && PN->getParent() == BB) { 510 const DataLayout &DL = PN->getModule()->getDataLayout(); 511 // We can do this simplification if any comparisons fold to true or false. 512 // See if any do. 513 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 514 BasicBlock *PredBB = PN->getIncomingBlock(i); 515 Value *LHS = PN->getIncomingValue(i); 516 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 517 518 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL); 519 if (!Res) { 520 if (!isa<Constant>(RHS)) 521 continue; 522 523 LazyValueInfo::Tristate 524 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 525 cast<Constant>(RHS), PredBB, BB, 526 CxtI ? CxtI : Cmp); 527 if (ResT == LazyValueInfo::Unknown) 528 continue; 529 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 530 } 531 532 if (Constant *KC = getKnownConstant(Res, WantInteger)) 533 Result.push_back(std::make_pair(KC, PredBB)); 534 } 535 536 return !Result.empty(); 537 } 538 539 // If comparing a live-in value against a constant, see if we know the 540 // live-in value on any predecessors. 541 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 542 if (!isa<Instruction>(Cmp->getOperand(0)) || 543 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 544 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 545 546 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){ 547 BasicBlock *P = *PI; 548 // If the value is known by LazyValueInfo to be a constant in a 549 // predecessor, use that information to try to thread this block. 550 LazyValueInfo::Tristate Res = 551 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 552 RHSCst, P, BB, CxtI ? CxtI : Cmp); 553 if (Res == LazyValueInfo::Unknown) 554 continue; 555 556 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 557 Result.push_back(std::make_pair(ResC, P)); 558 } 559 560 return !Result.empty(); 561 } 562 563 // Try to find a constant value for the LHS of a comparison, 564 // and evaluate it statically if we can. 565 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 566 PredValueInfoTy LHSVals; 567 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 568 WantInteger, CxtI); 569 570 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 571 Constant *V = LHSVals[i].first; 572 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 573 V, CmpConst); 574 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 575 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 576 } 577 578 return !Result.empty(); 579 } 580 } 581 } 582 583 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 584 // Handle select instructions where at least one operand is a known constant 585 // and we can figure out the condition value for any predecessor block. 586 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 587 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 588 PredValueInfoTy Conds; 589 if ((TrueVal || FalseVal) && 590 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 591 WantInteger, CxtI)) { 592 for (unsigned i = 0, e = Conds.size(); i != e; ++i) { 593 Constant *Cond = Conds[i].first; 594 595 // Figure out what value to use for the condition. 596 bool KnownCond; 597 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 598 // A known boolean. 599 KnownCond = CI->isOne(); 600 } else { 601 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 602 // Either operand will do, so be sure to pick the one that's a known 603 // constant. 604 // FIXME: Do this more cleverly if both values are known constants? 605 KnownCond = (TrueVal != nullptr); 606 } 607 608 // See if the select has a known constant value for this predecessor. 609 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 610 Result.push_back(std::make_pair(Val, Conds[i].second)); 611 } 612 613 return !Result.empty(); 614 } 615 } 616 617 // If all else fails, see if LVI can figure out a constant value for us. 618 Constant *CI = LVI->getConstant(V, BB, CxtI); 619 if (Constant *KC = getKnownConstant(CI, Preference)) { 620 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 621 Result.push_back(std::make_pair(KC, *PI)); 622 } 623 624 return !Result.empty(); 625 } 626 627 628 629 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 630 /// in an undefined jump, decide which block is best to revector to. 631 /// 632 /// Since we can pick an arbitrary destination, we pick the successor with the 633 /// fewest predecessors. This should reduce the in-degree of the others. 634 /// 635 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 636 TerminatorInst *BBTerm = BB->getTerminator(); 637 unsigned MinSucc = 0; 638 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 639 // Compute the successor with the minimum number of predecessors. 640 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 641 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 642 TestBB = BBTerm->getSuccessor(i); 643 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 644 if (NumPreds < MinNumPreds) { 645 MinSucc = i; 646 MinNumPreds = NumPreds; 647 } 648 } 649 650 return MinSucc; 651 } 652 653 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 654 if (!BB->hasAddressTaken()) return false; 655 656 // If the block has its address taken, it may be a tree of dead constants 657 // hanging off of it. These shouldn't keep the block alive. 658 BlockAddress *BA = BlockAddress::get(BB); 659 BA->removeDeadConstantUsers(); 660 return !BA->use_empty(); 661 } 662 663 /// ProcessBlock - If there are any predecessors whose control can be threaded 664 /// through to a successor, transform them now. 665 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 666 // If the block is trivially dead, just return and let the caller nuke it. 667 // This simplifies other transformations. 668 if (pred_empty(BB) && 669 BB != &BB->getParent()->getEntryBlock()) 670 return false; 671 672 // If this block has a single predecessor, and if that pred has a single 673 // successor, merge the blocks. This encourages recursive jump threading 674 // because now the condition in this block can be threaded through 675 // predecessors of our predecessor block. 676 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 677 const TerminatorInst *TI = SinglePred->getTerminator(); 678 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 679 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 680 // If SinglePred was a loop header, BB becomes one. 681 if (LoopHeaders.erase(SinglePred)) 682 LoopHeaders.insert(BB); 683 684 LVI->eraseBlock(SinglePred); 685 MergeBasicBlockIntoOnlyPred(BB); 686 687 return true; 688 } 689 } 690 691 // What kind of constant we're looking for. 692 ConstantPreference Preference = WantInteger; 693 694 // Look to see if the terminator is a conditional branch, switch or indirect 695 // branch, if not we can't thread it. 696 Value *Condition; 697 Instruction *Terminator = BB->getTerminator(); 698 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 699 // Can't thread an unconditional jump. 700 if (BI->isUnconditional()) return false; 701 Condition = BI->getCondition(); 702 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 703 Condition = SI->getCondition(); 704 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 705 // Can't thread indirect branch with no successors. 706 if (IB->getNumSuccessors() == 0) return false; 707 Condition = IB->getAddress()->stripPointerCasts(); 708 Preference = WantBlockAddress; 709 } else { 710 return false; // Must be an invoke. 711 } 712 713 // Run constant folding to see if we can reduce the condition to a simple 714 // constant. 715 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 716 Value *SimpleVal = 717 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 718 if (SimpleVal) { 719 I->replaceAllUsesWith(SimpleVal); 720 I->eraseFromParent(); 721 Condition = SimpleVal; 722 } 723 } 724 725 // If the terminator is branching on an undef, we can pick any of the 726 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 727 if (isa<UndefValue>(Condition)) { 728 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 729 730 // Fold the branch/switch. 731 TerminatorInst *BBTerm = BB->getTerminator(); 732 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 733 if (i == BestSucc) continue; 734 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 735 } 736 737 DEBUG(dbgs() << " In block '" << BB->getName() 738 << "' folding undef terminator: " << *BBTerm << '\n'); 739 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 740 BBTerm->eraseFromParent(); 741 return true; 742 } 743 744 // If the terminator of this block is branching on a constant, simplify the 745 // terminator to an unconditional branch. This can occur due to threading in 746 // other blocks. 747 if (getKnownConstant(Condition, Preference)) { 748 DEBUG(dbgs() << " In block '" << BB->getName() 749 << "' folding terminator: " << *BB->getTerminator() << '\n'); 750 ++NumFolds; 751 ConstantFoldTerminator(BB, true); 752 return true; 753 } 754 755 Instruction *CondInst = dyn_cast<Instruction>(Condition); 756 757 // All the rest of our checks depend on the condition being an instruction. 758 if (!CondInst) { 759 // FIXME: Unify this with code below. 760 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 761 return true; 762 return false; 763 } 764 765 766 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 767 // If we're branching on a conditional, LVI might be able to determine 768 // it's value at the branch instruction. We only handle comparisons 769 // against a constant at this time. 770 // TODO: This should be extended to handle switches as well. 771 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 772 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 773 if (CondBr && CondConst && CondBr->isConditional()) { 774 LazyValueInfo::Tristate Ret = 775 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 776 CondConst, CondBr); 777 if (Ret != LazyValueInfo::Unknown) { 778 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 779 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 780 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 781 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 782 CondBr->eraseFromParent(); 783 if (CondCmp->use_empty()) 784 CondCmp->eraseFromParent(); 785 else if (CondCmp->getParent() == BB) { 786 // If the fact we just learned is true for all uses of the 787 // condition, replace it with a constant value 788 auto *CI = Ret == LazyValueInfo::True ? 789 ConstantInt::getTrue(CondCmp->getType()) : 790 ConstantInt::getFalse(CondCmp->getType()); 791 CondCmp->replaceAllUsesWith(CI); 792 CondCmp->eraseFromParent(); 793 } 794 return true; 795 } 796 } 797 798 if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB)) 799 return true; 800 } 801 802 // Check for some cases that are worth simplifying. Right now we want to look 803 // for loads that are used by a switch or by the condition for the branch. If 804 // we see one, check to see if it's partially redundant. If so, insert a PHI 805 // which can then be used to thread the values. 806 // 807 Value *SimplifyValue = CondInst; 808 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 809 if (isa<Constant>(CondCmp->getOperand(1))) 810 SimplifyValue = CondCmp->getOperand(0); 811 812 // TODO: There are other places where load PRE would be profitable, such as 813 // more complex comparisons. 814 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 815 if (SimplifyPartiallyRedundantLoad(LI)) 816 return true; 817 818 819 // Handle a variety of cases where we are branching on something derived from 820 // a PHI node in the current block. If we can prove that any predecessors 821 // compute a predictable value based on a PHI node, thread those predecessors. 822 // 823 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 824 return true; 825 826 // If this is an otherwise-unfoldable branch on a phi node in the current 827 // block, see if we can simplify. 828 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 829 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 830 return ProcessBranchOnPHI(PN); 831 832 833 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 834 if (CondInst->getOpcode() == Instruction::Xor && 835 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 836 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 837 838 839 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 840 // "(X == 4)", thread through this block. 841 842 return false; 843 } 844 845 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 846 /// load instruction, eliminate it by replacing it with a PHI node. This is an 847 /// important optimization that encourages jump threading, and needs to be run 848 /// interlaced with other jump threading tasks. 849 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 850 // Don't hack volatile/atomic loads. 851 if (!LI->isSimple()) return false; 852 853 // If the load is defined in a block with exactly one predecessor, it can't be 854 // partially redundant. 855 BasicBlock *LoadBB = LI->getParent(); 856 if (LoadBB->getSinglePredecessor()) 857 return false; 858 859 // If the load is defined in an EH pad, it can't be partially redundant, 860 // because the edges between the invoke and the EH pad cannot have other 861 // instructions between them. 862 if (LoadBB->isEHPad()) 863 return false; 864 865 Value *LoadedPtr = LI->getOperand(0); 866 867 // If the loaded operand is defined in the LoadBB, it can't be available. 868 // TODO: Could do simple PHI translation, that would be fun :) 869 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 870 if (PtrOp->getParent() == LoadBB) 871 return false; 872 873 // Scan a few instructions up from the load, to see if it is obviously live at 874 // the entry to its block. 875 BasicBlock::iterator BBIt = LI; 876 877 if (Value *AvailableVal = 878 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { 879 // If the value if the load is locally available within the block, just use 880 // it. This frequently occurs for reg2mem'd allocas. 881 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 882 883 // If the returned value is the load itself, replace with an undef. This can 884 // only happen in dead loops. 885 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 886 if (AvailableVal->getType() != LI->getType()) 887 AvailableVal = 888 CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI); 889 LI->replaceAllUsesWith(AvailableVal); 890 LI->eraseFromParent(); 891 return true; 892 } 893 894 // Otherwise, if we scanned the whole block and got to the top of the block, 895 // we know the block is locally transparent to the load. If not, something 896 // might clobber its value. 897 if (BBIt != LoadBB->begin()) 898 return false; 899 900 // If all of the loads and stores that feed the value have the same AA tags, 901 // then we can propagate them onto any newly inserted loads. 902 AAMDNodes AATags; 903 LI->getAAMetadata(AATags); 904 905 SmallPtrSet<BasicBlock*, 8> PredsScanned; 906 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 907 AvailablePredsTy AvailablePreds; 908 BasicBlock *OneUnavailablePred = nullptr; 909 910 // If we got here, the loaded value is transparent through to the start of the 911 // block. Check to see if it is available in any of the predecessor blocks. 912 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 913 PI != PE; ++PI) { 914 BasicBlock *PredBB = *PI; 915 916 // If we already scanned this predecessor, skip it. 917 if (!PredsScanned.insert(PredBB).second) 918 continue; 919 920 // Scan the predecessor to see if the value is available in the pred. 921 BBIt = PredBB->end(); 922 AAMDNodes ThisAATags; 923 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6, 924 nullptr, &ThisAATags); 925 if (!PredAvailable) { 926 OneUnavailablePred = PredBB; 927 continue; 928 } 929 930 // If AA tags disagree or are not present, forget about them. 931 if (AATags != ThisAATags) AATags = AAMDNodes(); 932 933 // If so, this load is partially redundant. Remember this info so that we 934 // can create a PHI node. 935 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 936 } 937 938 // If the loaded value isn't available in any predecessor, it isn't partially 939 // redundant. 940 if (AvailablePreds.empty()) return false; 941 942 // Okay, the loaded value is available in at least one (and maybe all!) 943 // predecessors. If the value is unavailable in more than one unique 944 // predecessor, we want to insert a merge block for those common predecessors. 945 // This ensures that we only have to insert one reload, thus not increasing 946 // code size. 947 BasicBlock *UnavailablePred = nullptr; 948 949 // If there is exactly one predecessor where the value is unavailable, the 950 // already computed 'OneUnavailablePred' block is it. If it ends in an 951 // unconditional branch, we know that it isn't a critical edge. 952 if (PredsScanned.size() == AvailablePreds.size()+1 && 953 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 954 UnavailablePred = OneUnavailablePred; 955 } else if (PredsScanned.size() != AvailablePreds.size()) { 956 // Otherwise, we had multiple unavailable predecessors or we had a critical 957 // edge from the one. 958 SmallVector<BasicBlock*, 8> PredsToSplit; 959 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 960 961 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 962 AvailablePredSet.insert(AvailablePreds[i].first); 963 964 // Add all the unavailable predecessors to the PredsToSplit list. 965 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 966 PI != PE; ++PI) { 967 BasicBlock *P = *PI; 968 // If the predecessor is an indirect goto, we can't split the edge. 969 if (isa<IndirectBrInst>(P->getTerminator())) 970 return false; 971 972 if (!AvailablePredSet.count(P)) 973 PredsToSplit.push_back(P); 974 } 975 976 // Split them out to their own block. 977 UnavailablePred = 978 SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split"); 979 } 980 981 // If the value isn't available in all predecessors, then there will be 982 // exactly one where it isn't available. Insert a load on that edge and add 983 // it to the AvailablePreds list. 984 if (UnavailablePred) { 985 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 986 "Can't handle critical edge here!"); 987 LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 988 LI->getAlignment(), 989 UnavailablePred->getTerminator()); 990 NewVal->setDebugLoc(LI->getDebugLoc()); 991 if (AATags) 992 NewVal->setAAMetadata(AATags); 993 994 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 995 } 996 997 // Now we know that each predecessor of this block has a value in 998 // AvailablePreds, sort them for efficient access as we're walking the preds. 999 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1000 1001 // Create a PHI node at the start of the block for the PRE'd load value. 1002 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1003 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 1004 LoadBB->begin()); 1005 PN->takeName(LI); 1006 PN->setDebugLoc(LI->getDebugLoc()); 1007 1008 // Insert new entries into the PHI for each predecessor. A single block may 1009 // have multiple entries here. 1010 for (pred_iterator PI = PB; PI != PE; ++PI) { 1011 BasicBlock *P = *PI; 1012 AvailablePredsTy::iterator I = 1013 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1014 std::make_pair(P, (Value*)nullptr)); 1015 1016 assert(I != AvailablePreds.end() && I->first == P && 1017 "Didn't find entry for predecessor!"); 1018 1019 // If we have an available predecessor but it requires casting, insert the 1020 // cast in the predecessor and use the cast. Note that we have to update the 1021 // AvailablePreds vector as we go so that all of the PHI entries for this 1022 // predecessor use the same bitcast. 1023 Value *&PredV = I->second; 1024 if (PredV->getType() != LI->getType()) 1025 PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "", 1026 P->getTerminator()); 1027 1028 PN->addIncoming(PredV, I->first); 1029 } 1030 1031 //cerr << "PRE: " << *LI << *PN << "\n"; 1032 1033 LI->replaceAllUsesWith(PN); 1034 LI->eraseFromParent(); 1035 1036 return true; 1037 } 1038 1039 /// FindMostPopularDest - The specified list contains multiple possible 1040 /// threadable destinations. Pick the one that occurs the most frequently in 1041 /// the list. 1042 static BasicBlock * 1043 FindMostPopularDest(BasicBlock *BB, 1044 const SmallVectorImpl<std::pair<BasicBlock*, 1045 BasicBlock*> > &PredToDestList) { 1046 assert(!PredToDestList.empty()); 1047 1048 // Determine popularity. If there are multiple possible destinations, we 1049 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1050 // blocks with known and real destinations to threading undef. We'll handle 1051 // them later if interesting. 1052 DenseMap<BasicBlock*, unsigned> DestPopularity; 1053 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1054 if (PredToDestList[i].second) 1055 DestPopularity[PredToDestList[i].second]++; 1056 1057 // Find the most popular dest. 1058 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1059 BasicBlock *MostPopularDest = DPI->first; 1060 unsigned Popularity = DPI->second; 1061 SmallVector<BasicBlock*, 4> SamePopularity; 1062 1063 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1064 // If the popularity of this entry isn't higher than the popularity we've 1065 // seen so far, ignore it. 1066 if (DPI->second < Popularity) 1067 ; // ignore. 1068 else if (DPI->second == Popularity) { 1069 // If it is the same as what we've seen so far, keep track of it. 1070 SamePopularity.push_back(DPI->first); 1071 } else { 1072 // If it is more popular, remember it. 1073 SamePopularity.clear(); 1074 MostPopularDest = DPI->first; 1075 Popularity = DPI->second; 1076 } 1077 } 1078 1079 // Okay, now we know the most popular destination. If there is more than one 1080 // destination, we need to determine one. This is arbitrary, but we need 1081 // to make a deterministic decision. Pick the first one that appears in the 1082 // successor list. 1083 if (!SamePopularity.empty()) { 1084 SamePopularity.push_back(MostPopularDest); 1085 TerminatorInst *TI = BB->getTerminator(); 1086 for (unsigned i = 0; ; ++i) { 1087 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1088 1089 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1090 TI->getSuccessor(i)) == SamePopularity.end()) 1091 continue; 1092 1093 MostPopularDest = TI->getSuccessor(i); 1094 break; 1095 } 1096 } 1097 1098 // Okay, we have finally picked the most popular destination. 1099 return MostPopularDest; 1100 } 1101 1102 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1103 ConstantPreference Preference, 1104 Instruction *CxtI) { 1105 // If threading this would thread across a loop header, don't even try to 1106 // thread the edge. 1107 if (LoopHeaders.count(BB)) 1108 return false; 1109 1110 PredValueInfoTy PredValues; 1111 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1112 return false; 1113 1114 assert(!PredValues.empty() && 1115 "ComputeValueKnownInPredecessors returned true with no values"); 1116 1117 DEBUG(dbgs() << "IN BB: " << *BB; 1118 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1119 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1120 << *PredValues[i].first 1121 << " for pred '" << PredValues[i].second->getName() << "'.\n"; 1122 }); 1123 1124 // Decide what we want to thread through. Convert our list of known values to 1125 // a list of known destinations for each pred. This also discards duplicate 1126 // predecessors and keeps track of the undefined inputs (which are represented 1127 // as a null dest in the PredToDestList). 1128 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1129 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1130 1131 BasicBlock *OnlyDest = nullptr; 1132 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1133 1134 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1135 BasicBlock *Pred = PredValues[i].second; 1136 if (!SeenPreds.insert(Pred).second) 1137 continue; // Duplicate predecessor entry. 1138 1139 // If the predecessor ends with an indirect goto, we can't change its 1140 // destination. 1141 if (isa<IndirectBrInst>(Pred->getTerminator())) 1142 continue; 1143 1144 Constant *Val = PredValues[i].first; 1145 1146 BasicBlock *DestBB; 1147 if (isa<UndefValue>(Val)) 1148 DestBB = nullptr; 1149 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1150 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1151 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1152 DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor(); 1153 } else { 1154 assert(isa<IndirectBrInst>(BB->getTerminator()) 1155 && "Unexpected terminator"); 1156 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1157 } 1158 1159 // If we have exactly one destination, remember it for efficiency below. 1160 if (PredToDestList.empty()) 1161 OnlyDest = DestBB; 1162 else if (OnlyDest != DestBB) 1163 OnlyDest = MultipleDestSentinel; 1164 1165 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1166 } 1167 1168 // If all edges were unthreadable, we fail. 1169 if (PredToDestList.empty()) 1170 return false; 1171 1172 // Determine which is the most common successor. If we have many inputs and 1173 // this block is a switch, we want to start by threading the batch that goes 1174 // to the most popular destination first. If we only know about one 1175 // threadable destination (the common case) we can avoid this. 1176 BasicBlock *MostPopularDest = OnlyDest; 1177 1178 if (MostPopularDest == MultipleDestSentinel) 1179 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1180 1181 // Now that we know what the most popular destination is, factor all 1182 // predecessors that will jump to it into a single predecessor. 1183 SmallVector<BasicBlock*, 16> PredsToFactor; 1184 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1185 if (PredToDestList[i].second == MostPopularDest) { 1186 BasicBlock *Pred = PredToDestList[i].first; 1187 1188 // This predecessor may be a switch or something else that has multiple 1189 // edges to the block. Factor each of these edges by listing them 1190 // according to # occurrences in PredsToFactor. 1191 TerminatorInst *PredTI = Pred->getTerminator(); 1192 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1193 if (PredTI->getSuccessor(i) == BB) 1194 PredsToFactor.push_back(Pred); 1195 } 1196 1197 // If the threadable edges are branching on an undefined value, we get to pick 1198 // the destination that these predecessors should get to. 1199 if (!MostPopularDest) 1200 MostPopularDest = BB->getTerminator()-> 1201 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1202 1203 // Ok, try to thread it! 1204 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1205 } 1206 1207 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1208 /// a PHI node in the current block. See if there are any simplifications we 1209 /// can do based on inputs to the phi node. 1210 /// 1211 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1212 BasicBlock *BB = PN->getParent(); 1213 1214 // TODO: We could make use of this to do it once for blocks with common PHI 1215 // values. 1216 SmallVector<BasicBlock*, 1> PredBBs; 1217 PredBBs.resize(1); 1218 1219 // If any of the predecessor blocks end in an unconditional branch, we can 1220 // *duplicate* the conditional branch into that block in order to further 1221 // encourage jump threading and to eliminate cases where we have branch on a 1222 // phi of an icmp (branch on icmp is much better). 1223 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1224 BasicBlock *PredBB = PN->getIncomingBlock(i); 1225 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1226 if (PredBr->isUnconditional()) { 1227 PredBBs[0] = PredBB; 1228 // Try to duplicate BB into PredBB. 1229 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1230 return true; 1231 } 1232 } 1233 1234 return false; 1235 } 1236 1237 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1238 /// a xor instruction in the current block. See if there are any 1239 /// simplifications we can do based on inputs to the xor. 1240 /// 1241 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1242 BasicBlock *BB = BO->getParent(); 1243 1244 // If either the LHS or RHS of the xor is a constant, don't do this 1245 // optimization. 1246 if (isa<ConstantInt>(BO->getOperand(0)) || 1247 isa<ConstantInt>(BO->getOperand(1))) 1248 return false; 1249 1250 // If the first instruction in BB isn't a phi, we won't be able to infer 1251 // anything special about any particular predecessor. 1252 if (!isa<PHINode>(BB->front())) 1253 return false; 1254 1255 // If we have a xor as the branch input to this block, and we know that the 1256 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1257 // the condition into the predecessor and fix that value to true, saving some 1258 // logical ops on that path and encouraging other paths to simplify. 1259 // 1260 // This copies something like this: 1261 // 1262 // BB: 1263 // %X = phi i1 [1], [%X'] 1264 // %Y = icmp eq i32 %A, %B 1265 // %Z = xor i1 %X, %Y 1266 // br i1 %Z, ... 1267 // 1268 // Into: 1269 // BB': 1270 // %Y = icmp ne i32 %A, %B 1271 // br i1 %Z, ... 1272 1273 PredValueInfoTy XorOpValues; 1274 bool isLHS = true; 1275 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1276 WantInteger, BO)) { 1277 assert(XorOpValues.empty()); 1278 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1279 WantInteger, BO)) 1280 return false; 1281 isLHS = false; 1282 } 1283 1284 assert(!XorOpValues.empty() && 1285 "ComputeValueKnownInPredecessors returned true with no values"); 1286 1287 // Scan the information to see which is most popular: true or false. The 1288 // predecessors can be of the set true, false, or undef. 1289 unsigned NumTrue = 0, NumFalse = 0; 1290 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1291 if (isa<UndefValue>(XorOpValues[i].first)) 1292 // Ignore undefs for the count. 1293 continue; 1294 if (cast<ConstantInt>(XorOpValues[i].first)->isZero()) 1295 ++NumFalse; 1296 else 1297 ++NumTrue; 1298 } 1299 1300 // Determine which value to split on, true, false, or undef if neither. 1301 ConstantInt *SplitVal = nullptr; 1302 if (NumTrue > NumFalse) 1303 SplitVal = ConstantInt::getTrue(BB->getContext()); 1304 else if (NumTrue != 0 || NumFalse != 0) 1305 SplitVal = ConstantInt::getFalse(BB->getContext()); 1306 1307 // Collect all of the blocks that this can be folded into so that we can 1308 // factor this once and clone it once. 1309 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1310 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1311 if (XorOpValues[i].first != SplitVal && 1312 !isa<UndefValue>(XorOpValues[i].first)) 1313 continue; 1314 1315 BlocksToFoldInto.push_back(XorOpValues[i].second); 1316 } 1317 1318 // If we inferred a value for all of the predecessors, then duplication won't 1319 // help us. However, we can just replace the LHS or RHS with the constant. 1320 if (BlocksToFoldInto.size() == 1321 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1322 if (!SplitVal) { 1323 // If all preds provide undef, just nuke the xor, because it is undef too. 1324 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1325 BO->eraseFromParent(); 1326 } else if (SplitVal->isZero()) { 1327 // If all preds provide 0, replace the xor with the other input. 1328 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1329 BO->eraseFromParent(); 1330 } else { 1331 // If all preds provide 1, set the computed value to 1. 1332 BO->setOperand(!isLHS, SplitVal); 1333 } 1334 1335 return true; 1336 } 1337 1338 // Try to duplicate BB into PredBB. 1339 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1340 } 1341 1342 1343 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1344 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1345 /// NewPred using the entries from OldPred (suitably mapped). 1346 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1347 BasicBlock *OldPred, 1348 BasicBlock *NewPred, 1349 DenseMap<Instruction*, Value*> &ValueMap) { 1350 for (BasicBlock::iterator PNI = PHIBB->begin(); 1351 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1352 // Ok, we have a PHI node. Figure out what the incoming value was for the 1353 // DestBlock. 1354 Value *IV = PN->getIncomingValueForBlock(OldPred); 1355 1356 // Remap the value if necessary. 1357 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1358 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1359 if (I != ValueMap.end()) 1360 IV = I->second; 1361 } 1362 1363 PN->addIncoming(IV, NewPred); 1364 } 1365 } 1366 1367 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1368 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1369 /// across BB. Transform the IR to reflect this change. 1370 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1371 const SmallVectorImpl<BasicBlock*> &PredBBs, 1372 BasicBlock *SuccBB) { 1373 // If threading to the same block as we come from, we would infinite loop. 1374 if (SuccBB == BB) { 1375 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1376 << "' - would thread to self!\n"); 1377 return false; 1378 } 1379 1380 // If threading this would thread across a loop header, don't thread the edge. 1381 // See the comments above FindLoopHeaders for justifications and caveats. 1382 if (LoopHeaders.count(BB)) { 1383 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1384 << "' to dest BB '" << SuccBB->getName() 1385 << "' - it might create an irreducible loop!\n"); 1386 return false; 1387 } 1388 1389 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1390 if (JumpThreadCost > BBDupThreshold) { 1391 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1392 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1393 return false; 1394 } 1395 1396 // And finally, do it! Start by factoring the predecessors is needed. 1397 BasicBlock *PredBB; 1398 if (PredBBs.size() == 1) 1399 PredBB = PredBBs[0]; 1400 else { 1401 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1402 << " common predecessors.\n"); 1403 PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm"); 1404 } 1405 1406 // And finally, do it! 1407 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1408 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1409 << ", across block:\n " 1410 << *BB << "\n"); 1411 1412 LVI->threadEdge(PredBB, BB, SuccBB); 1413 1414 // We are going to have to map operands from the original BB block to the new 1415 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1416 // account for entry from PredBB. 1417 DenseMap<Instruction*, Value*> ValueMapping; 1418 1419 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1420 BB->getName()+".thread", 1421 BB->getParent(), BB); 1422 NewBB->moveAfter(PredBB); 1423 1424 BasicBlock::iterator BI = BB->begin(); 1425 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1426 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1427 1428 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1429 // mapping and using it to remap operands in the cloned instructions. 1430 for (; !isa<TerminatorInst>(BI); ++BI) { 1431 Instruction *New = BI->clone(); 1432 New->setName(BI->getName()); 1433 NewBB->getInstList().push_back(New); 1434 ValueMapping[BI] = New; 1435 1436 // Remap operands to patch up intra-block references. 1437 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1438 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1439 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1440 if (I != ValueMapping.end()) 1441 New->setOperand(i, I->second); 1442 } 1443 } 1444 1445 // We didn't copy the terminator from BB over to NewBB, because there is now 1446 // an unconditional jump to SuccBB. Insert the unconditional jump. 1447 BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB); 1448 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1449 1450 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1451 // PHI nodes for NewBB now. 1452 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1453 1454 // If there were values defined in BB that are used outside the block, then we 1455 // now have to update all uses of the value to use either the original value, 1456 // the cloned value, or some PHI derived value. This can require arbitrary 1457 // PHI insertion, of which we are prepared to do, clean these up now. 1458 SSAUpdater SSAUpdate; 1459 SmallVector<Use*, 16> UsesToRename; 1460 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1461 // Scan all uses of this instruction to see if it is used outside of its 1462 // block, and if so, record them in UsesToRename. 1463 for (Use &U : I->uses()) { 1464 Instruction *User = cast<Instruction>(U.getUser()); 1465 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1466 if (UserPN->getIncomingBlock(U) == BB) 1467 continue; 1468 } else if (User->getParent() == BB) 1469 continue; 1470 1471 UsesToRename.push_back(&U); 1472 } 1473 1474 // If there are no uses outside the block, we're done with this instruction. 1475 if (UsesToRename.empty()) 1476 continue; 1477 1478 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1479 1480 // We found a use of I outside of BB. Rename all uses of I that are outside 1481 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1482 // with the two values we know. 1483 SSAUpdate.Initialize(I->getType(), I->getName()); 1484 SSAUpdate.AddAvailableValue(BB, I); 1485 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1486 1487 while (!UsesToRename.empty()) 1488 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1489 DEBUG(dbgs() << "\n"); 1490 } 1491 1492 1493 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1494 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1495 // us to simplify any PHI nodes in BB. 1496 TerminatorInst *PredTerm = PredBB->getTerminator(); 1497 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1498 if (PredTerm->getSuccessor(i) == BB) { 1499 BB->removePredecessor(PredBB, true); 1500 PredTerm->setSuccessor(i, NewBB); 1501 } 1502 1503 // At this point, the IR is fully up to date and consistent. Do a quick scan 1504 // over the new instructions and zap any that are constants or dead. This 1505 // frequently happens because of phi translation. 1506 SimplifyInstructionsInBlock(NewBB, TLI); 1507 1508 // Threaded an edge! 1509 ++NumThreads; 1510 return true; 1511 } 1512 1513 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1514 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1515 /// If we can duplicate the contents of BB up into PredBB do so now, this 1516 /// improves the odds that the branch will be on an analyzable instruction like 1517 /// a compare. 1518 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1519 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1520 assert(!PredBBs.empty() && "Can't handle an empty set"); 1521 1522 // If BB is a loop header, then duplicating this block outside the loop would 1523 // cause us to transform this into an irreducible loop, don't do this. 1524 // See the comments above FindLoopHeaders for justifications and caveats. 1525 if (LoopHeaders.count(BB)) { 1526 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1527 << "' into predecessor block '" << PredBBs[0]->getName() 1528 << "' - it might create an irreducible loop!\n"); 1529 return false; 1530 } 1531 1532 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1533 if (DuplicationCost > BBDupThreshold) { 1534 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1535 << "' - Cost is too high: " << DuplicationCost << "\n"); 1536 return false; 1537 } 1538 1539 // And finally, do it! Start by factoring the predecessors is needed. 1540 BasicBlock *PredBB; 1541 if (PredBBs.size() == 1) 1542 PredBB = PredBBs[0]; 1543 else { 1544 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1545 << " common predecessors.\n"); 1546 PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm"); 1547 } 1548 1549 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1550 // of PredBB. 1551 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1552 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1553 << DuplicationCost << " block is:" << *BB << "\n"); 1554 1555 // Unless PredBB ends with an unconditional branch, split the edge so that we 1556 // can just clone the bits from BB into the end of the new PredBB. 1557 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1558 1559 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 1560 PredBB = SplitEdge(PredBB, BB); 1561 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1562 } 1563 1564 // We are going to have to map operands from the original BB block into the 1565 // PredBB block. Evaluate PHI nodes in BB. 1566 DenseMap<Instruction*, Value*> ValueMapping; 1567 1568 BasicBlock::iterator BI = BB->begin(); 1569 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1570 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1571 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1572 // mapping and using it to remap operands in the cloned instructions. 1573 for (; BI != BB->end(); ++BI) { 1574 Instruction *New = BI->clone(); 1575 1576 // Remap operands to patch up intra-block references. 1577 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1578 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1579 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1580 if (I != ValueMapping.end()) 1581 New->setOperand(i, I->second); 1582 } 1583 1584 // If this instruction can be simplified after the operands are updated, 1585 // just use the simplified value instead. This frequently happens due to 1586 // phi translation. 1587 if (Value *IV = 1588 SimplifyInstruction(New, BB->getModule()->getDataLayout())) { 1589 delete New; 1590 ValueMapping[BI] = IV; 1591 } else { 1592 // Otherwise, insert the new instruction into the block. 1593 New->setName(BI->getName()); 1594 PredBB->getInstList().insert(OldPredBranch, New); 1595 ValueMapping[BI] = New; 1596 } 1597 } 1598 1599 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1600 // add entries to the PHI nodes for branch from PredBB now. 1601 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1602 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1603 ValueMapping); 1604 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1605 ValueMapping); 1606 1607 // If there were values defined in BB that are used outside the block, then we 1608 // now have to update all uses of the value to use either the original value, 1609 // the cloned value, or some PHI derived value. This can require arbitrary 1610 // PHI insertion, of which we are prepared to do, clean these up now. 1611 SSAUpdater SSAUpdate; 1612 SmallVector<Use*, 16> UsesToRename; 1613 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1614 // Scan all uses of this instruction to see if it is used outside of its 1615 // block, and if so, record them in UsesToRename. 1616 for (Use &U : I->uses()) { 1617 Instruction *User = cast<Instruction>(U.getUser()); 1618 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1619 if (UserPN->getIncomingBlock(U) == BB) 1620 continue; 1621 } else if (User->getParent() == BB) 1622 continue; 1623 1624 UsesToRename.push_back(&U); 1625 } 1626 1627 // If there are no uses outside the block, we're done with this instruction. 1628 if (UsesToRename.empty()) 1629 continue; 1630 1631 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1632 1633 // We found a use of I outside of BB. Rename all uses of I that are outside 1634 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1635 // with the two values we know. 1636 SSAUpdate.Initialize(I->getType(), I->getName()); 1637 SSAUpdate.AddAvailableValue(BB, I); 1638 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1639 1640 while (!UsesToRename.empty()) 1641 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1642 DEBUG(dbgs() << "\n"); 1643 } 1644 1645 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1646 // that we nuked. 1647 BB->removePredecessor(PredBB, true); 1648 1649 // Remove the unconditional branch at the end of the PredBB block. 1650 OldPredBranch->eraseFromParent(); 1651 1652 ++NumDupes; 1653 return true; 1654 } 1655 1656 /// TryToUnfoldSelect - Look for blocks of the form 1657 /// bb1: 1658 /// %a = select 1659 /// br bb 1660 /// 1661 /// bb2: 1662 /// %p = phi [%a, %bb] ... 1663 /// %c = icmp %p 1664 /// br i1 %c 1665 /// 1666 /// And expand the select into a branch structure if one of its arms allows %c 1667 /// to be folded. This later enables threading from bb1 over bb2. 1668 bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 1669 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1670 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 1671 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 1672 1673 if (!CondBr || !CondBr->isConditional() || !CondLHS || 1674 CondLHS->getParent() != BB) 1675 return false; 1676 1677 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 1678 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 1679 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 1680 1681 // Look if one of the incoming values is a select in the corresponding 1682 // predecessor. 1683 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 1684 continue; 1685 1686 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 1687 if (!PredTerm || !PredTerm->isUnconditional()) 1688 continue; 1689 1690 // Now check if one of the select values would allow us to constant fold the 1691 // terminator in BB. We don't do the transform if both sides fold, those 1692 // cases will be threaded in any case. 1693 LazyValueInfo::Tristate LHSFolds = 1694 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 1695 CondRHS, Pred, BB, CondCmp); 1696 LazyValueInfo::Tristate RHSFolds = 1697 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 1698 CondRHS, Pred, BB, CondCmp); 1699 if ((LHSFolds != LazyValueInfo::Unknown || 1700 RHSFolds != LazyValueInfo::Unknown) && 1701 LHSFolds != RHSFolds) { 1702 // Expand the select. 1703 // 1704 // Pred -- 1705 // | v 1706 // | NewBB 1707 // | | 1708 // |----- 1709 // v 1710 // BB 1711 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 1712 BB->getParent(), BB); 1713 // Move the unconditional branch to NewBB. 1714 PredTerm->removeFromParent(); 1715 NewBB->getInstList().insert(NewBB->end(), PredTerm); 1716 // Create a conditional branch and update PHI nodes. 1717 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 1718 CondLHS->setIncomingValue(I, SI->getFalseValue()); 1719 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 1720 // The select is now dead. 1721 SI->eraseFromParent(); 1722 1723 // Update any other PHI nodes in BB. 1724 for (BasicBlock::iterator BI = BB->begin(); 1725 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 1726 if (Phi != CondLHS) 1727 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 1728 return true; 1729 } 1730 } 1731 return false; 1732 } 1733