xref: /llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision de5ab4860fcc53d91b3d8663c1c080d9031e291c)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "jump-threading"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/IntrinsicInst.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Pass.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LazyValueInfo.h"
21 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
22 #include "llvm/Transforms/Utils/Local.h"
23 #include "llvm/Transforms/Utils/SSAUpdater.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ValueHandle.h"
33 #include "llvm/Support/raw_ostream.h"
34 using namespace llvm;
35 
36 STATISTIC(NumThreads, "Number of jumps threaded");
37 STATISTIC(NumFolds,   "Number of terminators folded");
38 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
39 
40 static cl::opt<unsigned>
41 Threshold("jump-threading-threshold",
42           cl::desc("Max block size to duplicate for jump threading"),
43           cl::init(6), cl::Hidden);
44 
45 // Turn on use of LazyValueInfo.
46 static cl::opt<bool>
47 EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden);
48 
49 
50 
51 namespace {
52   /// This pass performs 'jump threading', which looks at blocks that have
53   /// multiple predecessors and multiple successors.  If one or more of the
54   /// predecessors of the block can be proven to always jump to one of the
55   /// successors, we forward the edge from the predecessor to the successor by
56   /// duplicating the contents of this block.
57   ///
58   /// An example of when this can occur is code like this:
59   ///
60   ///   if () { ...
61   ///     X = 4;
62   ///   }
63   ///   if (X < 3) {
64   ///
65   /// In this case, the unconditional branch at the end of the first if can be
66   /// revectored to the false side of the second if.
67   ///
68   class JumpThreading : public FunctionPass {
69     TargetData *TD;
70     LazyValueInfo *LVI;
71 #ifdef NDEBUG
72     SmallPtrSet<BasicBlock*, 16> LoopHeaders;
73 #else
74     SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
75 #endif
76   public:
77     static char ID; // Pass identification
78     JumpThreading() : FunctionPass(&ID) {}
79 
80     bool runOnFunction(Function &F);
81 
82     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
83       if (EnableLVI)
84         AU.addRequired<LazyValueInfo>();
85     }
86 
87     void FindLoopHeaders(Function &F);
88     bool ProcessBlock(BasicBlock *BB);
89     bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
90                     BasicBlock *SuccBB);
91     bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
92                                   const SmallVectorImpl<BasicBlock *> &PredBBs);
93 
94     typedef SmallVectorImpl<std::pair<ConstantInt*,
95                                       BasicBlock*> > PredValueInfo;
96 
97     bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
98                                          PredValueInfo &Result);
99     bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
100 
101 
102     bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
103     bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
104 
105     bool ProcessBranchOnPHI(PHINode *PN);
106     bool ProcessBranchOnXOR(BinaryOperator *BO);
107 
108     bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
109   };
110 }
111 
112 char JumpThreading::ID = 0;
113 static RegisterPass<JumpThreading>
114 X("jump-threading", "Jump Threading");
115 
116 // Public interface to the Jump Threading pass
117 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
118 
119 /// runOnFunction - Top level algorithm.
120 ///
121 bool JumpThreading::runOnFunction(Function &F) {
122   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
123   TD = getAnalysisIfAvailable<TargetData>();
124   LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0;
125 
126   FindLoopHeaders(F);
127 
128   bool Changed, EverChanged = false;
129   do {
130     Changed = false;
131     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
132       BasicBlock *BB = I;
133       // Thread all of the branches we can over this block.
134       while (ProcessBlock(BB))
135         Changed = true;
136 
137       ++I;
138 
139       // If the block is trivially dead, zap it.  This eliminates the successor
140       // edges which simplifies the CFG.
141       if (pred_begin(BB) == pred_end(BB) &&
142           BB != &BB->getParent()->getEntryBlock()) {
143         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
144               << "' with terminator: " << *BB->getTerminator() << '\n');
145         LoopHeaders.erase(BB);
146         DeleteDeadBlock(BB);
147         Changed = true;
148       } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
149         // Can't thread an unconditional jump, but if the block is "almost
150         // empty", we can replace uses of it with uses of the successor and make
151         // this dead.
152         if (BI->isUnconditional() &&
153             BB != &BB->getParent()->getEntryBlock()) {
154           BasicBlock::iterator BBI = BB->getFirstNonPHI();
155           // Ignore dbg intrinsics.
156           while (isa<DbgInfoIntrinsic>(BBI))
157             ++BBI;
158           // If the terminator is the only non-phi instruction, try to nuke it.
159           if (BBI->isTerminator()) {
160             // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
161             // block, we have to make sure it isn't in the LoopHeaders set.  We
162             // reinsert afterward if needed.
163             bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
164             BasicBlock *Succ = BI->getSuccessor(0);
165 
166             if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
167               Changed = true;
168               // If we deleted BB and BB was the header of a loop, then the
169               // successor is now the header of the loop.
170               BB = Succ;
171             }
172 
173             if (ErasedFromLoopHeaders)
174               LoopHeaders.insert(BB);
175           }
176         }
177       }
178     }
179     EverChanged |= Changed;
180   } while (Changed);
181 
182   LoopHeaders.clear();
183   return EverChanged;
184 }
185 
186 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
187 /// thread across it.
188 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
189   /// Ignore PHI nodes, these will be flattened when duplication happens.
190   BasicBlock::const_iterator I = BB->getFirstNonPHI();
191 
192   // FIXME: THREADING will delete values that are just used to compute the
193   // branch, so they shouldn't count against the duplication cost.
194 
195 
196   // Sum up the cost of each instruction until we get to the terminator.  Don't
197   // include the terminator because the copy won't include it.
198   unsigned Size = 0;
199   for (; !isa<TerminatorInst>(I); ++I) {
200     // Debugger intrinsics don't incur code size.
201     if (isa<DbgInfoIntrinsic>(I)) continue;
202 
203     // If this is a pointer->pointer bitcast, it is free.
204     if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
205       continue;
206 
207     // All other instructions count for at least one unit.
208     ++Size;
209 
210     // Calls are more expensive.  If they are non-intrinsic calls, we model them
211     // as having cost of 4.  If they are a non-vector intrinsic, we model them
212     // as having cost of 2 total, and if they are a vector intrinsic, we model
213     // them as having cost 1.
214     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
215       if (!isa<IntrinsicInst>(CI))
216         Size += 3;
217       else if (!isa<VectorType>(CI->getType()))
218         Size += 1;
219     }
220   }
221 
222   // Threading through a switch statement is particularly profitable.  If this
223   // block ends in a switch, decrease its cost to make it more likely to happen.
224   if (isa<SwitchInst>(I))
225     Size = Size > 6 ? Size-6 : 0;
226 
227   return Size;
228 }
229 
230 /// FindLoopHeaders - We do not want jump threading to turn proper loop
231 /// structures into irreducible loops.  Doing this breaks up the loop nesting
232 /// hierarchy and pessimizes later transformations.  To prevent this from
233 /// happening, we first have to find the loop headers.  Here we approximate this
234 /// by finding targets of backedges in the CFG.
235 ///
236 /// Note that there definitely are cases when we want to allow threading of
237 /// edges across a loop header.  For example, threading a jump from outside the
238 /// loop (the preheader) to an exit block of the loop is definitely profitable.
239 /// It is also almost always profitable to thread backedges from within the loop
240 /// to exit blocks, and is often profitable to thread backedges to other blocks
241 /// within the loop (forming a nested loop).  This simple analysis is not rich
242 /// enough to track all of these properties and keep it up-to-date as the CFG
243 /// mutates, so we don't allow any of these transformations.
244 ///
245 void JumpThreading::FindLoopHeaders(Function &F) {
246   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
247   FindFunctionBackedges(F, Edges);
248 
249   for (unsigned i = 0, e = Edges.size(); i != e; ++i)
250     LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
251 }
252 
253 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
254 /// if we can infer that the value is a known ConstantInt in any of our
255 /// predecessors.  If so, return the known list of value and pred BB in the
256 /// result vector.  If a value is known to be undef, it is returned as null.
257 ///
258 /// This returns true if there were any known values.
259 ///
260 bool JumpThreading::
261 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
262   // If V is a constantint, then it is known in all predecessors.
263   if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
264     ConstantInt *CI = dyn_cast<ConstantInt>(V);
265 
266     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
267       Result.push_back(std::make_pair(CI, *PI));
268     return true;
269   }
270 
271   // If V is a non-instruction value, or an instruction in a different block,
272   // then it can't be derived from a PHI.
273   Instruction *I = dyn_cast<Instruction>(V);
274   if (I == 0 || I->getParent() != BB) {
275 
276     // Okay, if this is a live-in value, see if it has a known value at the end
277     // of any of our predecessors.
278     //
279     // FIXME: This should be an edge property, not a block end property.
280     /// TODO: Per PR2563, we could infer value range information about a
281     /// predecessor based on its terminator.
282     //
283     if (LVI) {
284       // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
285       // "I" is a non-local compare-with-a-constant instruction.  This would be
286       // able to handle value inequalities better, for example if the compare is
287       // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
288       // Perhaps getConstantOnEdge should be smart enough to do this?
289 
290       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
291         // If the value is known by LazyValueInfo to be a constant in a
292         // predecessor, use that information to try to thread this block.
293         Constant *PredCst = LVI->getConstantOnEdge(V, *PI, BB);
294         if (PredCst == 0 ||
295             (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
296           continue;
297 
298         Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI));
299       }
300 
301       return !Result.empty();
302     }
303 
304     return false;
305   }
306 
307   /// If I is a PHI node, then we know the incoming values for any constants.
308   if (PHINode *PN = dyn_cast<PHINode>(I)) {
309     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
310       Value *InVal = PN->getIncomingValue(i);
311       if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
312         ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
313         Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
314       }
315     }
316     return !Result.empty();
317   }
318 
319   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
320 
321   // Handle some boolean conditions.
322   if (I->getType()->getPrimitiveSizeInBits() == 1) {
323     // X | true -> true
324     // X & false -> false
325     if (I->getOpcode() == Instruction::Or ||
326         I->getOpcode() == Instruction::And) {
327       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
328       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
329 
330       if (LHSVals.empty() && RHSVals.empty())
331         return false;
332 
333       ConstantInt *InterestingVal;
334       if (I->getOpcode() == Instruction::Or)
335         InterestingVal = ConstantInt::getTrue(I->getContext());
336       else
337         InterestingVal = ConstantInt::getFalse(I->getContext());
338 
339       // Scan for the sentinel.
340       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
341         if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
342           Result.push_back(LHSVals[i]);
343       for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
344         if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
345           Result.push_back(RHSVals[i]);
346       return !Result.empty();
347     }
348 
349     // Handle the NOT form of XOR.
350     if (I->getOpcode() == Instruction::Xor &&
351         isa<ConstantInt>(I->getOperand(1)) &&
352         cast<ConstantInt>(I->getOperand(1))->isOne()) {
353       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
354       if (Result.empty())
355         return false;
356 
357       // Invert the known values.
358       for (unsigned i = 0, e = Result.size(); i != e; ++i)
359         if (Result[i].first)
360           Result[i].first =
361             cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
362       return true;
363     }
364   }
365 
366   // Handle compare with phi operand, where the PHI is defined in this block.
367   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
368     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
369     if (PN && PN->getParent() == BB) {
370       // We can do this simplification if any comparisons fold to true or false.
371       // See if any do.
372       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
373         BasicBlock *PredBB = PN->getIncomingBlock(i);
374         Value *LHS = PN->getIncomingValue(i);
375         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
376 
377         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
378         if (Res == 0) {
379           if (!LVI || !isa<Constant>(RHS))
380             continue;
381 
382           LazyValueInfo::Tristate
383             ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
384                                            cast<Constant>(RHS), PredBB, BB);
385           if (ResT == LazyValueInfo::Unknown)
386             continue;
387           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
388         }
389 
390         if (isa<UndefValue>(Res))
391           Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
392         else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
393           Result.push_back(std::make_pair(CI, PredBB));
394       }
395 
396       return !Result.empty();
397     }
398 
399 
400     // If comparing a live-in value against a constant, see if we know the
401     // live-in value on any predecessors.
402     if (LVI && isa<Constant>(Cmp->getOperand(1)) &&
403         Cmp->getType()->isInteger() && // Not vector compare.
404         (!isa<Instruction>(Cmp->getOperand(0)) ||
405          cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) {
406       Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
407 
408       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
409         // If the value is known by LazyValueInfo to be a constant in a
410         // predecessor, use that information to try to thread this block.
411         LazyValueInfo::Tristate
412           Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
413                                         RHSCst, *PI, BB);
414         if (Res == LazyValueInfo::Unknown)
415           continue;
416 
417         Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
418         Result.push_back(std::make_pair(cast<ConstantInt>(ResC), *PI));
419       }
420 
421       return !Result.empty();
422     }
423   }
424   return false;
425 }
426 
427 
428 
429 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
430 /// in an undefined jump, decide which block is best to revector to.
431 ///
432 /// Since we can pick an arbitrary destination, we pick the successor with the
433 /// fewest predecessors.  This should reduce the in-degree of the others.
434 ///
435 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
436   TerminatorInst *BBTerm = BB->getTerminator();
437   unsigned MinSucc = 0;
438   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
439   // Compute the successor with the minimum number of predecessors.
440   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
441   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
442     TestBB = BBTerm->getSuccessor(i);
443     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
444     if (NumPreds < MinNumPreds)
445       MinSucc = i;
446   }
447 
448   return MinSucc;
449 }
450 
451 /// ProcessBlock - If there are any predecessors whose control can be threaded
452 /// through to a successor, transform them now.
453 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
454   // If the block is trivially dead, just return and let the caller nuke it.
455   // This simplifies other transformations.
456   if (pred_begin(BB) == pred_end(BB) &&
457       BB != &BB->getParent()->getEntryBlock())
458     return false;
459 
460   // If this block has a single predecessor, and if that pred has a single
461   // successor, merge the blocks.  This encourages recursive jump threading
462   // because now the condition in this block can be threaded through
463   // predecessors of our predecessor block.
464   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
465     if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
466         SinglePred != BB) {
467       // If SinglePred was a loop header, BB becomes one.
468       if (LoopHeaders.erase(SinglePred))
469         LoopHeaders.insert(BB);
470 
471       // Remember if SinglePred was the entry block of the function.  If so, we
472       // will need to move BB back to the entry position.
473       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
474       MergeBasicBlockIntoOnlyPred(BB);
475 
476       if (isEntry && BB != &BB->getParent()->getEntryBlock())
477         BB->moveBefore(&BB->getParent()->getEntryBlock());
478       return true;
479     }
480   }
481 
482   // Look to see if the terminator is a branch of switch, if not we can't thread
483   // it.
484   Value *Condition;
485   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
486     // Can't thread an unconditional jump.
487     if (BI->isUnconditional()) return false;
488     Condition = BI->getCondition();
489   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
490     Condition = SI->getCondition();
491   else
492     return false; // Must be an invoke.
493 
494   // If the terminator of this block is branching on a constant, simplify the
495   // terminator to an unconditional branch.  This can occur due to threading in
496   // other blocks.
497   if (isa<ConstantInt>(Condition)) {
498     DEBUG(dbgs() << "  In block '" << BB->getName()
499           << "' folding terminator: " << *BB->getTerminator() << '\n');
500     ++NumFolds;
501     ConstantFoldTerminator(BB);
502     return true;
503   }
504 
505   // If the terminator is branching on an undef, we can pick any of the
506   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
507   if (isa<UndefValue>(Condition)) {
508     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
509 
510     // Fold the branch/switch.
511     TerminatorInst *BBTerm = BB->getTerminator();
512     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
513       if (i == BestSucc) continue;
514       RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
515     }
516 
517     DEBUG(dbgs() << "  In block '" << BB->getName()
518           << "' folding undef terminator: " << *BBTerm << '\n');
519     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
520     BBTerm->eraseFromParent();
521     return true;
522   }
523 
524   Instruction *CondInst = dyn_cast<Instruction>(Condition);
525 
526   // If the condition is an instruction defined in another block, see if a
527   // predecessor has the same condition:
528   //     br COND, BBX, BBY
529   //  BBX:
530   //     br COND, BBZ, BBW
531   if (!LVI &&
532       !Condition->hasOneUse() && // Multiple uses.
533       (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
534     pred_iterator PI = pred_begin(BB), E = pred_end(BB);
535     if (isa<BranchInst>(BB->getTerminator())) {
536       for (; PI != E; ++PI)
537         if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
538           if (PBI->isConditional() && PBI->getCondition() == Condition &&
539               ProcessBranchOnDuplicateCond(*PI, BB))
540             return true;
541     } else {
542       assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
543       for (; PI != E; ++PI)
544         if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
545           if (PSI->getCondition() == Condition &&
546               ProcessSwitchOnDuplicateCond(*PI, BB))
547             return true;
548     }
549   }
550 
551   // All the rest of our checks depend on the condition being an instruction.
552   if (CondInst == 0) {
553     // FIXME: Unify this with code below.
554     if (LVI && ProcessThreadableEdges(Condition, BB))
555       return true;
556     return false;
557   }
558 
559 
560   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
561     if (!LVI &&
562         (!isa<PHINode>(CondCmp->getOperand(0)) ||
563          cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) {
564       // If we have a comparison, loop over the predecessors to see if there is
565       // a condition with a lexically identical value.
566       pred_iterator PI = pred_begin(BB), E = pred_end(BB);
567       for (; PI != E; ++PI)
568         if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
569           if (PBI->isConditional() && *PI != BB) {
570             if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
571               if (CI->getOperand(0) == CondCmp->getOperand(0) &&
572                   CI->getOperand(1) == CondCmp->getOperand(1) &&
573                   CI->getPredicate() == CondCmp->getPredicate()) {
574                 // TODO: Could handle things like (x != 4) --> (x == 17)
575                 if (ProcessBranchOnDuplicateCond(*PI, BB))
576                   return true;
577               }
578             }
579           }
580     }
581   }
582 
583   // Check for some cases that are worth simplifying.  Right now we want to look
584   // for loads that are used by a switch or by the condition for the branch.  If
585   // we see one, check to see if it's partially redundant.  If so, insert a PHI
586   // which can then be used to thread the values.
587   //
588   Value *SimplifyValue = CondInst;
589   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
590     if (isa<Constant>(CondCmp->getOperand(1)))
591       SimplifyValue = CondCmp->getOperand(0);
592 
593   // TODO: There are other places where load PRE would be profitable, such as
594   // more complex comparisons.
595   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
596     if (SimplifyPartiallyRedundantLoad(LI))
597       return true;
598 
599 
600   // Handle a variety of cases where we are branching on something derived from
601   // a PHI node in the current block.  If we can prove that any predecessors
602   // compute a predictable value based on a PHI node, thread those predecessors.
603   //
604   if (ProcessThreadableEdges(CondInst, BB))
605     return true;
606 
607   // If this is an otherwise-unfoldable branch on a phi node in the current
608   // block, see if we can simplify.
609   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
610     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
611       return ProcessBranchOnPHI(PN);
612 
613 
614   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
615   if (CondInst->getOpcode() == Instruction::Xor &&
616       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
617     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
618 
619 
620   // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
621   // "(X == 4)", thread through this block.
622 
623   return false;
624 }
625 
626 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
627 /// block that jump on exactly the same condition.  This means that we almost
628 /// always know the direction of the edge in the DESTBB:
629 ///  PREDBB:
630 ///     br COND, DESTBB, BBY
631 ///  DESTBB:
632 ///     br COND, BBZ, BBW
633 ///
634 /// If DESTBB has multiple predecessors, we can't just constant fold the branch
635 /// in DESTBB, we have to thread over it.
636 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
637                                                  BasicBlock *BB) {
638   BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
639 
640   // If both successors of PredBB go to DESTBB, we don't know anything.  We can
641   // fold the branch to an unconditional one, which allows other recursive
642   // simplifications.
643   bool BranchDir;
644   if (PredBI->getSuccessor(1) != BB)
645     BranchDir = true;
646   else if (PredBI->getSuccessor(0) != BB)
647     BranchDir = false;
648   else {
649     DEBUG(dbgs() << "  In block '" << PredBB->getName()
650           << "' folding terminator: " << *PredBB->getTerminator() << '\n');
651     ++NumFolds;
652     ConstantFoldTerminator(PredBB);
653     return true;
654   }
655 
656   BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
657 
658   // If the dest block has one predecessor, just fix the branch condition to a
659   // constant and fold it.
660   if (BB->getSinglePredecessor()) {
661     DEBUG(dbgs() << "  In block '" << BB->getName()
662           << "' folding condition to '" << BranchDir << "': "
663           << *BB->getTerminator() << '\n');
664     ++NumFolds;
665     Value *OldCond = DestBI->getCondition();
666     DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
667                                           BranchDir));
668     ConstantFoldTerminator(BB);
669     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
670     return true;
671   }
672 
673 
674   // Next, figure out which successor we are threading to.
675   BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
676 
677   SmallVector<BasicBlock*, 2> Preds;
678   Preds.push_back(PredBB);
679 
680   // Ok, try to thread it!
681   return ThreadEdge(BB, Preds, SuccBB);
682 }
683 
684 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
685 /// block that switch on exactly the same condition.  This means that we almost
686 /// always know the direction of the edge in the DESTBB:
687 ///  PREDBB:
688 ///     switch COND [... DESTBB, BBY ... ]
689 ///  DESTBB:
690 ///     switch COND [... BBZ, BBW ]
691 ///
692 /// Optimizing switches like this is very important, because simplifycfg builds
693 /// switches out of repeated 'if' conditions.
694 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
695                                                  BasicBlock *DestBB) {
696   // Can't thread edge to self.
697   if (PredBB == DestBB)
698     return false;
699 
700   SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
701   SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
702 
703   // There are a variety of optimizations that we can potentially do on these
704   // blocks: we order them from most to least preferable.
705 
706   // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
707   // directly to their destination.  This does not introduce *any* code size
708   // growth.  Skip debug info first.
709   BasicBlock::iterator BBI = DestBB->begin();
710   while (isa<DbgInfoIntrinsic>(BBI))
711     BBI++;
712 
713   // FIXME: Thread if it just contains a PHI.
714   if (isa<SwitchInst>(BBI)) {
715     bool MadeChange = false;
716     // Ignore the default edge for now.
717     for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
718       ConstantInt *DestVal = DestSI->getCaseValue(i);
719       BasicBlock *DestSucc = DestSI->getSuccessor(i);
720 
721       // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
722       // PredSI has an explicit case for it.  If so, forward.  If it is covered
723       // by the default case, we can't update PredSI.
724       unsigned PredCase = PredSI->findCaseValue(DestVal);
725       if (PredCase == 0) continue;
726 
727       // If PredSI doesn't go to DestBB on this value, then it won't reach the
728       // case on this condition.
729       if (PredSI->getSuccessor(PredCase) != DestBB &&
730           DestSI->getSuccessor(i) != DestBB)
731         continue;
732 
733       // Do not forward this if it already goes to this destination, this would
734       // be an infinite loop.
735       if (PredSI->getSuccessor(PredCase) == DestSucc)
736         continue;
737 
738       // Otherwise, we're safe to make the change.  Make sure that the edge from
739       // DestSI to DestSucc is not critical and has no PHI nodes.
740       DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
741       DEBUG(dbgs() << "THROUGH: " << *DestSI);
742 
743       // If the destination has PHI nodes, just split the edge for updating
744       // simplicity.
745       if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
746         SplitCriticalEdge(DestSI, i, this);
747         DestSucc = DestSI->getSuccessor(i);
748       }
749       FoldSingleEntryPHINodes(DestSucc);
750       PredSI->setSuccessor(PredCase, DestSucc);
751       MadeChange = true;
752     }
753 
754     if (MadeChange)
755       return true;
756   }
757 
758   return false;
759 }
760 
761 
762 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
763 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
764 /// important optimization that encourages jump threading, and needs to be run
765 /// interlaced with other jump threading tasks.
766 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
767   // Don't hack volatile loads.
768   if (LI->isVolatile()) return false;
769 
770   // If the load is defined in a block with exactly one predecessor, it can't be
771   // partially redundant.
772   BasicBlock *LoadBB = LI->getParent();
773   if (LoadBB->getSinglePredecessor())
774     return false;
775 
776   Value *LoadedPtr = LI->getOperand(0);
777 
778   // If the loaded operand is defined in the LoadBB, it can't be available.
779   // TODO: Could do simple PHI translation, that would be fun :)
780   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
781     if (PtrOp->getParent() == LoadBB)
782       return false;
783 
784   // Scan a few instructions up from the load, to see if it is obviously live at
785   // the entry to its block.
786   BasicBlock::iterator BBIt = LI;
787 
788   if (Value *AvailableVal =
789         FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
790     // If the value if the load is locally available within the block, just use
791     // it.  This frequently occurs for reg2mem'd allocas.
792     //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
793 
794     // If the returned value is the load itself, replace with an undef. This can
795     // only happen in dead loops.
796     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
797     LI->replaceAllUsesWith(AvailableVal);
798     LI->eraseFromParent();
799     return true;
800   }
801 
802   // Otherwise, if we scanned the whole block and got to the top of the block,
803   // we know the block is locally transparent to the load.  If not, something
804   // might clobber its value.
805   if (BBIt != LoadBB->begin())
806     return false;
807 
808 
809   SmallPtrSet<BasicBlock*, 8> PredsScanned;
810   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
811   AvailablePredsTy AvailablePreds;
812   BasicBlock *OneUnavailablePred = 0;
813 
814   // If we got here, the loaded value is transparent through to the start of the
815   // block.  Check to see if it is available in any of the predecessor blocks.
816   for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
817        PI != PE; ++PI) {
818     BasicBlock *PredBB = *PI;
819 
820     // If we already scanned this predecessor, skip it.
821     if (!PredsScanned.insert(PredBB))
822       continue;
823 
824     // Scan the predecessor to see if the value is available in the pred.
825     BBIt = PredBB->end();
826     Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
827     if (!PredAvailable) {
828       OneUnavailablePred = PredBB;
829       continue;
830     }
831 
832     // If so, this load is partially redundant.  Remember this info so that we
833     // can create a PHI node.
834     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
835   }
836 
837   // If the loaded value isn't available in any predecessor, it isn't partially
838   // redundant.
839   if (AvailablePreds.empty()) return false;
840 
841   // Okay, the loaded value is available in at least one (and maybe all!)
842   // predecessors.  If the value is unavailable in more than one unique
843   // predecessor, we want to insert a merge block for those common predecessors.
844   // This ensures that we only have to insert one reload, thus not increasing
845   // code size.
846   BasicBlock *UnavailablePred = 0;
847 
848   // If there is exactly one predecessor where the value is unavailable, the
849   // already computed 'OneUnavailablePred' block is it.  If it ends in an
850   // unconditional branch, we know that it isn't a critical edge.
851   if (PredsScanned.size() == AvailablePreds.size()+1 &&
852       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
853     UnavailablePred = OneUnavailablePred;
854   } else if (PredsScanned.size() != AvailablePreds.size()) {
855     // Otherwise, we had multiple unavailable predecessors or we had a critical
856     // edge from the one.
857     SmallVector<BasicBlock*, 8> PredsToSplit;
858     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
859 
860     for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
861       AvailablePredSet.insert(AvailablePreds[i].first);
862 
863     // Add all the unavailable predecessors to the PredsToSplit list.
864     for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
865          PI != PE; ++PI)
866       if (!AvailablePredSet.count(*PI))
867         PredsToSplit.push_back(*PI);
868 
869     // Split them out to their own block.
870     UnavailablePred =
871       SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
872                              "thread-pre-split", this);
873   }
874 
875   // If the value isn't available in all predecessors, then there will be
876   // exactly one where it isn't available.  Insert a load on that edge and add
877   // it to the AvailablePreds list.
878   if (UnavailablePred) {
879     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
880            "Can't handle critical edge here!");
881     Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
882                                  LI->getAlignment(),
883                                  UnavailablePred->getTerminator());
884     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
885   }
886 
887   // Now we know that each predecessor of this block has a value in
888   // AvailablePreds, sort them for efficient access as we're walking the preds.
889   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
890 
891   // Create a PHI node at the start of the block for the PRE'd load value.
892   PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
893   PN->takeName(LI);
894 
895   // Insert new entries into the PHI for each predecessor.  A single block may
896   // have multiple entries here.
897   for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
898        ++PI) {
899     AvailablePredsTy::iterator I =
900       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
901                        std::make_pair(*PI, (Value*)0));
902 
903     assert(I != AvailablePreds.end() && I->first == *PI &&
904            "Didn't find entry for predecessor!");
905 
906     PN->addIncoming(I->second, I->first);
907   }
908 
909   //cerr << "PRE: " << *LI << *PN << "\n";
910 
911   LI->replaceAllUsesWith(PN);
912   LI->eraseFromParent();
913 
914   return true;
915 }
916 
917 /// FindMostPopularDest - The specified list contains multiple possible
918 /// threadable destinations.  Pick the one that occurs the most frequently in
919 /// the list.
920 static BasicBlock *
921 FindMostPopularDest(BasicBlock *BB,
922                     const SmallVectorImpl<std::pair<BasicBlock*,
923                                   BasicBlock*> > &PredToDestList) {
924   assert(!PredToDestList.empty());
925 
926   // Determine popularity.  If there are multiple possible destinations, we
927   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
928   // blocks with known and real destinations to threading undef.  We'll handle
929   // them later if interesting.
930   DenseMap<BasicBlock*, unsigned> DestPopularity;
931   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
932     if (PredToDestList[i].second)
933       DestPopularity[PredToDestList[i].second]++;
934 
935   // Find the most popular dest.
936   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
937   BasicBlock *MostPopularDest = DPI->first;
938   unsigned Popularity = DPI->second;
939   SmallVector<BasicBlock*, 4> SamePopularity;
940 
941   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
942     // If the popularity of this entry isn't higher than the popularity we've
943     // seen so far, ignore it.
944     if (DPI->second < Popularity)
945       ; // ignore.
946     else if (DPI->second == Popularity) {
947       // If it is the same as what we've seen so far, keep track of it.
948       SamePopularity.push_back(DPI->first);
949     } else {
950       // If it is more popular, remember it.
951       SamePopularity.clear();
952       MostPopularDest = DPI->first;
953       Popularity = DPI->second;
954     }
955   }
956 
957   // Okay, now we know the most popular destination.  If there is more than
958   // destination, we need to determine one.  This is arbitrary, but we need
959   // to make a deterministic decision.  Pick the first one that appears in the
960   // successor list.
961   if (!SamePopularity.empty()) {
962     SamePopularity.push_back(MostPopularDest);
963     TerminatorInst *TI = BB->getTerminator();
964     for (unsigned i = 0; ; ++i) {
965       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
966 
967       if (std::find(SamePopularity.begin(), SamePopularity.end(),
968                     TI->getSuccessor(i)) == SamePopularity.end())
969         continue;
970 
971       MostPopularDest = TI->getSuccessor(i);
972       break;
973     }
974   }
975 
976   // Okay, we have finally picked the most popular destination.
977   return MostPopularDest;
978 }
979 
980 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
981   // If threading this would thread across a loop header, don't even try to
982   // thread the edge.
983   if (LoopHeaders.count(BB))
984     return false;
985 
986   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
987   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
988     return false;
989   assert(!PredValues.empty() &&
990          "ComputeValueKnownInPredecessors returned true with no values");
991 
992   DEBUG(dbgs() << "IN BB: " << *BB;
993         for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
994           dbgs() << "  BB '" << BB->getName() << "': FOUND condition = ";
995           if (PredValues[i].first)
996             dbgs() << *PredValues[i].first;
997           else
998             dbgs() << "UNDEF";
999           dbgs() << " for pred '" << PredValues[i].second->getName()
1000           << "'.\n";
1001         });
1002 
1003   // Decide what we want to thread through.  Convert our list of known values to
1004   // a list of known destinations for each pred.  This also discards duplicate
1005   // predecessors and keeps track of the undefined inputs (which are represented
1006   // as a null dest in the PredToDestList).
1007   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1008   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1009 
1010   BasicBlock *OnlyDest = 0;
1011   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1012 
1013   for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1014     BasicBlock *Pred = PredValues[i].second;
1015     if (!SeenPreds.insert(Pred))
1016       continue;  // Duplicate predecessor entry.
1017 
1018     // If the predecessor ends with an indirect goto, we can't change its
1019     // destination.
1020     if (isa<IndirectBrInst>(Pred->getTerminator()))
1021       continue;
1022 
1023     ConstantInt *Val = PredValues[i].first;
1024 
1025     BasicBlock *DestBB;
1026     if (Val == 0)      // Undef.
1027       DestBB = 0;
1028     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1029       DestBB = BI->getSuccessor(Val->isZero());
1030     else {
1031       SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
1032       DestBB = SI->getSuccessor(SI->findCaseValue(Val));
1033     }
1034 
1035     // If we have exactly one destination, remember it for efficiency below.
1036     if (i == 0)
1037       OnlyDest = DestBB;
1038     else if (OnlyDest != DestBB)
1039       OnlyDest = MultipleDestSentinel;
1040 
1041     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1042   }
1043 
1044   // If all edges were unthreadable, we fail.
1045   if (PredToDestList.empty())
1046     return false;
1047 
1048   // Determine which is the most common successor.  If we have many inputs and
1049   // this block is a switch, we want to start by threading the batch that goes
1050   // to the most popular destination first.  If we only know about one
1051   // threadable destination (the common case) we can avoid this.
1052   BasicBlock *MostPopularDest = OnlyDest;
1053 
1054   if (MostPopularDest == MultipleDestSentinel)
1055     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1056 
1057   // Now that we know what the most popular destination is, factor all
1058   // predecessors that will jump to it into a single predecessor.
1059   SmallVector<BasicBlock*, 16> PredsToFactor;
1060   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1061     if (PredToDestList[i].second == MostPopularDest) {
1062       BasicBlock *Pred = PredToDestList[i].first;
1063 
1064       // This predecessor may be a switch or something else that has multiple
1065       // edges to the block.  Factor each of these edges by listing them
1066       // according to # occurrences in PredsToFactor.
1067       TerminatorInst *PredTI = Pred->getTerminator();
1068       for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1069         if (PredTI->getSuccessor(i) == BB)
1070           PredsToFactor.push_back(Pred);
1071     }
1072 
1073   // If the threadable edges are branching on an undefined value, we get to pick
1074   // the destination that these predecessors should get to.
1075   if (MostPopularDest == 0)
1076     MostPopularDest = BB->getTerminator()->
1077                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1078 
1079   // Ok, try to thread it!
1080   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1081 }
1082 
1083 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1084 /// a PHI node in the current block.  See if there are any simplifications we
1085 /// can do based on inputs to the phi node.
1086 ///
1087 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1088   BasicBlock *BB = PN->getParent();
1089 
1090   // TODO: We could make use of this to do it once for blocks with common PHI
1091   // values.
1092   SmallVector<BasicBlock*, 1> PredBBs;
1093   PredBBs.resize(1);
1094 
1095   // If any of the predecessor blocks end in an unconditional branch, we can
1096   // *duplicate* the conditional branch into that block in order to further
1097   // encourage jump threading and to eliminate cases where we have branch on a
1098   // phi of an icmp (branch on icmp is much better).
1099   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1100     BasicBlock *PredBB = PN->getIncomingBlock(i);
1101     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1102       if (PredBr->isUnconditional()) {
1103         PredBBs[0] = PredBB;
1104         // Try to duplicate BB into PredBB.
1105         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1106           return true;
1107       }
1108   }
1109 
1110   return false;
1111 }
1112 
1113 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1114 /// a xor instruction in the current block.  See if there are any
1115 /// simplifications we can do based on inputs to the xor.
1116 ///
1117 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1118   BasicBlock *BB = BO->getParent();
1119 
1120   // If either the LHS or RHS of the xor is a constant, don't do this
1121   // optimization.
1122   if (isa<ConstantInt>(BO->getOperand(0)) ||
1123       isa<ConstantInt>(BO->getOperand(1)))
1124     return false;
1125 
1126   // If we have a xor as the branch input to this block, and we know that the
1127   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1128   // the condition into the predecessor and fix that value to true, saving some
1129   // logical ops on that path and encouraging other paths to simplify.
1130   //
1131   // This copies something like this:
1132   //
1133   //  BB:
1134   //    %X = phi i1 [1],  [%X']
1135   //    %Y = icmp eq i32 %A, %B
1136   //    %Z = xor i1 %X, %Y
1137   //    br i1 %Z, ...
1138   //
1139   // Into:
1140   //  BB':
1141   //    %Y = icmp ne i32 %A, %B
1142   //    br i1 %Z, ...
1143 
1144   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues;
1145   bool isLHS = true;
1146   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) {
1147     assert(XorOpValues.empty());
1148     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues))
1149       return false;
1150     isLHS = false;
1151   }
1152 
1153   assert(!XorOpValues.empty() &&
1154          "ComputeValueKnownInPredecessors returned true with no values");
1155 
1156   // Scan the information to see which is most popular: true or false.  The
1157   // predecessors can be of the set true, false, or undef.
1158   unsigned NumTrue = 0, NumFalse = 0;
1159   for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1160     if (!XorOpValues[i].first) continue;  // Ignore undefs for the count.
1161     if (XorOpValues[i].first->isZero())
1162       ++NumFalse;
1163     else
1164       ++NumTrue;
1165   }
1166 
1167   // Determine which value to split on, true, false, or undef if neither.
1168   ConstantInt *SplitVal = 0;
1169   if (NumTrue > NumFalse)
1170     SplitVal = ConstantInt::getTrue(BB->getContext());
1171   else if (NumTrue != 0 || NumFalse != 0)
1172     SplitVal = ConstantInt::getFalse(BB->getContext());
1173 
1174   // Collect all of the blocks that this can be folded into so that we can
1175   // factor this once and clone it once.
1176   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1177   for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1178     if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue;
1179 
1180     BlocksToFoldInto.push_back(XorOpValues[i].second);
1181   }
1182 
1183   // Try to duplicate BB into PredBB.
1184   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1185 }
1186 
1187 
1188 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1189 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1190 /// NewPred using the entries from OldPred (suitably mapped).
1191 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1192                                             BasicBlock *OldPred,
1193                                             BasicBlock *NewPred,
1194                                      DenseMap<Instruction*, Value*> &ValueMap) {
1195   for (BasicBlock::iterator PNI = PHIBB->begin();
1196        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1197     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1198     // DestBlock.
1199     Value *IV = PN->getIncomingValueForBlock(OldPred);
1200 
1201     // Remap the value if necessary.
1202     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1203       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1204       if (I != ValueMap.end())
1205         IV = I->second;
1206     }
1207 
1208     PN->addIncoming(IV, NewPred);
1209   }
1210 }
1211 
1212 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1213 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1214 /// across BB.  Transform the IR to reflect this change.
1215 bool JumpThreading::ThreadEdge(BasicBlock *BB,
1216                                const SmallVectorImpl<BasicBlock*> &PredBBs,
1217                                BasicBlock *SuccBB) {
1218   // If threading to the same block as we come from, we would infinite loop.
1219   if (SuccBB == BB) {
1220     DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1221           << "' - would thread to self!\n");
1222     return false;
1223   }
1224 
1225   // If threading this would thread across a loop header, don't thread the edge.
1226   // See the comments above FindLoopHeaders for justifications and caveats.
1227   if (LoopHeaders.count(BB)) {
1228     DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1229           << "' to dest BB '" << SuccBB->getName()
1230           << "' - it might create an irreducible loop!\n");
1231     return false;
1232   }
1233 
1234   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1235   if (JumpThreadCost > Threshold) {
1236     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1237           << "' - Cost is too high: " << JumpThreadCost << "\n");
1238     return false;
1239   }
1240 
1241   // And finally, do it!  Start by factoring the predecessors is needed.
1242   BasicBlock *PredBB;
1243   if (PredBBs.size() == 1)
1244     PredBB = PredBBs[0];
1245   else {
1246     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1247           << " common predecessors.\n");
1248     PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1249                                     ".thr_comm", this);
1250   }
1251 
1252   // And finally, do it!
1253   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1254         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1255         << ", across block:\n    "
1256         << *BB << "\n");
1257 
1258   // We are going to have to map operands from the original BB block to the new
1259   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1260   // account for entry from PredBB.
1261   DenseMap<Instruction*, Value*> ValueMapping;
1262 
1263   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1264                                          BB->getName()+".thread",
1265                                          BB->getParent(), BB);
1266   NewBB->moveAfter(PredBB);
1267 
1268   BasicBlock::iterator BI = BB->begin();
1269   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1270     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1271 
1272   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1273   // mapping and using it to remap operands in the cloned instructions.
1274   for (; !isa<TerminatorInst>(BI); ++BI) {
1275     Instruction *New = BI->clone();
1276     New->setName(BI->getName());
1277     NewBB->getInstList().push_back(New);
1278     ValueMapping[BI] = New;
1279 
1280     // Remap operands to patch up intra-block references.
1281     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1282       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1283         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1284         if (I != ValueMapping.end())
1285           New->setOperand(i, I->second);
1286       }
1287   }
1288 
1289   // We didn't copy the terminator from BB over to NewBB, because there is now
1290   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1291   BranchInst::Create(SuccBB, NewBB);
1292 
1293   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1294   // PHI nodes for NewBB now.
1295   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1296 
1297   // If there were values defined in BB that are used outside the block, then we
1298   // now have to update all uses of the value to use either the original value,
1299   // the cloned value, or some PHI derived value.  This can require arbitrary
1300   // PHI insertion, of which we are prepared to do, clean these up now.
1301   SSAUpdater SSAUpdate;
1302   SmallVector<Use*, 16> UsesToRename;
1303   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1304     // Scan all uses of this instruction to see if it is used outside of its
1305     // block, and if so, record them in UsesToRename.
1306     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1307          ++UI) {
1308       Instruction *User = cast<Instruction>(*UI);
1309       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1310         if (UserPN->getIncomingBlock(UI) == BB)
1311           continue;
1312       } else if (User->getParent() == BB)
1313         continue;
1314 
1315       UsesToRename.push_back(&UI.getUse());
1316     }
1317 
1318     // If there are no uses outside the block, we're done with this instruction.
1319     if (UsesToRename.empty())
1320       continue;
1321 
1322     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1323 
1324     // We found a use of I outside of BB.  Rename all uses of I that are outside
1325     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1326     // with the two values we know.
1327     SSAUpdate.Initialize(I);
1328     SSAUpdate.AddAvailableValue(BB, I);
1329     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1330 
1331     while (!UsesToRename.empty())
1332       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1333     DEBUG(dbgs() << "\n");
1334   }
1335 
1336 
1337   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1338   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1339   // us to simplify any PHI nodes in BB.
1340   TerminatorInst *PredTerm = PredBB->getTerminator();
1341   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1342     if (PredTerm->getSuccessor(i) == BB) {
1343       RemovePredecessorAndSimplify(BB, PredBB, TD);
1344       PredTerm->setSuccessor(i, NewBB);
1345     }
1346 
1347   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1348   // over the new instructions and zap any that are constants or dead.  This
1349   // frequently happens because of phi translation.
1350   SimplifyInstructionsInBlock(NewBB, TD);
1351 
1352   // Threaded an edge!
1353   ++NumThreads;
1354   return true;
1355 }
1356 
1357 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1358 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1359 /// If we can duplicate the contents of BB up into PredBB do so now, this
1360 /// improves the odds that the branch will be on an analyzable instruction like
1361 /// a compare.
1362 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1363                                  const SmallVectorImpl<BasicBlock *> &PredBBs) {
1364   assert(!PredBBs.empty() && "Can't handle an empty set");
1365 
1366   // If BB is a loop header, then duplicating this block outside the loop would
1367   // cause us to transform this into an irreducible loop, don't do this.
1368   // See the comments above FindLoopHeaders for justifications and caveats.
1369   if (LoopHeaders.count(BB)) {
1370     DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1371           << "' into predecessor block '" << PredBBs[0]->getName()
1372           << "' - it might create an irreducible loop!\n");
1373     return false;
1374   }
1375 
1376   unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1377   if (DuplicationCost > Threshold) {
1378     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1379           << "' - Cost is too high: " << DuplicationCost << "\n");
1380     return false;
1381   }
1382 
1383   // And finally, do it!  Start by factoring the predecessors is needed.
1384   BasicBlock *PredBB;
1385   if (PredBBs.size() == 1)
1386     PredBB = PredBBs[0];
1387   else {
1388     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1389           << " common predecessors.\n");
1390     PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1391                                     ".thr_comm", this);
1392   }
1393 
1394   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1395   // of PredBB.
1396   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1397         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1398         << DuplicationCost << " block is:" << *BB << "\n");
1399 
1400   // Unless PredBB ends with an unconditional branch, split the edge so that we
1401   // can just clone the bits from BB into the end of the new PredBB.
1402   BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1403 
1404   if (!OldPredBranch->isUnconditional()) {
1405     PredBB = SplitEdge(PredBB, BB, this);
1406     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1407   }
1408 
1409   // We are going to have to map operands from the original BB block into the
1410   // PredBB block.  Evaluate PHI nodes in BB.
1411   DenseMap<Instruction*, Value*> ValueMapping;
1412 
1413   BasicBlock::iterator BI = BB->begin();
1414   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1415     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1416 
1417   // Clone the non-phi instructions of BB into PredBB, keeping track of the
1418   // mapping and using it to remap operands in the cloned instructions.
1419   for (; BI != BB->end(); ++BI) {
1420     Instruction *New = BI->clone();
1421 
1422     // Remap operands to patch up intra-block references.
1423     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1424       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1425         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1426         if (I != ValueMapping.end())
1427           New->setOperand(i, I->second);
1428       }
1429 
1430     // If this instruction can be simplified after the operands are updated,
1431     // just use the simplified value instead.  This frequently happens due to
1432     // phi translation.
1433     if (Value *IV = SimplifyInstruction(New, TD)) {
1434       delete New;
1435       ValueMapping[BI] = IV;
1436     } else {
1437       // Otherwise, insert the new instruction into the block.
1438       New->setName(BI->getName());
1439       PredBB->getInstList().insert(OldPredBranch, New);
1440       ValueMapping[BI] = New;
1441     }
1442   }
1443 
1444   // Check to see if the targets of the branch had PHI nodes. If so, we need to
1445   // add entries to the PHI nodes for branch from PredBB now.
1446   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1447   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1448                                   ValueMapping);
1449   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1450                                   ValueMapping);
1451 
1452   // If there were values defined in BB that are used outside the block, then we
1453   // now have to update all uses of the value to use either the original value,
1454   // the cloned value, or some PHI derived value.  This can require arbitrary
1455   // PHI insertion, of which we are prepared to do, clean these up now.
1456   SSAUpdater SSAUpdate;
1457   SmallVector<Use*, 16> UsesToRename;
1458   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1459     // Scan all uses of this instruction to see if it is used outside of its
1460     // block, and if so, record them in UsesToRename.
1461     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1462          ++UI) {
1463       Instruction *User = cast<Instruction>(*UI);
1464       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1465         if (UserPN->getIncomingBlock(UI) == BB)
1466           continue;
1467       } else if (User->getParent() == BB)
1468         continue;
1469 
1470       UsesToRename.push_back(&UI.getUse());
1471     }
1472 
1473     // If there are no uses outside the block, we're done with this instruction.
1474     if (UsesToRename.empty())
1475       continue;
1476 
1477     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1478 
1479     // We found a use of I outside of BB.  Rename all uses of I that are outside
1480     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1481     // with the two values we know.
1482     SSAUpdate.Initialize(I);
1483     SSAUpdate.AddAvailableValue(BB, I);
1484     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1485 
1486     while (!UsesToRename.empty())
1487       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1488     DEBUG(dbgs() << "\n");
1489   }
1490 
1491   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1492   // that we nuked.
1493   RemovePredecessorAndSimplify(BB, PredBB, TD);
1494 
1495   // Remove the unconditional branch at the end of the PredBB block.
1496   OldPredBranch->eraseFromParent();
1497 
1498   ++NumDupes;
1499   return true;
1500 }
1501 
1502 
1503