1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LazyValueInfo.h" 25 #include "llvm/Analysis/Loads.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Pass.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Local.h" 38 #include "llvm/Transforms/Utils/SSAUpdater.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "jump-threading" 42 43 STATISTIC(NumThreads, "Number of jumps threaded"); 44 STATISTIC(NumFolds, "Number of terminators folded"); 45 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 46 47 static cl::opt<unsigned> 48 BBDuplicateThreshold("jump-threading-threshold", 49 cl::desc("Max block size to duplicate for jump threading"), 50 cl::init(6), cl::Hidden); 51 52 namespace { 53 // These are at global scope so static functions can use them too. 54 typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo; 55 typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy; 56 57 // This is used to keep track of what kind of constant we're currently hoping 58 // to find. 59 enum ConstantPreference { 60 WantInteger, 61 WantBlockAddress 62 }; 63 64 /// This pass performs 'jump threading', which looks at blocks that have 65 /// multiple predecessors and multiple successors. If one or more of the 66 /// predecessors of the block can be proven to always jump to one of the 67 /// successors, we forward the edge from the predecessor to the successor by 68 /// duplicating the contents of this block. 69 /// 70 /// An example of when this can occur is code like this: 71 /// 72 /// if () { ... 73 /// X = 4; 74 /// } 75 /// if (X < 3) { 76 /// 77 /// In this case, the unconditional branch at the end of the first if can be 78 /// revectored to the false side of the second if. 79 /// 80 class JumpThreading : public FunctionPass { 81 TargetLibraryInfo *TLI; 82 LazyValueInfo *LVI; 83 #ifdef NDEBUG 84 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 85 #else 86 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 87 #endif 88 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; 89 90 unsigned BBDupThreshold; 91 92 // RAII helper for updating the recursion stack. 93 struct RecursionSetRemover { 94 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet; 95 std::pair<Value*, BasicBlock*> ThePair; 96 97 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S, 98 std::pair<Value*, BasicBlock*> P) 99 : TheSet(S), ThePair(P) { } 100 101 ~RecursionSetRemover() { 102 TheSet.erase(ThePair); 103 } 104 }; 105 public: 106 static char ID; // Pass identification 107 JumpThreading(int T = -1) : FunctionPass(ID) { 108 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 109 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 110 } 111 112 bool runOnFunction(Function &F) override; 113 114 void getAnalysisUsage(AnalysisUsage &AU) const override { 115 AU.addRequired<LazyValueInfo>(); 116 AU.addPreserved<LazyValueInfo>(); 117 AU.addRequired<TargetLibraryInfoWrapperPass>(); 118 } 119 120 void FindLoopHeaders(Function &F); 121 bool ProcessBlock(BasicBlock *BB); 122 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 123 BasicBlock *SuccBB); 124 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 125 const SmallVectorImpl<BasicBlock *> &PredBBs); 126 127 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 128 PredValueInfo &Result, 129 ConstantPreference Preference, 130 Instruction *CxtI = nullptr); 131 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 132 ConstantPreference Preference, 133 Instruction *CxtI = nullptr); 134 135 bool ProcessBranchOnPHI(PHINode *PN); 136 bool ProcessBranchOnXOR(BinaryOperator *BO); 137 138 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 139 bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB); 140 }; 141 } 142 143 char JumpThreading::ID = 0; 144 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 145 "Jump Threading", false, false) 146 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo) 147 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 148 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 149 "Jump Threading", false, false) 150 151 // Public interface to the Jump Threading pass 152 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); } 153 154 /// runOnFunction - Top level algorithm. 155 /// 156 bool JumpThreading::runOnFunction(Function &F) { 157 if (skipOptnoneFunction(F)) 158 return false; 159 160 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 161 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 162 LVI = &getAnalysis<LazyValueInfo>(); 163 164 // Remove unreachable blocks from function as they may result in infinite 165 // loop. We do threading if we found something profitable. Jump threading a 166 // branch can create other opportunities. If these opportunities form a cycle 167 // i.e. if any jump treading is undoing previous threading in the path, then 168 // we will loop forever. We take care of this issue by not jump threading for 169 // back edges. This works for normal cases but not for unreachable blocks as 170 // they may have cycle with no back edge. 171 removeUnreachableBlocks(F); 172 173 FindLoopHeaders(F); 174 175 bool Changed, EverChanged = false; 176 do { 177 Changed = false; 178 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 179 BasicBlock *BB = I; 180 // Thread all of the branches we can over this block. 181 while (ProcessBlock(BB)) 182 Changed = true; 183 184 ++I; 185 186 // If the block is trivially dead, zap it. This eliminates the successor 187 // edges which simplifies the CFG. 188 if (pred_empty(BB) && 189 BB != &BB->getParent()->getEntryBlock()) { 190 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 191 << "' with terminator: " << *BB->getTerminator() << '\n'); 192 LoopHeaders.erase(BB); 193 LVI->eraseBlock(BB); 194 DeleteDeadBlock(BB); 195 Changed = true; 196 continue; 197 } 198 199 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 200 201 // Can't thread an unconditional jump, but if the block is "almost 202 // empty", we can replace uses of it with uses of the successor and make 203 // this dead. 204 if (BI && BI->isUnconditional() && 205 BB != &BB->getParent()->getEntryBlock() && 206 // If the terminator is the only non-phi instruction, try to nuke it. 207 BB->getFirstNonPHIOrDbg()->isTerminator()) { 208 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 209 // block, we have to make sure it isn't in the LoopHeaders set. We 210 // reinsert afterward if needed. 211 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 212 BasicBlock *Succ = BI->getSuccessor(0); 213 214 // FIXME: It is always conservatively correct to drop the info 215 // for a block even if it doesn't get erased. This isn't totally 216 // awesome, but it allows us to use AssertingVH to prevent nasty 217 // dangling pointer issues within LazyValueInfo. 218 LVI->eraseBlock(BB); 219 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 220 Changed = true; 221 // If we deleted BB and BB was the header of a loop, then the 222 // successor is now the header of the loop. 223 BB = Succ; 224 } 225 226 if (ErasedFromLoopHeaders) 227 LoopHeaders.insert(BB); 228 } 229 } 230 EverChanged |= Changed; 231 } while (Changed); 232 233 LoopHeaders.clear(); 234 return EverChanged; 235 } 236 237 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 238 /// thread across it. Stop scanning the block when passing the threshold. 239 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB, 240 unsigned Threshold) { 241 /// Ignore PHI nodes, these will be flattened when duplication happens. 242 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 243 244 // FIXME: THREADING will delete values that are just used to compute the 245 // branch, so they shouldn't count against the duplication cost. 246 247 // Sum up the cost of each instruction until we get to the terminator. Don't 248 // include the terminator because the copy won't include it. 249 unsigned Size = 0; 250 for (; !isa<TerminatorInst>(I); ++I) { 251 252 // Stop scanning the block if we've reached the threshold. 253 if (Size > Threshold) 254 return Size; 255 256 // Debugger intrinsics don't incur code size. 257 if (isa<DbgInfoIntrinsic>(I)) continue; 258 259 // If this is a pointer->pointer bitcast, it is free. 260 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 261 continue; 262 263 // All other instructions count for at least one unit. 264 ++Size; 265 266 // Calls are more expensive. If they are non-intrinsic calls, we model them 267 // as having cost of 4. If they are a non-vector intrinsic, we model them 268 // as having cost of 2 total, and if they are a vector intrinsic, we model 269 // them as having cost 1. 270 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 271 if (CI->cannotDuplicate()) 272 // Blocks with NoDuplicate are modelled as having infinite cost, so they 273 // are never duplicated. 274 return ~0U; 275 else if (!isa<IntrinsicInst>(CI)) 276 Size += 3; 277 else if (!CI->getType()->isVectorTy()) 278 Size += 1; 279 } 280 } 281 282 // Threading through a switch statement is particularly profitable. If this 283 // block ends in a switch, decrease its cost to make it more likely to happen. 284 if (isa<SwitchInst>(I)) 285 Size = Size > 6 ? Size-6 : 0; 286 287 // The same holds for indirect branches, but slightly more so. 288 if (isa<IndirectBrInst>(I)) 289 Size = Size > 8 ? Size-8 : 0; 290 291 return Size; 292 } 293 294 /// FindLoopHeaders - We do not want jump threading to turn proper loop 295 /// structures into irreducible loops. Doing this breaks up the loop nesting 296 /// hierarchy and pessimizes later transformations. To prevent this from 297 /// happening, we first have to find the loop headers. Here we approximate this 298 /// by finding targets of backedges in the CFG. 299 /// 300 /// Note that there definitely are cases when we want to allow threading of 301 /// edges across a loop header. For example, threading a jump from outside the 302 /// loop (the preheader) to an exit block of the loop is definitely profitable. 303 /// It is also almost always profitable to thread backedges from within the loop 304 /// to exit blocks, and is often profitable to thread backedges to other blocks 305 /// within the loop (forming a nested loop). This simple analysis is not rich 306 /// enough to track all of these properties and keep it up-to-date as the CFG 307 /// mutates, so we don't allow any of these transformations. 308 /// 309 void JumpThreading::FindLoopHeaders(Function &F) { 310 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 311 FindFunctionBackedges(F, Edges); 312 313 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 314 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 315 } 316 317 /// getKnownConstant - Helper method to determine if we can thread over a 318 /// terminator with the given value as its condition, and if so what value to 319 /// use for that. What kind of value this is depends on whether we want an 320 /// integer or a block address, but an undef is always accepted. 321 /// Returns null if Val is null or not an appropriate constant. 322 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 323 if (!Val) 324 return nullptr; 325 326 // Undef is "known" enough. 327 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 328 return U; 329 330 if (Preference == WantBlockAddress) 331 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 332 333 return dyn_cast<ConstantInt>(Val); 334 } 335 336 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 337 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 338 /// in any of our predecessors. If so, return the known list of value and pred 339 /// BB in the result vector. 340 /// 341 /// This returns true if there were any known values. 342 /// 343 bool JumpThreading:: 344 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, 345 ConstantPreference Preference, 346 Instruction *CxtI) { 347 // This method walks up use-def chains recursively. Because of this, we could 348 // get into an infinite loop going around loops in the use-def chain. To 349 // prevent this, keep track of what (value, block) pairs we've already visited 350 // and terminate the search if we loop back to them 351 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 352 return false; 353 354 // An RAII help to remove this pair from the recursion set once the recursion 355 // stack pops back out again. 356 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 357 358 // If V is a constant, then it is known in all predecessors. 359 if (Constant *KC = getKnownConstant(V, Preference)) { 360 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 361 Result.push_back(std::make_pair(KC, *PI)); 362 363 return true; 364 } 365 366 // If V is a non-instruction value, or an instruction in a different block, 367 // then it can't be derived from a PHI. 368 Instruction *I = dyn_cast<Instruction>(V); 369 if (!I || I->getParent() != BB) { 370 371 // Okay, if this is a live-in value, see if it has a known value at the end 372 // of any of our predecessors. 373 // 374 // FIXME: This should be an edge property, not a block end property. 375 /// TODO: Per PR2563, we could infer value range information about a 376 /// predecessor based on its terminator. 377 // 378 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 379 // "I" is a non-local compare-with-a-constant instruction. This would be 380 // able to handle value inequalities better, for example if the compare is 381 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 382 // Perhaps getConstantOnEdge should be smart enough to do this? 383 384 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 385 BasicBlock *P = *PI; 386 // If the value is known by LazyValueInfo to be a constant in a 387 // predecessor, use that information to try to thread this block. 388 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 389 if (Constant *KC = getKnownConstant(PredCst, Preference)) 390 Result.push_back(std::make_pair(KC, P)); 391 } 392 393 return !Result.empty(); 394 } 395 396 /// If I is a PHI node, then we know the incoming values for any constants. 397 if (PHINode *PN = dyn_cast<PHINode>(I)) { 398 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 399 Value *InVal = PN->getIncomingValue(i); 400 if (Constant *KC = getKnownConstant(InVal, Preference)) { 401 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 402 } else { 403 Constant *CI = LVI->getConstantOnEdge(InVal, 404 PN->getIncomingBlock(i), 405 BB, CxtI); 406 if (Constant *KC = getKnownConstant(CI, Preference)) 407 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 408 } 409 } 410 411 return !Result.empty(); 412 } 413 414 PredValueInfoTy LHSVals, RHSVals; 415 416 // Handle some boolean conditions. 417 if (I->getType()->getPrimitiveSizeInBits() == 1) { 418 assert(Preference == WantInteger && "One-bit non-integer type?"); 419 // X | true -> true 420 // X & false -> false 421 if (I->getOpcode() == Instruction::Or || 422 I->getOpcode() == Instruction::And) { 423 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 424 WantInteger, CxtI); 425 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 426 WantInteger, CxtI); 427 428 if (LHSVals.empty() && RHSVals.empty()) 429 return false; 430 431 ConstantInt *InterestingVal; 432 if (I->getOpcode() == Instruction::Or) 433 InterestingVal = ConstantInt::getTrue(I->getContext()); 434 else 435 InterestingVal = ConstantInt::getFalse(I->getContext()); 436 437 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 438 439 // Scan for the sentinel. If we find an undef, force it to the 440 // interesting value: x|undef -> true and x&undef -> false. 441 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 442 if (LHSVals[i].first == InterestingVal || 443 isa<UndefValue>(LHSVals[i].first)) { 444 Result.push_back(LHSVals[i]); 445 Result.back().first = InterestingVal; 446 LHSKnownBBs.insert(LHSVals[i].second); 447 } 448 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 449 if (RHSVals[i].first == InterestingVal || 450 isa<UndefValue>(RHSVals[i].first)) { 451 // If we already inferred a value for this block on the LHS, don't 452 // re-add it. 453 if (!LHSKnownBBs.count(RHSVals[i].second)) { 454 Result.push_back(RHSVals[i]); 455 Result.back().first = InterestingVal; 456 } 457 } 458 459 return !Result.empty(); 460 } 461 462 // Handle the NOT form of XOR. 463 if (I->getOpcode() == Instruction::Xor && 464 isa<ConstantInt>(I->getOperand(1)) && 465 cast<ConstantInt>(I->getOperand(1))->isOne()) { 466 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 467 WantInteger, CxtI); 468 if (Result.empty()) 469 return false; 470 471 // Invert the known values. 472 for (unsigned i = 0, e = Result.size(); i != e; ++i) 473 Result[i].first = ConstantExpr::getNot(Result[i].first); 474 475 return true; 476 } 477 478 // Try to simplify some other binary operator values. 479 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 480 assert(Preference != WantBlockAddress 481 && "A binary operator creating a block address?"); 482 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 483 PredValueInfoTy LHSVals; 484 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 485 WantInteger, CxtI); 486 487 // Try to use constant folding to simplify the binary operator. 488 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 489 Constant *V = LHSVals[i].first; 490 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 491 492 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 493 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 494 } 495 } 496 497 return !Result.empty(); 498 } 499 500 // Handle compare with phi operand, where the PHI is defined in this block. 501 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 502 assert(Preference == WantInteger && "Compares only produce integers"); 503 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 504 if (PN && PN->getParent() == BB) { 505 const DataLayout &DL = PN->getModule()->getDataLayout(); 506 // We can do this simplification if any comparisons fold to true or false. 507 // See if any do. 508 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 509 BasicBlock *PredBB = PN->getIncomingBlock(i); 510 Value *LHS = PN->getIncomingValue(i); 511 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 512 513 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL); 514 if (!Res) { 515 if (!isa<Constant>(RHS)) 516 continue; 517 518 LazyValueInfo::Tristate 519 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 520 cast<Constant>(RHS), PredBB, BB, 521 CxtI ? CxtI : Cmp); 522 if (ResT == LazyValueInfo::Unknown) 523 continue; 524 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 525 } 526 527 if (Constant *KC = getKnownConstant(Res, WantInteger)) 528 Result.push_back(std::make_pair(KC, PredBB)); 529 } 530 531 return !Result.empty(); 532 } 533 534 // If comparing a live-in value against a constant, see if we know the 535 // live-in value on any predecessors. 536 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 537 if (!isa<Instruction>(Cmp->getOperand(0)) || 538 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 539 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 540 541 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){ 542 BasicBlock *P = *PI; 543 // If the value is known by LazyValueInfo to be a constant in a 544 // predecessor, use that information to try to thread this block. 545 LazyValueInfo::Tristate Res = 546 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 547 RHSCst, P, BB, CxtI ? CxtI : Cmp); 548 if (Res == LazyValueInfo::Unknown) 549 continue; 550 551 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 552 Result.push_back(std::make_pair(ResC, P)); 553 } 554 555 return !Result.empty(); 556 } 557 558 // Try to find a constant value for the LHS of a comparison, 559 // and evaluate it statically if we can. 560 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 561 PredValueInfoTy LHSVals; 562 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 563 WantInteger, CxtI); 564 565 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 566 Constant *V = LHSVals[i].first; 567 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 568 V, CmpConst); 569 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 570 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 571 } 572 573 return !Result.empty(); 574 } 575 } 576 } 577 578 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 579 // Handle select instructions where at least one operand is a known constant 580 // and we can figure out the condition value for any predecessor block. 581 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 582 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 583 PredValueInfoTy Conds; 584 if ((TrueVal || FalseVal) && 585 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 586 WantInteger, CxtI)) { 587 for (unsigned i = 0, e = Conds.size(); i != e; ++i) { 588 Constant *Cond = Conds[i].first; 589 590 // Figure out what value to use for the condition. 591 bool KnownCond; 592 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 593 // A known boolean. 594 KnownCond = CI->isOne(); 595 } else { 596 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 597 // Either operand will do, so be sure to pick the one that's a known 598 // constant. 599 // FIXME: Do this more cleverly if both values are known constants? 600 KnownCond = (TrueVal != nullptr); 601 } 602 603 // See if the select has a known constant value for this predecessor. 604 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 605 Result.push_back(std::make_pair(Val, Conds[i].second)); 606 } 607 608 return !Result.empty(); 609 } 610 } 611 612 // If all else fails, see if LVI can figure out a constant value for us. 613 Constant *CI = LVI->getConstant(V, BB, CxtI); 614 if (Constant *KC = getKnownConstant(CI, Preference)) { 615 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 616 Result.push_back(std::make_pair(KC, *PI)); 617 } 618 619 return !Result.empty(); 620 } 621 622 623 624 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 625 /// in an undefined jump, decide which block is best to revector to. 626 /// 627 /// Since we can pick an arbitrary destination, we pick the successor with the 628 /// fewest predecessors. This should reduce the in-degree of the others. 629 /// 630 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 631 TerminatorInst *BBTerm = BB->getTerminator(); 632 unsigned MinSucc = 0; 633 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 634 // Compute the successor with the minimum number of predecessors. 635 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 636 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 637 TestBB = BBTerm->getSuccessor(i); 638 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 639 if (NumPreds < MinNumPreds) { 640 MinSucc = i; 641 MinNumPreds = NumPreds; 642 } 643 } 644 645 return MinSucc; 646 } 647 648 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 649 if (!BB->hasAddressTaken()) return false; 650 651 // If the block has its address taken, it may be a tree of dead constants 652 // hanging off of it. These shouldn't keep the block alive. 653 BlockAddress *BA = BlockAddress::get(BB); 654 BA->removeDeadConstantUsers(); 655 return !BA->use_empty(); 656 } 657 658 /// ProcessBlock - If there are any predecessors whose control can be threaded 659 /// through to a successor, transform them now. 660 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 661 // If the block is trivially dead, just return and let the caller nuke it. 662 // This simplifies other transformations. 663 if (pred_empty(BB) && 664 BB != &BB->getParent()->getEntryBlock()) 665 return false; 666 667 // If this block has a single predecessor, and if that pred has a single 668 // successor, merge the blocks. This encourages recursive jump threading 669 // because now the condition in this block can be threaded through 670 // predecessors of our predecessor block. 671 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 672 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 673 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 674 // If SinglePred was a loop header, BB becomes one. 675 if (LoopHeaders.erase(SinglePred)) 676 LoopHeaders.insert(BB); 677 678 LVI->eraseBlock(SinglePred); 679 MergeBasicBlockIntoOnlyPred(BB); 680 681 return true; 682 } 683 } 684 685 // What kind of constant we're looking for. 686 ConstantPreference Preference = WantInteger; 687 688 // Look to see if the terminator is a conditional branch, switch or indirect 689 // branch, if not we can't thread it. 690 Value *Condition; 691 Instruction *Terminator = BB->getTerminator(); 692 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 693 // Can't thread an unconditional jump. 694 if (BI->isUnconditional()) return false; 695 Condition = BI->getCondition(); 696 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 697 Condition = SI->getCondition(); 698 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 699 // Can't thread indirect branch with no successors. 700 if (IB->getNumSuccessors() == 0) return false; 701 Condition = IB->getAddress()->stripPointerCasts(); 702 Preference = WantBlockAddress; 703 } else { 704 return false; // Must be an invoke. 705 } 706 707 // Run constant folding to see if we can reduce the condition to a simple 708 // constant. 709 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 710 Value *SimpleVal = 711 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 712 if (SimpleVal) { 713 I->replaceAllUsesWith(SimpleVal); 714 I->eraseFromParent(); 715 Condition = SimpleVal; 716 } 717 } 718 719 // If the terminator is branching on an undef, we can pick any of the 720 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 721 if (isa<UndefValue>(Condition)) { 722 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 723 724 // Fold the branch/switch. 725 TerminatorInst *BBTerm = BB->getTerminator(); 726 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 727 if (i == BestSucc) continue; 728 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 729 } 730 731 DEBUG(dbgs() << " In block '" << BB->getName() 732 << "' folding undef terminator: " << *BBTerm << '\n'); 733 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 734 BBTerm->eraseFromParent(); 735 return true; 736 } 737 738 // If the terminator of this block is branching on a constant, simplify the 739 // terminator to an unconditional branch. This can occur due to threading in 740 // other blocks. 741 if (getKnownConstant(Condition, Preference)) { 742 DEBUG(dbgs() << " In block '" << BB->getName() 743 << "' folding terminator: " << *BB->getTerminator() << '\n'); 744 ++NumFolds; 745 ConstantFoldTerminator(BB, true); 746 return true; 747 } 748 749 Instruction *CondInst = dyn_cast<Instruction>(Condition); 750 751 // All the rest of our checks depend on the condition being an instruction. 752 if (!CondInst) { 753 // FIXME: Unify this with code below. 754 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 755 return true; 756 return false; 757 } 758 759 760 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 761 // If we're branching on a conditional, LVI might be able to determine 762 // it's value at the branch instruction. We only handle comparisons 763 // against a constant at this time. 764 // TODO: This should be extended to handle switches as well. 765 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 766 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 767 if (CondBr && CondConst && CondBr->isConditional()) { 768 LazyValueInfo::Tristate Ret = 769 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 770 CondConst, CondBr); 771 if (Ret != LazyValueInfo::Unknown) { 772 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 773 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 774 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 775 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 776 CondBr->eraseFromParent(); 777 if (CondCmp->use_empty()) 778 CondCmp->eraseFromParent(); 779 else if (CondCmp->getParent() == BB) { 780 // If the fact we just learned is true for all uses of the 781 // condition, replace it with a constant value 782 auto *CI = Ret == LazyValueInfo::True ? 783 ConstantInt::getTrue(CondCmp->getType()) : 784 ConstantInt::getFalse(CondCmp->getType()); 785 CondCmp->replaceAllUsesWith(CI); 786 CondCmp->eraseFromParent(); 787 } 788 return true; 789 } 790 } 791 792 if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB)) 793 return true; 794 } 795 796 // Check for some cases that are worth simplifying. Right now we want to look 797 // for loads that are used by a switch or by the condition for the branch. If 798 // we see one, check to see if it's partially redundant. If so, insert a PHI 799 // which can then be used to thread the values. 800 // 801 Value *SimplifyValue = CondInst; 802 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 803 if (isa<Constant>(CondCmp->getOperand(1))) 804 SimplifyValue = CondCmp->getOperand(0); 805 806 // TODO: There are other places where load PRE would be profitable, such as 807 // more complex comparisons. 808 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 809 if (SimplifyPartiallyRedundantLoad(LI)) 810 return true; 811 812 813 // Handle a variety of cases where we are branching on something derived from 814 // a PHI node in the current block. If we can prove that any predecessors 815 // compute a predictable value based on a PHI node, thread those predecessors. 816 // 817 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 818 return true; 819 820 // If this is an otherwise-unfoldable branch on a phi node in the current 821 // block, see if we can simplify. 822 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 823 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 824 return ProcessBranchOnPHI(PN); 825 826 827 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 828 if (CondInst->getOpcode() == Instruction::Xor && 829 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 830 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 831 832 833 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 834 // "(X == 4)", thread through this block. 835 836 return false; 837 } 838 839 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 840 /// load instruction, eliminate it by replacing it with a PHI node. This is an 841 /// important optimization that encourages jump threading, and needs to be run 842 /// interlaced with other jump threading tasks. 843 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 844 // Don't hack volatile/atomic loads. 845 if (!LI->isSimple()) return false; 846 847 // If the load is defined in a block with exactly one predecessor, it can't be 848 // partially redundant. 849 BasicBlock *LoadBB = LI->getParent(); 850 if (LoadBB->getSinglePredecessor()) 851 return false; 852 853 // If the load is defined in a landing pad, it can't be partially redundant, 854 // because the edges between the invoke and the landing pad cannot have other 855 // instructions between them. 856 if (LoadBB->isLandingPad()) 857 return false; 858 859 Value *LoadedPtr = LI->getOperand(0); 860 861 // If the loaded operand is defined in the LoadBB, it can't be available. 862 // TODO: Could do simple PHI translation, that would be fun :) 863 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 864 if (PtrOp->getParent() == LoadBB) 865 return false; 866 867 // Scan a few instructions up from the load, to see if it is obviously live at 868 // the entry to its block. 869 BasicBlock::iterator BBIt = LI; 870 871 if (Value *AvailableVal = 872 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { 873 // If the value if the load is locally available within the block, just use 874 // it. This frequently occurs for reg2mem'd allocas. 875 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 876 877 // If the returned value is the load itself, replace with an undef. This can 878 // only happen in dead loops. 879 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 880 if (AvailableVal->getType() != LI->getType()) 881 AvailableVal = 882 CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI); 883 LI->replaceAllUsesWith(AvailableVal); 884 LI->eraseFromParent(); 885 return true; 886 } 887 888 // Otherwise, if we scanned the whole block and got to the top of the block, 889 // we know the block is locally transparent to the load. If not, something 890 // might clobber its value. 891 if (BBIt != LoadBB->begin()) 892 return false; 893 894 // If all of the loads and stores that feed the value have the same AA tags, 895 // then we can propagate them onto any newly inserted loads. 896 AAMDNodes AATags; 897 LI->getAAMetadata(AATags); 898 899 SmallPtrSet<BasicBlock*, 8> PredsScanned; 900 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 901 AvailablePredsTy AvailablePreds; 902 BasicBlock *OneUnavailablePred = nullptr; 903 904 // If we got here, the loaded value is transparent through to the start of the 905 // block. Check to see if it is available in any of the predecessor blocks. 906 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 907 PI != PE; ++PI) { 908 BasicBlock *PredBB = *PI; 909 910 // If we already scanned this predecessor, skip it. 911 if (!PredsScanned.insert(PredBB).second) 912 continue; 913 914 // Scan the predecessor to see if the value is available in the pred. 915 BBIt = PredBB->end(); 916 AAMDNodes ThisAATags; 917 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6, 918 nullptr, &ThisAATags); 919 if (!PredAvailable) { 920 OneUnavailablePred = PredBB; 921 continue; 922 } 923 924 // If AA tags disagree or are not present, forget about them. 925 if (AATags != ThisAATags) AATags = AAMDNodes(); 926 927 // If so, this load is partially redundant. Remember this info so that we 928 // can create a PHI node. 929 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 930 } 931 932 // If the loaded value isn't available in any predecessor, it isn't partially 933 // redundant. 934 if (AvailablePreds.empty()) return false; 935 936 // Okay, the loaded value is available in at least one (and maybe all!) 937 // predecessors. If the value is unavailable in more than one unique 938 // predecessor, we want to insert a merge block for those common predecessors. 939 // This ensures that we only have to insert one reload, thus not increasing 940 // code size. 941 BasicBlock *UnavailablePred = nullptr; 942 943 // If there is exactly one predecessor where the value is unavailable, the 944 // already computed 'OneUnavailablePred' block is it. If it ends in an 945 // unconditional branch, we know that it isn't a critical edge. 946 if (PredsScanned.size() == AvailablePreds.size()+1 && 947 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 948 UnavailablePred = OneUnavailablePred; 949 } else if (PredsScanned.size() != AvailablePreds.size()) { 950 // Otherwise, we had multiple unavailable predecessors or we had a critical 951 // edge from the one. 952 SmallVector<BasicBlock*, 8> PredsToSplit; 953 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 954 955 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 956 AvailablePredSet.insert(AvailablePreds[i].first); 957 958 // Add all the unavailable predecessors to the PredsToSplit list. 959 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 960 PI != PE; ++PI) { 961 BasicBlock *P = *PI; 962 // If the predecessor is an indirect goto, we can't split the edge. 963 if (isa<IndirectBrInst>(P->getTerminator())) 964 return false; 965 966 if (!AvailablePredSet.count(P)) 967 PredsToSplit.push_back(P); 968 } 969 970 // Split them out to their own block. 971 UnavailablePred = 972 SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split"); 973 } 974 975 // If the value isn't available in all predecessors, then there will be 976 // exactly one where it isn't available. Insert a load on that edge and add 977 // it to the AvailablePreds list. 978 if (UnavailablePred) { 979 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 980 "Can't handle critical edge here!"); 981 LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 982 LI->getAlignment(), 983 UnavailablePred->getTerminator()); 984 NewVal->setDebugLoc(LI->getDebugLoc()); 985 if (AATags) 986 NewVal->setAAMetadata(AATags); 987 988 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 989 } 990 991 // Now we know that each predecessor of this block has a value in 992 // AvailablePreds, sort them for efficient access as we're walking the preds. 993 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 994 995 // Create a PHI node at the start of the block for the PRE'd load value. 996 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 997 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 998 LoadBB->begin()); 999 PN->takeName(LI); 1000 PN->setDebugLoc(LI->getDebugLoc()); 1001 1002 // Insert new entries into the PHI for each predecessor. A single block may 1003 // have multiple entries here. 1004 for (pred_iterator PI = PB; PI != PE; ++PI) { 1005 BasicBlock *P = *PI; 1006 AvailablePredsTy::iterator I = 1007 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1008 std::make_pair(P, (Value*)nullptr)); 1009 1010 assert(I != AvailablePreds.end() && I->first == P && 1011 "Didn't find entry for predecessor!"); 1012 1013 // If we have an available predecessor but it requires casting, insert the 1014 // cast in the predecessor and use the cast. Note that we have to update the 1015 // AvailablePreds vector as we go so that all of the PHI entries for this 1016 // predecessor use the same bitcast. 1017 Value *&PredV = I->second; 1018 if (PredV->getType() != LI->getType()) 1019 PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "", 1020 P->getTerminator()); 1021 1022 PN->addIncoming(PredV, I->first); 1023 } 1024 1025 //cerr << "PRE: " << *LI << *PN << "\n"; 1026 1027 LI->replaceAllUsesWith(PN); 1028 LI->eraseFromParent(); 1029 1030 return true; 1031 } 1032 1033 /// FindMostPopularDest - The specified list contains multiple possible 1034 /// threadable destinations. Pick the one that occurs the most frequently in 1035 /// the list. 1036 static BasicBlock * 1037 FindMostPopularDest(BasicBlock *BB, 1038 const SmallVectorImpl<std::pair<BasicBlock*, 1039 BasicBlock*> > &PredToDestList) { 1040 assert(!PredToDestList.empty()); 1041 1042 // Determine popularity. If there are multiple possible destinations, we 1043 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1044 // blocks with known and real destinations to threading undef. We'll handle 1045 // them later if interesting. 1046 DenseMap<BasicBlock*, unsigned> DestPopularity; 1047 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1048 if (PredToDestList[i].second) 1049 DestPopularity[PredToDestList[i].second]++; 1050 1051 // Find the most popular dest. 1052 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1053 BasicBlock *MostPopularDest = DPI->first; 1054 unsigned Popularity = DPI->second; 1055 SmallVector<BasicBlock*, 4> SamePopularity; 1056 1057 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1058 // If the popularity of this entry isn't higher than the popularity we've 1059 // seen so far, ignore it. 1060 if (DPI->second < Popularity) 1061 ; // ignore. 1062 else if (DPI->second == Popularity) { 1063 // If it is the same as what we've seen so far, keep track of it. 1064 SamePopularity.push_back(DPI->first); 1065 } else { 1066 // If it is more popular, remember it. 1067 SamePopularity.clear(); 1068 MostPopularDest = DPI->first; 1069 Popularity = DPI->second; 1070 } 1071 } 1072 1073 // Okay, now we know the most popular destination. If there is more than one 1074 // destination, we need to determine one. This is arbitrary, but we need 1075 // to make a deterministic decision. Pick the first one that appears in the 1076 // successor list. 1077 if (!SamePopularity.empty()) { 1078 SamePopularity.push_back(MostPopularDest); 1079 TerminatorInst *TI = BB->getTerminator(); 1080 for (unsigned i = 0; ; ++i) { 1081 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1082 1083 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1084 TI->getSuccessor(i)) == SamePopularity.end()) 1085 continue; 1086 1087 MostPopularDest = TI->getSuccessor(i); 1088 break; 1089 } 1090 } 1091 1092 // Okay, we have finally picked the most popular destination. 1093 return MostPopularDest; 1094 } 1095 1096 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1097 ConstantPreference Preference, 1098 Instruction *CxtI) { 1099 // If threading this would thread across a loop header, don't even try to 1100 // thread the edge. 1101 if (LoopHeaders.count(BB)) 1102 return false; 1103 1104 PredValueInfoTy PredValues; 1105 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1106 return false; 1107 1108 assert(!PredValues.empty() && 1109 "ComputeValueKnownInPredecessors returned true with no values"); 1110 1111 DEBUG(dbgs() << "IN BB: " << *BB; 1112 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1113 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1114 << *PredValues[i].first 1115 << " for pred '" << PredValues[i].second->getName() << "'.\n"; 1116 }); 1117 1118 // Decide what we want to thread through. Convert our list of known values to 1119 // a list of known destinations for each pred. This also discards duplicate 1120 // predecessors and keeps track of the undefined inputs (which are represented 1121 // as a null dest in the PredToDestList). 1122 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1123 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1124 1125 BasicBlock *OnlyDest = nullptr; 1126 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1127 1128 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1129 BasicBlock *Pred = PredValues[i].second; 1130 if (!SeenPreds.insert(Pred).second) 1131 continue; // Duplicate predecessor entry. 1132 1133 // If the predecessor ends with an indirect goto, we can't change its 1134 // destination. 1135 if (isa<IndirectBrInst>(Pred->getTerminator())) 1136 continue; 1137 1138 Constant *Val = PredValues[i].first; 1139 1140 BasicBlock *DestBB; 1141 if (isa<UndefValue>(Val)) 1142 DestBB = nullptr; 1143 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1144 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1145 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1146 DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor(); 1147 } else { 1148 assert(isa<IndirectBrInst>(BB->getTerminator()) 1149 && "Unexpected terminator"); 1150 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1151 } 1152 1153 // If we have exactly one destination, remember it for efficiency below. 1154 if (PredToDestList.empty()) 1155 OnlyDest = DestBB; 1156 else if (OnlyDest != DestBB) 1157 OnlyDest = MultipleDestSentinel; 1158 1159 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1160 } 1161 1162 // If all edges were unthreadable, we fail. 1163 if (PredToDestList.empty()) 1164 return false; 1165 1166 // Determine which is the most common successor. If we have many inputs and 1167 // this block is a switch, we want to start by threading the batch that goes 1168 // to the most popular destination first. If we only know about one 1169 // threadable destination (the common case) we can avoid this. 1170 BasicBlock *MostPopularDest = OnlyDest; 1171 1172 if (MostPopularDest == MultipleDestSentinel) 1173 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1174 1175 // Now that we know what the most popular destination is, factor all 1176 // predecessors that will jump to it into a single predecessor. 1177 SmallVector<BasicBlock*, 16> PredsToFactor; 1178 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1179 if (PredToDestList[i].second == MostPopularDest) { 1180 BasicBlock *Pred = PredToDestList[i].first; 1181 1182 // This predecessor may be a switch or something else that has multiple 1183 // edges to the block. Factor each of these edges by listing them 1184 // according to # occurrences in PredsToFactor. 1185 TerminatorInst *PredTI = Pred->getTerminator(); 1186 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1187 if (PredTI->getSuccessor(i) == BB) 1188 PredsToFactor.push_back(Pred); 1189 } 1190 1191 // If the threadable edges are branching on an undefined value, we get to pick 1192 // the destination that these predecessors should get to. 1193 if (!MostPopularDest) 1194 MostPopularDest = BB->getTerminator()-> 1195 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1196 1197 // Ok, try to thread it! 1198 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1199 } 1200 1201 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1202 /// a PHI node in the current block. See if there are any simplifications we 1203 /// can do based on inputs to the phi node. 1204 /// 1205 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1206 BasicBlock *BB = PN->getParent(); 1207 1208 // TODO: We could make use of this to do it once for blocks with common PHI 1209 // values. 1210 SmallVector<BasicBlock*, 1> PredBBs; 1211 PredBBs.resize(1); 1212 1213 // If any of the predecessor blocks end in an unconditional branch, we can 1214 // *duplicate* the conditional branch into that block in order to further 1215 // encourage jump threading and to eliminate cases where we have branch on a 1216 // phi of an icmp (branch on icmp is much better). 1217 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1218 BasicBlock *PredBB = PN->getIncomingBlock(i); 1219 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1220 if (PredBr->isUnconditional()) { 1221 PredBBs[0] = PredBB; 1222 // Try to duplicate BB into PredBB. 1223 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1224 return true; 1225 } 1226 } 1227 1228 return false; 1229 } 1230 1231 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1232 /// a xor instruction in the current block. See if there are any 1233 /// simplifications we can do based on inputs to the xor. 1234 /// 1235 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1236 BasicBlock *BB = BO->getParent(); 1237 1238 // If either the LHS or RHS of the xor is a constant, don't do this 1239 // optimization. 1240 if (isa<ConstantInt>(BO->getOperand(0)) || 1241 isa<ConstantInt>(BO->getOperand(1))) 1242 return false; 1243 1244 // If the first instruction in BB isn't a phi, we won't be able to infer 1245 // anything special about any particular predecessor. 1246 if (!isa<PHINode>(BB->front())) 1247 return false; 1248 1249 // If we have a xor as the branch input to this block, and we know that the 1250 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1251 // the condition into the predecessor and fix that value to true, saving some 1252 // logical ops on that path and encouraging other paths to simplify. 1253 // 1254 // This copies something like this: 1255 // 1256 // BB: 1257 // %X = phi i1 [1], [%X'] 1258 // %Y = icmp eq i32 %A, %B 1259 // %Z = xor i1 %X, %Y 1260 // br i1 %Z, ... 1261 // 1262 // Into: 1263 // BB': 1264 // %Y = icmp ne i32 %A, %B 1265 // br i1 %Z, ... 1266 1267 PredValueInfoTy XorOpValues; 1268 bool isLHS = true; 1269 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1270 WantInteger, BO)) { 1271 assert(XorOpValues.empty()); 1272 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1273 WantInteger, BO)) 1274 return false; 1275 isLHS = false; 1276 } 1277 1278 assert(!XorOpValues.empty() && 1279 "ComputeValueKnownInPredecessors returned true with no values"); 1280 1281 // Scan the information to see which is most popular: true or false. The 1282 // predecessors can be of the set true, false, or undef. 1283 unsigned NumTrue = 0, NumFalse = 0; 1284 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1285 if (isa<UndefValue>(XorOpValues[i].first)) 1286 // Ignore undefs for the count. 1287 continue; 1288 if (cast<ConstantInt>(XorOpValues[i].first)->isZero()) 1289 ++NumFalse; 1290 else 1291 ++NumTrue; 1292 } 1293 1294 // Determine which value to split on, true, false, or undef if neither. 1295 ConstantInt *SplitVal = nullptr; 1296 if (NumTrue > NumFalse) 1297 SplitVal = ConstantInt::getTrue(BB->getContext()); 1298 else if (NumTrue != 0 || NumFalse != 0) 1299 SplitVal = ConstantInt::getFalse(BB->getContext()); 1300 1301 // Collect all of the blocks that this can be folded into so that we can 1302 // factor this once and clone it once. 1303 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1304 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1305 if (XorOpValues[i].first != SplitVal && 1306 !isa<UndefValue>(XorOpValues[i].first)) 1307 continue; 1308 1309 BlocksToFoldInto.push_back(XorOpValues[i].second); 1310 } 1311 1312 // If we inferred a value for all of the predecessors, then duplication won't 1313 // help us. However, we can just replace the LHS or RHS with the constant. 1314 if (BlocksToFoldInto.size() == 1315 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1316 if (!SplitVal) { 1317 // If all preds provide undef, just nuke the xor, because it is undef too. 1318 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1319 BO->eraseFromParent(); 1320 } else if (SplitVal->isZero()) { 1321 // If all preds provide 0, replace the xor with the other input. 1322 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1323 BO->eraseFromParent(); 1324 } else { 1325 // If all preds provide 1, set the computed value to 1. 1326 BO->setOperand(!isLHS, SplitVal); 1327 } 1328 1329 return true; 1330 } 1331 1332 // Try to duplicate BB into PredBB. 1333 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1334 } 1335 1336 1337 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1338 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1339 /// NewPred using the entries from OldPred (suitably mapped). 1340 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1341 BasicBlock *OldPred, 1342 BasicBlock *NewPred, 1343 DenseMap<Instruction*, Value*> &ValueMap) { 1344 for (BasicBlock::iterator PNI = PHIBB->begin(); 1345 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1346 // Ok, we have a PHI node. Figure out what the incoming value was for the 1347 // DestBlock. 1348 Value *IV = PN->getIncomingValueForBlock(OldPred); 1349 1350 // Remap the value if necessary. 1351 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1352 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1353 if (I != ValueMap.end()) 1354 IV = I->second; 1355 } 1356 1357 PN->addIncoming(IV, NewPred); 1358 } 1359 } 1360 1361 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1362 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1363 /// across BB. Transform the IR to reflect this change. 1364 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1365 const SmallVectorImpl<BasicBlock*> &PredBBs, 1366 BasicBlock *SuccBB) { 1367 // If threading to the same block as we come from, we would infinite loop. 1368 if (SuccBB == BB) { 1369 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1370 << "' - would thread to self!\n"); 1371 return false; 1372 } 1373 1374 // If threading this would thread across a loop header, don't thread the edge. 1375 // See the comments above FindLoopHeaders for justifications and caveats. 1376 if (LoopHeaders.count(BB)) { 1377 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1378 << "' to dest BB '" << SuccBB->getName() 1379 << "' - it might create an irreducible loop!\n"); 1380 return false; 1381 } 1382 1383 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1384 if (JumpThreadCost > BBDupThreshold) { 1385 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1386 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1387 return false; 1388 } 1389 1390 // And finally, do it! Start by factoring the predecessors is needed. 1391 BasicBlock *PredBB; 1392 if (PredBBs.size() == 1) 1393 PredBB = PredBBs[0]; 1394 else { 1395 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1396 << " common predecessors.\n"); 1397 PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm"); 1398 } 1399 1400 // And finally, do it! 1401 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1402 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1403 << ", across block:\n " 1404 << *BB << "\n"); 1405 1406 LVI->threadEdge(PredBB, BB, SuccBB); 1407 1408 // We are going to have to map operands from the original BB block to the new 1409 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1410 // account for entry from PredBB. 1411 DenseMap<Instruction*, Value*> ValueMapping; 1412 1413 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1414 BB->getName()+".thread", 1415 BB->getParent(), BB); 1416 NewBB->moveAfter(PredBB); 1417 1418 BasicBlock::iterator BI = BB->begin(); 1419 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1420 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1421 1422 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1423 // mapping and using it to remap operands in the cloned instructions. 1424 for (; !isa<TerminatorInst>(BI); ++BI) { 1425 Instruction *New = BI->clone(); 1426 New->setName(BI->getName()); 1427 NewBB->getInstList().push_back(New); 1428 ValueMapping[BI] = New; 1429 1430 // Remap operands to patch up intra-block references. 1431 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1432 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1433 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1434 if (I != ValueMapping.end()) 1435 New->setOperand(i, I->second); 1436 } 1437 } 1438 1439 // We didn't copy the terminator from BB over to NewBB, because there is now 1440 // an unconditional jump to SuccBB. Insert the unconditional jump. 1441 BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB); 1442 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1443 1444 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1445 // PHI nodes for NewBB now. 1446 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1447 1448 // If there were values defined in BB that are used outside the block, then we 1449 // now have to update all uses of the value to use either the original value, 1450 // the cloned value, or some PHI derived value. This can require arbitrary 1451 // PHI insertion, of which we are prepared to do, clean these up now. 1452 SSAUpdater SSAUpdate; 1453 SmallVector<Use*, 16> UsesToRename; 1454 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1455 // Scan all uses of this instruction to see if it is used outside of its 1456 // block, and if so, record them in UsesToRename. 1457 for (Use &U : I->uses()) { 1458 Instruction *User = cast<Instruction>(U.getUser()); 1459 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1460 if (UserPN->getIncomingBlock(U) == BB) 1461 continue; 1462 } else if (User->getParent() == BB) 1463 continue; 1464 1465 UsesToRename.push_back(&U); 1466 } 1467 1468 // If there are no uses outside the block, we're done with this instruction. 1469 if (UsesToRename.empty()) 1470 continue; 1471 1472 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1473 1474 // We found a use of I outside of BB. Rename all uses of I that are outside 1475 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1476 // with the two values we know. 1477 SSAUpdate.Initialize(I->getType(), I->getName()); 1478 SSAUpdate.AddAvailableValue(BB, I); 1479 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1480 1481 while (!UsesToRename.empty()) 1482 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1483 DEBUG(dbgs() << "\n"); 1484 } 1485 1486 1487 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1488 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1489 // us to simplify any PHI nodes in BB. 1490 TerminatorInst *PredTerm = PredBB->getTerminator(); 1491 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1492 if (PredTerm->getSuccessor(i) == BB) { 1493 BB->removePredecessor(PredBB, true); 1494 PredTerm->setSuccessor(i, NewBB); 1495 } 1496 1497 // At this point, the IR is fully up to date and consistent. Do a quick scan 1498 // over the new instructions and zap any that are constants or dead. This 1499 // frequently happens because of phi translation. 1500 SimplifyInstructionsInBlock(NewBB, TLI); 1501 1502 // Threaded an edge! 1503 ++NumThreads; 1504 return true; 1505 } 1506 1507 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1508 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1509 /// If we can duplicate the contents of BB up into PredBB do so now, this 1510 /// improves the odds that the branch will be on an analyzable instruction like 1511 /// a compare. 1512 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1513 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1514 assert(!PredBBs.empty() && "Can't handle an empty set"); 1515 1516 // If BB is a loop header, then duplicating this block outside the loop would 1517 // cause us to transform this into an irreducible loop, don't do this. 1518 // See the comments above FindLoopHeaders for justifications and caveats. 1519 if (LoopHeaders.count(BB)) { 1520 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1521 << "' into predecessor block '" << PredBBs[0]->getName() 1522 << "' - it might create an irreducible loop!\n"); 1523 return false; 1524 } 1525 1526 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1527 if (DuplicationCost > BBDupThreshold) { 1528 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1529 << "' - Cost is too high: " << DuplicationCost << "\n"); 1530 return false; 1531 } 1532 1533 // And finally, do it! Start by factoring the predecessors is needed. 1534 BasicBlock *PredBB; 1535 if (PredBBs.size() == 1) 1536 PredBB = PredBBs[0]; 1537 else { 1538 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1539 << " common predecessors.\n"); 1540 PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm"); 1541 } 1542 1543 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1544 // of PredBB. 1545 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1546 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1547 << DuplicationCost << " block is:" << *BB << "\n"); 1548 1549 // Unless PredBB ends with an unconditional branch, split the edge so that we 1550 // can just clone the bits from BB into the end of the new PredBB. 1551 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1552 1553 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 1554 PredBB = SplitEdge(PredBB, BB); 1555 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1556 } 1557 1558 // We are going to have to map operands from the original BB block into the 1559 // PredBB block. Evaluate PHI nodes in BB. 1560 DenseMap<Instruction*, Value*> ValueMapping; 1561 1562 BasicBlock::iterator BI = BB->begin(); 1563 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1564 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1565 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1566 // mapping and using it to remap operands in the cloned instructions. 1567 for (; BI != BB->end(); ++BI) { 1568 Instruction *New = BI->clone(); 1569 1570 // Remap operands to patch up intra-block references. 1571 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1572 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1573 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1574 if (I != ValueMapping.end()) 1575 New->setOperand(i, I->second); 1576 } 1577 1578 // If this instruction can be simplified after the operands are updated, 1579 // just use the simplified value instead. This frequently happens due to 1580 // phi translation. 1581 if (Value *IV = 1582 SimplifyInstruction(New, BB->getModule()->getDataLayout())) { 1583 delete New; 1584 ValueMapping[BI] = IV; 1585 } else { 1586 // Otherwise, insert the new instruction into the block. 1587 New->setName(BI->getName()); 1588 PredBB->getInstList().insert(OldPredBranch, New); 1589 ValueMapping[BI] = New; 1590 } 1591 } 1592 1593 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1594 // add entries to the PHI nodes for branch from PredBB now. 1595 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1596 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1597 ValueMapping); 1598 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1599 ValueMapping); 1600 1601 // If there were values defined in BB that are used outside the block, then we 1602 // now have to update all uses of the value to use either the original value, 1603 // the cloned value, or some PHI derived value. This can require arbitrary 1604 // PHI insertion, of which we are prepared to do, clean these up now. 1605 SSAUpdater SSAUpdate; 1606 SmallVector<Use*, 16> UsesToRename; 1607 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1608 // Scan all uses of this instruction to see if it is used outside of its 1609 // block, and if so, record them in UsesToRename. 1610 for (Use &U : I->uses()) { 1611 Instruction *User = cast<Instruction>(U.getUser()); 1612 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1613 if (UserPN->getIncomingBlock(U) == BB) 1614 continue; 1615 } else if (User->getParent() == BB) 1616 continue; 1617 1618 UsesToRename.push_back(&U); 1619 } 1620 1621 // If there are no uses outside the block, we're done with this instruction. 1622 if (UsesToRename.empty()) 1623 continue; 1624 1625 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1626 1627 // We found a use of I outside of BB. Rename all uses of I that are outside 1628 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1629 // with the two values we know. 1630 SSAUpdate.Initialize(I->getType(), I->getName()); 1631 SSAUpdate.AddAvailableValue(BB, I); 1632 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1633 1634 while (!UsesToRename.empty()) 1635 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1636 DEBUG(dbgs() << "\n"); 1637 } 1638 1639 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1640 // that we nuked. 1641 BB->removePredecessor(PredBB, true); 1642 1643 // Remove the unconditional branch at the end of the PredBB block. 1644 OldPredBranch->eraseFromParent(); 1645 1646 ++NumDupes; 1647 return true; 1648 } 1649 1650 /// TryToUnfoldSelect - Look for blocks of the form 1651 /// bb1: 1652 /// %a = select 1653 /// br bb 1654 /// 1655 /// bb2: 1656 /// %p = phi [%a, %bb] ... 1657 /// %c = icmp %p 1658 /// br i1 %c 1659 /// 1660 /// And expand the select into a branch structure if one of its arms allows %c 1661 /// to be folded. This later enables threading from bb1 over bb2. 1662 bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 1663 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1664 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 1665 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 1666 1667 if (!CondBr || !CondBr->isConditional() || !CondLHS || 1668 CondLHS->getParent() != BB) 1669 return false; 1670 1671 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 1672 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 1673 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 1674 1675 // Look if one of the incoming values is a select in the corresponding 1676 // predecessor. 1677 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 1678 continue; 1679 1680 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 1681 if (!PredTerm || !PredTerm->isUnconditional()) 1682 continue; 1683 1684 // Now check if one of the select values would allow us to constant fold the 1685 // terminator in BB. We don't do the transform if both sides fold, those 1686 // cases will be threaded in any case. 1687 LazyValueInfo::Tristate LHSFolds = 1688 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 1689 CondRHS, Pred, BB, CondCmp); 1690 LazyValueInfo::Tristate RHSFolds = 1691 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 1692 CondRHS, Pred, BB, CondCmp); 1693 if ((LHSFolds != LazyValueInfo::Unknown || 1694 RHSFolds != LazyValueInfo::Unknown) && 1695 LHSFolds != RHSFolds) { 1696 // Expand the select. 1697 // 1698 // Pred -- 1699 // | v 1700 // | NewBB 1701 // | | 1702 // |----- 1703 // v 1704 // BB 1705 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 1706 BB->getParent(), BB); 1707 // Move the unconditional branch to NewBB. 1708 PredTerm->removeFromParent(); 1709 NewBB->getInstList().insert(NewBB->end(), PredTerm); 1710 // Create a conditional branch and update PHI nodes. 1711 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 1712 CondLHS->setIncomingValue(I, SI->getFalseValue()); 1713 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 1714 // The select is now dead. 1715 SI->eraseFromParent(); 1716 1717 // Update any other PHI nodes in BB. 1718 for (BasicBlock::iterator BI = BB->begin(); 1719 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 1720 if (Phi != CondLHS) 1721 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 1722 return true; 1723 } 1724 } 1725 return false; 1726 } 1727