1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/GlobalsModRef.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LazyValueInfo.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/ValueHandle.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/SSAUpdater.h" 40 using namespace llvm; 41 42 #define DEBUG_TYPE "jump-threading" 43 44 STATISTIC(NumThreads, "Number of jumps threaded"); 45 STATISTIC(NumFolds, "Number of terminators folded"); 46 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 47 48 static cl::opt<unsigned> 49 BBDuplicateThreshold("jump-threading-threshold", 50 cl::desc("Max block size to duplicate for jump threading"), 51 cl::init(6), cl::Hidden); 52 53 namespace { 54 // These are at global scope so static functions can use them too. 55 typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo; 56 typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy; 57 58 // This is used to keep track of what kind of constant we're currently hoping 59 // to find. 60 enum ConstantPreference { 61 WantInteger, 62 WantBlockAddress 63 }; 64 65 /// This pass performs 'jump threading', which looks at blocks that have 66 /// multiple predecessors and multiple successors. If one or more of the 67 /// predecessors of the block can be proven to always jump to one of the 68 /// successors, we forward the edge from the predecessor to the successor by 69 /// duplicating the contents of this block. 70 /// 71 /// An example of when this can occur is code like this: 72 /// 73 /// if () { ... 74 /// X = 4; 75 /// } 76 /// if (X < 3) { 77 /// 78 /// In this case, the unconditional branch at the end of the first if can be 79 /// revectored to the false side of the second if. 80 /// 81 class JumpThreading : public FunctionPass { 82 TargetLibraryInfo *TLI; 83 LazyValueInfo *LVI; 84 #ifdef NDEBUG 85 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 86 #else 87 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 88 #endif 89 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; 90 91 unsigned BBDupThreshold; 92 93 // RAII helper for updating the recursion stack. 94 struct RecursionSetRemover { 95 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet; 96 std::pair<Value*, BasicBlock*> ThePair; 97 98 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S, 99 std::pair<Value*, BasicBlock*> P) 100 : TheSet(S), ThePair(P) { } 101 102 ~RecursionSetRemover() { 103 TheSet.erase(ThePair); 104 } 105 }; 106 public: 107 static char ID; // Pass identification 108 JumpThreading(int T = -1) : FunctionPass(ID) { 109 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 110 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 111 } 112 113 bool runOnFunction(Function &F) override; 114 115 void getAnalysisUsage(AnalysisUsage &AU) const override { 116 AU.addRequired<LazyValueInfo>(); 117 AU.addPreserved<LazyValueInfo>(); 118 AU.addPreserved<GlobalsAAWrapperPass>(); 119 AU.addRequired<TargetLibraryInfoWrapperPass>(); 120 } 121 122 void FindLoopHeaders(Function &F); 123 bool ProcessBlock(BasicBlock *BB); 124 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 125 BasicBlock *SuccBB); 126 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 127 const SmallVectorImpl<BasicBlock *> &PredBBs); 128 129 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 130 PredValueInfo &Result, 131 ConstantPreference Preference, 132 Instruction *CxtI = nullptr); 133 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 134 ConstantPreference Preference, 135 Instruction *CxtI = nullptr); 136 137 bool ProcessBranchOnPHI(PHINode *PN); 138 bool ProcessBranchOnXOR(BinaryOperator *BO); 139 140 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 141 bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB); 142 }; 143 } 144 145 char JumpThreading::ID = 0; 146 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 147 "Jump Threading", false, false) 148 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo) 149 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 150 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 151 "Jump Threading", false, false) 152 153 // Public interface to the Jump Threading pass 154 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); } 155 156 /// runOnFunction - Top level algorithm. 157 /// 158 bool JumpThreading::runOnFunction(Function &F) { 159 if (skipOptnoneFunction(F)) 160 return false; 161 162 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 163 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 164 LVI = &getAnalysis<LazyValueInfo>(); 165 166 // Remove unreachable blocks from function as they may result in infinite 167 // loop. We do threading if we found something profitable. Jump threading a 168 // branch can create other opportunities. If these opportunities form a cycle 169 // i.e. if any jump threading is undoing previous threading in the path, then 170 // we will loop forever. We take care of this issue by not jump threading for 171 // back edges. This works for normal cases but not for unreachable blocks as 172 // they may have cycle with no back edge. 173 removeUnreachableBlocks(F); 174 175 FindLoopHeaders(F); 176 177 bool Changed, EverChanged = false; 178 do { 179 Changed = false; 180 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 181 BasicBlock *BB = I; 182 // Thread all of the branches we can over this block. 183 while (ProcessBlock(BB)) 184 Changed = true; 185 186 ++I; 187 188 // If the block is trivially dead, zap it. This eliminates the successor 189 // edges which simplifies the CFG. 190 if (pred_empty(BB) && 191 BB != &BB->getParent()->getEntryBlock()) { 192 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 193 << "' with terminator: " << *BB->getTerminator() << '\n'); 194 LoopHeaders.erase(BB); 195 LVI->eraseBlock(BB); 196 DeleteDeadBlock(BB); 197 Changed = true; 198 continue; 199 } 200 201 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 202 203 // Can't thread an unconditional jump, but if the block is "almost 204 // empty", we can replace uses of it with uses of the successor and make 205 // this dead. 206 if (BI && BI->isUnconditional() && 207 BB != &BB->getParent()->getEntryBlock() && 208 // If the terminator is the only non-phi instruction, try to nuke it. 209 BB->getFirstNonPHIOrDbg()->isTerminator()) { 210 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 211 // block, we have to make sure it isn't in the LoopHeaders set. We 212 // reinsert afterward if needed. 213 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 214 BasicBlock *Succ = BI->getSuccessor(0); 215 216 // FIXME: It is always conservatively correct to drop the info 217 // for a block even if it doesn't get erased. This isn't totally 218 // awesome, but it allows us to use AssertingVH to prevent nasty 219 // dangling pointer issues within LazyValueInfo. 220 LVI->eraseBlock(BB); 221 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 222 Changed = true; 223 // If we deleted BB and BB was the header of a loop, then the 224 // successor is now the header of the loop. 225 BB = Succ; 226 } 227 228 if (ErasedFromLoopHeaders) 229 LoopHeaders.insert(BB); 230 } 231 } 232 EverChanged |= Changed; 233 } while (Changed); 234 235 LoopHeaders.clear(); 236 return EverChanged; 237 } 238 239 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 240 /// thread across it. Stop scanning the block when passing the threshold. 241 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB, 242 unsigned Threshold) { 243 /// Ignore PHI nodes, these will be flattened when duplication happens. 244 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 245 246 // FIXME: THREADING will delete values that are just used to compute the 247 // branch, so they shouldn't count against the duplication cost. 248 249 // Sum up the cost of each instruction until we get to the terminator. Don't 250 // include the terminator because the copy won't include it. 251 unsigned Size = 0; 252 for (; !isa<TerminatorInst>(I); ++I) { 253 254 // Stop scanning the block if we've reached the threshold. 255 if (Size > Threshold) 256 return Size; 257 258 // Debugger intrinsics don't incur code size. 259 if (isa<DbgInfoIntrinsic>(I)) continue; 260 261 // If this is a pointer->pointer bitcast, it is free. 262 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 263 continue; 264 265 // Bail out if this instruction gives back a token type, it is not possible 266 // to duplicate it if it is used outside this BB. 267 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 268 return ~0U; 269 270 // All other instructions count for at least one unit. 271 ++Size; 272 273 // Calls are more expensive. If they are non-intrinsic calls, we model them 274 // as having cost of 4. If they are a non-vector intrinsic, we model them 275 // as having cost of 2 total, and if they are a vector intrinsic, we model 276 // them as having cost 1. 277 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 278 if (CI->cannotDuplicate() || CI->isConvergent()) 279 // Blocks with NoDuplicate are modelled as having infinite cost, so they 280 // are never duplicated. 281 return ~0U; 282 else if (!isa<IntrinsicInst>(CI)) 283 Size += 3; 284 else if (!CI->getType()->isVectorTy()) 285 Size += 1; 286 } 287 } 288 289 // Threading through a switch statement is particularly profitable. If this 290 // block ends in a switch, decrease its cost to make it more likely to happen. 291 if (isa<SwitchInst>(I)) 292 Size = Size > 6 ? Size-6 : 0; 293 294 // The same holds for indirect branches, but slightly more so. 295 if (isa<IndirectBrInst>(I)) 296 Size = Size > 8 ? Size-8 : 0; 297 298 return Size; 299 } 300 301 /// FindLoopHeaders - We do not want jump threading to turn proper loop 302 /// structures into irreducible loops. Doing this breaks up the loop nesting 303 /// hierarchy and pessimizes later transformations. To prevent this from 304 /// happening, we first have to find the loop headers. Here we approximate this 305 /// by finding targets of backedges in the CFG. 306 /// 307 /// Note that there definitely are cases when we want to allow threading of 308 /// edges across a loop header. For example, threading a jump from outside the 309 /// loop (the preheader) to an exit block of the loop is definitely profitable. 310 /// It is also almost always profitable to thread backedges from within the loop 311 /// to exit blocks, and is often profitable to thread backedges to other blocks 312 /// within the loop (forming a nested loop). This simple analysis is not rich 313 /// enough to track all of these properties and keep it up-to-date as the CFG 314 /// mutates, so we don't allow any of these transformations. 315 /// 316 void JumpThreading::FindLoopHeaders(Function &F) { 317 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 318 FindFunctionBackedges(F, Edges); 319 320 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 321 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 322 } 323 324 /// getKnownConstant - Helper method to determine if we can thread over a 325 /// terminator with the given value as its condition, and if so what value to 326 /// use for that. What kind of value this is depends on whether we want an 327 /// integer or a block address, but an undef is always accepted. 328 /// Returns null if Val is null or not an appropriate constant. 329 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 330 if (!Val) 331 return nullptr; 332 333 // Undef is "known" enough. 334 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 335 return U; 336 337 if (Preference == WantBlockAddress) 338 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 339 340 return dyn_cast<ConstantInt>(Val); 341 } 342 343 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 344 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 345 /// in any of our predecessors. If so, return the known list of value and pred 346 /// BB in the result vector. 347 /// 348 /// This returns true if there were any known values. 349 /// 350 bool JumpThreading:: 351 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, 352 ConstantPreference Preference, 353 Instruction *CxtI) { 354 // This method walks up use-def chains recursively. Because of this, we could 355 // get into an infinite loop going around loops in the use-def chain. To 356 // prevent this, keep track of what (value, block) pairs we've already visited 357 // and terminate the search if we loop back to them 358 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 359 return false; 360 361 // An RAII help to remove this pair from the recursion set once the recursion 362 // stack pops back out again. 363 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 364 365 // If V is a constant, then it is known in all predecessors. 366 if (Constant *KC = getKnownConstant(V, Preference)) { 367 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 368 Result.push_back(std::make_pair(KC, *PI)); 369 370 return true; 371 } 372 373 // If V is a non-instruction value, or an instruction in a different block, 374 // then it can't be derived from a PHI. 375 Instruction *I = dyn_cast<Instruction>(V); 376 if (!I || I->getParent() != BB) { 377 378 // Okay, if this is a live-in value, see if it has a known value at the end 379 // of any of our predecessors. 380 // 381 // FIXME: This should be an edge property, not a block end property. 382 /// TODO: Per PR2563, we could infer value range information about a 383 /// predecessor based on its terminator. 384 // 385 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 386 // "I" is a non-local compare-with-a-constant instruction. This would be 387 // able to handle value inequalities better, for example if the compare is 388 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 389 // Perhaps getConstantOnEdge should be smart enough to do this? 390 391 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 392 BasicBlock *P = *PI; 393 // If the value is known by LazyValueInfo to be a constant in a 394 // predecessor, use that information to try to thread this block. 395 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 396 if (Constant *KC = getKnownConstant(PredCst, Preference)) 397 Result.push_back(std::make_pair(KC, P)); 398 } 399 400 return !Result.empty(); 401 } 402 403 /// If I is a PHI node, then we know the incoming values for any constants. 404 if (PHINode *PN = dyn_cast<PHINode>(I)) { 405 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 406 Value *InVal = PN->getIncomingValue(i); 407 if (Constant *KC = getKnownConstant(InVal, Preference)) { 408 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 409 } else { 410 Constant *CI = LVI->getConstantOnEdge(InVal, 411 PN->getIncomingBlock(i), 412 BB, CxtI); 413 if (Constant *KC = getKnownConstant(CI, Preference)) 414 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 415 } 416 } 417 418 return !Result.empty(); 419 } 420 421 PredValueInfoTy LHSVals, RHSVals; 422 423 // Handle some boolean conditions. 424 if (I->getType()->getPrimitiveSizeInBits() == 1) { 425 assert(Preference == WantInteger && "One-bit non-integer type?"); 426 // X | true -> true 427 // X & false -> false 428 if (I->getOpcode() == Instruction::Or || 429 I->getOpcode() == Instruction::And) { 430 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 431 WantInteger, CxtI); 432 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 433 WantInteger, CxtI); 434 435 if (LHSVals.empty() && RHSVals.empty()) 436 return false; 437 438 ConstantInt *InterestingVal; 439 if (I->getOpcode() == Instruction::Or) 440 InterestingVal = ConstantInt::getTrue(I->getContext()); 441 else 442 InterestingVal = ConstantInt::getFalse(I->getContext()); 443 444 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 445 446 // Scan for the sentinel. If we find an undef, force it to the 447 // interesting value: x|undef -> true and x&undef -> false. 448 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 449 if (LHSVals[i].first == InterestingVal || 450 isa<UndefValue>(LHSVals[i].first)) { 451 Result.push_back(LHSVals[i]); 452 Result.back().first = InterestingVal; 453 LHSKnownBBs.insert(LHSVals[i].second); 454 } 455 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 456 if (RHSVals[i].first == InterestingVal || 457 isa<UndefValue>(RHSVals[i].first)) { 458 // If we already inferred a value for this block on the LHS, don't 459 // re-add it. 460 if (!LHSKnownBBs.count(RHSVals[i].second)) { 461 Result.push_back(RHSVals[i]); 462 Result.back().first = InterestingVal; 463 } 464 } 465 466 return !Result.empty(); 467 } 468 469 // Handle the NOT form of XOR. 470 if (I->getOpcode() == Instruction::Xor && 471 isa<ConstantInt>(I->getOperand(1)) && 472 cast<ConstantInt>(I->getOperand(1))->isOne()) { 473 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 474 WantInteger, CxtI); 475 if (Result.empty()) 476 return false; 477 478 // Invert the known values. 479 for (unsigned i = 0, e = Result.size(); i != e; ++i) 480 Result[i].first = ConstantExpr::getNot(Result[i].first); 481 482 return true; 483 } 484 485 // Try to simplify some other binary operator values. 486 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 487 assert(Preference != WantBlockAddress 488 && "A binary operator creating a block address?"); 489 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 490 PredValueInfoTy LHSVals; 491 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 492 WantInteger, CxtI); 493 494 // Try to use constant folding to simplify the binary operator. 495 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 496 Constant *V = LHSVals[i].first; 497 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 498 499 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 500 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 501 } 502 } 503 504 return !Result.empty(); 505 } 506 507 // Handle compare with phi operand, where the PHI is defined in this block. 508 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 509 assert(Preference == WantInteger && "Compares only produce integers"); 510 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 511 if (PN && PN->getParent() == BB) { 512 const DataLayout &DL = PN->getModule()->getDataLayout(); 513 // We can do this simplification if any comparisons fold to true or false. 514 // See if any do. 515 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 516 BasicBlock *PredBB = PN->getIncomingBlock(i); 517 Value *LHS = PN->getIncomingValue(i); 518 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 519 520 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL); 521 if (!Res) { 522 if (!isa<Constant>(RHS)) 523 continue; 524 525 LazyValueInfo::Tristate 526 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 527 cast<Constant>(RHS), PredBB, BB, 528 CxtI ? CxtI : Cmp); 529 if (ResT == LazyValueInfo::Unknown) 530 continue; 531 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 532 } 533 534 if (Constant *KC = getKnownConstant(Res, WantInteger)) 535 Result.push_back(std::make_pair(KC, PredBB)); 536 } 537 538 return !Result.empty(); 539 } 540 541 // If comparing a live-in value against a constant, see if we know the 542 // live-in value on any predecessors. 543 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 544 if (!isa<Instruction>(Cmp->getOperand(0)) || 545 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 546 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 547 548 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){ 549 BasicBlock *P = *PI; 550 // If the value is known by LazyValueInfo to be a constant in a 551 // predecessor, use that information to try to thread this block. 552 LazyValueInfo::Tristate Res = 553 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 554 RHSCst, P, BB, CxtI ? CxtI : Cmp); 555 if (Res == LazyValueInfo::Unknown) 556 continue; 557 558 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 559 Result.push_back(std::make_pair(ResC, P)); 560 } 561 562 return !Result.empty(); 563 } 564 565 // Try to find a constant value for the LHS of a comparison, 566 // and evaluate it statically if we can. 567 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 568 PredValueInfoTy LHSVals; 569 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 570 WantInteger, CxtI); 571 572 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 573 Constant *V = LHSVals[i].first; 574 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 575 V, CmpConst); 576 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 577 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 578 } 579 580 return !Result.empty(); 581 } 582 } 583 } 584 585 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 586 // Handle select instructions where at least one operand is a known constant 587 // and we can figure out the condition value for any predecessor block. 588 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 589 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 590 PredValueInfoTy Conds; 591 if ((TrueVal || FalseVal) && 592 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 593 WantInteger, CxtI)) { 594 for (unsigned i = 0, e = Conds.size(); i != e; ++i) { 595 Constant *Cond = Conds[i].first; 596 597 // Figure out what value to use for the condition. 598 bool KnownCond; 599 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 600 // A known boolean. 601 KnownCond = CI->isOne(); 602 } else { 603 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 604 // Either operand will do, so be sure to pick the one that's a known 605 // constant. 606 // FIXME: Do this more cleverly if both values are known constants? 607 KnownCond = (TrueVal != nullptr); 608 } 609 610 // See if the select has a known constant value for this predecessor. 611 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 612 Result.push_back(std::make_pair(Val, Conds[i].second)); 613 } 614 615 return !Result.empty(); 616 } 617 } 618 619 // If all else fails, see if LVI can figure out a constant value for us. 620 Constant *CI = LVI->getConstant(V, BB, CxtI); 621 if (Constant *KC = getKnownConstant(CI, Preference)) { 622 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 623 Result.push_back(std::make_pair(KC, *PI)); 624 } 625 626 return !Result.empty(); 627 } 628 629 630 631 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 632 /// in an undefined jump, decide which block is best to revector to. 633 /// 634 /// Since we can pick an arbitrary destination, we pick the successor with the 635 /// fewest predecessors. This should reduce the in-degree of the others. 636 /// 637 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 638 TerminatorInst *BBTerm = BB->getTerminator(); 639 unsigned MinSucc = 0; 640 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 641 // Compute the successor with the minimum number of predecessors. 642 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 643 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 644 TestBB = BBTerm->getSuccessor(i); 645 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 646 if (NumPreds < MinNumPreds) { 647 MinSucc = i; 648 MinNumPreds = NumPreds; 649 } 650 } 651 652 return MinSucc; 653 } 654 655 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 656 if (!BB->hasAddressTaken()) return false; 657 658 // If the block has its address taken, it may be a tree of dead constants 659 // hanging off of it. These shouldn't keep the block alive. 660 BlockAddress *BA = BlockAddress::get(BB); 661 BA->removeDeadConstantUsers(); 662 return !BA->use_empty(); 663 } 664 665 /// ProcessBlock - If there are any predecessors whose control can be threaded 666 /// through to a successor, transform them now. 667 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 668 // If the block is trivially dead, just return and let the caller nuke it. 669 // This simplifies other transformations. 670 if (pred_empty(BB) && 671 BB != &BB->getParent()->getEntryBlock()) 672 return false; 673 674 // If this block has a single predecessor, and if that pred has a single 675 // successor, merge the blocks. This encourages recursive jump threading 676 // because now the condition in this block can be threaded through 677 // predecessors of our predecessor block. 678 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 679 const TerminatorInst *TI = SinglePred->getTerminator(); 680 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 681 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 682 // If SinglePred was a loop header, BB becomes one. 683 if (LoopHeaders.erase(SinglePred)) 684 LoopHeaders.insert(BB); 685 686 LVI->eraseBlock(SinglePred); 687 MergeBasicBlockIntoOnlyPred(BB); 688 689 return true; 690 } 691 } 692 693 // What kind of constant we're looking for. 694 ConstantPreference Preference = WantInteger; 695 696 // Look to see if the terminator is a conditional branch, switch or indirect 697 // branch, if not we can't thread it. 698 Value *Condition; 699 Instruction *Terminator = BB->getTerminator(); 700 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 701 // Can't thread an unconditional jump. 702 if (BI->isUnconditional()) return false; 703 Condition = BI->getCondition(); 704 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 705 Condition = SI->getCondition(); 706 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 707 // Can't thread indirect branch with no successors. 708 if (IB->getNumSuccessors() == 0) return false; 709 Condition = IB->getAddress()->stripPointerCasts(); 710 Preference = WantBlockAddress; 711 } else { 712 return false; // Must be an invoke. 713 } 714 715 // Run constant folding to see if we can reduce the condition to a simple 716 // constant. 717 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 718 Value *SimpleVal = 719 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 720 if (SimpleVal) { 721 I->replaceAllUsesWith(SimpleVal); 722 I->eraseFromParent(); 723 Condition = SimpleVal; 724 } 725 } 726 727 // If the terminator is branching on an undef, we can pick any of the 728 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 729 if (isa<UndefValue>(Condition)) { 730 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 731 732 // Fold the branch/switch. 733 TerminatorInst *BBTerm = BB->getTerminator(); 734 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 735 if (i == BestSucc) continue; 736 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 737 } 738 739 DEBUG(dbgs() << " In block '" << BB->getName() 740 << "' folding undef terminator: " << *BBTerm << '\n'); 741 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 742 BBTerm->eraseFromParent(); 743 return true; 744 } 745 746 // If the terminator of this block is branching on a constant, simplify the 747 // terminator to an unconditional branch. This can occur due to threading in 748 // other blocks. 749 if (getKnownConstant(Condition, Preference)) { 750 DEBUG(dbgs() << " In block '" << BB->getName() 751 << "' folding terminator: " << *BB->getTerminator() << '\n'); 752 ++NumFolds; 753 ConstantFoldTerminator(BB, true); 754 return true; 755 } 756 757 Instruction *CondInst = dyn_cast<Instruction>(Condition); 758 759 // All the rest of our checks depend on the condition being an instruction. 760 if (!CondInst) { 761 // FIXME: Unify this with code below. 762 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 763 return true; 764 return false; 765 } 766 767 768 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 769 // If we're branching on a conditional, LVI might be able to determine 770 // it's value at the branch instruction. We only handle comparisons 771 // against a constant at this time. 772 // TODO: This should be extended to handle switches as well. 773 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 774 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 775 if (CondBr && CondConst && CondBr->isConditional()) { 776 LazyValueInfo::Tristate Ret = 777 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 778 CondConst, CondBr); 779 if (Ret != LazyValueInfo::Unknown) { 780 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 781 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 782 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 783 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 784 CondBr->eraseFromParent(); 785 if (CondCmp->use_empty()) 786 CondCmp->eraseFromParent(); 787 else if (CondCmp->getParent() == BB) { 788 // If the fact we just learned is true for all uses of the 789 // condition, replace it with a constant value 790 auto *CI = Ret == LazyValueInfo::True ? 791 ConstantInt::getTrue(CondCmp->getType()) : 792 ConstantInt::getFalse(CondCmp->getType()); 793 CondCmp->replaceAllUsesWith(CI); 794 CondCmp->eraseFromParent(); 795 } 796 return true; 797 } 798 } 799 800 if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB)) 801 return true; 802 } 803 804 // Check for some cases that are worth simplifying. Right now we want to look 805 // for loads that are used by a switch or by the condition for the branch. If 806 // we see one, check to see if it's partially redundant. If so, insert a PHI 807 // which can then be used to thread the values. 808 // 809 Value *SimplifyValue = CondInst; 810 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 811 if (isa<Constant>(CondCmp->getOperand(1))) 812 SimplifyValue = CondCmp->getOperand(0); 813 814 // TODO: There are other places where load PRE would be profitable, such as 815 // more complex comparisons. 816 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 817 if (SimplifyPartiallyRedundantLoad(LI)) 818 return true; 819 820 821 // Handle a variety of cases where we are branching on something derived from 822 // a PHI node in the current block. If we can prove that any predecessors 823 // compute a predictable value based on a PHI node, thread those predecessors. 824 // 825 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 826 return true; 827 828 // If this is an otherwise-unfoldable branch on a phi node in the current 829 // block, see if we can simplify. 830 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 831 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 832 return ProcessBranchOnPHI(PN); 833 834 835 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 836 if (CondInst->getOpcode() == Instruction::Xor && 837 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 838 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 839 840 841 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 842 // "(X == 4)", thread through this block. 843 844 return false; 845 } 846 847 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 848 /// load instruction, eliminate it by replacing it with a PHI node. This is an 849 /// important optimization that encourages jump threading, and needs to be run 850 /// interlaced with other jump threading tasks. 851 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 852 // Don't hack volatile/atomic loads. 853 if (!LI->isSimple()) return false; 854 855 // If the load is defined in a block with exactly one predecessor, it can't be 856 // partially redundant. 857 BasicBlock *LoadBB = LI->getParent(); 858 if (LoadBB->getSinglePredecessor()) 859 return false; 860 861 // If the load is defined in an EH pad, it can't be partially redundant, 862 // because the edges between the invoke and the EH pad cannot have other 863 // instructions between them. 864 if (LoadBB->isEHPad()) 865 return false; 866 867 Value *LoadedPtr = LI->getOperand(0); 868 869 // If the loaded operand is defined in the LoadBB, it can't be available. 870 // TODO: Could do simple PHI translation, that would be fun :) 871 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 872 if (PtrOp->getParent() == LoadBB) 873 return false; 874 875 // Scan a few instructions up from the load, to see if it is obviously live at 876 // the entry to its block. 877 BasicBlock::iterator BBIt = LI; 878 879 if (Value *AvailableVal = 880 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { 881 // If the value of the load is locally available within the block, just use 882 // it. This frequently occurs for reg2mem'd allocas. 883 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 884 885 // If the returned value is the load itself, replace with an undef. This can 886 // only happen in dead loops. 887 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 888 if (AvailableVal->getType() != LI->getType()) 889 AvailableVal = 890 CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI); 891 LI->replaceAllUsesWith(AvailableVal); 892 LI->eraseFromParent(); 893 return true; 894 } 895 896 // Otherwise, if we scanned the whole block and got to the top of the block, 897 // we know the block is locally transparent to the load. If not, something 898 // might clobber its value. 899 if (BBIt != LoadBB->begin()) 900 return false; 901 902 // If all of the loads and stores that feed the value have the same AA tags, 903 // then we can propagate them onto any newly inserted loads. 904 AAMDNodes AATags; 905 LI->getAAMetadata(AATags); 906 907 SmallPtrSet<BasicBlock*, 8> PredsScanned; 908 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 909 AvailablePredsTy AvailablePreds; 910 BasicBlock *OneUnavailablePred = nullptr; 911 912 // If we got here, the loaded value is transparent through to the start of the 913 // block. Check to see if it is available in any of the predecessor blocks. 914 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 915 PI != PE; ++PI) { 916 BasicBlock *PredBB = *PI; 917 918 // If we already scanned this predecessor, skip it. 919 if (!PredsScanned.insert(PredBB).second) 920 continue; 921 922 // Scan the predecessor to see if the value is available in the pred. 923 BBIt = PredBB->end(); 924 AAMDNodes ThisAATags; 925 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6, 926 nullptr, &ThisAATags); 927 if (!PredAvailable) { 928 OneUnavailablePred = PredBB; 929 continue; 930 } 931 932 // If AA tags disagree or are not present, forget about them. 933 if (AATags != ThisAATags) AATags = AAMDNodes(); 934 935 // If so, this load is partially redundant. Remember this info so that we 936 // can create a PHI node. 937 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 938 } 939 940 // If the loaded value isn't available in any predecessor, it isn't partially 941 // redundant. 942 if (AvailablePreds.empty()) return false; 943 944 // Okay, the loaded value is available in at least one (and maybe all!) 945 // predecessors. If the value is unavailable in more than one unique 946 // predecessor, we want to insert a merge block for those common predecessors. 947 // This ensures that we only have to insert one reload, thus not increasing 948 // code size. 949 BasicBlock *UnavailablePred = nullptr; 950 951 // If there is exactly one predecessor where the value is unavailable, the 952 // already computed 'OneUnavailablePred' block is it. If it ends in an 953 // unconditional branch, we know that it isn't a critical edge. 954 if (PredsScanned.size() == AvailablePreds.size()+1 && 955 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 956 UnavailablePred = OneUnavailablePred; 957 } else if (PredsScanned.size() != AvailablePreds.size()) { 958 // Otherwise, we had multiple unavailable predecessors or we had a critical 959 // edge from the one. 960 SmallVector<BasicBlock*, 8> PredsToSplit; 961 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 962 963 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 964 AvailablePredSet.insert(AvailablePreds[i].first); 965 966 // Add all the unavailable predecessors to the PredsToSplit list. 967 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 968 PI != PE; ++PI) { 969 BasicBlock *P = *PI; 970 // If the predecessor is an indirect goto, we can't split the edge. 971 if (isa<IndirectBrInst>(P->getTerminator())) 972 return false; 973 974 if (!AvailablePredSet.count(P)) 975 PredsToSplit.push_back(P); 976 } 977 978 // Split them out to their own block. 979 UnavailablePred = 980 SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split"); 981 } 982 983 // If the value isn't available in all predecessors, then there will be 984 // exactly one where it isn't available. Insert a load on that edge and add 985 // it to the AvailablePreds list. 986 if (UnavailablePred) { 987 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 988 "Can't handle critical edge here!"); 989 LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 990 LI->getAlignment(), 991 UnavailablePred->getTerminator()); 992 NewVal->setDebugLoc(LI->getDebugLoc()); 993 if (AATags) 994 NewVal->setAAMetadata(AATags); 995 996 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 997 } 998 999 // Now we know that each predecessor of this block has a value in 1000 // AvailablePreds, sort them for efficient access as we're walking the preds. 1001 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1002 1003 // Create a PHI node at the start of the block for the PRE'd load value. 1004 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1005 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 1006 LoadBB->begin()); 1007 PN->takeName(LI); 1008 PN->setDebugLoc(LI->getDebugLoc()); 1009 1010 // Insert new entries into the PHI for each predecessor. A single block may 1011 // have multiple entries here. 1012 for (pred_iterator PI = PB; PI != PE; ++PI) { 1013 BasicBlock *P = *PI; 1014 AvailablePredsTy::iterator I = 1015 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1016 std::make_pair(P, (Value*)nullptr)); 1017 1018 assert(I != AvailablePreds.end() && I->first == P && 1019 "Didn't find entry for predecessor!"); 1020 1021 // If we have an available predecessor but it requires casting, insert the 1022 // cast in the predecessor and use the cast. Note that we have to update the 1023 // AvailablePreds vector as we go so that all of the PHI entries for this 1024 // predecessor use the same bitcast. 1025 Value *&PredV = I->second; 1026 if (PredV->getType() != LI->getType()) 1027 PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "", 1028 P->getTerminator()); 1029 1030 PN->addIncoming(PredV, I->first); 1031 } 1032 1033 //cerr << "PRE: " << *LI << *PN << "\n"; 1034 1035 LI->replaceAllUsesWith(PN); 1036 LI->eraseFromParent(); 1037 1038 return true; 1039 } 1040 1041 /// FindMostPopularDest - The specified list contains multiple possible 1042 /// threadable destinations. Pick the one that occurs the most frequently in 1043 /// the list. 1044 static BasicBlock * 1045 FindMostPopularDest(BasicBlock *BB, 1046 const SmallVectorImpl<std::pair<BasicBlock*, 1047 BasicBlock*> > &PredToDestList) { 1048 assert(!PredToDestList.empty()); 1049 1050 // Determine popularity. If there are multiple possible destinations, we 1051 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1052 // blocks with known and real destinations to threading undef. We'll handle 1053 // them later if interesting. 1054 DenseMap<BasicBlock*, unsigned> DestPopularity; 1055 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1056 if (PredToDestList[i].second) 1057 DestPopularity[PredToDestList[i].second]++; 1058 1059 // Find the most popular dest. 1060 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1061 BasicBlock *MostPopularDest = DPI->first; 1062 unsigned Popularity = DPI->second; 1063 SmallVector<BasicBlock*, 4> SamePopularity; 1064 1065 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1066 // If the popularity of this entry isn't higher than the popularity we've 1067 // seen so far, ignore it. 1068 if (DPI->second < Popularity) 1069 ; // ignore. 1070 else if (DPI->second == Popularity) { 1071 // If it is the same as what we've seen so far, keep track of it. 1072 SamePopularity.push_back(DPI->first); 1073 } else { 1074 // If it is more popular, remember it. 1075 SamePopularity.clear(); 1076 MostPopularDest = DPI->first; 1077 Popularity = DPI->second; 1078 } 1079 } 1080 1081 // Okay, now we know the most popular destination. If there is more than one 1082 // destination, we need to determine one. This is arbitrary, but we need 1083 // to make a deterministic decision. Pick the first one that appears in the 1084 // successor list. 1085 if (!SamePopularity.empty()) { 1086 SamePopularity.push_back(MostPopularDest); 1087 TerminatorInst *TI = BB->getTerminator(); 1088 for (unsigned i = 0; ; ++i) { 1089 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1090 1091 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1092 TI->getSuccessor(i)) == SamePopularity.end()) 1093 continue; 1094 1095 MostPopularDest = TI->getSuccessor(i); 1096 break; 1097 } 1098 } 1099 1100 // Okay, we have finally picked the most popular destination. 1101 return MostPopularDest; 1102 } 1103 1104 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1105 ConstantPreference Preference, 1106 Instruction *CxtI) { 1107 // If threading this would thread across a loop header, don't even try to 1108 // thread the edge. 1109 if (LoopHeaders.count(BB)) 1110 return false; 1111 1112 PredValueInfoTy PredValues; 1113 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1114 return false; 1115 1116 assert(!PredValues.empty() && 1117 "ComputeValueKnownInPredecessors returned true with no values"); 1118 1119 DEBUG(dbgs() << "IN BB: " << *BB; 1120 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1121 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1122 << *PredValues[i].first 1123 << " for pred '" << PredValues[i].second->getName() << "'.\n"; 1124 }); 1125 1126 // Decide what we want to thread through. Convert our list of known values to 1127 // a list of known destinations for each pred. This also discards duplicate 1128 // predecessors and keeps track of the undefined inputs (which are represented 1129 // as a null dest in the PredToDestList). 1130 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1131 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1132 1133 BasicBlock *OnlyDest = nullptr; 1134 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1135 1136 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1137 BasicBlock *Pred = PredValues[i].second; 1138 if (!SeenPreds.insert(Pred).second) 1139 continue; // Duplicate predecessor entry. 1140 1141 // If the predecessor ends with an indirect goto, we can't change its 1142 // destination. 1143 if (isa<IndirectBrInst>(Pred->getTerminator())) 1144 continue; 1145 1146 Constant *Val = PredValues[i].first; 1147 1148 BasicBlock *DestBB; 1149 if (isa<UndefValue>(Val)) 1150 DestBB = nullptr; 1151 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1152 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1153 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1154 DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor(); 1155 } else { 1156 assert(isa<IndirectBrInst>(BB->getTerminator()) 1157 && "Unexpected terminator"); 1158 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1159 } 1160 1161 // If we have exactly one destination, remember it for efficiency below. 1162 if (PredToDestList.empty()) 1163 OnlyDest = DestBB; 1164 else if (OnlyDest != DestBB) 1165 OnlyDest = MultipleDestSentinel; 1166 1167 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1168 } 1169 1170 // If all edges were unthreadable, we fail. 1171 if (PredToDestList.empty()) 1172 return false; 1173 1174 // Determine which is the most common successor. If we have many inputs and 1175 // this block is a switch, we want to start by threading the batch that goes 1176 // to the most popular destination first. If we only know about one 1177 // threadable destination (the common case) we can avoid this. 1178 BasicBlock *MostPopularDest = OnlyDest; 1179 1180 if (MostPopularDest == MultipleDestSentinel) 1181 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1182 1183 // Now that we know what the most popular destination is, factor all 1184 // predecessors that will jump to it into a single predecessor. 1185 SmallVector<BasicBlock*, 16> PredsToFactor; 1186 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1187 if (PredToDestList[i].second == MostPopularDest) { 1188 BasicBlock *Pred = PredToDestList[i].first; 1189 1190 // This predecessor may be a switch or something else that has multiple 1191 // edges to the block. Factor each of these edges by listing them 1192 // according to # occurrences in PredsToFactor. 1193 TerminatorInst *PredTI = Pred->getTerminator(); 1194 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1195 if (PredTI->getSuccessor(i) == BB) 1196 PredsToFactor.push_back(Pred); 1197 } 1198 1199 // If the threadable edges are branching on an undefined value, we get to pick 1200 // the destination that these predecessors should get to. 1201 if (!MostPopularDest) 1202 MostPopularDest = BB->getTerminator()-> 1203 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1204 1205 // Ok, try to thread it! 1206 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1207 } 1208 1209 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1210 /// a PHI node in the current block. See if there are any simplifications we 1211 /// can do based on inputs to the phi node. 1212 /// 1213 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1214 BasicBlock *BB = PN->getParent(); 1215 1216 // TODO: We could make use of this to do it once for blocks with common PHI 1217 // values. 1218 SmallVector<BasicBlock*, 1> PredBBs; 1219 PredBBs.resize(1); 1220 1221 // If any of the predecessor blocks end in an unconditional branch, we can 1222 // *duplicate* the conditional branch into that block in order to further 1223 // encourage jump threading and to eliminate cases where we have branch on a 1224 // phi of an icmp (branch on icmp is much better). 1225 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1226 BasicBlock *PredBB = PN->getIncomingBlock(i); 1227 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1228 if (PredBr->isUnconditional()) { 1229 PredBBs[0] = PredBB; 1230 // Try to duplicate BB into PredBB. 1231 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1232 return true; 1233 } 1234 } 1235 1236 return false; 1237 } 1238 1239 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1240 /// a xor instruction in the current block. See if there are any 1241 /// simplifications we can do based on inputs to the xor. 1242 /// 1243 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1244 BasicBlock *BB = BO->getParent(); 1245 1246 // If either the LHS or RHS of the xor is a constant, don't do this 1247 // optimization. 1248 if (isa<ConstantInt>(BO->getOperand(0)) || 1249 isa<ConstantInt>(BO->getOperand(1))) 1250 return false; 1251 1252 // If the first instruction in BB isn't a phi, we won't be able to infer 1253 // anything special about any particular predecessor. 1254 if (!isa<PHINode>(BB->front())) 1255 return false; 1256 1257 // If we have a xor as the branch input to this block, and we know that the 1258 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1259 // the condition into the predecessor and fix that value to true, saving some 1260 // logical ops on that path and encouraging other paths to simplify. 1261 // 1262 // This copies something like this: 1263 // 1264 // BB: 1265 // %X = phi i1 [1], [%X'] 1266 // %Y = icmp eq i32 %A, %B 1267 // %Z = xor i1 %X, %Y 1268 // br i1 %Z, ... 1269 // 1270 // Into: 1271 // BB': 1272 // %Y = icmp ne i32 %A, %B 1273 // br i1 %Y, ... 1274 1275 PredValueInfoTy XorOpValues; 1276 bool isLHS = true; 1277 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1278 WantInteger, BO)) { 1279 assert(XorOpValues.empty()); 1280 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1281 WantInteger, BO)) 1282 return false; 1283 isLHS = false; 1284 } 1285 1286 assert(!XorOpValues.empty() && 1287 "ComputeValueKnownInPredecessors returned true with no values"); 1288 1289 // Scan the information to see which is most popular: true or false. The 1290 // predecessors can be of the set true, false, or undef. 1291 unsigned NumTrue = 0, NumFalse = 0; 1292 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1293 if (isa<UndefValue>(XorOpValues[i].first)) 1294 // Ignore undefs for the count. 1295 continue; 1296 if (cast<ConstantInt>(XorOpValues[i].first)->isZero()) 1297 ++NumFalse; 1298 else 1299 ++NumTrue; 1300 } 1301 1302 // Determine which value to split on, true, false, or undef if neither. 1303 ConstantInt *SplitVal = nullptr; 1304 if (NumTrue > NumFalse) 1305 SplitVal = ConstantInt::getTrue(BB->getContext()); 1306 else if (NumTrue != 0 || NumFalse != 0) 1307 SplitVal = ConstantInt::getFalse(BB->getContext()); 1308 1309 // Collect all of the blocks that this can be folded into so that we can 1310 // factor this once and clone it once. 1311 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1312 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1313 if (XorOpValues[i].first != SplitVal && 1314 !isa<UndefValue>(XorOpValues[i].first)) 1315 continue; 1316 1317 BlocksToFoldInto.push_back(XorOpValues[i].second); 1318 } 1319 1320 // If we inferred a value for all of the predecessors, then duplication won't 1321 // help us. However, we can just replace the LHS or RHS with the constant. 1322 if (BlocksToFoldInto.size() == 1323 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1324 if (!SplitVal) { 1325 // If all preds provide undef, just nuke the xor, because it is undef too. 1326 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1327 BO->eraseFromParent(); 1328 } else if (SplitVal->isZero()) { 1329 // If all preds provide 0, replace the xor with the other input. 1330 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1331 BO->eraseFromParent(); 1332 } else { 1333 // If all preds provide 1, set the computed value to 1. 1334 BO->setOperand(!isLHS, SplitVal); 1335 } 1336 1337 return true; 1338 } 1339 1340 // Try to duplicate BB into PredBB. 1341 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1342 } 1343 1344 1345 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1346 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1347 /// NewPred using the entries from OldPred (suitably mapped). 1348 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1349 BasicBlock *OldPred, 1350 BasicBlock *NewPred, 1351 DenseMap<Instruction*, Value*> &ValueMap) { 1352 for (BasicBlock::iterator PNI = PHIBB->begin(); 1353 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1354 // Ok, we have a PHI node. Figure out what the incoming value was for the 1355 // DestBlock. 1356 Value *IV = PN->getIncomingValueForBlock(OldPred); 1357 1358 // Remap the value if necessary. 1359 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1360 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1361 if (I != ValueMap.end()) 1362 IV = I->second; 1363 } 1364 1365 PN->addIncoming(IV, NewPred); 1366 } 1367 } 1368 1369 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1370 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1371 /// across BB. Transform the IR to reflect this change. 1372 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1373 const SmallVectorImpl<BasicBlock*> &PredBBs, 1374 BasicBlock *SuccBB) { 1375 // If threading to the same block as we come from, we would infinite loop. 1376 if (SuccBB == BB) { 1377 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1378 << "' - would thread to self!\n"); 1379 return false; 1380 } 1381 1382 // If threading this would thread across a loop header, don't thread the edge. 1383 // See the comments above FindLoopHeaders for justifications and caveats. 1384 if (LoopHeaders.count(BB)) { 1385 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1386 << "' to dest BB '" << SuccBB->getName() 1387 << "' - it might create an irreducible loop!\n"); 1388 return false; 1389 } 1390 1391 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1392 if (JumpThreadCost > BBDupThreshold) { 1393 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1394 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1395 return false; 1396 } 1397 1398 // And finally, do it! Start by factoring the predecessors if needed. 1399 BasicBlock *PredBB; 1400 if (PredBBs.size() == 1) 1401 PredBB = PredBBs[0]; 1402 else { 1403 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1404 << " common predecessors.\n"); 1405 PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm"); 1406 } 1407 1408 // And finally, do it! 1409 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1410 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1411 << ", across block:\n " 1412 << *BB << "\n"); 1413 1414 LVI->threadEdge(PredBB, BB, SuccBB); 1415 1416 // We are going to have to map operands from the original BB block to the new 1417 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1418 // account for entry from PredBB. 1419 DenseMap<Instruction*, Value*> ValueMapping; 1420 1421 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1422 BB->getName()+".thread", 1423 BB->getParent(), BB); 1424 NewBB->moveAfter(PredBB); 1425 1426 BasicBlock::iterator BI = BB->begin(); 1427 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1428 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1429 1430 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1431 // mapping and using it to remap operands in the cloned instructions. 1432 for (; !isa<TerminatorInst>(BI); ++BI) { 1433 Instruction *New = BI->clone(); 1434 New->setName(BI->getName()); 1435 NewBB->getInstList().push_back(New); 1436 ValueMapping[BI] = New; 1437 1438 // Remap operands to patch up intra-block references. 1439 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1440 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1441 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1442 if (I != ValueMapping.end()) 1443 New->setOperand(i, I->second); 1444 } 1445 } 1446 1447 // We didn't copy the terminator from BB over to NewBB, because there is now 1448 // an unconditional jump to SuccBB. Insert the unconditional jump. 1449 BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB); 1450 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1451 1452 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1453 // PHI nodes for NewBB now. 1454 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1455 1456 // If there were values defined in BB that are used outside the block, then we 1457 // now have to update all uses of the value to use either the original value, 1458 // the cloned value, or some PHI derived value. This can require arbitrary 1459 // PHI insertion, of which we are prepared to do, clean these up now. 1460 SSAUpdater SSAUpdate; 1461 SmallVector<Use*, 16> UsesToRename; 1462 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1463 // Scan all uses of this instruction to see if it is used outside of its 1464 // block, and if so, record them in UsesToRename. 1465 for (Use &U : I->uses()) { 1466 Instruction *User = cast<Instruction>(U.getUser()); 1467 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1468 if (UserPN->getIncomingBlock(U) == BB) 1469 continue; 1470 } else if (User->getParent() == BB) 1471 continue; 1472 1473 UsesToRename.push_back(&U); 1474 } 1475 1476 // If there are no uses outside the block, we're done with this instruction. 1477 if (UsesToRename.empty()) 1478 continue; 1479 1480 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1481 1482 // We found a use of I outside of BB. Rename all uses of I that are outside 1483 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1484 // with the two values we know. 1485 SSAUpdate.Initialize(I->getType(), I->getName()); 1486 SSAUpdate.AddAvailableValue(BB, I); 1487 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1488 1489 while (!UsesToRename.empty()) 1490 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1491 DEBUG(dbgs() << "\n"); 1492 } 1493 1494 1495 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1496 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1497 // us to simplify any PHI nodes in BB. 1498 TerminatorInst *PredTerm = PredBB->getTerminator(); 1499 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1500 if (PredTerm->getSuccessor(i) == BB) { 1501 BB->removePredecessor(PredBB, true); 1502 PredTerm->setSuccessor(i, NewBB); 1503 } 1504 1505 // At this point, the IR is fully up to date and consistent. Do a quick scan 1506 // over the new instructions and zap any that are constants or dead. This 1507 // frequently happens because of phi translation. 1508 SimplifyInstructionsInBlock(NewBB, TLI); 1509 1510 // Threaded an edge! 1511 ++NumThreads; 1512 return true; 1513 } 1514 1515 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1516 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1517 /// If we can duplicate the contents of BB up into PredBB do so now, this 1518 /// improves the odds that the branch will be on an analyzable instruction like 1519 /// a compare. 1520 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1521 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1522 assert(!PredBBs.empty() && "Can't handle an empty set"); 1523 1524 // If BB is a loop header, then duplicating this block outside the loop would 1525 // cause us to transform this into an irreducible loop, don't do this. 1526 // See the comments above FindLoopHeaders for justifications and caveats. 1527 if (LoopHeaders.count(BB)) { 1528 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1529 << "' into predecessor block '" << PredBBs[0]->getName() 1530 << "' - it might create an irreducible loop!\n"); 1531 return false; 1532 } 1533 1534 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1535 if (DuplicationCost > BBDupThreshold) { 1536 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1537 << "' - Cost is too high: " << DuplicationCost << "\n"); 1538 return false; 1539 } 1540 1541 // And finally, do it! Start by factoring the predecessors if needed. 1542 BasicBlock *PredBB; 1543 if (PredBBs.size() == 1) 1544 PredBB = PredBBs[0]; 1545 else { 1546 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1547 << " common predecessors.\n"); 1548 PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm"); 1549 } 1550 1551 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1552 // of PredBB. 1553 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1554 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1555 << DuplicationCost << " block is:" << *BB << "\n"); 1556 1557 // Unless PredBB ends with an unconditional branch, split the edge so that we 1558 // can just clone the bits from BB into the end of the new PredBB. 1559 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1560 1561 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 1562 PredBB = SplitEdge(PredBB, BB); 1563 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1564 } 1565 1566 // We are going to have to map operands from the original BB block into the 1567 // PredBB block. Evaluate PHI nodes in BB. 1568 DenseMap<Instruction*, Value*> ValueMapping; 1569 1570 BasicBlock::iterator BI = BB->begin(); 1571 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1572 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1573 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1574 // mapping and using it to remap operands in the cloned instructions. 1575 for (; BI != BB->end(); ++BI) { 1576 Instruction *New = BI->clone(); 1577 1578 // Remap operands to patch up intra-block references. 1579 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1580 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1581 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1582 if (I != ValueMapping.end()) 1583 New->setOperand(i, I->second); 1584 } 1585 1586 // If this instruction can be simplified after the operands are updated, 1587 // just use the simplified value instead. This frequently happens due to 1588 // phi translation. 1589 if (Value *IV = 1590 SimplifyInstruction(New, BB->getModule()->getDataLayout())) { 1591 delete New; 1592 ValueMapping[BI] = IV; 1593 } else { 1594 // Otherwise, insert the new instruction into the block. 1595 New->setName(BI->getName()); 1596 PredBB->getInstList().insert(OldPredBranch, New); 1597 ValueMapping[BI] = New; 1598 } 1599 } 1600 1601 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1602 // add entries to the PHI nodes for branch from PredBB now. 1603 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1604 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1605 ValueMapping); 1606 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1607 ValueMapping); 1608 1609 // If there were values defined in BB that are used outside the block, then we 1610 // now have to update all uses of the value to use either the original value, 1611 // the cloned value, or some PHI derived value. This can require arbitrary 1612 // PHI insertion, of which we are prepared to do, clean these up now. 1613 SSAUpdater SSAUpdate; 1614 SmallVector<Use*, 16> UsesToRename; 1615 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1616 // Scan all uses of this instruction to see if it is used outside of its 1617 // block, and if so, record them in UsesToRename. 1618 for (Use &U : I->uses()) { 1619 Instruction *User = cast<Instruction>(U.getUser()); 1620 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1621 if (UserPN->getIncomingBlock(U) == BB) 1622 continue; 1623 } else if (User->getParent() == BB) 1624 continue; 1625 1626 UsesToRename.push_back(&U); 1627 } 1628 1629 // If there are no uses outside the block, we're done with this instruction. 1630 if (UsesToRename.empty()) 1631 continue; 1632 1633 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1634 1635 // We found a use of I outside of BB. Rename all uses of I that are outside 1636 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1637 // with the two values we know. 1638 SSAUpdate.Initialize(I->getType(), I->getName()); 1639 SSAUpdate.AddAvailableValue(BB, I); 1640 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1641 1642 while (!UsesToRename.empty()) 1643 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1644 DEBUG(dbgs() << "\n"); 1645 } 1646 1647 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1648 // that we nuked. 1649 BB->removePredecessor(PredBB, true); 1650 1651 // Remove the unconditional branch at the end of the PredBB block. 1652 OldPredBranch->eraseFromParent(); 1653 1654 ++NumDupes; 1655 return true; 1656 } 1657 1658 /// TryToUnfoldSelect - Look for blocks of the form 1659 /// bb1: 1660 /// %a = select 1661 /// br bb 1662 /// 1663 /// bb2: 1664 /// %p = phi [%a, %bb] ... 1665 /// %c = icmp %p 1666 /// br i1 %c 1667 /// 1668 /// And expand the select into a branch structure if one of its arms allows %c 1669 /// to be folded. This later enables threading from bb1 over bb2. 1670 bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 1671 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1672 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 1673 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 1674 1675 if (!CondBr || !CondBr->isConditional() || !CondLHS || 1676 CondLHS->getParent() != BB) 1677 return false; 1678 1679 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 1680 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 1681 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 1682 1683 // Look if one of the incoming values is a select in the corresponding 1684 // predecessor. 1685 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 1686 continue; 1687 1688 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 1689 if (!PredTerm || !PredTerm->isUnconditional()) 1690 continue; 1691 1692 // Now check if one of the select values would allow us to constant fold the 1693 // terminator in BB. We don't do the transform if both sides fold, those 1694 // cases will be threaded in any case. 1695 LazyValueInfo::Tristate LHSFolds = 1696 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 1697 CondRHS, Pred, BB, CondCmp); 1698 LazyValueInfo::Tristate RHSFolds = 1699 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 1700 CondRHS, Pred, BB, CondCmp); 1701 if ((LHSFolds != LazyValueInfo::Unknown || 1702 RHSFolds != LazyValueInfo::Unknown) && 1703 LHSFolds != RHSFolds) { 1704 // Expand the select. 1705 // 1706 // Pred -- 1707 // | v 1708 // | NewBB 1709 // | | 1710 // |----- 1711 // v 1712 // BB 1713 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 1714 BB->getParent(), BB); 1715 // Move the unconditional branch to NewBB. 1716 PredTerm->removeFromParent(); 1717 NewBB->getInstList().insert(NewBB->end(), PredTerm); 1718 // Create a conditional branch and update PHI nodes. 1719 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 1720 CondLHS->setIncomingValue(I, SI->getFalseValue()); 1721 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 1722 // The select is now dead. 1723 SI->eraseFromParent(); 1724 1725 // Update any other PHI nodes in BB. 1726 for (BasicBlock::iterator BI = BB->begin(); 1727 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 1728 if (Phi != CondLHS) 1729 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 1730 return true; 1731 } 1732 } 1733 return false; 1734 } 1735