1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/GlobalsModRef.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LazyValueInfo.h" 29 #include "llvm/Analysis/Loads.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include "llvm/Transforms/Utils/SSAUpdater.h" 46 #include <algorithm> 47 #include <memory> 48 using namespace llvm; 49 50 #define DEBUG_TYPE "jump-threading" 51 52 STATISTIC(NumThreads, "Number of jumps threaded"); 53 STATISTIC(NumFolds, "Number of terminators folded"); 54 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 55 56 static cl::opt<unsigned> 57 BBDuplicateThreshold("jump-threading-threshold", 58 cl::desc("Max block size to duplicate for jump threading"), 59 cl::init(6), cl::Hidden); 60 61 static cl::opt<unsigned> 62 ImplicationSearchThreshold( 63 "jump-threading-implication-search-threshold", 64 cl::desc("The number of predecessors to search for a stronger " 65 "condition to use to thread over a weaker condition"), 66 cl::init(3), cl::Hidden); 67 68 namespace { 69 // These are at global scope so static functions can use them too. 70 typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo; 71 typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy; 72 73 // This is used to keep track of what kind of constant we're currently hoping 74 // to find. 75 enum ConstantPreference { 76 WantInteger, 77 WantBlockAddress 78 }; 79 80 /// This pass performs 'jump threading', which looks at blocks that have 81 /// multiple predecessors and multiple successors. If one or more of the 82 /// predecessors of the block can be proven to always jump to one of the 83 /// successors, we forward the edge from the predecessor to the successor by 84 /// duplicating the contents of this block. 85 /// 86 /// An example of when this can occur is code like this: 87 /// 88 /// if () { ... 89 /// X = 4; 90 /// } 91 /// if (X < 3) { 92 /// 93 /// In this case, the unconditional branch at the end of the first if can be 94 /// revectored to the false side of the second if. 95 /// 96 class JumpThreading : public FunctionPass { 97 TargetLibraryInfo *TLI; 98 LazyValueInfo *LVI; 99 std::unique_ptr<BlockFrequencyInfo> BFI; 100 std::unique_ptr<BranchProbabilityInfo> BPI; 101 bool HasProfileData; 102 #ifdef NDEBUG 103 SmallPtrSet<const BasicBlock *, 16> LoopHeaders; 104 #else 105 SmallSet<AssertingVH<const BasicBlock>, 16> LoopHeaders; 106 #endif 107 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; 108 109 unsigned BBDupThreshold; 110 111 // RAII helper for updating the recursion stack. 112 struct RecursionSetRemover { 113 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet; 114 std::pair<Value*, BasicBlock*> ThePair; 115 116 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S, 117 std::pair<Value*, BasicBlock*> P) 118 : TheSet(S), ThePair(P) { } 119 120 ~RecursionSetRemover() { 121 TheSet.erase(ThePair); 122 } 123 }; 124 public: 125 static char ID; // Pass identification 126 JumpThreading(int T = -1) : FunctionPass(ID) { 127 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 128 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 129 } 130 131 bool runOnFunction(Function &F) override; 132 133 void getAnalysisUsage(AnalysisUsage &AU) const override { 134 AU.addRequired<LazyValueInfo>(); 135 AU.addPreserved<LazyValueInfo>(); 136 AU.addPreserved<GlobalsAAWrapperPass>(); 137 AU.addRequired<TargetLibraryInfoWrapperPass>(); 138 } 139 140 void releaseMemory() override { 141 BFI.reset(); 142 BPI.reset(); 143 } 144 145 void FindLoopHeaders(Function &F); 146 bool ProcessBlock(BasicBlock *BB); 147 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 148 BasicBlock *SuccBB); 149 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 150 const SmallVectorImpl<BasicBlock *> &PredBBs); 151 152 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 153 PredValueInfo &Result, 154 ConstantPreference Preference, 155 Instruction *CxtI = nullptr); 156 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 157 ConstantPreference Preference, 158 Instruction *CxtI = nullptr); 159 160 bool ProcessBranchOnPHI(PHINode *PN); 161 bool ProcessBranchOnXOR(BinaryOperator *BO); 162 bool ProcessImpliedCondition(BasicBlock *BB); 163 164 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 165 bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB); 166 bool TryToUnfoldSelectInCurrBB(BasicBlock *BB); 167 168 private: 169 BasicBlock *SplitBlockPreds(BasicBlock *BB, ArrayRef<BasicBlock *> Preds, 170 const char *Suffix); 171 void UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, BasicBlock *BB, 172 BasicBlock *NewBB, BasicBlock *SuccBB); 173 }; 174 } 175 176 char JumpThreading::ID = 0; 177 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 178 "Jump Threading", false, false) 179 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo) 180 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 181 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 182 "Jump Threading", false, false) 183 184 // Public interface to the Jump Threading pass 185 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); } 186 187 /// runOnFunction - Top level algorithm. 188 /// 189 bool JumpThreading::runOnFunction(Function &F) { 190 if (skipOptnoneFunction(F)) 191 return false; 192 193 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 194 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 195 LVI = &getAnalysis<LazyValueInfo>(); 196 BFI.reset(); 197 BPI.reset(); 198 // When profile data is available, we need to update edge weights after 199 // successful jump threading, which requires both BPI and BFI being available. 200 HasProfileData = F.getEntryCount().hasValue(); 201 if (HasProfileData) { 202 LoopInfo LI{DominatorTree(F)}; 203 BPI.reset(new BranchProbabilityInfo(F, LI)); 204 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 205 } 206 207 // Remove unreachable blocks from function as they may result in infinite 208 // loop. We do threading if we found something profitable. Jump threading a 209 // branch can create other opportunities. If these opportunities form a cycle 210 // i.e. if any jump threading is undoing previous threading in the path, then 211 // we will loop forever. We take care of this issue by not jump threading for 212 // back edges. This works for normal cases but not for unreachable blocks as 213 // they may have cycle with no back edge. 214 bool EverChanged = false; 215 EverChanged |= removeUnreachableBlocks(F, LVI); 216 217 FindLoopHeaders(F); 218 219 bool Changed; 220 do { 221 Changed = false; 222 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 223 BasicBlock *BB = &*I; 224 // Thread all of the branches we can over this block. 225 while (ProcessBlock(BB)) 226 Changed = true; 227 228 ++I; 229 230 // If the block is trivially dead, zap it. This eliminates the successor 231 // edges which simplifies the CFG. 232 if (pred_empty(BB) && 233 BB != &BB->getParent()->getEntryBlock()) { 234 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 235 << "' with terminator: " << *BB->getTerminator() << '\n'); 236 LoopHeaders.erase(BB); 237 LVI->eraseBlock(BB); 238 DeleteDeadBlock(BB); 239 Changed = true; 240 continue; 241 } 242 243 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 244 245 // Can't thread an unconditional jump, but if the block is "almost 246 // empty", we can replace uses of it with uses of the successor and make 247 // this dead. 248 if (BI && BI->isUnconditional() && 249 BB != &BB->getParent()->getEntryBlock() && 250 // If the terminator is the only non-phi instruction, try to nuke it. 251 BB->getFirstNonPHIOrDbg()->isTerminator()) { 252 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 253 // block, we have to make sure it isn't in the LoopHeaders set. We 254 // reinsert afterward if needed. 255 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 256 BasicBlock *Succ = BI->getSuccessor(0); 257 258 // FIXME: It is always conservatively correct to drop the info 259 // for a block even if it doesn't get erased. This isn't totally 260 // awesome, but it allows us to use AssertingVH to prevent nasty 261 // dangling pointer issues within LazyValueInfo. 262 LVI->eraseBlock(BB); 263 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 264 Changed = true; 265 // If we deleted BB and BB was the header of a loop, then the 266 // successor is now the header of the loop. 267 BB = Succ; 268 } 269 270 if (ErasedFromLoopHeaders) 271 LoopHeaders.insert(BB); 272 } 273 } 274 EverChanged |= Changed; 275 } while (Changed); 276 277 LoopHeaders.clear(); 278 return EverChanged; 279 } 280 281 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 282 /// thread across it. Stop scanning the block when passing the threshold. 283 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB, 284 unsigned Threshold) { 285 /// Ignore PHI nodes, these will be flattened when duplication happens. 286 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 287 288 // FIXME: THREADING will delete values that are just used to compute the 289 // branch, so they shouldn't count against the duplication cost. 290 291 unsigned Bonus = 0; 292 const TerminatorInst *BBTerm = BB->getTerminator(); 293 // Threading through a switch statement is particularly profitable. If this 294 // block ends in a switch, decrease its cost to make it more likely to happen. 295 if (isa<SwitchInst>(BBTerm)) 296 Bonus = 6; 297 298 // The same holds for indirect branches, but slightly more so. 299 if (isa<IndirectBrInst>(BBTerm)) 300 Bonus = 8; 301 302 // Bump the threshold up so the early exit from the loop doesn't skip the 303 // terminator-based Size adjustment at the end. 304 Threshold += Bonus; 305 306 // Sum up the cost of each instruction until we get to the terminator. Don't 307 // include the terminator because the copy won't include it. 308 unsigned Size = 0; 309 for (; !isa<TerminatorInst>(I); ++I) { 310 311 // Stop scanning the block if we've reached the threshold. 312 if (Size > Threshold) 313 return Size; 314 315 // Debugger intrinsics don't incur code size. 316 if (isa<DbgInfoIntrinsic>(I)) continue; 317 318 // If this is a pointer->pointer bitcast, it is free. 319 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 320 continue; 321 322 // Bail out if this instruction gives back a token type, it is not possible 323 // to duplicate it if it is used outside this BB. 324 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 325 return ~0U; 326 327 // All other instructions count for at least one unit. 328 ++Size; 329 330 // Calls are more expensive. If they are non-intrinsic calls, we model them 331 // as having cost of 4. If they are a non-vector intrinsic, we model them 332 // as having cost of 2 total, and if they are a vector intrinsic, we model 333 // them as having cost 1. 334 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 335 if (CI->cannotDuplicate() || CI->isConvergent()) 336 // Blocks with NoDuplicate are modelled as having infinite cost, so they 337 // are never duplicated. 338 return ~0U; 339 else if (!isa<IntrinsicInst>(CI)) 340 Size += 3; 341 else if (!CI->getType()->isVectorTy()) 342 Size += 1; 343 } 344 } 345 346 return Size > Bonus ? Size - Bonus : 0; 347 } 348 349 /// FindLoopHeaders - We do not want jump threading to turn proper loop 350 /// structures into irreducible loops. Doing this breaks up the loop nesting 351 /// hierarchy and pessimizes later transformations. To prevent this from 352 /// happening, we first have to find the loop headers. Here we approximate this 353 /// by finding targets of backedges in the CFG. 354 /// 355 /// Note that there definitely are cases when we want to allow threading of 356 /// edges across a loop header. For example, threading a jump from outside the 357 /// loop (the preheader) to an exit block of the loop is definitely profitable. 358 /// It is also almost always profitable to thread backedges from within the loop 359 /// to exit blocks, and is often profitable to thread backedges to other blocks 360 /// within the loop (forming a nested loop). This simple analysis is not rich 361 /// enough to track all of these properties and keep it up-to-date as the CFG 362 /// mutates, so we don't allow any of these transformations. 363 /// 364 void JumpThreading::FindLoopHeaders(Function &F) { 365 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 366 FindFunctionBackedges(F, Edges); 367 368 for (const auto &Edge : Edges) 369 LoopHeaders.insert(Edge.second); 370 } 371 372 /// getKnownConstant - Helper method to determine if we can thread over a 373 /// terminator with the given value as its condition, and if so what value to 374 /// use for that. What kind of value this is depends on whether we want an 375 /// integer or a block address, but an undef is always accepted. 376 /// Returns null if Val is null or not an appropriate constant. 377 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 378 if (!Val) 379 return nullptr; 380 381 // Undef is "known" enough. 382 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 383 return U; 384 385 if (Preference == WantBlockAddress) 386 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 387 388 return dyn_cast<ConstantInt>(Val); 389 } 390 391 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 392 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 393 /// in any of our predecessors. If so, return the known list of value and pred 394 /// BB in the result vector. 395 /// 396 /// This returns true if there were any known values. 397 /// 398 bool JumpThreading:: 399 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, 400 ConstantPreference Preference, 401 Instruction *CxtI) { 402 // This method walks up use-def chains recursively. Because of this, we could 403 // get into an infinite loop going around loops in the use-def chain. To 404 // prevent this, keep track of what (value, block) pairs we've already visited 405 // and terminate the search if we loop back to them 406 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 407 return false; 408 409 // An RAII help to remove this pair from the recursion set once the recursion 410 // stack pops back out again. 411 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 412 413 // If V is a constant, then it is known in all predecessors. 414 if (Constant *KC = getKnownConstant(V, Preference)) { 415 for (BasicBlock *Pred : predecessors(BB)) 416 Result.push_back(std::make_pair(KC, Pred)); 417 418 return true; 419 } 420 421 // If V is a non-instruction value, or an instruction in a different block, 422 // then it can't be derived from a PHI. 423 Instruction *I = dyn_cast<Instruction>(V); 424 if (!I || I->getParent() != BB) { 425 426 // Okay, if this is a live-in value, see if it has a known value at the end 427 // of any of our predecessors. 428 // 429 // FIXME: This should be an edge property, not a block end property. 430 /// TODO: Per PR2563, we could infer value range information about a 431 /// predecessor based on its terminator. 432 // 433 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 434 // "I" is a non-local compare-with-a-constant instruction. This would be 435 // able to handle value inequalities better, for example if the compare is 436 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 437 // Perhaps getConstantOnEdge should be smart enough to do this? 438 439 for (BasicBlock *P : predecessors(BB)) { 440 // If the value is known by LazyValueInfo to be a constant in a 441 // predecessor, use that information to try to thread this block. 442 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 443 if (Constant *KC = getKnownConstant(PredCst, Preference)) 444 Result.push_back(std::make_pair(KC, P)); 445 } 446 447 return !Result.empty(); 448 } 449 450 /// If I is a PHI node, then we know the incoming values for any constants. 451 if (PHINode *PN = dyn_cast<PHINode>(I)) { 452 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 453 Value *InVal = PN->getIncomingValue(i); 454 if (Constant *KC = getKnownConstant(InVal, Preference)) { 455 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 456 } else { 457 Constant *CI = LVI->getConstantOnEdge(InVal, 458 PN->getIncomingBlock(i), 459 BB, CxtI); 460 if (Constant *KC = getKnownConstant(CI, Preference)) 461 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 462 } 463 } 464 465 return !Result.empty(); 466 } 467 468 PredValueInfoTy LHSVals, RHSVals; 469 470 // Handle some boolean conditions. 471 if (I->getType()->getPrimitiveSizeInBits() == 1) { 472 assert(Preference == WantInteger && "One-bit non-integer type?"); 473 // X | true -> true 474 // X & false -> false 475 if (I->getOpcode() == Instruction::Or || 476 I->getOpcode() == Instruction::And) { 477 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 478 WantInteger, CxtI); 479 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 480 WantInteger, CxtI); 481 482 if (LHSVals.empty() && RHSVals.empty()) 483 return false; 484 485 ConstantInt *InterestingVal; 486 if (I->getOpcode() == Instruction::Or) 487 InterestingVal = ConstantInt::getTrue(I->getContext()); 488 else 489 InterestingVal = ConstantInt::getFalse(I->getContext()); 490 491 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 492 493 // Scan for the sentinel. If we find an undef, force it to the 494 // interesting value: x|undef -> true and x&undef -> false. 495 for (const auto &LHSVal : LHSVals) 496 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 497 Result.emplace_back(InterestingVal, LHSVal.second); 498 LHSKnownBBs.insert(LHSVal.second); 499 } 500 for (const auto &RHSVal : RHSVals) 501 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 502 // If we already inferred a value for this block on the LHS, don't 503 // re-add it. 504 if (!LHSKnownBBs.count(RHSVal.second)) 505 Result.emplace_back(InterestingVal, RHSVal.second); 506 } 507 508 return !Result.empty(); 509 } 510 511 // Handle the NOT form of XOR. 512 if (I->getOpcode() == Instruction::Xor && 513 isa<ConstantInt>(I->getOperand(1)) && 514 cast<ConstantInt>(I->getOperand(1))->isOne()) { 515 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 516 WantInteger, CxtI); 517 if (Result.empty()) 518 return false; 519 520 // Invert the known values. 521 for (auto &R : Result) 522 R.first = ConstantExpr::getNot(R.first); 523 524 return true; 525 } 526 527 // Try to simplify some other binary operator values. 528 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 529 assert(Preference != WantBlockAddress 530 && "A binary operator creating a block address?"); 531 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 532 PredValueInfoTy LHSVals; 533 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 534 WantInteger, CxtI); 535 536 // Try to use constant folding to simplify the binary operator. 537 for (const auto &LHSVal : LHSVals) { 538 Constant *V = LHSVal.first; 539 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 540 541 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 542 Result.push_back(std::make_pair(KC, LHSVal.second)); 543 } 544 } 545 546 return !Result.empty(); 547 } 548 549 // Handle compare with phi operand, where the PHI is defined in this block. 550 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 551 assert(Preference == WantInteger && "Compares only produce integers"); 552 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 553 if (PN && PN->getParent() == BB) { 554 const DataLayout &DL = PN->getModule()->getDataLayout(); 555 // We can do this simplification if any comparisons fold to true or false. 556 // See if any do. 557 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 558 BasicBlock *PredBB = PN->getIncomingBlock(i); 559 Value *LHS = PN->getIncomingValue(i); 560 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 561 562 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL); 563 if (!Res) { 564 if (!isa<Constant>(RHS)) 565 continue; 566 567 LazyValueInfo::Tristate 568 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 569 cast<Constant>(RHS), PredBB, BB, 570 CxtI ? CxtI : Cmp); 571 if (ResT == LazyValueInfo::Unknown) 572 continue; 573 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 574 } 575 576 if (Constant *KC = getKnownConstant(Res, WantInteger)) 577 Result.push_back(std::make_pair(KC, PredBB)); 578 } 579 580 return !Result.empty(); 581 } 582 583 // If comparing a live-in value against a constant, see if we know the 584 // live-in value on any predecessors. 585 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 586 if (!isa<Instruction>(Cmp->getOperand(0)) || 587 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 588 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 589 590 for (BasicBlock *P : predecessors(BB)) { 591 // If the value is known by LazyValueInfo to be a constant in a 592 // predecessor, use that information to try to thread this block. 593 LazyValueInfo::Tristate Res = 594 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 595 RHSCst, P, BB, CxtI ? CxtI : Cmp); 596 if (Res == LazyValueInfo::Unknown) 597 continue; 598 599 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 600 Result.push_back(std::make_pair(ResC, P)); 601 } 602 603 return !Result.empty(); 604 } 605 606 // Try to find a constant value for the LHS of a comparison, 607 // and evaluate it statically if we can. 608 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 609 PredValueInfoTy LHSVals; 610 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 611 WantInteger, CxtI); 612 613 for (const auto &LHSVal : LHSVals) { 614 Constant *V = LHSVal.first; 615 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 616 V, CmpConst); 617 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 618 Result.push_back(std::make_pair(KC, LHSVal.second)); 619 } 620 621 return !Result.empty(); 622 } 623 } 624 } 625 626 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 627 // Handle select instructions where at least one operand is a known constant 628 // and we can figure out the condition value for any predecessor block. 629 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 630 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 631 PredValueInfoTy Conds; 632 if ((TrueVal || FalseVal) && 633 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 634 WantInteger, CxtI)) { 635 for (auto &C : Conds) { 636 Constant *Cond = C.first; 637 638 // Figure out what value to use for the condition. 639 bool KnownCond; 640 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 641 // A known boolean. 642 KnownCond = CI->isOne(); 643 } else { 644 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 645 // Either operand will do, so be sure to pick the one that's a known 646 // constant. 647 // FIXME: Do this more cleverly if both values are known constants? 648 KnownCond = (TrueVal != nullptr); 649 } 650 651 // See if the select has a known constant value for this predecessor. 652 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 653 Result.push_back(std::make_pair(Val, C.second)); 654 } 655 656 return !Result.empty(); 657 } 658 } 659 660 // If all else fails, see if LVI can figure out a constant value for us. 661 Constant *CI = LVI->getConstant(V, BB, CxtI); 662 if (Constant *KC = getKnownConstant(CI, Preference)) { 663 for (BasicBlock *Pred : predecessors(BB)) 664 Result.push_back(std::make_pair(KC, Pred)); 665 } 666 667 return !Result.empty(); 668 } 669 670 671 672 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 673 /// in an undefined jump, decide which block is best to revector to. 674 /// 675 /// Since we can pick an arbitrary destination, we pick the successor with the 676 /// fewest predecessors. This should reduce the in-degree of the others. 677 /// 678 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 679 TerminatorInst *BBTerm = BB->getTerminator(); 680 unsigned MinSucc = 0; 681 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 682 // Compute the successor with the minimum number of predecessors. 683 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 684 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 685 TestBB = BBTerm->getSuccessor(i); 686 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 687 if (NumPreds < MinNumPreds) { 688 MinSucc = i; 689 MinNumPreds = NumPreds; 690 } 691 } 692 693 return MinSucc; 694 } 695 696 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 697 if (!BB->hasAddressTaken()) return false; 698 699 // If the block has its address taken, it may be a tree of dead constants 700 // hanging off of it. These shouldn't keep the block alive. 701 BlockAddress *BA = BlockAddress::get(BB); 702 BA->removeDeadConstantUsers(); 703 return !BA->use_empty(); 704 } 705 706 /// ProcessBlock - If there are any predecessors whose control can be threaded 707 /// through to a successor, transform them now. 708 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 709 // If the block is trivially dead, just return and let the caller nuke it. 710 // This simplifies other transformations. 711 if (pred_empty(BB) && 712 BB != &BB->getParent()->getEntryBlock()) 713 return false; 714 715 // If this block has a single predecessor, and if that pred has a single 716 // successor, merge the blocks. This encourages recursive jump threading 717 // because now the condition in this block can be threaded through 718 // predecessors of our predecessor block. 719 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 720 const TerminatorInst *TI = SinglePred->getTerminator(); 721 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 722 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 723 // If SinglePred was a loop header, BB becomes one. 724 if (LoopHeaders.erase(SinglePred)) 725 LoopHeaders.insert(BB); 726 727 LVI->eraseBlock(SinglePred); 728 MergeBasicBlockIntoOnlyPred(BB); 729 730 return true; 731 } 732 } 733 734 if (TryToUnfoldSelectInCurrBB(BB)) 735 return true; 736 737 // What kind of constant we're looking for. 738 ConstantPreference Preference = WantInteger; 739 740 // Look to see if the terminator is a conditional branch, switch or indirect 741 // branch, if not we can't thread it. 742 Value *Condition; 743 Instruction *Terminator = BB->getTerminator(); 744 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 745 // Can't thread an unconditional jump. 746 if (BI->isUnconditional()) return false; 747 Condition = BI->getCondition(); 748 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 749 Condition = SI->getCondition(); 750 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 751 // Can't thread indirect branch with no successors. 752 if (IB->getNumSuccessors() == 0) return false; 753 Condition = IB->getAddress()->stripPointerCasts(); 754 Preference = WantBlockAddress; 755 } else { 756 return false; // Must be an invoke. 757 } 758 759 // Run constant folding to see if we can reduce the condition to a simple 760 // constant. 761 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 762 Value *SimpleVal = 763 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 764 if (SimpleVal) { 765 I->replaceAllUsesWith(SimpleVal); 766 I->eraseFromParent(); 767 Condition = SimpleVal; 768 } 769 } 770 771 // If the terminator is branching on an undef, we can pick any of the 772 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 773 if (isa<UndefValue>(Condition)) { 774 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 775 776 // Fold the branch/switch. 777 TerminatorInst *BBTerm = BB->getTerminator(); 778 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 779 if (i == BestSucc) continue; 780 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 781 } 782 783 DEBUG(dbgs() << " In block '" << BB->getName() 784 << "' folding undef terminator: " << *BBTerm << '\n'); 785 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 786 BBTerm->eraseFromParent(); 787 return true; 788 } 789 790 // If the terminator of this block is branching on a constant, simplify the 791 // terminator to an unconditional branch. This can occur due to threading in 792 // other blocks. 793 if (getKnownConstant(Condition, Preference)) { 794 DEBUG(dbgs() << " In block '" << BB->getName() 795 << "' folding terminator: " << *BB->getTerminator() << '\n'); 796 ++NumFolds; 797 ConstantFoldTerminator(BB, true); 798 return true; 799 } 800 801 Instruction *CondInst = dyn_cast<Instruction>(Condition); 802 803 // All the rest of our checks depend on the condition being an instruction. 804 if (!CondInst) { 805 // FIXME: Unify this with code below. 806 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 807 return true; 808 return false; 809 } 810 811 812 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 813 // If we're branching on a conditional, LVI might be able to determine 814 // it's value at the branch instruction. We only handle comparisons 815 // against a constant at this time. 816 // TODO: This should be extended to handle switches as well. 817 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 818 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 819 if (CondBr && CondConst && CondBr->isConditional()) { 820 LazyValueInfo::Tristate Ret = 821 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 822 CondConst, CondBr); 823 if (Ret != LazyValueInfo::Unknown) { 824 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 825 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 826 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 827 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 828 CondBr->eraseFromParent(); 829 if (CondCmp->use_empty()) 830 CondCmp->eraseFromParent(); 831 else if (CondCmp->getParent() == BB) { 832 // If the fact we just learned is true for all uses of the 833 // condition, replace it with a constant value 834 auto *CI = Ret == LazyValueInfo::True ? 835 ConstantInt::getTrue(CondCmp->getType()) : 836 ConstantInt::getFalse(CondCmp->getType()); 837 CondCmp->replaceAllUsesWith(CI); 838 CondCmp->eraseFromParent(); 839 } 840 return true; 841 } 842 } 843 844 if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB)) 845 return true; 846 } 847 848 // Check for some cases that are worth simplifying. Right now we want to look 849 // for loads that are used by a switch or by the condition for the branch. If 850 // we see one, check to see if it's partially redundant. If so, insert a PHI 851 // which can then be used to thread the values. 852 // 853 Value *SimplifyValue = CondInst; 854 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 855 if (isa<Constant>(CondCmp->getOperand(1))) 856 SimplifyValue = CondCmp->getOperand(0); 857 858 // TODO: There are other places where load PRE would be profitable, such as 859 // more complex comparisons. 860 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 861 if (SimplifyPartiallyRedundantLoad(LI)) 862 return true; 863 864 865 // Handle a variety of cases where we are branching on something derived from 866 // a PHI node in the current block. If we can prove that any predecessors 867 // compute a predictable value based on a PHI node, thread those predecessors. 868 // 869 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 870 return true; 871 872 // If this is an otherwise-unfoldable branch on a phi node in the current 873 // block, see if we can simplify. 874 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 875 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 876 return ProcessBranchOnPHI(PN); 877 878 879 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 880 if (CondInst->getOpcode() == Instruction::Xor && 881 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 882 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 883 884 // Search for a stronger dominating condition that can be used to simplify a 885 // conditional branch leaving BB. 886 if (ProcessImpliedCondition(BB)) 887 return true; 888 889 return false; 890 } 891 892 bool JumpThreading::ProcessImpliedCondition(BasicBlock *BB) { 893 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 894 if (!BI || !BI->isConditional()) 895 return false; 896 897 Value *Cond = BI->getCondition(); 898 BasicBlock *CurrentBB = BB; 899 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 900 unsigned Iter = 0; 901 902 auto &DL = BB->getModule()->getDataLayout(); 903 904 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 905 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 906 if (!PBI || !PBI->isConditional() || PBI->getSuccessor(0) != CurrentBB) 907 return false; 908 909 if (isImpliedCondition(PBI->getCondition(), Cond, DL)) { 910 BI->getSuccessor(1)->removePredecessor(BB); 911 BranchInst::Create(BI->getSuccessor(0), BI); 912 BI->eraseFromParent(); 913 return true; 914 } 915 CurrentBB = CurrentPred; 916 CurrentPred = CurrentBB->getSinglePredecessor(); 917 } 918 919 return false; 920 } 921 922 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 923 /// load instruction, eliminate it by replacing it with a PHI node. This is an 924 /// important optimization that encourages jump threading, and needs to be run 925 /// interlaced with other jump threading tasks. 926 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 927 // Don't hack volatile/atomic loads. 928 if (!LI->isSimple()) return false; 929 930 // If the load is defined in a block with exactly one predecessor, it can't be 931 // partially redundant. 932 BasicBlock *LoadBB = LI->getParent(); 933 if (LoadBB->getSinglePredecessor()) 934 return false; 935 936 // If the load is defined in an EH pad, it can't be partially redundant, 937 // because the edges between the invoke and the EH pad cannot have other 938 // instructions between them. 939 if (LoadBB->isEHPad()) 940 return false; 941 942 Value *LoadedPtr = LI->getOperand(0); 943 944 // If the loaded operand is defined in the LoadBB, it can't be available. 945 // TODO: Could do simple PHI translation, that would be fun :) 946 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 947 if (PtrOp->getParent() == LoadBB) 948 return false; 949 950 // Scan a few instructions up from the load, to see if it is obviously live at 951 // the entry to its block. 952 BasicBlock::iterator BBIt(LI); 953 954 if (Value *AvailableVal = 955 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, DefMaxInstsToScan)) { 956 // If the value of the load is locally available within the block, just use 957 // it. This frequently occurs for reg2mem'd allocas. 958 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 959 960 // If the returned value is the load itself, replace with an undef. This can 961 // only happen in dead loops. 962 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 963 if (AvailableVal->getType() != LI->getType()) 964 AvailableVal = 965 CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI); 966 LI->replaceAllUsesWith(AvailableVal); 967 LI->eraseFromParent(); 968 return true; 969 } 970 971 // Otherwise, if we scanned the whole block and got to the top of the block, 972 // we know the block is locally transparent to the load. If not, something 973 // might clobber its value. 974 if (BBIt != LoadBB->begin()) 975 return false; 976 977 // If all of the loads and stores that feed the value have the same AA tags, 978 // then we can propagate them onto any newly inserted loads. 979 AAMDNodes AATags; 980 LI->getAAMetadata(AATags); 981 982 SmallPtrSet<BasicBlock*, 8> PredsScanned; 983 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 984 AvailablePredsTy AvailablePreds; 985 BasicBlock *OneUnavailablePred = nullptr; 986 987 // If we got here, the loaded value is transparent through to the start of the 988 // block. Check to see if it is available in any of the predecessor blocks. 989 for (BasicBlock *PredBB : predecessors(LoadBB)) { 990 // If we already scanned this predecessor, skip it. 991 if (!PredsScanned.insert(PredBB).second) 992 continue; 993 994 // Scan the predecessor to see if the value is available in the pred. 995 BBIt = PredBB->end(); 996 AAMDNodes ThisAATags; 997 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 998 DefMaxInstsToScan, 999 nullptr, &ThisAATags); 1000 if (!PredAvailable) { 1001 OneUnavailablePred = PredBB; 1002 continue; 1003 } 1004 1005 // If AA tags disagree or are not present, forget about them. 1006 if (AATags != ThisAATags) AATags = AAMDNodes(); 1007 1008 // If so, this load is partially redundant. Remember this info so that we 1009 // can create a PHI node. 1010 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1011 } 1012 1013 // If the loaded value isn't available in any predecessor, it isn't partially 1014 // redundant. 1015 if (AvailablePreds.empty()) return false; 1016 1017 // Okay, the loaded value is available in at least one (and maybe all!) 1018 // predecessors. If the value is unavailable in more than one unique 1019 // predecessor, we want to insert a merge block for those common predecessors. 1020 // This ensures that we only have to insert one reload, thus not increasing 1021 // code size. 1022 BasicBlock *UnavailablePred = nullptr; 1023 1024 // If there is exactly one predecessor where the value is unavailable, the 1025 // already computed 'OneUnavailablePred' block is it. If it ends in an 1026 // unconditional branch, we know that it isn't a critical edge. 1027 if (PredsScanned.size() == AvailablePreds.size()+1 && 1028 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1029 UnavailablePred = OneUnavailablePred; 1030 } else if (PredsScanned.size() != AvailablePreds.size()) { 1031 // Otherwise, we had multiple unavailable predecessors or we had a critical 1032 // edge from the one. 1033 SmallVector<BasicBlock*, 8> PredsToSplit; 1034 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1035 1036 for (const auto &AvailablePred : AvailablePreds) 1037 AvailablePredSet.insert(AvailablePred.first); 1038 1039 // Add all the unavailable predecessors to the PredsToSplit list. 1040 for (BasicBlock *P : predecessors(LoadBB)) { 1041 // If the predecessor is an indirect goto, we can't split the edge. 1042 if (isa<IndirectBrInst>(P->getTerminator())) 1043 return false; 1044 1045 if (!AvailablePredSet.count(P)) 1046 PredsToSplit.push_back(P); 1047 } 1048 1049 // Split them out to their own block. 1050 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1051 } 1052 1053 // If the value isn't available in all predecessors, then there will be 1054 // exactly one where it isn't available. Insert a load on that edge and add 1055 // it to the AvailablePreds list. 1056 if (UnavailablePred) { 1057 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1058 "Can't handle critical edge here!"); 1059 LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 1060 LI->getAlignment(), 1061 UnavailablePred->getTerminator()); 1062 NewVal->setDebugLoc(LI->getDebugLoc()); 1063 if (AATags) 1064 NewVal->setAAMetadata(AATags); 1065 1066 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1067 } 1068 1069 // Now we know that each predecessor of this block has a value in 1070 // AvailablePreds, sort them for efficient access as we're walking the preds. 1071 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1072 1073 // Create a PHI node at the start of the block for the PRE'd load value. 1074 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1075 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 1076 &LoadBB->front()); 1077 PN->takeName(LI); 1078 PN->setDebugLoc(LI->getDebugLoc()); 1079 1080 // Insert new entries into the PHI for each predecessor. A single block may 1081 // have multiple entries here. 1082 for (pred_iterator PI = PB; PI != PE; ++PI) { 1083 BasicBlock *P = *PI; 1084 AvailablePredsTy::iterator I = 1085 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1086 std::make_pair(P, (Value*)nullptr)); 1087 1088 assert(I != AvailablePreds.end() && I->first == P && 1089 "Didn't find entry for predecessor!"); 1090 1091 // If we have an available predecessor but it requires casting, insert the 1092 // cast in the predecessor and use the cast. Note that we have to update the 1093 // AvailablePreds vector as we go so that all of the PHI entries for this 1094 // predecessor use the same bitcast. 1095 Value *&PredV = I->second; 1096 if (PredV->getType() != LI->getType()) 1097 PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "", 1098 P->getTerminator()); 1099 1100 PN->addIncoming(PredV, I->first); 1101 } 1102 1103 //cerr << "PRE: " << *LI << *PN << "\n"; 1104 1105 LI->replaceAllUsesWith(PN); 1106 LI->eraseFromParent(); 1107 1108 return true; 1109 } 1110 1111 /// FindMostPopularDest - The specified list contains multiple possible 1112 /// threadable destinations. Pick the one that occurs the most frequently in 1113 /// the list. 1114 static BasicBlock * 1115 FindMostPopularDest(BasicBlock *BB, 1116 const SmallVectorImpl<std::pair<BasicBlock*, 1117 BasicBlock*> > &PredToDestList) { 1118 assert(!PredToDestList.empty()); 1119 1120 // Determine popularity. If there are multiple possible destinations, we 1121 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1122 // blocks with known and real destinations to threading undef. We'll handle 1123 // them later if interesting. 1124 DenseMap<BasicBlock*, unsigned> DestPopularity; 1125 for (const auto &PredToDest : PredToDestList) 1126 if (PredToDest.second) 1127 DestPopularity[PredToDest.second]++; 1128 1129 // Find the most popular dest. 1130 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1131 BasicBlock *MostPopularDest = DPI->first; 1132 unsigned Popularity = DPI->second; 1133 SmallVector<BasicBlock*, 4> SamePopularity; 1134 1135 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1136 // If the popularity of this entry isn't higher than the popularity we've 1137 // seen so far, ignore it. 1138 if (DPI->second < Popularity) 1139 ; // ignore. 1140 else if (DPI->second == Popularity) { 1141 // If it is the same as what we've seen so far, keep track of it. 1142 SamePopularity.push_back(DPI->first); 1143 } else { 1144 // If it is more popular, remember it. 1145 SamePopularity.clear(); 1146 MostPopularDest = DPI->first; 1147 Popularity = DPI->second; 1148 } 1149 } 1150 1151 // Okay, now we know the most popular destination. If there is more than one 1152 // destination, we need to determine one. This is arbitrary, but we need 1153 // to make a deterministic decision. Pick the first one that appears in the 1154 // successor list. 1155 if (!SamePopularity.empty()) { 1156 SamePopularity.push_back(MostPopularDest); 1157 TerminatorInst *TI = BB->getTerminator(); 1158 for (unsigned i = 0; ; ++i) { 1159 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1160 1161 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1162 TI->getSuccessor(i)) == SamePopularity.end()) 1163 continue; 1164 1165 MostPopularDest = TI->getSuccessor(i); 1166 break; 1167 } 1168 } 1169 1170 // Okay, we have finally picked the most popular destination. 1171 return MostPopularDest; 1172 } 1173 1174 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1175 ConstantPreference Preference, 1176 Instruction *CxtI) { 1177 // If threading this would thread across a loop header, don't even try to 1178 // thread the edge. 1179 if (LoopHeaders.count(BB)) 1180 return false; 1181 1182 PredValueInfoTy PredValues; 1183 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1184 return false; 1185 1186 assert(!PredValues.empty() && 1187 "ComputeValueKnownInPredecessors returned true with no values"); 1188 1189 DEBUG(dbgs() << "IN BB: " << *BB; 1190 for (const auto &PredValue : PredValues) { 1191 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1192 << *PredValue.first 1193 << " for pred '" << PredValue.second->getName() << "'.\n"; 1194 }); 1195 1196 // Decide what we want to thread through. Convert our list of known values to 1197 // a list of known destinations for each pred. This also discards duplicate 1198 // predecessors and keeps track of the undefined inputs (which are represented 1199 // as a null dest in the PredToDestList). 1200 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1201 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1202 1203 BasicBlock *OnlyDest = nullptr; 1204 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1205 1206 for (const auto &PredValue : PredValues) { 1207 BasicBlock *Pred = PredValue.second; 1208 if (!SeenPreds.insert(Pred).second) 1209 continue; // Duplicate predecessor entry. 1210 1211 // If the predecessor ends with an indirect goto, we can't change its 1212 // destination. 1213 if (isa<IndirectBrInst>(Pred->getTerminator())) 1214 continue; 1215 1216 Constant *Val = PredValue.first; 1217 1218 BasicBlock *DestBB; 1219 if (isa<UndefValue>(Val)) 1220 DestBB = nullptr; 1221 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1222 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1223 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1224 DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor(); 1225 } else { 1226 assert(isa<IndirectBrInst>(BB->getTerminator()) 1227 && "Unexpected terminator"); 1228 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1229 } 1230 1231 // If we have exactly one destination, remember it for efficiency below. 1232 if (PredToDestList.empty()) 1233 OnlyDest = DestBB; 1234 else if (OnlyDest != DestBB) 1235 OnlyDest = MultipleDestSentinel; 1236 1237 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1238 } 1239 1240 // If all edges were unthreadable, we fail. 1241 if (PredToDestList.empty()) 1242 return false; 1243 1244 // Determine which is the most common successor. If we have many inputs and 1245 // this block is a switch, we want to start by threading the batch that goes 1246 // to the most popular destination first. If we only know about one 1247 // threadable destination (the common case) we can avoid this. 1248 BasicBlock *MostPopularDest = OnlyDest; 1249 1250 if (MostPopularDest == MultipleDestSentinel) 1251 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1252 1253 // Now that we know what the most popular destination is, factor all 1254 // predecessors that will jump to it into a single predecessor. 1255 SmallVector<BasicBlock*, 16> PredsToFactor; 1256 for (const auto &PredToDest : PredToDestList) 1257 if (PredToDest.second == MostPopularDest) { 1258 BasicBlock *Pred = PredToDest.first; 1259 1260 // This predecessor may be a switch or something else that has multiple 1261 // edges to the block. Factor each of these edges by listing them 1262 // according to # occurrences in PredsToFactor. 1263 for (BasicBlock *Succ : successors(Pred)) 1264 if (Succ == BB) 1265 PredsToFactor.push_back(Pred); 1266 } 1267 1268 // If the threadable edges are branching on an undefined value, we get to pick 1269 // the destination that these predecessors should get to. 1270 if (!MostPopularDest) 1271 MostPopularDest = BB->getTerminator()-> 1272 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1273 1274 // Ok, try to thread it! 1275 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1276 } 1277 1278 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1279 /// a PHI node in the current block. See if there are any simplifications we 1280 /// can do based on inputs to the phi node. 1281 /// 1282 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1283 BasicBlock *BB = PN->getParent(); 1284 1285 // TODO: We could make use of this to do it once for blocks with common PHI 1286 // values. 1287 SmallVector<BasicBlock*, 1> PredBBs; 1288 PredBBs.resize(1); 1289 1290 // If any of the predecessor blocks end in an unconditional branch, we can 1291 // *duplicate* the conditional branch into that block in order to further 1292 // encourage jump threading and to eliminate cases where we have branch on a 1293 // phi of an icmp (branch on icmp is much better). 1294 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1295 BasicBlock *PredBB = PN->getIncomingBlock(i); 1296 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1297 if (PredBr->isUnconditional()) { 1298 PredBBs[0] = PredBB; 1299 // Try to duplicate BB into PredBB. 1300 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1301 return true; 1302 } 1303 } 1304 1305 return false; 1306 } 1307 1308 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1309 /// a xor instruction in the current block. See if there are any 1310 /// simplifications we can do based on inputs to the xor. 1311 /// 1312 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1313 BasicBlock *BB = BO->getParent(); 1314 1315 // If either the LHS or RHS of the xor is a constant, don't do this 1316 // optimization. 1317 if (isa<ConstantInt>(BO->getOperand(0)) || 1318 isa<ConstantInt>(BO->getOperand(1))) 1319 return false; 1320 1321 // If the first instruction in BB isn't a phi, we won't be able to infer 1322 // anything special about any particular predecessor. 1323 if (!isa<PHINode>(BB->front())) 1324 return false; 1325 1326 // If we have a xor as the branch input to this block, and we know that the 1327 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1328 // the condition into the predecessor and fix that value to true, saving some 1329 // logical ops on that path and encouraging other paths to simplify. 1330 // 1331 // This copies something like this: 1332 // 1333 // BB: 1334 // %X = phi i1 [1], [%X'] 1335 // %Y = icmp eq i32 %A, %B 1336 // %Z = xor i1 %X, %Y 1337 // br i1 %Z, ... 1338 // 1339 // Into: 1340 // BB': 1341 // %Y = icmp ne i32 %A, %B 1342 // br i1 %Y, ... 1343 1344 PredValueInfoTy XorOpValues; 1345 bool isLHS = true; 1346 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1347 WantInteger, BO)) { 1348 assert(XorOpValues.empty()); 1349 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1350 WantInteger, BO)) 1351 return false; 1352 isLHS = false; 1353 } 1354 1355 assert(!XorOpValues.empty() && 1356 "ComputeValueKnownInPredecessors returned true with no values"); 1357 1358 // Scan the information to see which is most popular: true or false. The 1359 // predecessors can be of the set true, false, or undef. 1360 unsigned NumTrue = 0, NumFalse = 0; 1361 for (const auto &XorOpValue : XorOpValues) { 1362 if (isa<UndefValue>(XorOpValue.first)) 1363 // Ignore undefs for the count. 1364 continue; 1365 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1366 ++NumFalse; 1367 else 1368 ++NumTrue; 1369 } 1370 1371 // Determine which value to split on, true, false, or undef if neither. 1372 ConstantInt *SplitVal = nullptr; 1373 if (NumTrue > NumFalse) 1374 SplitVal = ConstantInt::getTrue(BB->getContext()); 1375 else if (NumTrue != 0 || NumFalse != 0) 1376 SplitVal = ConstantInt::getFalse(BB->getContext()); 1377 1378 // Collect all of the blocks that this can be folded into so that we can 1379 // factor this once and clone it once. 1380 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1381 for (const auto &XorOpValue : XorOpValues) { 1382 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1383 continue; 1384 1385 BlocksToFoldInto.push_back(XorOpValue.second); 1386 } 1387 1388 // If we inferred a value for all of the predecessors, then duplication won't 1389 // help us. However, we can just replace the LHS or RHS with the constant. 1390 if (BlocksToFoldInto.size() == 1391 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1392 if (!SplitVal) { 1393 // If all preds provide undef, just nuke the xor, because it is undef too. 1394 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1395 BO->eraseFromParent(); 1396 } else if (SplitVal->isZero()) { 1397 // If all preds provide 0, replace the xor with the other input. 1398 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1399 BO->eraseFromParent(); 1400 } else { 1401 // If all preds provide 1, set the computed value to 1. 1402 BO->setOperand(!isLHS, SplitVal); 1403 } 1404 1405 return true; 1406 } 1407 1408 // Try to duplicate BB into PredBB. 1409 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1410 } 1411 1412 1413 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1414 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1415 /// NewPred using the entries from OldPred (suitably mapped). 1416 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1417 BasicBlock *OldPred, 1418 BasicBlock *NewPred, 1419 DenseMap<Instruction*, Value*> &ValueMap) { 1420 for (BasicBlock::iterator PNI = PHIBB->begin(); 1421 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1422 // Ok, we have a PHI node. Figure out what the incoming value was for the 1423 // DestBlock. 1424 Value *IV = PN->getIncomingValueForBlock(OldPred); 1425 1426 // Remap the value if necessary. 1427 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1428 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1429 if (I != ValueMap.end()) 1430 IV = I->second; 1431 } 1432 1433 PN->addIncoming(IV, NewPred); 1434 } 1435 } 1436 1437 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1438 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1439 /// across BB. Transform the IR to reflect this change. 1440 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1441 const SmallVectorImpl<BasicBlock*> &PredBBs, 1442 BasicBlock *SuccBB) { 1443 // If threading to the same block as we come from, we would infinite loop. 1444 if (SuccBB == BB) { 1445 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1446 << "' - would thread to self!\n"); 1447 return false; 1448 } 1449 1450 // If threading this would thread across a loop header, don't thread the edge. 1451 // See the comments above FindLoopHeaders for justifications and caveats. 1452 if (LoopHeaders.count(BB)) { 1453 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1454 << "' to dest BB '" << SuccBB->getName() 1455 << "' - it might create an irreducible loop!\n"); 1456 return false; 1457 } 1458 1459 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1460 if (JumpThreadCost > BBDupThreshold) { 1461 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1462 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1463 return false; 1464 } 1465 1466 // And finally, do it! Start by factoring the predecessors if needed. 1467 BasicBlock *PredBB; 1468 if (PredBBs.size() == 1) 1469 PredBB = PredBBs[0]; 1470 else { 1471 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1472 << " common predecessors.\n"); 1473 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1474 } 1475 1476 // And finally, do it! 1477 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1478 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1479 << ", across block:\n " 1480 << *BB << "\n"); 1481 1482 LVI->threadEdge(PredBB, BB, SuccBB); 1483 1484 // We are going to have to map operands from the original BB block to the new 1485 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1486 // account for entry from PredBB. 1487 DenseMap<Instruction*, Value*> ValueMapping; 1488 1489 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1490 BB->getName()+".thread", 1491 BB->getParent(), BB); 1492 NewBB->moveAfter(PredBB); 1493 1494 // Set the block frequency of NewBB. 1495 if (HasProfileData) { 1496 auto NewBBFreq = 1497 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1498 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1499 } 1500 1501 BasicBlock::iterator BI = BB->begin(); 1502 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1503 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1504 1505 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1506 // mapping and using it to remap operands in the cloned instructions. 1507 for (; !isa<TerminatorInst>(BI); ++BI) { 1508 Instruction *New = BI->clone(); 1509 New->setName(BI->getName()); 1510 NewBB->getInstList().push_back(New); 1511 ValueMapping[&*BI] = New; 1512 1513 // Remap operands to patch up intra-block references. 1514 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1515 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1516 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1517 if (I != ValueMapping.end()) 1518 New->setOperand(i, I->second); 1519 } 1520 } 1521 1522 // We didn't copy the terminator from BB over to NewBB, because there is now 1523 // an unconditional jump to SuccBB. Insert the unconditional jump. 1524 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 1525 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1526 1527 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1528 // PHI nodes for NewBB now. 1529 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1530 1531 // If there were values defined in BB that are used outside the block, then we 1532 // now have to update all uses of the value to use either the original value, 1533 // the cloned value, or some PHI derived value. This can require arbitrary 1534 // PHI insertion, of which we are prepared to do, clean these up now. 1535 SSAUpdater SSAUpdate; 1536 SmallVector<Use*, 16> UsesToRename; 1537 for (Instruction &I : *BB) { 1538 // Scan all uses of this instruction to see if it is used outside of its 1539 // block, and if so, record them in UsesToRename. 1540 for (Use &U : I.uses()) { 1541 Instruction *User = cast<Instruction>(U.getUser()); 1542 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1543 if (UserPN->getIncomingBlock(U) == BB) 1544 continue; 1545 } else if (User->getParent() == BB) 1546 continue; 1547 1548 UsesToRename.push_back(&U); 1549 } 1550 1551 // If there are no uses outside the block, we're done with this instruction. 1552 if (UsesToRename.empty()) 1553 continue; 1554 1555 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1556 1557 // We found a use of I outside of BB. Rename all uses of I that are outside 1558 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1559 // with the two values we know. 1560 SSAUpdate.Initialize(I.getType(), I.getName()); 1561 SSAUpdate.AddAvailableValue(BB, &I); 1562 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 1563 1564 while (!UsesToRename.empty()) 1565 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1566 DEBUG(dbgs() << "\n"); 1567 } 1568 1569 1570 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1571 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1572 // us to simplify any PHI nodes in BB. 1573 TerminatorInst *PredTerm = PredBB->getTerminator(); 1574 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1575 if (PredTerm->getSuccessor(i) == BB) { 1576 BB->removePredecessor(PredBB, true); 1577 PredTerm->setSuccessor(i, NewBB); 1578 } 1579 1580 // At this point, the IR is fully up to date and consistent. Do a quick scan 1581 // over the new instructions and zap any that are constants or dead. This 1582 // frequently happens because of phi translation. 1583 SimplifyInstructionsInBlock(NewBB, TLI); 1584 1585 // Update the edge weight from BB to SuccBB, which should be less than before. 1586 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 1587 1588 // Threaded an edge! 1589 ++NumThreads; 1590 return true; 1591 } 1592 1593 /// Create a new basic block that will be the predecessor of BB and successor of 1594 /// all blocks in Preds. When profile data is availble, update the frequency of 1595 /// this new block. 1596 BasicBlock *JumpThreading::SplitBlockPreds(BasicBlock *BB, 1597 ArrayRef<BasicBlock *> Preds, 1598 const char *Suffix) { 1599 // Collect the frequencies of all predecessors of BB, which will be used to 1600 // update the edge weight on BB->SuccBB. 1601 BlockFrequency PredBBFreq(0); 1602 if (HasProfileData) 1603 for (auto Pred : Preds) 1604 PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB); 1605 1606 BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix); 1607 1608 // Set the block frequency of the newly created PredBB, which is the sum of 1609 // frequencies of Preds. 1610 if (HasProfileData) 1611 BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency()); 1612 return PredBB; 1613 } 1614 1615 /// Update the block frequency of BB and branch weight and the metadata on the 1616 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 1617 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 1618 void JumpThreading::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 1619 BasicBlock *BB, 1620 BasicBlock *NewBB, 1621 BasicBlock *SuccBB) { 1622 if (!HasProfileData) 1623 return; 1624 1625 assert(BFI && BPI && "BFI & BPI should have been created here"); 1626 1627 // As the edge from PredBB to BB is deleted, we have to update the block 1628 // frequency of BB. 1629 auto BBOrigFreq = BFI->getBlockFreq(BB); 1630 auto NewBBFreq = BFI->getBlockFreq(NewBB); 1631 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 1632 auto BBNewFreq = BBOrigFreq - NewBBFreq; 1633 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 1634 1635 // Collect updated outgoing edges' frequencies from BB and use them to update 1636 // edge probabilities. 1637 SmallVector<uint64_t, 4> BBSuccFreq; 1638 for (BasicBlock *Succ : successors(BB)) { 1639 auto SuccFreq = (Succ == SuccBB) 1640 ? BB2SuccBBFreq - NewBBFreq 1641 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 1642 BBSuccFreq.push_back(SuccFreq.getFrequency()); 1643 } 1644 1645 uint64_t MaxBBSuccFreq = 1646 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 1647 1648 SmallVector<BranchProbability, 4> BBSuccProbs; 1649 if (MaxBBSuccFreq == 0) 1650 BBSuccProbs.assign(BBSuccFreq.size(), 1651 {1, static_cast<unsigned>(BBSuccFreq.size())}); 1652 else { 1653 for (uint64_t Freq : BBSuccFreq) 1654 BBSuccProbs.push_back( 1655 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 1656 // Normalize edge probabilities so that they sum up to one. 1657 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 1658 BBSuccProbs.end()); 1659 } 1660 1661 // Update edge probabilities in BPI. 1662 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 1663 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 1664 1665 if (BBSuccProbs.size() >= 2) { 1666 SmallVector<uint32_t, 4> Weights; 1667 for (auto Prob : BBSuccProbs) 1668 Weights.push_back(Prob.getNumerator()); 1669 1670 auto TI = BB->getTerminator(); 1671 TI->setMetadata( 1672 LLVMContext::MD_prof, 1673 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 1674 } 1675 } 1676 1677 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1678 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1679 /// If we can duplicate the contents of BB up into PredBB do so now, this 1680 /// improves the odds that the branch will be on an analyzable instruction like 1681 /// a compare. 1682 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1683 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1684 assert(!PredBBs.empty() && "Can't handle an empty set"); 1685 1686 // If BB is a loop header, then duplicating this block outside the loop would 1687 // cause us to transform this into an irreducible loop, don't do this. 1688 // See the comments above FindLoopHeaders for justifications and caveats. 1689 if (LoopHeaders.count(BB)) { 1690 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1691 << "' into predecessor block '" << PredBBs[0]->getName() 1692 << "' - it might create an irreducible loop!\n"); 1693 return false; 1694 } 1695 1696 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1697 if (DuplicationCost > BBDupThreshold) { 1698 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1699 << "' - Cost is too high: " << DuplicationCost << "\n"); 1700 return false; 1701 } 1702 1703 // And finally, do it! Start by factoring the predecessors if needed. 1704 BasicBlock *PredBB; 1705 if (PredBBs.size() == 1) 1706 PredBB = PredBBs[0]; 1707 else { 1708 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1709 << " common predecessors.\n"); 1710 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1711 } 1712 1713 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1714 // of PredBB. 1715 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1716 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1717 << DuplicationCost << " block is:" << *BB << "\n"); 1718 1719 // Unless PredBB ends with an unconditional branch, split the edge so that we 1720 // can just clone the bits from BB into the end of the new PredBB. 1721 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1722 1723 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 1724 PredBB = SplitEdge(PredBB, BB); 1725 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1726 } 1727 1728 // We are going to have to map operands from the original BB block into the 1729 // PredBB block. Evaluate PHI nodes in BB. 1730 DenseMap<Instruction*, Value*> ValueMapping; 1731 1732 BasicBlock::iterator BI = BB->begin(); 1733 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1734 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1735 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1736 // mapping and using it to remap operands in the cloned instructions. 1737 for (; BI != BB->end(); ++BI) { 1738 Instruction *New = BI->clone(); 1739 1740 // Remap operands to patch up intra-block references. 1741 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1742 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1743 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1744 if (I != ValueMapping.end()) 1745 New->setOperand(i, I->second); 1746 } 1747 1748 // If this instruction can be simplified after the operands are updated, 1749 // just use the simplified value instead. This frequently happens due to 1750 // phi translation. 1751 if (Value *IV = 1752 SimplifyInstruction(New, BB->getModule()->getDataLayout())) { 1753 delete New; 1754 ValueMapping[&*BI] = IV; 1755 } else { 1756 // Otherwise, insert the new instruction into the block. 1757 New->setName(BI->getName()); 1758 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 1759 ValueMapping[&*BI] = New; 1760 } 1761 } 1762 1763 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1764 // add entries to the PHI nodes for branch from PredBB now. 1765 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1766 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1767 ValueMapping); 1768 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1769 ValueMapping); 1770 1771 // If there were values defined in BB that are used outside the block, then we 1772 // now have to update all uses of the value to use either the original value, 1773 // the cloned value, or some PHI derived value. This can require arbitrary 1774 // PHI insertion, of which we are prepared to do, clean these up now. 1775 SSAUpdater SSAUpdate; 1776 SmallVector<Use*, 16> UsesToRename; 1777 for (Instruction &I : *BB) { 1778 // Scan all uses of this instruction to see if it is used outside of its 1779 // block, and if so, record them in UsesToRename. 1780 for (Use &U : I.uses()) { 1781 Instruction *User = cast<Instruction>(U.getUser()); 1782 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1783 if (UserPN->getIncomingBlock(U) == BB) 1784 continue; 1785 } else if (User->getParent() == BB) 1786 continue; 1787 1788 UsesToRename.push_back(&U); 1789 } 1790 1791 // If there are no uses outside the block, we're done with this instruction. 1792 if (UsesToRename.empty()) 1793 continue; 1794 1795 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1796 1797 // We found a use of I outside of BB. Rename all uses of I that are outside 1798 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1799 // with the two values we know. 1800 SSAUpdate.Initialize(I.getType(), I.getName()); 1801 SSAUpdate.AddAvailableValue(BB, &I); 1802 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); 1803 1804 while (!UsesToRename.empty()) 1805 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1806 DEBUG(dbgs() << "\n"); 1807 } 1808 1809 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1810 // that we nuked. 1811 BB->removePredecessor(PredBB, true); 1812 1813 // Remove the unconditional branch at the end of the PredBB block. 1814 OldPredBranch->eraseFromParent(); 1815 1816 ++NumDupes; 1817 return true; 1818 } 1819 1820 /// TryToUnfoldSelect - Look for blocks of the form 1821 /// bb1: 1822 /// %a = select 1823 /// br bb 1824 /// 1825 /// bb2: 1826 /// %p = phi [%a, %bb] ... 1827 /// %c = icmp %p 1828 /// br i1 %c 1829 /// 1830 /// And expand the select into a branch structure if one of its arms allows %c 1831 /// to be folded. This later enables threading from bb1 over bb2. 1832 bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 1833 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1834 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 1835 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 1836 1837 if (!CondBr || !CondBr->isConditional() || !CondLHS || 1838 CondLHS->getParent() != BB) 1839 return false; 1840 1841 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 1842 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 1843 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 1844 1845 // Look if one of the incoming values is a select in the corresponding 1846 // predecessor. 1847 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 1848 continue; 1849 1850 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 1851 if (!PredTerm || !PredTerm->isUnconditional()) 1852 continue; 1853 1854 // Now check if one of the select values would allow us to constant fold the 1855 // terminator in BB. We don't do the transform if both sides fold, those 1856 // cases will be threaded in any case. 1857 LazyValueInfo::Tristate LHSFolds = 1858 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 1859 CondRHS, Pred, BB, CondCmp); 1860 LazyValueInfo::Tristate RHSFolds = 1861 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 1862 CondRHS, Pred, BB, CondCmp); 1863 if ((LHSFolds != LazyValueInfo::Unknown || 1864 RHSFolds != LazyValueInfo::Unknown) && 1865 LHSFolds != RHSFolds) { 1866 // Expand the select. 1867 // 1868 // Pred -- 1869 // | v 1870 // | NewBB 1871 // | | 1872 // |----- 1873 // v 1874 // BB 1875 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 1876 BB->getParent(), BB); 1877 // Move the unconditional branch to NewBB. 1878 PredTerm->removeFromParent(); 1879 NewBB->getInstList().insert(NewBB->end(), PredTerm); 1880 // Create a conditional branch and update PHI nodes. 1881 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 1882 CondLHS->setIncomingValue(I, SI->getFalseValue()); 1883 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 1884 // The select is now dead. 1885 SI->eraseFromParent(); 1886 1887 // Update any other PHI nodes in BB. 1888 for (BasicBlock::iterator BI = BB->begin(); 1889 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 1890 if (Phi != CondLHS) 1891 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 1892 return true; 1893 } 1894 } 1895 return false; 1896 } 1897 1898 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select in the same BB of the form 1899 /// bb: 1900 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 1901 /// %s = select p, trueval, falseval 1902 /// 1903 /// And expand the select into a branch structure. This later enables 1904 /// jump-threading over bb in this pass. 1905 /// 1906 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 1907 /// select if the associated PHI has at least one constant. If the unfolded 1908 /// select is not jump-threaded, it will be folded again in the later 1909 /// optimizations. 1910 bool JumpThreading::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 1911 // If threading this would thread across a loop header, don't thread the edge. 1912 // See the comments above FindLoopHeaders for justifications and caveats. 1913 if (LoopHeaders.count(BB)) 1914 return false; 1915 1916 // Look for a Phi/Select pair in the same basic block. The Phi feeds the 1917 // condition of the Select and at least one of the incoming values is a 1918 // constant. 1919 for (BasicBlock::iterator BI = BB->begin(); 1920 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 1921 unsigned NumPHIValues = PN->getNumIncomingValues(); 1922 if (NumPHIValues == 0 || !PN->hasOneUse()) 1923 continue; 1924 1925 SelectInst *SI = dyn_cast<SelectInst>(PN->user_back()); 1926 if (!SI || SI->getParent() != BB) 1927 continue; 1928 1929 Value *Cond = SI->getCondition(); 1930 if (!Cond || Cond != PN || !Cond->getType()->isIntegerTy(1)) 1931 continue; 1932 1933 bool HasConst = false; 1934 for (unsigned i = 0; i != NumPHIValues; ++i) { 1935 if (PN->getIncomingBlock(i) == BB) 1936 return false; 1937 if (isa<ConstantInt>(PN->getIncomingValue(i))) 1938 HasConst = true; 1939 } 1940 1941 if (HasConst) { 1942 // Expand the select. 1943 TerminatorInst *Term = 1944 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 1945 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 1946 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 1947 NewPN->addIncoming(SI->getFalseValue(), BB); 1948 SI->replaceAllUsesWith(NewPN); 1949 SI->eraseFromParent(); 1950 return true; 1951 } 1952 } 1953 1954 return false; 1955 } 1956