1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "jump-threading" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/IntrinsicInst.h" 17 #include "llvm/LLVMContext.h" 18 #include "llvm/Pass.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LazyValueInfo.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 #include "llvm/Transforms/Utils/SSAUpdater.h" 25 #include "llvm/Target/TargetData.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ValueHandle.h" 35 #include "llvm/Support/raw_ostream.h" 36 using namespace llvm; 37 38 STATISTIC(NumThreads, "Number of jumps threaded"); 39 STATISTIC(NumFolds, "Number of terminators folded"); 40 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 41 42 static cl::opt<unsigned> 43 Threshold("jump-threading-threshold", 44 cl::desc("Max block size to duplicate for jump threading"), 45 cl::init(6), cl::Hidden); 46 47 namespace { 48 /// This pass performs 'jump threading', which looks at blocks that have 49 /// multiple predecessors and multiple successors. If one or more of the 50 /// predecessors of the block can be proven to always jump to one of the 51 /// successors, we forward the edge from the predecessor to the successor by 52 /// duplicating the contents of this block. 53 /// 54 /// An example of when this can occur is code like this: 55 /// 56 /// if () { ... 57 /// X = 4; 58 /// } 59 /// if (X < 3) { 60 /// 61 /// In this case, the unconditional branch at the end of the first if can be 62 /// revectored to the false side of the second if. 63 /// 64 class JumpThreading : public FunctionPass { 65 TargetData *TD; 66 LazyValueInfo *LVI; 67 #ifdef NDEBUG 68 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 69 #else 70 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 71 #endif 72 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; 73 74 // RAII helper for updating the recursion stack. 75 struct RecursionSetRemover { 76 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet; 77 std::pair<Value*, BasicBlock*> ThePair; 78 79 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S, 80 std::pair<Value*, BasicBlock*> P) 81 : TheSet(S), ThePair(P) { } 82 83 ~RecursionSetRemover() { 84 TheSet.erase(ThePair); 85 } 86 }; 87 public: 88 static char ID; // Pass identification 89 JumpThreading() : FunctionPass(ID) {} 90 91 bool runOnFunction(Function &F); 92 93 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 94 AU.addRequired<LazyValueInfo>(); 95 AU.addPreserved<LazyValueInfo>(); 96 } 97 98 void FindLoopHeaders(Function &F); 99 bool ProcessBlock(BasicBlock *BB); 100 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 101 BasicBlock *SuccBB); 102 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 103 const SmallVectorImpl<BasicBlock *> &PredBBs); 104 105 typedef SmallVectorImpl<std::pair<ConstantInt*, 106 BasicBlock*> > PredValueInfo; 107 108 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 109 PredValueInfo &Result); 110 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB); 111 112 113 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 114 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); 115 116 bool ProcessBranchOnPHI(PHINode *PN); 117 bool ProcessBranchOnXOR(BinaryOperator *BO); 118 119 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 120 }; 121 } 122 123 char JumpThreading::ID = 0; 124 INITIALIZE_PASS(JumpThreading, "jump-threading", 125 "Jump Threading", false, false); 126 127 // Public interface to the Jump Threading pass 128 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 129 130 /// runOnFunction - Top level algorithm. 131 /// 132 bool JumpThreading::runOnFunction(Function &F) { 133 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 134 TD = getAnalysisIfAvailable<TargetData>(); 135 LVI = &getAnalysis<LazyValueInfo>(); 136 137 FindLoopHeaders(F); 138 139 bool Changed, EverChanged = false; 140 do { 141 Changed = false; 142 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 143 BasicBlock *BB = I; 144 // Thread all of the branches we can over this block. 145 while (ProcessBlock(BB)) 146 Changed = true; 147 148 ++I; 149 150 // If the block is trivially dead, zap it. This eliminates the successor 151 // edges which simplifies the CFG. 152 if (pred_begin(BB) == pred_end(BB) && 153 BB != &BB->getParent()->getEntryBlock()) { 154 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 155 << "' with terminator: " << *BB->getTerminator() << '\n'); 156 LoopHeaders.erase(BB); 157 LVI->eraseBlock(BB); 158 DeleteDeadBlock(BB); 159 Changed = true; 160 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 161 // Can't thread an unconditional jump, but if the block is "almost 162 // empty", we can replace uses of it with uses of the successor and make 163 // this dead. 164 if (BI->isUnconditional() && 165 BB != &BB->getParent()->getEntryBlock()) { 166 BasicBlock::iterator BBI = BB->getFirstNonPHI(); 167 // Ignore dbg intrinsics. 168 while (isa<DbgInfoIntrinsic>(BBI)) 169 ++BBI; 170 // If the terminator is the only non-phi instruction, try to nuke it. 171 if (BBI->isTerminator()) { 172 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 173 // block, we have to make sure it isn't in the LoopHeaders set. We 174 // reinsert afterward if needed. 175 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 176 BasicBlock *Succ = BI->getSuccessor(0); 177 178 // FIXME: It is always conservatively correct to drop the info 179 // for a block even if it doesn't get erased. This isn't totally 180 // awesome, but it allows us to use AssertingVH to prevent nasty 181 // dangling pointer issues within LazyValueInfo. 182 LVI->eraseBlock(BB); 183 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 184 Changed = true; 185 // If we deleted BB and BB was the header of a loop, then the 186 // successor is now the header of the loop. 187 BB = Succ; 188 } 189 190 if (ErasedFromLoopHeaders) 191 LoopHeaders.insert(BB); 192 } 193 } 194 } 195 } 196 EverChanged |= Changed; 197 } while (Changed); 198 199 LoopHeaders.clear(); 200 return EverChanged; 201 } 202 203 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 204 /// thread across it. 205 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) { 206 /// Ignore PHI nodes, these will be flattened when duplication happens. 207 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 208 209 // FIXME: THREADING will delete values that are just used to compute the 210 // branch, so they shouldn't count against the duplication cost. 211 212 213 // Sum up the cost of each instruction until we get to the terminator. Don't 214 // include the terminator because the copy won't include it. 215 unsigned Size = 0; 216 for (; !isa<TerminatorInst>(I); ++I) { 217 // Debugger intrinsics don't incur code size. 218 if (isa<DbgInfoIntrinsic>(I)) continue; 219 220 // If this is a pointer->pointer bitcast, it is free. 221 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 222 continue; 223 224 // All other instructions count for at least one unit. 225 ++Size; 226 227 // Calls are more expensive. If they are non-intrinsic calls, we model them 228 // as having cost of 4. If they are a non-vector intrinsic, we model them 229 // as having cost of 2 total, and if they are a vector intrinsic, we model 230 // them as having cost 1. 231 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 232 if (!isa<IntrinsicInst>(CI)) 233 Size += 3; 234 else if (!CI->getType()->isVectorTy()) 235 Size += 1; 236 } 237 } 238 239 // Threading through a switch statement is particularly profitable. If this 240 // block ends in a switch, decrease its cost to make it more likely to happen. 241 if (isa<SwitchInst>(I)) 242 Size = Size > 6 ? Size-6 : 0; 243 244 return Size; 245 } 246 247 /// FindLoopHeaders - We do not want jump threading to turn proper loop 248 /// structures into irreducible loops. Doing this breaks up the loop nesting 249 /// hierarchy and pessimizes later transformations. To prevent this from 250 /// happening, we first have to find the loop headers. Here we approximate this 251 /// by finding targets of backedges in the CFG. 252 /// 253 /// Note that there definitely are cases when we want to allow threading of 254 /// edges across a loop header. For example, threading a jump from outside the 255 /// loop (the preheader) to an exit block of the loop is definitely profitable. 256 /// It is also almost always profitable to thread backedges from within the loop 257 /// to exit blocks, and is often profitable to thread backedges to other blocks 258 /// within the loop (forming a nested loop). This simple analysis is not rich 259 /// enough to track all of these properties and keep it up-to-date as the CFG 260 /// mutates, so we don't allow any of these transformations. 261 /// 262 void JumpThreading::FindLoopHeaders(Function &F) { 263 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 264 FindFunctionBackedges(F, Edges); 265 266 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 267 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 268 } 269 270 // Helper method for ComputeValueKnownInPredecessors. If Value is a 271 // ConstantInt, push it. If it's an undef, push 0. Otherwise, do nothing. 272 static void PushConstantIntOrUndef(SmallVectorImpl<std::pair<ConstantInt*, 273 BasicBlock*> > &Result, 274 Constant *Value, BasicBlock* BB){ 275 if (ConstantInt *FoldedCInt = dyn_cast<ConstantInt>(Value)) 276 Result.push_back(std::make_pair(FoldedCInt, BB)); 277 else if (isa<UndefValue>(Value)) 278 Result.push_back(std::make_pair((ConstantInt*)0, BB)); 279 } 280 281 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 282 /// if we can infer that the value is a known ConstantInt in any of our 283 /// predecessors. If so, return the known list of value and pred BB in the 284 /// result vector. If a value is known to be undef, it is returned as null. 285 /// 286 /// This returns true if there were any known values. 287 /// 288 bool JumpThreading:: 289 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){ 290 // This method walks up use-def chains recursively. Because of this, we could 291 // get into an infinite loop going around loops in the use-def chain. To 292 // prevent this, keep track of what (value, block) pairs we've already visited 293 // and terminate the search if we loop back to them 294 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 295 return false; 296 297 // An RAII help to remove this pair from the recursion set once the recursion 298 // stack pops back out again. 299 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 300 301 // If V is a constantint, then it is known in all predecessors. 302 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) { 303 ConstantInt *CI = dyn_cast<ConstantInt>(V); 304 305 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 306 Result.push_back(std::make_pair(CI, *PI)); 307 308 return true; 309 } 310 311 // If V is a non-instruction value, or an instruction in a different block, 312 // then it can't be derived from a PHI. 313 Instruction *I = dyn_cast<Instruction>(V); 314 if (I == 0 || I->getParent() != BB) { 315 316 // Okay, if this is a live-in value, see if it has a known value at the end 317 // of any of our predecessors. 318 // 319 // FIXME: This should be an edge property, not a block end property. 320 /// TODO: Per PR2563, we could infer value range information about a 321 /// predecessor based on its terminator. 322 // 323 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 324 // "I" is a non-local compare-with-a-constant instruction. This would be 325 // able to handle value inequalities better, for example if the compare is 326 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 327 // Perhaps getConstantOnEdge should be smart enough to do this? 328 329 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 330 BasicBlock *P = *PI; 331 // If the value is known by LazyValueInfo to be a constant in a 332 // predecessor, use that information to try to thread this block. 333 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB); 334 if (PredCst == 0 || 335 (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst))) 336 continue; 337 338 Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), P)); 339 } 340 341 return !Result.empty(); 342 } 343 344 /// If I is a PHI node, then we know the incoming values for any constants. 345 if (PHINode *PN = dyn_cast<PHINode>(I)) { 346 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 347 Value *InVal = PN->getIncomingValue(i); 348 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) { 349 ConstantInt *CI = dyn_cast<ConstantInt>(InVal); 350 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i))); 351 } else { 352 Constant *CI = LVI->getConstantOnEdge(InVal, 353 PN->getIncomingBlock(i), BB); 354 // LVI returns null is no value could be determined. 355 if (!CI) continue; 356 PushConstantIntOrUndef(Result, CI, PN->getIncomingBlock(i)); 357 } 358 } 359 360 return !Result.empty(); 361 } 362 363 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals; 364 365 // Handle some boolean conditions. 366 if (I->getType()->getPrimitiveSizeInBits() == 1) { 367 // X | true -> true 368 // X & false -> false 369 if (I->getOpcode() == Instruction::Or || 370 I->getOpcode() == Instruction::And) { 371 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); 372 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals); 373 374 if (LHSVals.empty() && RHSVals.empty()) 375 return false; 376 377 ConstantInt *InterestingVal; 378 if (I->getOpcode() == Instruction::Or) 379 InterestingVal = ConstantInt::getTrue(I->getContext()); 380 else 381 InterestingVal = ConstantInt::getFalse(I->getContext()); 382 383 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 384 385 // Scan for the sentinel. If we find an undef, force it to the 386 // interesting value: x|undef -> true and x&undef -> false. 387 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 388 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) { 389 Result.push_back(LHSVals[i]); 390 Result.back().first = InterestingVal; 391 LHSKnownBBs.insert(LHSVals[i].second); 392 } 393 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 394 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) { 395 // If we already inferred a value for this block on the LHS, don't 396 // re-add it. 397 if (!LHSKnownBBs.count(RHSVals[i].second)) { 398 Result.push_back(RHSVals[i]); 399 Result.back().first = InterestingVal; 400 } 401 } 402 403 return !Result.empty(); 404 } 405 406 // Handle the NOT form of XOR. 407 if (I->getOpcode() == Instruction::Xor && 408 isa<ConstantInt>(I->getOperand(1)) && 409 cast<ConstantInt>(I->getOperand(1))->isOne()) { 410 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result); 411 if (Result.empty()) 412 return false; 413 414 // Invert the known values. 415 for (unsigned i = 0, e = Result.size(); i != e; ++i) 416 if (Result[i].first) 417 Result[i].first = 418 cast<ConstantInt>(ConstantExpr::getNot(Result[i].first)); 419 420 return true; 421 } 422 423 // Try to simplify some other binary operator values. 424 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 425 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 426 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals; 427 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals); 428 429 // Try to use constant folding to simplify the binary operator. 430 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 431 Constant *V = LHSVals[i].first; 432 if (V == 0) V = UndefValue::get(BO->getType()); 433 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 434 435 PushConstantIntOrUndef(Result, Folded, LHSVals[i].second); 436 } 437 } 438 439 return !Result.empty(); 440 } 441 442 // Handle compare with phi operand, where the PHI is defined in this block. 443 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 444 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 445 if (PN && PN->getParent() == BB) { 446 // We can do this simplification if any comparisons fold to true or false. 447 // See if any do. 448 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 449 BasicBlock *PredBB = PN->getIncomingBlock(i); 450 Value *LHS = PN->getIncomingValue(i); 451 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 452 453 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD); 454 if (Res == 0) { 455 if (!isa<Constant>(RHS)) 456 continue; 457 458 LazyValueInfo::Tristate 459 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 460 cast<Constant>(RHS), PredBB, BB); 461 if (ResT == LazyValueInfo::Unknown) 462 continue; 463 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 464 } 465 466 if (Constant *ConstRes = dyn_cast<Constant>(Res)) 467 PushConstantIntOrUndef(Result, ConstRes, PredBB); 468 } 469 470 return !Result.empty(); 471 } 472 473 474 // If comparing a live-in value against a constant, see if we know the 475 // live-in value on any predecessors. 476 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 477 if (!isa<Instruction>(Cmp->getOperand(0)) || 478 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 479 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 480 481 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){ 482 BasicBlock *P = *PI; 483 // If the value is known by LazyValueInfo to be a constant in a 484 // predecessor, use that information to try to thread this block. 485 LazyValueInfo::Tristate Res = 486 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 487 RHSCst, P, BB); 488 if (Res == LazyValueInfo::Unknown) 489 continue; 490 491 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 492 Result.push_back(std::make_pair(cast<ConstantInt>(ResC), P)); 493 } 494 495 return !Result.empty(); 496 } 497 498 // Try to find a constant value for the LHS of a comparison, 499 // and evaluate it statically if we can. 500 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 501 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals; 502 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); 503 504 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 505 Constant *V = LHSVals[i].first; 506 if (V == 0) V = UndefValue::get(CmpConst->getType()); 507 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 508 V, CmpConst); 509 PushConstantIntOrUndef(Result, Folded, LHSVals[i].second); 510 } 511 512 return !Result.empty(); 513 } 514 } 515 } 516 517 // If all else fails, see if LVI can figure out a constant value for us. 518 Constant *CI = LVI->getConstant(V, BB); 519 ConstantInt *CInt = dyn_cast_or_null<ConstantInt>(CI); 520 if (CInt) { 521 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 522 Result.push_back(std::make_pair(CInt, *PI)); 523 } 524 525 return !Result.empty(); 526 } 527 528 529 530 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 531 /// in an undefined jump, decide which block is best to revector to. 532 /// 533 /// Since we can pick an arbitrary destination, we pick the successor with the 534 /// fewest predecessors. This should reduce the in-degree of the others. 535 /// 536 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 537 TerminatorInst *BBTerm = BB->getTerminator(); 538 unsigned MinSucc = 0; 539 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 540 // Compute the successor with the minimum number of predecessors. 541 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 542 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 543 TestBB = BBTerm->getSuccessor(i); 544 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 545 if (NumPreds < MinNumPreds) 546 MinSucc = i; 547 } 548 549 return MinSucc; 550 } 551 552 /// ProcessBlock - If there are any predecessors whose control can be threaded 553 /// through to a successor, transform them now. 554 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 555 // If the block is trivially dead, just return and let the caller nuke it. 556 // This simplifies other transformations. 557 if (pred_begin(BB) == pred_end(BB) && 558 BB != &BB->getParent()->getEntryBlock()) 559 return false; 560 561 // If this block has a single predecessor, and if that pred has a single 562 // successor, merge the blocks. This encourages recursive jump threading 563 // because now the condition in this block can be threaded through 564 // predecessors of our predecessor block. 565 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 566 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 567 SinglePred != BB) { 568 // If SinglePred was a loop header, BB becomes one. 569 if (LoopHeaders.erase(SinglePred)) 570 LoopHeaders.insert(BB); 571 572 // Remember if SinglePred was the entry block of the function. If so, we 573 // will need to move BB back to the entry position. 574 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 575 LVI->eraseBlock(SinglePred); 576 MergeBasicBlockIntoOnlyPred(BB); 577 578 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 579 BB->moveBefore(&BB->getParent()->getEntryBlock()); 580 return true; 581 } 582 } 583 584 // Look to see if the terminator is a branch of switch, if not we can't thread 585 // it. 586 Value *Condition; 587 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 588 // Can't thread an unconditional jump. 589 if (BI->isUnconditional()) return false; 590 Condition = BI->getCondition(); 591 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 592 Condition = SI->getCondition(); 593 else 594 return false; // Must be an invoke. 595 596 // If the terminator of this block is branching on a constant, simplify the 597 // terminator to an unconditional branch. This can occur due to threading in 598 // other blocks. 599 if (isa<ConstantInt>(Condition)) { 600 DEBUG(dbgs() << " In block '" << BB->getName() 601 << "' folding terminator: " << *BB->getTerminator() << '\n'); 602 ++NumFolds; 603 ConstantFoldTerminator(BB); 604 return true; 605 } 606 607 // If the terminator is branching on an undef, we can pick any of the 608 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 609 if (isa<UndefValue>(Condition)) { 610 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 611 612 // Fold the branch/switch. 613 TerminatorInst *BBTerm = BB->getTerminator(); 614 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 615 if (i == BestSucc) continue; 616 RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD); 617 } 618 619 DEBUG(dbgs() << " In block '" << BB->getName() 620 << "' folding undef terminator: " << *BBTerm << '\n'); 621 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 622 BBTerm->eraseFromParent(); 623 return true; 624 } 625 626 Instruction *CondInst = dyn_cast<Instruction>(Condition); 627 628 // All the rest of our checks depend on the condition being an instruction. 629 if (CondInst == 0) { 630 // FIXME: Unify this with code below. 631 if (ProcessThreadableEdges(Condition, BB)) 632 return true; 633 return false; 634 } 635 636 637 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 638 // For a comparison where the LHS is outside this block, it's possible 639 // that we've branched on it before. Used LVI to see if we can simplify 640 // the branch based on that. 641 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 642 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 643 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 644 if (CondBr && CondConst && CondBr->isConditional() && PI != PE && 645 (!isa<Instruction>(CondCmp->getOperand(0)) || 646 cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) { 647 // For predecessor edge, determine if the comparison is true or false 648 // on that edge. If they're all true or all false, we can simplify the 649 // branch. 650 // FIXME: We could handle mixed true/false by duplicating code. 651 LazyValueInfo::Tristate Baseline = 652 LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0), 653 CondConst, *PI, BB); 654 if (Baseline != LazyValueInfo::Unknown) { 655 // Check that all remaining incoming values match the first one. 656 while (++PI != PE) { 657 LazyValueInfo::Tristate Ret = 658 LVI->getPredicateOnEdge(CondCmp->getPredicate(), 659 CondCmp->getOperand(0), CondConst, *PI, BB); 660 if (Ret != Baseline) break; 661 } 662 663 // If we terminated early, then one of the values didn't match. 664 if (PI == PE) { 665 unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0; 666 unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1; 667 RemovePredecessorAndSimplify(CondBr->getSuccessor(ToRemove), BB, TD); 668 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 669 CondBr->eraseFromParent(); 670 return true; 671 } 672 } 673 } 674 } 675 676 // Check for some cases that are worth simplifying. Right now we want to look 677 // for loads that are used by a switch or by the condition for the branch. If 678 // we see one, check to see if it's partially redundant. If so, insert a PHI 679 // which can then be used to thread the values. 680 // 681 Value *SimplifyValue = CondInst; 682 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 683 if (isa<Constant>(CondCmp->getOperand(1))) 684 SimplifyValue = CondCmp->getOperand(0); 685 686 // TODO: There are other places where load PRE would be profitable, such as 687 // more complex comparisons. 688 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 689 if (SimplifyPartiallyRedundantLoad(LI)) 690 return true; 691 692 693 // Handle a variety of cases where we are branching on something derived from 694 // a PHI node in the current block. If we can prove that any predecessors 695 // compute a predictable value based on a PHI node, thread those predecessors. 696 // 697 if (ProcessThreadableEdges(CondInst, BB)) 698 return true; 699 700 // If this is an otherwise-unfoldable branch on a phi node in the current 701 // block, see if we can simplify. 702 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 703 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 704 return ProcessBranchOnPHI(PN); 705 706 707 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 708 if (CondInst->getOpcode() == Instruction::Xor && 709 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 710 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 711 712 713 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 714 // "(X == 4)", thread through this block. 715 716 return false; 717 } 718 719 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that 720 /// block that jump on exactly the same condition. This means that we almost 721 /// always know the direction of the edge in the DESTBB: 722 /// PREDBB: 723 /// br COND, DESTBB, BBY 724 /// DESTBB: 725 /// br COND, BBZ, BBW 726 /// 727 /// If DESTBB has multiple predecessors, we can't just constant fold the branch 728 /// in DESTBB, we have to thread over it. 729 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB, 730 BasicBlock *BB) { 731 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator()); 732 733 // If both successors of PredBB go to DESTBB, we don't know anything. We can 734 // fold the branch to an unconditional one, which allows other recursive 735 // simplifications. 736 bool BranchDir; 737 if (PredBI->getSuccessor(1) != BB) 738 BranchDir = true; 739 else if (PredBI->getSuccessor(0) != BB) 740 BranchDir = false; 741 else { 742 DEBUG(dbgs() << " In block '" << PredBB->getName() 743 << "' folding terminator: " << *PredBB->getTerminator() << '\n'); 744 ++NumFolds; 745 ConstantFoldTerminator(PredBB); 746 return true; 747 } 748 749 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator()); 750 751 // If the dest block has one predecessor, just fix the branch condition to a 752 // constant and fold it. 753 if (BB->getSinglePredecessor()) { 754 DEBUG(dbgs() << " In block '" << BB->getName() 755 << "' folding condition to '" << BranchDir << "': " 756 << *BB->getTerminator() << '\n'); 757 ++NumFolds; 758 Value *OldCond = DestBI->getCondition(); 759 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 760 BranchDir)); 761 // Delete dead instructions before we fold the branch. Folding the branch 762 // can eliminate edges from the CFG which can end up deleting OldCond. 763 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 764 ConstantFoldTerminator(BB); 765 return true; 766 } 767 768 769 // Next, figure out which successor we are threading to. 770 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir); 771 772 SmallVector<BasicBlock*, 2> Preds; 773 Preds.push_back(PredBB); 774 775 // Ok, try to thread it! 776 return ThreadEdge(BB, Preds, SuccBB); 777 } 778 779 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that 780 /// block that switch on exactly the same condition. This means that we almost 781 /// always know the direction of the edge in the DESTBB: 782 /// PREDBB: 783 /// switch COND [... DESTBB, BBY ... ] 784 /// DESTBB: 785 /// switch COND [... BBZ, BBW ] 786 /// 787 /// Optimizing switches like this is very important, because simplifycfg builds 788 /// switches out of repeated 'if' conditions. 789 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, 790 BasicBlock *DestBB) { 791 // Can't thread edge to self. 792 if (PredBB == DestBB) 793 return false; 794 795 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator()); 796 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator()); 797 798 // There are a variety of optimizations that we can potentially do on these 799 // blocks: we order them from most to least preferable. 800 801 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB 802 // directly to their destination. This does not introduce *any* code size 803 // growth. Skip debug info first. 804 BasicBlock::iterator BBI = DestBB->begin(); 805 while (isa<DbgInfoIntrinsic>(BBI)) 806 BBI++; 807 808 // FIXME: Thread if it just contains a PHI. 809 if (isa<SwitchInst>(BBI)) { 810 bool MadeChange = false; 811 // Ignore the default edge for now. 812 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) { 813 ConstantInt *DestVal = DestSI->getCaseValue(i); 814 BasicBlock *DestSucc = DestSI->getSuccessor(i); 815 816 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if 817 // PredSI has an explicit case for it. If so, forward. If it is covered 818 // by the default case, we can't update PredSI. 819 unsigned PredCase = PredSI->findCaseValue(DestVal); 820 if (PredCase == 0) continue; 821 822 // If PredSI doesn't go to DestBB on this value, then it won't reach the 823 // case on this condition. 824 if (PredSI->getSuccessor(PredCase) != DestBB && 825 DestSI->getSuccessor(i) != DestBB) 826 continue; 827 828 // Do not forward this if it already goes to this destination, this would 829 // be an infinite loop. 830 if (PredSI->getSuccessor(PredCase) == DestSucc) 831 continue; 832 833 // Otherwise, we're safe to make the change. Make sure that the edge from 834 // DestSI to DestSucc is not critical and has no PHI nodes. 835 DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI); 836 DEBUG(dbgs() << "THROUGH: " << *DestSI); 837 838 // If the destination has PHI nodes, just split the edge for updating 839 // simplicity. 840 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){ 841 SplitCriticalEdge(DestSI, i, this); 842 DestSucc = DestSI->getSuccessor(i); 843 } 844 FoldSingleEntryPHINodes(DestSucc); 845 PredSI->setSuccessor(PredCase, DestSucc); 846 MadeChange = true; 847 } 848 849 if (MadeChange) 850 return true; 851 } 852 853 return false; 854 } 855 856 857 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 858 /// load instruction, eliminate it by replacing it with a PHI node. This is an 859 /// important optimization that encourages jump threading, and needs to be run 860 /// interlaced with other jump threading tasks. 861 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 862 // Don't hack volatile loads. 863 if (LI->isVolatile()) return false; 864 865 // If the load is defined in a block with exactly one predecessor, it can't be 866 // partially redundant. 867 BasicBlock *LoadBB = LI->getParent(); 868 if (LoadBB->getSinglePredecessor()) 869 return false; 870 871 Value *LoadedPtr = LI->getOperand(0); 872 873 // If the loaded operand is defined in the LoadBB, it can't be available. 874 // TODO: Could do simple PHI translation, that would be fun :) 875 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 876 if (PtrOp->getParent() == LoadBB) 877 return false; 878 879 // Scan a few instructions up from the load, to see if it is obviously live at 880 // the entry to its block. 881 BasicBlock::iterator BBIt = LI; 882 883 if (Value *AvailableVal = 884 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { 885 // If the value if the load is locally available within the block, just use 886 // it. This frequently occurs for reg2mem'd allocas. 887 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 888 889 // If the returned value is the load itself, replace with an undef. This can 890 // only happen in dead loops. 891 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 892 LI->replaceAllUsesWith(AvailableVal); 893 LI->eraseFromParent(); 894 return true; 895 } 896 897 // Otherwise, if we scanned the whole block and got to the top of the block, 898 // we know the block is locally transparent to the load. If not, something 899 // might clobber its value. 900 if (BBIt != LoadBB->begin()) 901 return false; 902 903 904 SmallPtrSet<BasicBlock*, 8> PredsScanned; 905 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 906 AvailablePredsTy AvailablePreds; 907 BasicBlock *OneUnavailablePred = 0; 908 909 // If we got here, the loaded value is transparent through to the start of the 910 // block. Check to see if it is available in any of the predecessor blocks. 911 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 912 PI != PE; ++PI) { 913 BasicBlock *PredBB = *PI; 914 915 // If we already scanned this predecessor, skip it. 916 if (!PredsScanned.insert(PredBB)) 917 continue; 918 919 // Scan the predecessor to see if the value is available in the pred. 920 BBIt = PredBB->end(); 921 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6); 922 if (!PredAvailable) { 923 OneUnavailablePred = PredBB; 924 continue; 925 } 926 927 // If so, this load is partially redundant. Remember this info so that we 928 // can create a PHI node. 929 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 930 } 931 932 // If the loaded value isn't available in any predecessor, it isn't partially 933 // redundant. 934 if (AvailablePreds.empty()) return false; 935 936 // Okay, the loaded value is available in at least one (and maybe all!) 937 // predecessors. If the value is unavailable in more than one unique 938 // predecessor, we want to insert a merge block for those common predecessors. 939 // This ensures that we only have to insert one reload, thus not increasing 940 // code size. 941 BasicBlock *UnavailablePred = 0; 942 943 // If there is exactly one predecessor where the value is unavailable, the 944 // already computed 'OneUnavailablePred' block is it. If it ends in an 945 // unconditional branch, we know that it isn't a critical edge. 946 if (PredsScanned.size() == AvailablePreds.size()+1 && 947 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 948 UnavailablePred = OneUnavailablePred; 949 } else if (PredsScanned.size() != AvailablePreds.size()) { 950 // Otherwise, we had multiple unavailable predecessors or we had a critical 951 // edge from the one. 952 SmallVector<BasicBlock*, 8> PredsToSplit; 953 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 954 955 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 956 AvailablePredSet.insert(AvailablePreds[i].first); 957 958 // Add all the unavailable predecessors to the PredsToSplit list. 959 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 960 PI != PE; ++PI) { 961 BasicBlock *P = *PI; 962 // If the predecessor is an indirect goto, we can't split the edge. 963 if (isa<IndirectBrInst>(P->getTerminator())) 964 return false; 965 966 if (!AvailablePredSet.count(P)) 967 PredsToSplit.push_back(P); 968 } 969 970 // Split them out to their own block. 971 UnavailablePred = 972 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(), 973 "thread-pre-split", this); 974 } 975 976 // If the value isn't available in all predecessors, then there will be 977 // exactly one where it isn't available. Insert a load on that edge and add 978 // it to the AvailablePreds list. 979 if (UnavailablePred) { 980 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 981 "Can't handle critical edge here!"); 982 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 983 LI->getAlignment(), 984 UnavailablePred->getTerminator()); 985 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 986 } 987 988 // Now we know that each predecessor of this block has a value in 989 // AvailablePreds, sort them for efficient access as we're walking the preds. 990 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 991 992 // Create a PHI node at the start of the block for the PRE'd load value. 993 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin()); 994 PN->takeName(LI); 995 996 // Insert new entries into the PHI for each predecessor. A single block may 997 // have multiple entries here. 998 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; 999 ++PI) { 1000 BasicBlock *P = *PI; 1001 AvailablePredsTy::iterator I = 1002 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1003 std::make_pair(P, (Value*)0)); 1004 1005 assert(I != AvailablePreds.end() && I->first == P && 1006 "Didn't find entry for predecessor!"); 1007 1008 PN->addIncoming(I->second, I->first); 1009 } 1010 1011 //cerr << "PRE: " << *LI << *PN << "\n"; 1012 1013 LI->replaceAllUsesWith(PN); 1014 LI->eraseFromParent(); 1015 1016 return true; 1017 } 1018 1019 /// FindMostPopularDest - The specified list contains multiple possible 1020 /// threadable destinations. Pick the one that occurs the most frequently in 1021 /// the list. 1022 static BasicBlock * 1023 FindMostPopularDest(BasicBlock *BB, 1024 const SmallVectorImpl<std::pair<BasicBlock*, 1025 BasicBlock*> > &PredToDestList) { 1026 assert(!PredToDestList.empty()); 1027 1028 // Determine popularity. If there are multiple possible destinations, we 1029 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1030 // blocks with known and real destinations to threading undef. We'll handle 1031 // them later if interesting. 1032 DenseMap<BasicBlock*, unsigned> DestPopularity; 1033 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1034 if (PredToDestList[i].second) 1035 DestPopularity[PredToDestList[i].second]++; 1036 1037 // Find the most popular dest. 1038 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1039 BasicBlock *MostPopularDest = DPI->first; 1040 unsigned Popularity = DPI->second; 1041 SmallVector<BasicBlock*, 4> SamePopularity; 1042 1043 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1044 // If the popularity of this entry isn't higher than the popularity we've 1045 // seen so far, ignore it. 1046 if (DPI->second < Popularity) 1047 ; // ignore. 1048 else if (DPI->second == Popularity) { 1049 // If it is the same as what we've seen so far, keep track of it. 1050 SamePopularity.push_back(DPI->first); 1051 } else { 1052 // If it is more popular, remember it. 1053 SamePopularity.clear(); 1054 MostPopularDest = DPI->first; 1055 Popularity = DPI->second; 1056 } 1057 } 1058 1059 // Okay, now we know the most popular destination. If there is more than 1060 // destination, we need to determine one. This is arbitrary, but we need 1061 // to make a deterministic decision. Pick the first one that appears in the 1062 // successor list. 1063 if (!SamePopularity.empty()) { 1064 SamePopularity.push_back(MostPopularDest); 1065 TerminatorInst *TI = BB->getTerminator(); 1066 for (unsigned i = 0; ; ++i) { 1067 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1068 1069 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1070 TI->getSuccessor(i)) == SamePopularity.end()) 1071 continue; 1072 1073 MostPopularDest = TI->getSuccessor(i); 1074 break; 1075 } 1076 } 1077 1078 // Okay, we have finally picked the most popular destination. 1079 return MostPopularDest; 1080 } 1081 1082 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) { 1083 // If threading this would thread across a loop header, don't even try to 1084 // thread the edge. 1085 if (LoopHeaders.count(BB)) 1086 return false; 1087 1088 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues; 1089 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues)) 1090 return false; 1091 1092 assert(!PredValues.empty() && 1093 "ComputeValueKnownInPredecessors returned true with no values"); 1094 1095 DEBUG(dbgs() << "IN BB: " << *BB; 1096 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1097 dbgs() << " BB '" << BB->getName() << "': FOUND condition = "; 1098 if (PredValues[i].first) 1099 dbgs() << *PredValues[i].first; 1100 else 1101 dbgs() << "UNDEF"; 1102 dbgs() << " for pred '" << PredValues[i].second->getName() 1103 << "'.\n"; 1104 }); 1105 1106 // Decide what we want to thread through. Convert our list of known values to 1107 // a list of known destinations for each pred. This also discards duplicate 1108 // predecessors and keeps track of the undefined inputs (which are represented 1109 // as a null dest in the PredToDestList). 1110 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1111 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1112 1113 BasicBlock *OnlyDest = 0; 1114 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1115 1116 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1117 BasicBlock *Pred = PredValues[i].second; 1118 if (!SeenPreds.insert(Pred)) 1119 continue; // Duplicate predecessor entry. 1120 1121 // If the predecessor ends with an indirect goto, we can't change its 1122 // destination. 1123 if (isa<IndirectBrInst>(Pred->getTerminator())) 1124 continue; 1125 1126 ConstantInt *Val = PredValues[i].first; 1127 1128 BasicBlock *DestBB; 1129 if (Val == 0) // Undef. 1130 DestBB = 0; 1131 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1132 DestBB = BI->getSuccessor(Val->isZero()); 1133 else { 1134 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator()); 1135 DestBB = SI->getSuccessor(SI->findCaseValue(Val)); 1136 } 1137 1138 // If we have exactly one destination, remember it for efficiency below. 1139 if (i == 0) 1140 OnlyDest = DestBB; 1141 else if (OnlyDest != DestBB) 1142 OnlyDest = MultipleDestSentinel; 1143 1144 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1145 } 1146 1147 // If all edges were unthreadable, we fail. 1148 if (PredToDestList.empty()) 1149 return false; 1150 1151 // Determine which is the most common successor. If we have many inputs and 1152 // this block is a switch, we want to start by threading the batch that goes 1153 // to the most popular destination first. If we only know about one 1154 // threadable destination (the common case) we can avoid this. 1155 BasicBlock *MostPopularDest = OnlyDest; 1156 1157 if (MostPopularDest == MultipleDestSentinel) 1158 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1159 1160 // Now that we know what the most popular destination is, factor all 1161 // predecessors that will jump to it into a single predecessor. 1162 SmallVector<BasicBlock*, 16> PredsToFactor; 1163 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1164 if (PredToDestList[i].second == MostPopularDest) { 1165 BasicBlock *Pred = PredToDestList[i].first; 1166 1167 // This predecessor may be a switch or something else that has multiple 1168 // edges to the block. Factor each of these edges by listing them 1169 // according to # occurrences in PredsToFactor. 1170 TerminatorInst *PredTI = Pred->getTerminator(); 1171 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1172 if (PredTI->getSuccessor(i) == BB) 1173 PredsToFactor.push_back(Pred); 1174 } 1175 1176 // If the threadable edges are branching on an undefined value, we get to pick 1177 // the destination that these predecessors should get to. 1178 if (MostPopularDest == 0) 1179 MostPopularDest = BB->getTerminator()-> 1180 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1181 1182 // Ok, try to thread it! 1183 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1184 } 1185 1186 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1187 /// a PHI node in the current block. See if there are any simplifications we 1188 /// can do based on inputs to the phi node. 1189 /// 1190 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1191 BasicBlock *BB = PN->getParent(); 1192 1193 // TODO: We could make use of this to do it once for blocks with common PHI 1194 // values. 1195 SmallVector<BasicBlock*, 1> PredBBs; 1196 PredBBs.resize(1); 1197 1198 // If any of the predecessor blocks end in an unconditional branch, we can 1199 // *duplicate* the conditional branch into that block in order to further 1200 // encourage jump threading and to eliminate cases where we have branch on a 1201 // phi of an icmp (branch on icmp is much better). 1202 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1203 BasicBlock *PredBB = PN->getIncomingBlock(i); 1204 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1205 if (PredBr->isUnconditional()) { 1206 PredBBs[0] = PredBB; 1207 // Try to duplicate BB into PredBB. 1208 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1209 return true; 1210 } 1211 } 1212 1213 return false; 1214 } 1215 1216 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1217 /// a xor instruction in the current block. See if there are any 1218 /// simplifications we can do based on inputs to the xor. 1219 /// 1220 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1221 BasicBlock *BB = BO->getParent(); 1222 1223 // If either the LHS or RHS of the xor is a constant, don't do this 1224 // optimization. 1225 if (isa<ConstantInt>(BO->getOperand(0)) || 1226 isa<ConstantInt>(BO->getOperand(1))) 1227 return false; 1228 1229 // If the first instruction in BB isn't a phi, we won't be able to infer 1230 // anything special about any particular predecessor. 1231 if (!isa<PHINode>(BB->front())) 1232 return false; 1233 1234 // If we have a xor as the branch input to this block, and we know that the 1235 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1236 // the condition into the predecessor and fix that value to true, saving some 1237 // logical ops on that path and encouraging other paths to simplify. 1238 // 1239 // This copies something like this: 1240 // 1241 // BB: 1242 // %X = phi i1 [1], [%X'] 1243 // %Y = icmp eq i32 %A, %B 1244 // %Z = xor i1 %X, %Y 1245 // br i1 %Z, ... 1246 // 1247 // Into: 1248 // BB': 1249 // %Y = icmp ne i32 %A, %B 1250 // br i1 %Z, ... 1251 1252 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues; 1253 bool isLHS = true; 1254 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) { 1255 assert(XorOpValues.empty()); 1256 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues)) 1257 return false; 1258 isLHS = false; 1259 } 1260 1261 assert(!XorOpValues.empty() && 1262 "ComputeValueKnownInPredecessors returned true with no values"); 1263 1264 // Scan the information to see which is most popular: true or false. The 1265 // predecessors can be of the set true, false, or undef. 1266 unsigned NumTrue = 0, NumFalse = 0; 1267 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1268 if (!XorOpValues[i].first) continue; // Ignore undefs for the count. 1269 if (XorOpValues[i].first->isZero()) 1270 ++NumFalse; 1271 else 1272 ++NumTrue; 1273 } 1274 1275 // Determine which value to split on, true, false, or undef if neither. 1276 ConstantInt *SplitVal = 0; 1277 if (NumTrue > NumFalse) 1278 SplitVal = ConstantInt::getTrue(BB->getContext()); 1279 else if (NumTrue != 0 || NumFalse != 0) 1280 SplitVal = ConstantInt::getFalse(BB->getContext()); 1281 1282 // Collect all of the blocks that this can be folded into so that we can 1283 // factor this once and clone it once. 1284 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1285 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1286 if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue; 1287 1288 BlocksToFoldInto.push_back(XorOpValues[i].second); 1289 } 1290 1291 // If we inferred a value for all of the predecessors, then duplication won't 1292 // help us. However, we can just replace the LHS or RHS with the constant. 1293 if (BlocksToFoldInto.size() == 1294 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1295 if (SplitVal == 0) { 1296 // If all preds provide undef, just nuke the xor, because it is undef too. 1297 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1298 BO->eraseFromParent(); 1299 } else if (SplitVal->isZero()) { 1300 // If all preds provide 0, replace the xor with the other input. 1301 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1302 BO->eraseFromParent(); 1303 } else { 1304 // If all preds provide 1, set the computed value to 1. 1305 BO->setOperand(!isLHS, SplitVal); 1306 } 1307 1308 return true; 1309 } 1310 1311 // Try to duplicate BB into PredBB. 1312 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1313 } 1314 1315 1316 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1317 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1318 /// NewPred using the entries from OldPred (suitably mapped). 1319 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1320 BasicBlock *OldPred, 1321 BasicBlock *NewPred, 1322 DenseMap<Instruction*, Value*> &ValueMap) { 1323 for (BasicBlock::iterator PNI = PHIBB->begin(); 1324 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1325 // Ok, we have a PHI node. Figure out what the incoming value was for the 1326 // DestBlock. 1327 Value *IV = PN->getIncomingValueForBlock(OldPred); 1328 1329 // Remap the value if necessary. 1330 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1331 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1332 if (I != ValueMap.end()) 1333 IV = I->second; 1334 } 1335 1336 PN->addIncoming(IV, NewPred); 1337 } 1338 } 1339 1340 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1341 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1342 /// across BB. Transform the IR to reflect this change. 1343 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1344 const SmallVectorImpl<BasicBlock*> &PredBBs, 1345 BasicBlock *SuccBB) { 1346 // If threading to the same block as we come from, we would infinite loop. 1347 if (SuccBB == BB) { 1348 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1349 << "' - would thread to self!\n"); 1350 return false; 1351 } 1352 1353 // If threading this would thread across a loop header, don't thread the edge. 1354 // See the comments above FindLoopHeaders for justifications and caveats. 1355 if (LoopHeaders.count(BB)) { 1356 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1357 << "' to dest BB '" << SuccBB->getName() 1358 << "' - it might create an irreducible loop!\n"); 1359 return false; 1360 } 1361 1362 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); 1363 if (JumpThreadCost > Threshold) { 1364 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1365 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1366 return false; 1367 } 1368 1369 // And finally, do it! Start by factoring the predecessors is needed. 1370 BasicBlock *PredBB; 1371 if (PredBBs.size() == 1) 1372 PredBB = PredBBs[0]; 1373 else { 1374 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1375 << " common predecessors.\n"); 1376 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1377 ".thr_comm", this); 1378 } 1379 1380 // And finally, do it! 1381 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1382 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1383 << ", across block:\n " 1384 << *BB << "\n"); 1385 1386 LVI->threadEdge(PredBB, BB, SuccBB); 1387 1388 // We are going to have to map operands from the original BB block to the new 1389 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1390 // account for entry from PredBB. 1391 DenseMap<Instruction*, Value*> ValueMapping; 1392 1393 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1394 BB->getName()+".thread", 1395 BB->getParent(), BB); 1396 NewBB->moveAfter(PredBB); 1397 1398 BasicBlock::iterator BI = BB->begin(); 1399 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1400 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1401 1402 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1403 // mapping and using it to remap operands in the cloned instructions. 1404 for (; !isa<TerminatorInst>(BI); ++BI) { 1405 Instruction *New = BI->clone(); 1406 New->setName(BI->getName()); 1407 NewBB->getInstList().push_back(New); 1408 ValueMapping[BI] = New; 1409 1410 // Remap operands to patch up intra-block references. 1411 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1412 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1413 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1414 if (I != ValueMapping.end()) 1415 New->setOperand(i, I->second); 1416 } 1417 } 1418 1419 // We didn't copy the terminator from BB over to NewBB, because there is now 1420 // an unconditional jump to SuccBB. Insert the unconditional jump. 1421 BranchInst::Create(SuccBB, NewBB); 1422 1423 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1424 // PHI nodes for NewBB now. 1425 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1426 1427 // If there were values defined in BB that are used outside the block, then we 1428 // now have to update all uses of the value to use either the original value, 1429 // the cloned value, or some PHI derived value. This can require arbitrary 1430 // PHI insertion, of which we are prepared to do, clean these up now. 1431 SSAUpdater SSAUpdate; 1432 SmallVector<Use*, 16> UsesToRename; 1433 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1434 // Scan all uses of this instruction to see if it is used outside of its 1435 // block, and if so, record them in UsesToRename. 1436 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1437 ++UI) { 1438 Instruction *User = cast<Instruction>(*UI); 1439 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1440 if (UserPN->getIncomingBlock(UI) == BB) 1441 continue; 1442 } else if (User->getParent() == BB) 1443 continue; 1444 1445 UsesToRename.push_back(&UI.getUse()); 1446 } 1447 1448 // If there are no uses outside the block, we're done with this instruction. 1449 if (UsesToRename.empty()) 1450 continue; 1451 1452 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1453 1454 // We found a use of I outside of BB. Rename all uses of I that are outside 1455 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1456 // with the two values we know. 1457 SSAUpdate.Initialize(I->getType(), I->getName()); 1458 SSAUpdate.AddAvailableValue(BB, I); 1459 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1460 1461 while (!UsesToRename.empty()) 1462 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1463 DEBUG(dbgs() << "\n"); 1464 } 1465 1466 1467 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1468 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1469 // us to simplify any PHI nodes in BB. 1470 TerminatorInst *PredTerm = PredBB->getTerminator(); 1471 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1472 if (PredTerm->getSuccessor(i) == BB) { 1473 RemovePredecessorAndSimplify(BB, PredBB, TD); 1474 PredTerm->setSuccessor(i, NewBB); 1475 } 1476 1477 // At this point, the IR is fully up to date and consistent. Do a quick scan 1478 // over the new instructions and zap any that are constants or dead. This 1479 // frequently happens because of phi translation. 1480 SimplifyInstructionsInBlock(NewBB, TD); 1481 1482 // Threaded an edge! 1483 ++NumThreads; 1484 return true; 1485 } 1486 1487 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1488 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1489 /// If we can duplicate the contents of BB up into PredBB do so now, this 1490 /// improves the odds that the branch will be on an analyzable instruction like 1491 /// a compare. 1492 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1493 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1494 assert(!PredBBs.empty() && "Can't handle an empty set"); 1495 1496 // If BB is a loop header, then duplicating this block outside the loop would 1497 // cause us to transform this into an irreducible loop, don't do this. 1498 // See the comments above FindLoopHeaders for justifications and caveats. 1499 if (LoopHeaders.count(BB)) { 1500 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1501 << "' into predecessor block '" << PredBBs[0]->getName() 1502 << "' - it might create an irreducible loop!\n"); 1503 return false; 1504 } 1505 1506 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB); 1507 if (DuplicationCost > Threshold) { 1508 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1509 << "' - Cost is too high: " << DuplicationCost << "\n"); 1510 return false; 1511 } 1512 1513 // And finally, do it! Start by factoring the predecessors is needed. 1514 BasicBlock *PredBB; 1515 if (PredBBs.size() == 1) 1516 PredBB = PredBBs[0]; 1517 else { 1518 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1519 << " common predecessors.\n"); 1520 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1521 ".thr_comm", this); 1522 } 1523 1524 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1525 // of PredBB. 1526 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1527 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1528 << DuplicationCost << " block is:" << *BB << "\n"); 1529 1530 // Unless PredBB ends with an unconditional branch, split the edge so that we 1531 // can just clone the bits from BB into the end of the new PredBB. 1532 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1533 1534 if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) { 1535 PredBB = SplitEdge(PredBB, BB, this); 1536 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1537 } 1538 1539 // We are going to have to map operands from the original BB block into the 1540 // PredBB block. Evaluate PHI nodes in BB. 1541 DenseMap<Instruction*, Value*> ValueMapping; 1542 1543 BasicBlock::iterator BI = BB->begin(); 1544 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1545 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1546 1547 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1548 // mapping and using it to remap operands in the cloned instructions. 1549 for (; BI != BB->end(); ++BI) { 1550 Instruction *New = BI->clone(); 1551 1552 // Remap operands to patch up intra-block references. 1553 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1554 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1555 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1556 if (I != ValueMapping.end()) 1557 New->setOperand(i, I->second); 1558 } 1559 1560 // If this instruction can be simplified after the operands are updated, 1561 // just use the simplified value instead. This frequently happens due to 1562 // phi translation. 1563 if (Value *IV = SimplifyInstruction(New, TD)) { 1564 delete New; 1565 ValueMapping[BI] = IV; 1566 } else { 1567 // Otherwise, insert the new instruction into the block. 1568 New->setName(BI->getName()); 1569 PredBB->getInstList().insert(OldPredBranch, New); 1570 ValueMapping[BI] = New; 1571 } 1572 } 1573 1574 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1575 // add entries to the PHI nodes for branch from PredBB now. 1576 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1577 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1578 ValueMapping); 1579 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1580 ValueMapping); 1581 1582 // If there were values defined in BB that are used outside the block, then we 1583 // now have to update all uses of the value to use either the original value, 1584 // the cloned value, or some PHI derived value. This can require arbitrary 1585 // PHI insertion, of which we are prepared to do, clean these up now. 1586 SSAUpdater SSAUpdate; 1587 SmallVector<Use*, 16> UsesToRename; 1588 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1589 // Scan all uses of this instruction to see if it is used outside of its 1590 // block, and if so, record them in UsesToRename. 1591 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1592 ++UI) { 1593 Instruction *User = cast<Instruction>(*UI); 1594 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1595 if (UserPN->getIncomingBlock(UI) == BB) 1596 continue; 1597 } else if (User->getParent() == BB) 1598 continue; 1599 1600 UsesToRename.push_back(&UI.getUse()); 1601 } 1602 1603 // If there are no uses outside the block, we're done with this instruction. 1604 if (UsesToRename.empty()) 1605 continue; 1606 1607 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1608 1609 // We found a use of I outside of BB. Rename all uses of I that are outside 1610 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1611 // with the two values we know. 1612 SSAUpdate.Initialize(I->getType(), I->getName()); 1613 SSAUpdate.AddAvailableValue(BB, I); 1614 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1615 1616 while (!UsesToRename.empty()) 1617 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1618 DEBUG(dbgs() << "\n"); 1619 } 1620 1621 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1622 // that we nuked. 1623 RemovePredecessorAndSimplify(BB, PredBB, TD); 1624 1625 // Remove the unconditional branch at the end of the PredBB block. 1626 OldPredBranch->eraseFromParent(); 1627 1628 ++NumDupes; 1629 return true; 1630 } 1631 1632 1633