1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "jump-threading" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/IntrinsicInst.h" 17 #include "llvm/LLVMContext.h" 18 #include "llvm/Pass.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LazyValueInfo.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 #include "llvm/Transforms/Utils/SSAUpdater.h" 25 #include "llvm/Target/TargetData.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ValueHandle.h" 35 #include "llvm/Support/raw_ostream.h" 36 using namespace llvm; 37 38 STATISTIC(NumThreads, "Number of jumps threaded"); 39 STATISTIC(NumFolds, "Number of terminators folded"); 40 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 41 42 static cl::opt<unsigned> 43 Threshold("jump-threading-threshold", 44 cl::desc("Max block size to duplicate for jump threading"), 45 cl::init(6), cl::Hidden); 46 47 namespace { 48 // These are at global scope so static functions can use them too. 49 typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo; 50 typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy; 51 52 // This is used to keep track of what kind of constant we're currently hoping 53 // to find. 54 enum ConstantPreference { 55 WantInteger, 56 WantBlockAddress 57 }; 58 59 /// This pass performs 'jump threading', which looks at blocks that have 60 /// multiple predecessors and multiple successors. If one or more of the 61 /// predecessors of the block can be proven to always jump to one of the 62 /// successors, we forward the edge from the predecessor to the successor by 63 /// duplicating the contents of this block. 64 /// 65 /// An example of when this can occur is code like this: 66 /// 67 /// if () { ... 68 /// X = 4; 69 /// } 70 /// if (X < 3) { 71 /// 72 /// In this case, the unconditional branch at the end of the first if can be 73 /// revectored to the false side of the second if. 74 /// 75 class JumpThreading : public FunctionPass { 76 TargetData *TD; 77 LazyValueInfo *LVI; 78 #ifdef NDEBUG 79 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 80 #else 81 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 82 #endif 83 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; 84 85 // RAII helper for updating the recursion stack. 86 struct RecursionSetRemover { 87 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet; 88 std::pair<Value*, BasicBlock*> ThePair; 89 90 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S, 91 std::pair<Value*, BasicBlock*> P) 92 : TheSet(S), ThePair(P) { } 93 94 ~RecursionSetRemover() { 95 TheSet.erase(ThePair); 96 } 97 }; 98 public: 99 static char ID; // Pass identification 100 JumpThreading() : FunctionPass(ID) { 101 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 102 } 103 104 bool runOnFunction(Function &F); 105 106 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 107 AU.addRequired<LazyValueInfo>(); 108 AU.addPreserved<LazyValueInfo>(); 109 } 110 111 void FindLoopHeaders(Function &F); 112 bool ProcessBlock(BasicBlock *BB); 113 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 114 BasicBlock *SuccBB); 115 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 116 const SmallVectorImpl<BasicBlock *> &PredBBs); 117 118 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 119 PredValueInfo &Result, 120 ConstantPreference Preference); 121 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 122 ConstantPreference Preference); 123 124 bool ProcessBranchOnPHI(PHINode *PN); 125 bool ProcessBranchOnXOR(BinaryOperator *BO); 126 127 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 128 }; 129 } 130 131 char JumpThreading::ID = 0; 132 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 133 "Jump Threading", false, false) 134 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo) 135 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 136 "Jump Threading", false, false) 137 138 // Public interface to the Jump Threading pass 139 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } 140 141 /// runOnFunction - Top level algorithm. 142 /// 143 bool JumpThreading::runOnFunction(Function &F) { 144 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 145 TD = getAnalysisIfAvailable<TargetData>(); 146 LVI = &getAnalysis<LazyValueInfo>(); 147 148 FindLoopHeaders(F); 149 150 bool Changed, EverChanged = false; 151 do { 152 Changed = false; 153 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 154 BasicBlock *BB = I; 155 // Thread all of the branches we can over this block. 156 while (ProcessBlock(BB)) 157 Changed = true; 158 159 ++I; 160 161 // If the block is trivially dead, zap it. This eliminates the successor 162 // edges which simplifies the CFG. 163 if (pred_begin(BB) == pred_end(BB) && 164 BB != &BB->getParent()->getEntryBlock()) { 165 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 166 << "' with terminator: " << *BB->getTerminator() << '\n'); 167 LoopHeaders.erase(BB); 168 LVI->eraseBlock(BB); 169 DeleteDeadBlock(BB); 170 Changed = true; 171 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 172 // Can't thread an unconditional jump, but if the block is "almost 173 // empty", we can replace uses of it with uses of the successor and make 174 // this dead. 175 if (BI->isUnconditional() && 176 BB != &BB->getParent()->getEntryBlock()) { 177 BasicBlock::iterator BBI = BB->getFirstNonPHI(); 178 // Ignore dbg intrinsics. 179 while (isa<DbgInfoIntrinsic>(BBI)) 180 ++BBI; 181 // If the terminator is the only non-phi instruction, try to nuke it. 182 if (BBI->isTerminator()) { 183 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 184 // block, we have to make sure it isn't in the LoopHeaders set. We 185 // reinsert afterward if needed. 186 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 187 BasicBlock *Succ = BI->getSuccessor(0); 188 189 // FIXME: It is always conservatively correct to drop the info 190 // for a block even if it doesn't get erased. This isn't totally 191 // awesome, but it allows us to use AssertingVH to prevent nasty 192 // dangling pointer issues within LazyValueInfo. 193 LVI->eraseBlock(BB); 194 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 195 Changed = true; 196 // If we deleted BB and BB was the header of a loop, then the 197 // successor is now the header of the loop. 198 BB = Succ; 199 } 200 201 if (ErasedFromLoopHeaders) 202 LoopHeaders.insert(BB); 203 } 204 } 205 } 206 } 207 EverChanged |= Changed; 208 } while (Changed); 209 210 LoopHeaders.clear(); 211 return EverChanged; 212 } 213 214 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 215 /// thread across it. 216 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) { 217 /// Ignore PHI nodes, these will be flattened when duplication happens. 218 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 219 220 // FIXME: THREADING will delete values that are just used to compute the 221 // branch, so they shouldn't count against the duplication cost. 222 223 224 // Sum up the cost of each instruction until we get to the terminator. Don't 225 // include the terminator because the copy won't include it. 226 unsigned Size = 0; 227 for (; !isa<TerminatorInst>(I); ++I) { 228 // Debugger intrinsics don't incur code size. 229 if (isa<DbgInfoIntrinsic>(I)) continue; 230 231 // If this is a pointer->pointer bitcast, it is free. 232 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 233 continue; 234 235 // All other instructions count for at least one unit. 236 ++Size; 237 238 // Calls are more expensive. If they are non-intrinsic calls, we model them 239 // as having cost of 4. If they are a non-vector intrinsic, we model them 240 // as having cost of 2 total, and if they are a vector intrinsic, we model 241 // them as having cost 1. 242 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 243 if (!isa<IntrinsicInst>(CI)) 244 Size += 3; 245 else if (!CI->getType()->isVectorTy()) 246 Size += 1; 247 } 248 } 249 250 // Threading through a switch statement is particularly profitable. If this 251 // block ends in a switch, decrease its cost to make it more likely to happen. 252 if (isa<SwitchInst>(I)) 253 Size = Size > 6 ? Size-6 : 0; 254 255 // The same holds for indirect branches, but slightly more so. 256 if (isa<IndirectBrInst>(I)) 257 Size = Size > 8 ? Size-8 : 0; 258 259 return Size; 260 } 261 262 /// FindLoopHeaders - We do not want jump threading to turn proper loop 263 /// structures into irreducible loops. Doing this breaks up the loop nesting 264 /// hierarchy and pessimizes later transformations. To prevent this from 265 /// happening, we first have to find the loop headers. Here we approximate this 266 /// by finding targets of backedges in the CFG. 267 /// 268 /// Note that there definitely are cases when we want to allow threading of 269 /// edges across a loop header. For example, threading a jump from outside the 270 /// loop (the preheader) to an exit block of the loop is definitely profitable. 271 /// It is also almost always profitable to thread backedges from within the loop 272 /// to exit blocks, and is often profitable to thread backedges to other blocks 273 /// within the loop (forming a nested loop). This simple analysis is not rich 274 /// enough to track all of these properties and keep it up-to-date as the CFG 275 /// mutates, so we don't allow any of these transformations. 276 /// 277 void JumpThreading::FindLoopHeaders(Function &F) { 278 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 279 FindFunctionBackedges(F, Edges); 280 281 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 282 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 283 } 284 285 /// getKnownConstant - Helper method to determine if we can thread over a 286 /// terminator with the given value as its condition, and if so what value to 287 /// use for that. What kind of value this is depends on whether we want an 288 /// integer or a block address, but an undef is always accepted. 289 /// Returns null if Val is null or not an appropriate constant. 290 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 291 if (!Val) 292 return 0; 293 294 // Undef is "known" enough. 295 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 296 return U; 297 298 if (Preference == WantBlockAddress) 299 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 300 301 return dyn_cast<ConstantInt>(Val); 302 } 303 304 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 305 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 306 /// in any of our predecessors. If so, return the known list of value and pred 307 /// BB in the result vector. 308 /// 309 /// This returns true if there were any known values. 310 /// 311 bool JumpThreading:: 312 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, 313 ConstantPreference Preference) { 314 // This method walks up use-def chains recursively. Because of this, we could 315 // get into an infinite loop going around loops in the use-def chain. To 316 // prevent this, keep track of what (value, block) pairs we've already visited 317 // and terminate the search if we loop back to them 318 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 319 return false; 320 321 // An RAII help to remove this pair from the recursion set once the recursion 322 // stack pops back out again. 323 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 324 325 // If V is a constant, then it is known in all predecessors. 326 if (Constant *KC = getKnownConstant(V, Preference)) { 327 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 328 Result.push_back(std::make_pair(KC, *PI)); 329 330 return true; 331 } 332 333 // If V is a non-instruction value, or an instruction in a different block, 334 // then it can't be derived from a PHI. 335 Instruction *I = dyn_cast<Instruction>(V); 336 if (I == 0 || I->getParent() != BB) { 337 338 // Okay, if this is a live-in value, see if it has a known value at the end 339 // of any of our predecessors. 340 // 341 // FIXME: This should be an edge property, not a block end property. 342 /// TODO: Per PR2563, we could infer value range information about a 343 /// predecessor based on its terminator. 344 // 345 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 346 // "I" is a non-local compare-with-a-constant instruction. This would be 347 // able to handle value inequalities better, for example if the compare is 348 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 349 // Perhaps getConstantOnEdge should be smart enough to do this? 350 351 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 352 BasicBlock *P = *PI; 353 // If the value is known by LazyValueInfo to be a constant in a 354 // predecessor, use that information to try to thread this block. 355 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB); 356 if (Constant *KC = getKnownConstant(PredCst, Preference)) 357 Result.push_back(std::make_pair(KC, P)); 358 } 359 360 return !Result.empty(); 361 } 362 363 /// If I is a PHI node, then we know the incoming values for any constants. 364 if (PHINode *PN = dyn_cast<PHINode>(I)) { 365 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 366 Value *InVal = PN->getIncomingValue(i); 367 if (Constant *KC = getKnownConstant(InVal, Preference)) { 368 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 369 } else { 370 Constant *CI = LVI->getConstantOnEdge(InVal, 371 PN->getIncomingBlock(i), BB); 372 if (Constant *KC = getKnownConstant(CI, Preference)) 373 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 374 } 375 } 376 377 return !Result.empty(); 378 } 379 380 PredValueInfoTy LHSVals, RHSVals; 381 382 // Handle some boolean conditions. 383 if (I->getType()->getPrimitiveSizeInBits() == 1) { 384 assert(Preference == WantInteger && "One-bit non-integer type?"); 385 // X | true -> true 386 // X & false -> false 387 if (I->getOpcode() == Instruction::Or || 388 I->getOpcode() == Instruction::And) { 389 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 390 WantInteger); 391 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 392 WantInteger); 393 394 if (LHSVals.empty() && RHSVals.empty()) 395 return false; 396 397 ConstantInt *InterestingVal; 398 if (I->getOpcode() == Instruction::Or) 399 InterestingVal = ConstantInt::getTrue(I->getContext()); 400 else 401 InterestingVal = ConstantInt::getFalse(I->getContext()); 402 403 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 404 405 // Scan for the sentinel. If we find an undef, force it to the 406 // interesting value: x|undef -> true and x&undef -> false. 407 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 408 if (LHSVals[i].first == InterestingVal || 409 isa<UndefValue>(LHSVals[i].first)) { 410 Result.push_back(LHSVals[i]); 411 Result.back().first = InterestingVal; 412 LHSKnownBBs.insert(LHSVals[i].second); 413 } 414 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 415 if (RHSVals[i].first == InterestingVal || 416 isa<UndefValue>(RHSVals[i].first)) { 417 // If we already inferred a value for this block on the LHS, don't 418 // re-add it. 419 if (!LHSKnownBBs.count(RHSVals[i].second)) { 420 Result.push_back(RHSVals[i]); 421 Result.back().first = InterestingVal; 422 } 423 } 424 425 return !Result.empty(); 426 } 427 428 // Handle the NOT form of XOR. 429 if (I->getOpcode() == Instruction::Xor && 430 isa<ConstantInt>(I->getOperand(1)) && 431 cast<ConstantInt>(I->getOperand(1))->isOne()) { 432 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 433 WantInteger); 434 if (Result.empty()) 435 return false; 436 437 // Invert the known values. 438 for (unsigned i = 0, e = Result.size(); i != e; ++i) 439 Result[i].first = ConstantExpr::getNot(Result[i].first); 440 441 return true; 442 } 443 444 // Try to simplify some other binary operator values. 445 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 446 assert(Preference != WantBlockAddress 447 && "A binary operator creating a block address?"); 448 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 449 PredValueInfoTy LHSVals; 450 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 451 WantInteger); 452 453 // Try to use constant folding to simplify the binary operator. 454 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 455 Constant *V = LHSVals[i].first; 456 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 457 458 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 459 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 460 } 461 } 462 463 return !Result.empty(); 464 } 465 466 // Handle compare with phi operand, where the PHI is defined in this block. 467 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 468 assert(Preference == WantInteger && "Compares only produce integers"); 469 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 470 if (PN && PN->getParent() == BB) { 471 // We can do this simplification if any comparisons fold to true or false. 472 // See if any do. 473 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 474 BasicBlock *PredBB = PN->getIncomingBlock(i); 475 Value *LHS = PN->getIncomingValue(i); 476 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 477 478 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD); 479 if (Res == 0) { 480 if (!isa<Constant>(RHS)) 481 continue; 482 483 LazyValueInfo::Tristate 484 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 485 cast<Constant>(RHS), PredBB, BB); 486 if (ResT == LazyValueInfo::Unknown) 487 continue; 488 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 489 } 490 491 if (Constant *KC = getKnownConstant(Res, WantInteger)) 492 Result.push_back(std::make_pair(KC, PredBB)); 493 } 494 495 return !Result.empty(); 496 } 497 498 499 // If comparing a live-in value against a constant, see if we know the 500 // live-in value on any predecessors. 501 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 502 if (!isa<Instruction>(Cmp->getOperand(0)) || 503 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 504 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 505 506 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){ 507 BasicBlock *P = *PI; 508 // If the value is known by LazyValueInfo to be a constant in a 509 // predecessor, use that information to try to thread this block. 510 LazyValueInfo::Tristate Res = 511 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 512 RHSCst, P, BB); 513 if (Res == LazyValueInfo::Unknown) 514 continue; 515 516 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 517 Result.push_back(std::make_pair(ResC, P)); 518 } 519 520 return !Result.empty(); 521 } 522 523 // Try to find a constant value for the LHS of a comparison, 524 // and evaluate it statically if we can. 525 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 526 PredValueInfoTy LHSVals; 527 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 528 WantInteger); 529 530 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 531 Constant *V = LHSVals[i].first; 532 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 533 V, CmpConst); 534 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 535 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 536 } 537 538 return !Result.empty(); 539 } 540 } 541 } 542 543 // If all else fails, see if LVI can figure out a constant value for us. 544 Constant *CI = LVI->getConstant(V, BB); 545 if (Constant *KC = getKnownConstant(CI, Preference)) { 546 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 547 Result.push_back(std::make_pair(KC, *PI)); 548 } 549 550 return !Result.empty(); 551 } 552 553 554 555 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 556 /// in an undefined jump, decide which block is best to revector to. 557 /// 558 /// Since we can pick an arbitrary destination, we pick the successor with the 559 /// fewest predecessors. This should reduce the in-degree of the others. 560 /// 561 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 562 TerminatorInst *BBTerm = BB->getTerminator(); 563 unsigned MinSucc = 0; 564 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 565 // Compute the successor with the minimum number of predecessors. 566 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 567 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 568 TestBB = BBTerm->getSuccessor(i); 569 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 570 if (NumPreds < MinNumPreds) 571 MinSucc = i; 572 } 573 574 return MinSucc; 575 } 576 577 /// ProcessBlock - If there are any predecessors whose control can be threaded 578 /// through to a successor, transform them now. 579 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 580 // If the block is trivially dead, just return and let the caller nuke it. 581 // This simplifies other transformations. 582 if (pred_begin(BB) == pred_end(BB) && 583 BB != &BB->getParent()->getEntryBlock()) 584 return false; 585 586 // If this block has a single predecessor, and if that pred has a single 587 // successor, merge the blocks. This encourages recursive jump threading 588 // because now the condition in this block can be threaded through 589 // predecessors of our predecessor block. 590 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 591 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 592 SinglePred != BB) { 593 // If SinglePred was a loop header, BB becomes one. 594 if (LoopHeaders.erase(SinglePred)) 595 LoopHeaders.insert(BB); 596 597 // Remember if SinglePred was the entry block of the function. If so, we 598 // will need to move BB back to the entry position. 599 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 600 LVI->eraseBlock(SinglePred); 601 MergeBasicBlockIntoOnlyPred(BB); 602 603 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 604 BB->moveBefore(&BB->getParent()->getEntryBlock()); 605 return true; 606 } 607 } 608 609 // What kind of constant we're looking for. 610 ConstantPreference Preference = WantInteger; 611 612 // Look to see if the terminator is a conditional branch, switch or indirect 613 // branch, if not we can't thread it. 614 Value *Condition; 615 Instruction *Terminator = BB->getTerminator(); 616 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 617 // Can't thread an unconditional jump. 618 if (BI->isUnconditional()) return false; 619 Condition = BI->getCondition(); 620 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 621 Condition = SI->getCondition(); 622 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 623 Condition = IB->getAddress()->stripPointerCasts(); 624 Preference = WantBlockAddress; 625 } else { 626 return false; // Must be an invoke. 627 } 628 629 // If the terminator is branching on an undef, we can pick any of the 630 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 631 if (isa<UndefValue>(Condition)) { 632 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 633 634 // Fold the branch/switch. 635 TerminatorInst *BBTerm = BB->getTerminator(); 636 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 637 if (i == BestSucc) continue; 638 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 639 } 640 641 DEBUG(dbgs() << " In block '" << BB->getName() 642 << "' folding undef terminator: " << *BBTerm << '\n'); 643 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 644 BBTerm->eraseFromParent(); 645 return true; 646 } 647 648 // If the terminator of this block is branching on a constant, simplify the 649 // terminator to an unconditional branch. This can occur due to threading in 650 // other blocks. 651 if (getKnownConstant(Condition, Preference)) { 652 DEBUG(dbgs() << " In block '" << BB->getName() 653 << "' folding terminator: " << *BB->getTerminator() << '\n'); 654 ++NumFolds; 655 ConstantFoldTerminator(BB); 656 return true; 657 } 658 659 Instruction *CondInst = dyn_cast<Instruction>(Condition); 660 661 // All the rest of our checks depend on the condition being an instruction. 662 if (CondInst == 0) { 663 // FIXME: Unify this with code below. 664 if (ProcessThreadableEdges(Condition, BB, Preference)) 665 return true; 666 return false; 667 } 668 669 670 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 671 // For a comparison where the LHS is outside this block, it's possible 672 // that we've branched on it before. Used LVI to see if we can simplify 673 // the branch based on that. 674 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 675 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 676 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 677 if (CondBr && CondConst && CondBr->isConditional() && PI != PE && 678 (!isa<Instruction>(CondCmp->getOperand(0)) || 679 cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) { 680 // For predecessor edge, determine if the comparison is true or false 681 // on that edge. If they're all true or all false, we can simplify the 682 // branch. 683 // FIXME: We could handle mixed true/false by duplicating code. 684 LazyValueInfo::Tristate Baseline = 685 LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0), 686 CondConst, *PI, BB); 687 if (Baseline != LazyValueInfo::Unknown) { 688 // Check that all remaining incoming values match the first one. 689 while (++PI != PE) { 690 LazyValueInfo::Tristate Ret = 691 LVI->getPredicateOnEdge(CondCmp->getPredicate(), 692 CondCmp->getOperand(0), CondConst, *PI, BB); 693 if (Ret != Baseline) break; 694 } 695 696 // If we terminated early, then one of the values didn't match. 697 if (PI == PE) { 698 unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0; 699 unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1; 700 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 701 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 702 CondBr->eraseFromParent(); 703 return true; 704 } 705 } 706 } 707 } 708 709 // Check for some cases that are worth simplifying. Right now we want to look 710 // for loads that are used by a switch or by the condition for the branch. If 711 // we see one, check to see if it's partially redundant. If so, insert a PHI 712 // which can then be used to thread the values. 713 // 714 Value *SimplifyValue = CondInst; 715 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 716 if (isa<Constant>(CondCmp->getOperand(1))) 717 SimplifyValue = CondCmp->getOperand(0); 718 719 // TODO: There are other places where load PRE would be profitable, such as 720 // more complex comparisons. 721 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 722 if (SimplifyPartiallyRedundantLoad(LI)) 723 return true; 724 725 726 // Handle a variety of cases where we are branching on something derived from 727 // a PHI node in the current block. If we can prove that any predecessors 728 // compute a predictable value based on a PHI node, thread those predecessors. 729 // 730 if (ProcessThreadableEdges(CondInst, BB, Preference)) 731 return true; 732 733 // If this is an otherwise-unfoldable branch on a phi node in the current 734 // block, see if we can simplify. 735 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 736 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 737 return ProcessBranchOnPHI(PN); 738 739 740 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 741 if (CondInst->getOpcode() == Instruction::Xor && 742 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 743 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 744 745 746 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 747 // "(X == 4)", thread through this block. 748 749 return false; 750 } 751 752 753 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 754 /// load instruction, eliminate it by replacing it with a PHI node. This is an 755 /// important optimization that encourages jump threading, and needs to be run 756 /// interlaced with other jump threading tasks. 757 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 758 // Don't hack volatile loads. 759 if (LI->isVolatile()) return false; 760 761 // If the load is defined in a block with exactly one predecessor, it can't be 762 // partially redundant. 763 BasicBlock *LoadBB = LI->getParent(); 764 if (LoadBB->getSinglePredecessor()) 765 return false; 766 767 Value *LoadedPtr = LI->getOperand(0); 768 769 // If the loaded operand is defined in the LoadBB, it can't be available. 770 // TODO: Could do simple PHI translation, that would be fun :) 771 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 772 if (PtrOp->getParent() == LoadBB) 773 return false; 774 775 // Scan a few instructions up from the load, to see if it is obviously live at 776 // the entry to its block. 777 BasicBlock::iterator BBIt = LI; 778 779 if (Value *AvailableVal = 780 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { 781 // If the value if the load is locally available within the block, just use 782 // it. This frequently occurs for reg2mem'd allocas. 783 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 784 785 // If the returned value is the load itself, replace with an undef. This can 786 // only happen in dead loops. 787 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 788 LI->replaceAllUsesWith(AvailableVal); 789 LI->eraseFromParent(); 790 return true; 791 } 792 793 // Otherwise, if we scanned the whole block and got to the top of the block, 794 // we know the block is locally transparent to the load. If not, something 795 // might clobber its value. 796 if (BBIt != LoadBB->begin()) 797 return false; 798 799 800 SmallPtrSet<BasicBlock*, 8> PredsScanned; 801 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 802 AvailablePredsTy AvailablePreds; 803 BasicBlock *OneUnavailablePred = 0; 804 805 // If we got here, the loaded value is transparent through to the start of the 806 // block. Check to see if it is available in any of the predecessor blocks. 807 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 808 PI != PE; ++PI) { 809 BasicBlock *PredBB = *PI; 810 811 // If we already scanned this predecessor, skip it. 812 if (!PredsScanned.insert(PredBB)) 813 continue; 814 815 // Scan the predecessor to see if the value is available in the pred. 816 BBIt = PredBB->end(); 817 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6); 818 if (!PredAvailable) { 819 OneUnavailablePred = PredBB; 820 continue; 821 } 822 823 // If so, this load is partially redundant. Remember this info so that we 824 // can create a PHI node. 825 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 826 } 827 828 // If the loaded value isn't available in any predecessor, it isn't partially 829 // redundant. 830 if (AvailablePreds.empty()) return false; 831 832 // Okay, the loaded value is available in at least one (and maybe all!) 833 // predecessors. If the value is unavailable in more than one unique 834 // predecessor, we want to insert a merge block for those common predecessors. 835 // This ensures that we only have to insert one reload, thus not increasing 836 // code size. 837 BasicBlock *UnavailablePred = 0; 838 839 // If there is exactly one predecessor where the value is unavailable, the 840 // already computed 'OneUnavailablePred' block is it. If it ends in an 841 // unconditional branch, we know that it isn't a critical edge. 842 if (PredsScanned.size() == AvailablePreds.size()+1 && 843 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 844 UnavailablePred = OneUnavailablePred; 845 } else if (PredsScanned.size() != AvailablePreds.size()) { 846 // Otherwise, we had multiple unavailable predecessors or we had a critical 847 // edge from the one. 848 SmallVector<BasicBlock*, 8> PredsToSplit; 849 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 850 851 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 852 AvailablePredSet.insert(AvailablePreds[i].first); 853 854 // Add all the unavailable predecessors to the PredsToSplit list. 855 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 856 PI != PE; ++PI) { 857 BasicBlock *P = *PI; 858 // If the predecessor is an indirect goto, we can't split the edge. 859 if (isa<IndirectBrInst>(P->getTerminator())) 860 return false; 861 862 if (!AvailablePredSet.count(P)) 863 PredsToSplit.push_back(P); 864 } 865 866 // Split them out to their own block. 867 UnavailablePred = 868 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(), 869 "thread-pre-split", this); 870 } 871 872 // If the value isn't available in all predecessors, then there will be 873 // exactly one where it isn't available. Insert a load on that edge and add 874 // it to the AvailablePreds list. 875 if (UnavailablePred) { 876 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 877 "Can't handle critical edge here!"); 878 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 879 LI->getAlignment(), 880 UnavailablePred->getTerminator()); 881 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 882 } 883 884 // Now we know that each predecessor of this block has a value in 885 // AvailablePreds, sort them for efficient access as we're walking the preds. 886 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 887 888 // Create a PHI node at the start of the block for the PRE'd load value. 889 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin()); 890 PN->takeName(LI); 891 892 // Insert new entries into the PHI for each predecessor. A single block may 893 // have multiple entries here. 894 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; 895 ++PI) { 896 BasicBlock *P = *PI; 897 AvailablePredsTy::iterator I = 898 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 899 std::make_pair(P, (Value*)0)); 900 901 assert(I != AvailablePreds.end() && I->first == P && 902 "Didn't find entry for predecessor!"); 903 904 PN->addIncoming(I->second, I->first); 905 } 906 907 //cerr << "PRE: " << *LI << *PN << "\n"; 908 909 LI->replaceAllUsesWith(PN); 910 LI->eraseFromParent(); 911 912 return true; 913 } 914 915 /// FindMostPopularDest - The specified list contains multiple possible 916 /// threadable destinations. Pick the one that occurs the most frequently in 917 /// the list. 918 static BasicBlock * 919 FindMostPopularDest(BasicBlock *BB, 920 const SmallVectorImpl<std::pair<BasicBlock*, 921 BasicBlock*> > &PredToDestList) { 922 assert(!PredToDestList.empty()); 923 924 // Determine popularity. If there are multiple possible destinations, we 925 // explicitly choose to ignore 'undef' destinations. We prefer to thread 926 // blocks with known and real destinations to threading undef. We'll handle 927 // them later if interesting. 928 DenseMap<BasicBlock*, unsigned> DestPopularity; 929 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 930 if (PredToDestList[i].second) 931 DestPopularity[PredToDestList[i].second]++; 932 933 // Find the most popular dest. 934 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 935 BasicBlock *MostPopularDest = DPI->first; 936 unsigned Popularity = DPI->second; 937 SmallVector<BasicBlock*, 4> SamePopularity; 938 939 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 940 // If the popularity of this entry isn't higher than the popularity we've 941 // seen so far, ignore it. 942 if (DPI->second < Popularity) 943 ; // ignore. 944 else if (DPI->second == Popularity) { 945 // If it is the same as what we've seen so far, keep track of it. 946 SamePopularity.push_back(DPI->first); 947 } else { 948 // If it is more popular, remember it. 949 SamePopularity.clear(); 950 MostPopularDest = DPI->first; 951 Popularity = DPI->second; 952 } 953 } 954 955 // Okay, now we know the most popular destination. If there is more than 956 // destination, we need to determine one. This is arbitrary, but we need 957 // to make a deterministic decision. Pick the first one that appears in the 958 // successor list. 959 if (!SamePopularity.empty()) { 960 SamePopularity.push_back(MostPopularDest); 961 TerminatorInst *TI = BB->getTerminator(); 962 for (unsigned i = 0; ; ++i) { 963 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 964 965 if (std::find(SamePopularity.begin(), SamePopularity.end(), 966 TI->getSuccessor(i)) == SamePopularity.end()) 967 continue; 968 969 MostPopularDest = TI->getSuccessor(i); 970 break; 971 } 972 } 973 974 // Okay, we have finally picked the most popular destination. 975 return MostPopularDest; 976 } 977 978 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 979 ConstantPreference Preference) { 980 // If threading this would thread across a loop header, don't even try to 981 // thread the edge. 982 if (LoopHeaders.count(BB)) 983 return false; 984 985 PredValueInfoTy PredValues; 986 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference)) 987 return false; 988 989 assert(!PredValues.empty() && 990 "ComputeValueKnownInPredecessors returned true with no values"); 991 992 DEBUG(dbgs() << "IN BB: " << *BB; 993 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 994 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 995 << *PredValues[i].first 996 << " for pred '" << PredValues[i].second->getName() << "'.\n"; 997 }); 998 999 // Decide what we want to thread through. Convert our list of known values to 1000 // a list of known destinations for each pred. This also discards duplicate 1001 // predecessors and keeps track of the undefined inputs (which are represented 1002 // as a null dest in the PredToDestList). 1003 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1004 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1005 1006 BasicBlock *OnlyDest = 0; 1007 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1008 1009 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1010 BasicBlock *Pred = PredValues[i].second; 1011 if (!SeenPreds.insert(Pred)) 1012 continue; // Duplicate predecessor entry. 1013 1014 // If the predecessor ends with an indirect goto, we can't change its 1015 // destination. 1016 if (isa<IndirectBrInst>(Pred->getTerminator())) 1017 continue; 1018 1019 Constant *Val = PredValues[i].first; 1020 1021 BasicBlock *DestBB; 1022 if (isa<UndefValue>(Val)) 1023 DestBB = 0; 1024 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1025 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1026 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 1027 DestBB = SI->getSuccessor(SI->findCaseValue(cast<ConstantInt>(Val))); 1028 else { 1029 assert(isa<IndirectBrInst>(BB->getTerminator()) 1030 && "Unexpected terminator"); 1031 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1032 } 1033 1034 // If we have exactly one destination, remember it for efficiency below. 1035 if (i == 0) 1036 OnlyDest = DestBB; 1037 else if (OnlyDest != DestBB) 1038 OnlyDest = MultipleDestSentinel; 1039 1040 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1041 } 1042 1043 // If all edges were unthreadable, we fail. 1044 if (PredToDestList.empty()) 1045 return false; 1046 1047 // Determine which is the most common successor. If we have many inputs and 1048 // this block is a switch, we want to start by threading the batch that goes 1049 // to the most popular destination first. If we only know about one 1050 // threadable destination (the common case) we can avoid this. 1051 BasicBlock *MostPopularDest = OnlyDest; 1052 1053 if (MostPopularDest == MultipleDestSentinel) 1054 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1055 1056 // Now that we know what the most popular destination is, factor all 1057 // predecessors that will jump to it into a single predecessor. 1058 SmallVector<BasicBlock*, 16> PredsToFactor; 1059 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1060 if (PredToDestList[i].second == MostPopularDest) { 1061 BasicBlock *Pred = PredToDestList[i].first; 1062 1063 // This predecessor may be a switch or something else that has multiple 1064 // edges to the block. Factor each of these edges by listing them 1065 // according to # occurrences in PredsToFactor. 1066 TerminatorInst *PredTI = Pred->getTerminator(); 1067 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1068 if (PredTI->getSuccessor(i) == BB) 1069 PredsToFactor.push_back(Pred); 1070 } 1071 1072 // If the threadable edges are branching on an undefined value, we get to pick 1073 // the destination that these predecessors should get to. 1074 if (MostPopularDest == 0) 1075 MostPopularDest = BB->getTerminator()-> 1076 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1077 1078 // Ok, try to thread it! 1079 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1080 } 1081 1082 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1083 /// a PHI node in the current block. See if there are any simplifications we 1084 /// can do based on inputs to the phi node. 1085 /// 1086 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1087 BasicBlock *BB = PN->getParent(); 1088 1089 // TODO: We could make use of this to do it once for blocks with common PHI 1090 // values. 1091 SmallVector<BasicBlock*, 1> PredBBs; 1092 PredBBs.resize(1); 1093 1094 // If any of the predecessor blocks end in an unconditional branch, we can 1095 // *duplicate* the conditional branch into that block in order to further 1096 // encourage jump threading and to eliminate cases where we have branch on a 1097 // phi of an icmp (branch on icmp is much better). 1098 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1099 BasicBlock *PredBB = PN->getIncomingBlock(i); 1100 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1101 if (PredBr->isUnconditional()) { 1102 PredBBs[0] = PredBB; 1103 // Try to duplicate BB into PredBB. 1104 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1105 return true; 1106 } 1107 } 1108 1109 return false; 1110 } 1111 1112 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1113 /// a xor instruction in the current block. See if there are any 1114 /// simplifications we can do based on inputs to the xor. 1115 /// 1116 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1117 BasicBlock *BB = BO->getParent(); 1118 1119 // If either the LHS or RHS of the xor is a constant, don't do this 1120 // optimization. 1121 if (isa<ConstantInt>(BO->getOperand(0)) || 1122 isa<ConstantInt>(BO->getOperand(1))) 1123 return false; 1124 1125 // If the first instruction in BB isn't a phi, we won't be able to infer 1126 // anything special about any particular predecessor. 1127 if (!isa<PHINode>(BB->front())) 1128 return false; 1129 1130 // If we have a xor as the branch input to this block, and we know that the 1131 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1132 // the condition into the predecessor and fix that value to true, saving some 1133 // logical ops on that path and encouraging other paths to simplify. 1134 // 1135 // This copies something like this: 1136 // 1137 // BB: 1138 // %X = phi i1 [1], [%X'] 1139 // %Y = icmp eq i32 %A, %B 1140 // %Z = xor i1 %X, %Y 1141 // br i1 %Z, ... 1142 // 1143 // Into: 1144 // BB': 1145 // %Y = icmp ne i32 %A, %B 1146 // br i1 %Z, ... 1147 1148 PredValueInfoTy XorOpValues; 1149 bool isLHS = true; 1150 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1151 WantInteger)) { 1152 assert(XorOpValues.empty()); 1153 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1154 WantInteger)) 1155 return false; 1156 isLHS = false; 1157 } 1158 1159 assert(!XorOpValues.empty() && 1160 "ComputeValueKnownInPredecessors returned true with no values"); 1161 1162 // Scan the information to see which is most popular: true or false. The 1163 // predecessors can be of the set true, false, or undef. 1164 unsigned NumTrue = 0, NumFalse = 0; 1165 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1166 if (isa<UndefValue>(XorOpValues[i].first)) 1167 // Ignore undefs for the count. 1168 continue; 1169 if (cast<ConstantInt>(XorOpValues[i].first)->isZero()) 1170 ++NumFalse; 1171 else 1172 ++NumTrue; 1173 } 1174 1175 // Determine which value to split on, true, false, or undef if neither. 1176 ConstantInt *SplitVal = 0; 1177 if (NumTrue > NumFalse) 1178 SplitVal = ConstantInt::getTrue(BB->getContext()); 1179 else if (NumTrue != 0 || NumFalse != 0) 1180 SplitVal = ConstantInt::getFalse(BB->getContext()); 1181 1182 // Collect all of the blocks that this can be folded into so that we can 1183 // factor this once and clone it once. 1184 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1185 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1186 if (XorOpValues[i].first != SplitVal && 1187 !isa<UndefValue>(XorOpValues[i].first)) 1188 continue; 1189 1190 BlocksToFoldInto.push_back(XorOpValues[i].second); 1191 } 1192 1193 // If we inferred a value for all of the predecessors, then duplication won't 1194 // help us. However, we can just replace the LHS or RHS with the constant. 1195 if (BlocksToFoldInto.size() == 1196 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1197 if (SplitVal == 0) { 1198 // If all preds provide undef, just nuke the xor, because it is undef too. 1199 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1200 BO->eraseFromParent(); 1201 } else if (SplitVal->isZero()) { 1202 // If all preds provide 0, replace the xor with the other input. 1203 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1204 BO->eraseFromParent(); 1205 } else { 1206 // If all preds provide 1, set the computed value to 1. 1207 BO->setOperand(!isLHS, SplitVal); 1208 } 1209 1210 return true; 1211 } 1212 1213 // Try to duplicate BB into PredBB. 1214 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1215 } 1216 1217 1218 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1219 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1220 /// NewPred using the entries from OldPred (suitably mapped). 1221 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1222 BasicBlock *OldPred, 1223 BasicBlock *NewPred, 1224 DenseMap<Instruction*, Value*> &ValueMap) { 1225 for (BasicBlock::iterator PNI = PHIBB->begin(); 1226 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1227 // Ok, we have a PHI node. Figure out what the incoming value was for the 1228 // DestBlock. 1229 Value *IV = PN->getIncomingValueForBlock(OldPred); 1230 1231 // Remap the value if necessary. 1232 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1233 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1234 if (I != ValueMap.end()) 1235 IV = I->second; 1236 } 1237 1238 PN->addIncoming(IV, NewPred); 1239 } 1240 } 1241 1242 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1243 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1244 /// across BB. Transform the IR to reflect this change. 1245 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1246 const SmallVectorImpl<BasicBlock*> &PredBBs, 1247 BasicBlock *SuccBB) { 1248 // If threading to the same block as we come from, we would infinite loop. 1249 if (SuccBB == BB) { 1250 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1251 << "' - would thread to self!\n"); 1252 return false; 1253 } 1254 1255 // If threading this would thread across a loop header, don't thread the edge. 1256 // See the comments above FindLoopHeaders for justifications and caveats. 1257 if (LoopHeaders.count(BB)) { 1258 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1259 << "' to dest BB '" << SuccBB->getName() 1260 << "' - it might create an irreducible loop!\n"); 1261 return false; 1262 } 1263 1264 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); 1265 if (JumpThreadCost > Threshold) { 1266 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1267 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1268 return false; 1269 } 1270 1271 // And finally, do it! Start by factoring the predecessors is needed. 1272 BasicBlock *PredBB; 1273 if (PredBBs.size() == 1) 1274 PredBB = PredBBs[0]; 1275 else { 1276 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1277 << " common predecessors.\n"); 1278 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1279 ".thr_comm", this); 1280 } 1281 1282 // And finally, do it! 1283 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1284 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1285 << ", across block:\n " 1286 << *BB << "\n"); 1287 1288 LVI->threadEdge(PredBB, BB, SuccBB); 1289 1290 // We are going to have to map operands from the original BB block to the new 1291 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1292 // account for entry from PredBB. 1293 DenseMap<Instruction*, Value*> ValueMapping; 1294 1295 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1296 BB->getName()+".thread", 1297 BB->getParent(), BB); 1298 NewBB->moveAfter(PredBB); 1299 1300 BasicBlock::iterator BI = BB->begin(); 1301 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1302 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1303 1304 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1305 // mapping and using it to remap operands in the cloned instructions. 1306 for (; !isa<TerminatorInst>(BI); ++BI) { 1307 Instruction *New = BI->clone(); 1308 New->setName(BI->getName()); 1309 NewBB->getInstList().push_back(New); 1310 ValueMapping[BI] = New; 1311 1312 // Remap operands to patch up intra-block references. 1313 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1314 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1315 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1316 if (I != ValueMapping.end()) 1317 New->setOperand(i, I->second); 1318 } 1319 } 1320 1321 // We didn't copy the terminator from BB over to NewBB, because there is now 1322 // an unconditional jump to SuccBB. Insert the unconditional jump. 1323 BranchInst::Create(SuccBB, NewBB); 1324 1325 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1326 // PHI nodes for NewBB now. 1327 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1328 1329 // If there were values defined in BB that are used outside the block, then we 1330 // now have to update all uses of the value to use either the original value, 1331 // the cloned value, or some PHI derived value. This can require arbitrary 1332 // PHI insertion, of which we are prepared to do, clean these up now. 1333 SSAUpdater SSAUpdate; 1334 SmallVector<Use*, 16> UsesToRename; 1335 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1336 // Scan all uses of this instruction to see if it is used outside of its 1337 // block, and if so, record them in UsesToRename. 1338 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1339 ++UI) { 1340 Instruction *User = cast<Instruction>(*UI); 1341 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1342 if (UserPN->getIncomingBlock(UI) == BB) 1343 continue; 1344 } else if (User->getParent() == BB) 1345 continue; 1346 1347 UsesToRename.push_back(&UI.getUse()); 1348 } 1349 1350 // If there are no uses outside the block, we're done with this instruction. 1351 if (UsesToRename.empty()) 1352 continue; 1353 1354 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1355 1356 // We found a use of I outside of BB. Rename all uses of I that are outside 1357 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1358 // with the two values we know. 1359 SSAUpdate.Initialize(I->getType(), I->getName()); 1360 SSAUpdate.AddAvailableValue(BB, I); 1361 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1362 1363 while (!UsesToRename.empty()) 1364 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1365 DEBUG(dbgs() << "\n"); 1366 } 1367 1368 1369 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1370 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1371 // us to simplify any PHI nodes in BB. 1372 TerminatorInst *PredTerm = PredBB->getTerminator(); 1373 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1374 if (PredTerm->getSuccessor(i) == BB) { 1375 BB->removePredecessor(PredBB, true); 1376 PredTerm->setSuccessor(i, NewBB); 1377 } 1378 1379 // At this point, the IR is fully up to date and consistent. Do a quick scan 1380 // over the new instructions and zap any that are constants or dead. This 1381 // frequently happens because of phi translation. 1382 SimplifyInstructionsInBlock(NewBB, TD); 1383 1384 // Threaded an edge! 1385 ++NumThreads; 1386 return true; 1387 } 1388 1389 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1390 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1391 /// If we can duplicate the contents of BB up into PredBB do so now, this 1392 /// improves the odds that the branch will be on an analyzable instruction like 1393 /// a compare. 1394 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1395 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1396 assert(!PredBBs.empty() && "Can't handle an empty set"); 1397 1398 // If BB is a loop header, then duplicating this block outside the loop would 1399 // cause us to transform this into an irreducible loop, don't do this. 1400 // See the comments above FindLoopHeaders for justifications and caveats. 1401 if (LoopHeaders.count(BB)) { 1402 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1403 << "' into predecessor block '" << PredBBs[0]->getName() 1404 << "' - it might create an irreducible loop!\n"); 1405 return false; 1406 } 1407 1408 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB); 1409 if (DuplicationCost > Threshold) { 1410 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1411 << "' - Cost is too high: " << DuplicationCost << "\n"); 1412 return false; 1413 } 1414 1415 // And finally, do it! Start by factoring the predecessors is needed. 1416 BasicBlock *PredBB; 1417 if (PredBBs.size() == 1) 1418 PredBB = PredBBs[0]; 1419 else { 1420 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1421 << " common predecessors.\n"); 1422 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), 1423 ".thr_comm", this); 1424 } 1425 1426 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1427 // of PredBB. 1428 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1429 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1430 << DuplicationCost << " block is:" << *BB << "\n"); 1431 1432 // Unless PredBB ends with an unconditional branch, split the edge so that we 1433 // can just clone the bits from BB into the end of the new PredBB. 1434 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1435 1436 if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) { 1437 PredBB = SplitEdge(PredBB, BB, this); 1438 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1439 } 1440 1441 // We are going to have to map operands from the original BB block into the 1442 // PredBB block. Evaluate PHI nodes in BB. 1443 DenseMap<Instruction*, Value*> ValueMapping; 1444 1445 BasicBlock::iterator BI = BB->begin(); 1446 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1447 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1448 1449 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1450 // mapping and using it to remap operands in the cloned instructions. 1451 for (; BI != BB->end(); ++BI) { 1452 Instruction *New = BI->clone(); 1453 1454 // Remap operands to patch up intra-block references. 1455 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1456 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1457 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1458 if (I != ValueMapping.end()) 1459 New->setOperand(i, I->second); 1460 } 1461 1462 // If this instruction can be simplified after the operands are updated, 1463 // just use the simplified value instead. This frequently happens due to 1464 // phi translation. 1465 if (Value *IV = SimplifyInstruction(New, TD)) { 1466 delete New; 1467 ValueMapping[BI] = IV; 1468 } else { 1469 // Otherwise, insert the new instruction into the block. 1470 New->setName(BI->getName()); 1471 PredBB->getInstList().insert(OldPredBranch, New); 1472 ValueMapping[BI] = New; 1473 } 1474 } 1475 1476 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1477 // add entries to the PHI nodes for branch from PredBB now. 1478 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1479 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1480 ValueMapping); 1481 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1482 ValueMapping); 1483 1484 // If there were values defined in BB that are used outside the block, then we 1485 // now have to update all uses of the value to use either the original value, 1486 // the cloned value, or some PHI derived value. This can require arbitrary 1487 // PHI insertion, of which we are prepared to do, clean these up now. 1488 SSAUpdater SSAUpdate; 1489 SmallVector<Use*, 16> UsesToRename; 1490 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1491 // Scan all uses of this instruction to see if it is used outside of its 1492 // block, and if so, record them in UsesToRename. 1493 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 1494 ++UI) { 1495 Instruction *User = cast<Instruction>(*UI); 1496 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1497 if (UserPN->getIncomingBlock(UI) == BB) 1498 continue; 1499 } else if (User->getParent() == BB) 1500 continue; 1501 1502 UsesToRename.push_back(&UI.getUse()); 1503 } 1504 1505 // If there are no uses outside the block, we're done with this instruction. 1506 if (UsesToRename.empty()) 1507 continue; 1508 1509 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1510 1511 // We found a use of I outside of BB. Rename all uses of I that are outside 1512 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1513 // with the two values we know. 1514 SSAUpdate.Initialize(I->getType(), I->getName()); 1515 SSAUpdate.AddAvailableValue(BB, I); 1516 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1517 1518 while (!UsesToRename.empty()) 1519 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1520 DEBUG(dbgs() << "\n"); 1521 } 1522 1523 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1524 // that we nuked. 1525 BB->removePredecessor(PredBB, true); 1526 1527 // Remove the unconditional branch at the end of the PredBB block. 1528 OldPredBranch->eraseFromParent(); 1529 1530 ++NumDupes; 1531 return true; 1532 } 1533 1534 1535