1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LazyValueInfo.h" 25 #include "llvm/Analysis/Loads.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetLibraryInfo.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Local.h" 38 #include "llvm/Transforms/Utils/SSAUpdater.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "jump-threading" 42 43 STATISTIC(NumThreads, "Number of jumps threaded"); 44 STATISTIC(NumFolds, "Number of terminators folded"); 45 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 46 47 static cl::opt<unsigned> 48 BBDuplicateThreshold("jump-threading-threshold", 49 cl::desc("Max block size to duplicate for jump threading"), 50 cl::init(6), cl::Hidden); 51 52 namespace { 53 // These are at global scope so static functions can use them too. 54 typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo; 55 typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy; 56 57 // This is used to keep track of what kind of constant we're currently hoping 58 // to find. 59 enum ConstantPreference { 60 WantInteger, 61 WantBlockAddress 62 }; 63 64 /// This pass performs 'jump threading', which looks at blocks that have 65 /// multiple predecessors and multiple successors. If one or more of the 66 /// predecessors of the block can be proven to always jump to one of the 67 /// successors, we forward the edge from the predecessor to the successor by 68 /// duplicating the contents of this block. 69 /// 70 /// An example of when this can occur is code like this: 71 /// 72 /// if () { ... 73 /// X = 4; 74 /// } 75 /// if (X < 3) { 76 /// 77 /// In this case, the unconditional branch at the end of the first if can be 78 /// revectored to the false side of the second if. 79 /// 80 class JumpThreading : public FunctionPass { 81 const DataLayout *DL; 82 TargetLibraryInfo *TLI; 83 LazyValueInfo *LVI; 84 #ifdef NDEBUG 85 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 86 #else 87 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 88 #endif 89 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; 90 91 unsigned BBDupThreshold; 92 93 // RAII helper for updating the recursion stack. 94 struct RecursionSetRemover { 95 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet; 96 std::pair<Value*, BasicBlock*> ThePair; 97 98 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S, 99 std::pair<Value*, BasicBlock*> P) 100 : TheSet(S), ThePair(P) { } 101 102 ~RecursionSetRemover() { 103 TheSet.erase(ThePair); 104 } 105 }; 106 public: 107 static char ID; // Pass identification 108 JumpThreading(int T = -1) : FunctionPass(ID) { 109 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 110 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 111 } 112 113 bool runOnFunction(Function &F) override; 114 115 void getAnalysisUsage(AnalysisUsage &AU) const override { 116 AU.addRequired<LazyValueInfo>(); 117 AU.addPreserved<LazyValueInfo>(); 118 AU.addRequired<TargetLibraryInfo>(); 119 } 120 121 void FindLoopHeaders(Function &F); 122 bool ProcessBlock(BasicBlock *BB); 123 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 124 BasicBlock *SuccBB); 125 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 126 const SmallVectorImpl<BasicBlock *> &PredBBs); 127 128 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 129 PredValueInfo &Result, 130 ConstantPreference Preference, 131 Instruction *CxtI = nullptr); 132 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 133 ConstantPreference Preference, 134 Instruction *CxtI = nullptr); 135 136 bool ProcessBranchOnPHI(PHINode *PN); 137 bool ProcessBranchOnXOR(BinaryOperator *BO); 138 139 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 140 bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB); 141 }; 142 } 143 144 char JumpThreading::ID = 0; 145 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 146 "Jump Threading", false, false) 147 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo) 148 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 149 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 150 "Jump Threading", false, false) 151 152 // Public interface to the Jump Threading pass 153 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); } 154 155 /// runOnFunction - Top level algorithm. 156 /// 157 bool JumpThreading::runOnFunction(Function &F) { 158 if (skipOptnoneFunction(F)) 159 return false; 160 161 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 162 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 163 DL = DLP ? &DLP->getDataLayout() : nullptr; 164 TLI = &getAnalysis<TargetLibraryInfo>(); 165 LVI = &getAnalysis<LazyValueInfo>(); 166 167 // Remove unreachable blocks from function as they may result in infinite 168 // loop. We do threading if we found something profitable. Jump threading a 169 // branch can create other opportunities. If these opportunities form a cycle 170 // i.e. if any jump treading is undoing previous threading in the path, then 171 // we will loop forever. We take care of this issue by not jump threading for 172 // back edges. This works for normal cases but not for unreachable blocks as 173 // they may have cycle with no back edge. 174 removeUnreachableBlocks(F); 175 176 FindLoopHeaders(F); 177 178 bool Changed, EverChanged = false; 179 do { 180 Changed = false; 181 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 182 BasicBlock *BB = I; 183 // Thread all of the branches we can over this block. 184 while (ProcessBlock(BB)) 185 Changed = true; 186 187 ++I; 188 189 // If the block is trivially dead, zap it. This eliminates the successor 190 // edges which simplifies the CFG. 191 if (pred_begin(BB) == pred_end(BB) && 192 BB != &BB->getParent()->getEntryBlock()) { 193 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 194 << "' with terminator: " << *BB->getTerminator() << '\n'); 195 LoopHeaders.erase(BB); 196 LVI->eraseBlock(BB); 197 DeleteDeadBlock(BB); 198 Changed = true; 199 continue; 200 } 201 202 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 203 204 // Can't thread an unconditional jump, but if the block is "almost 205 // empty", we can replace uses of it with uses of the successor and make 206 // this dead. 207 if (BI && BI->isUnconditional() && 208 BB != &BB->getParent()->getEntryBlock() && 209 // If the terminator is the only non-phi instruction, try to nuke it. 210 BB->getFirstNonPHIOrDbg()->isTerminator()) { 211 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 212 // block, we have to make sure it isn't in the LoopHeaders set. We 213 // reinsert afterward if needed. 214 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 215 BasicBlock *Succ = BI->getSuccessor(0); 216 217 // FIXME: It is always conservatively correct to drop the info 218 // for a block even if it doesn't get erased. This isn't totally 219 // awesome, but it allows us to use AssertingVH to prevent nasty 220 // dangling pointer issues within LazyValueInfo. 221 LVI->eraseBlock(BB); 222 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 223 Changed = true; 224 // If we deleted BB and BB was the header of a loop, then the 225 // successor is now the header of the loop. 226 BB = Succ; 227 } 228 229 if (ErasedFromLoopHeaders) 230 LoopHeaders.insert(BB); 231 } 232 } 233 EverChanged |= Changed; 234 } while (Changed); 235 236 LoopHeaders.clear(); 237 return EverChanged; 238 } 239 240 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 241 /// thread across it. Stop scanning the block when passing the threshold. 242 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB, 243 unsigned Threshold) { 244 /// Ignore PHI nodes, these will be flattened when duplication happens. 245 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 246 247 // FIXME: THREADING will delete values that are just used to compute the 248 // branch, so they shouldn't count against the duplication cost. 249 250 // Sum up the cost of each instruction until we get to the terminator. Don't 251 // include the terminator because the copy won't include it. 252 unsigned Size = 0; 253 for (; !isa<TerminatorInst>(I); ++I) { 254 255 // Stop scanning the block if we've reached the threshold. 256 if (Size > Threshold) 257 return Size; 258 259 // Debugger intrinsics don't incur code size. 260 if (isa<DbgInfoIntrinsic>(I)) continue; 261 262 // If this is a pointer->pointer bitcast, it is free. 263 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 264 continue; 265 266 // All other instructions count for at least one unit. 267 ++Size; 268 269 // Calls are more expensive. If they are non-intrinsic calls, we model them 270 // as having cost of 4. If they are a non-vector intrinsic, we model them 271 // as having cost of 2 total, and if they are a vector intrinsic, we model 272 // them as having cost 1. 273 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 274 if (CI->cannotDuplicate()) 275 // Blocks with NoDuplicate are modelled as having infinite cost, so they 276 // are never duplicated. 277 return ~0U; 278 else if (!isa<IntrinsicInst>(CI)) 279 Size += 3; 280 else if (!CI->getType()->isVectorTy()) 281 Size += 1; 282 } 283 } 284 285 // Threading through a switch statement is particularly profitable. If this 286 // block ends in a switch, decrease its cost to make it more likely to happen. 287 if (isa<SwitchInst>(I)) 288 Size = Size > 6 ? Size-6 : 0; 289 290 // The same holds for indirect branches, but slightly more so. 291 if (isa<IndirectBrInst>(I)) 292 Size = Size > 8 ? Size-8 : 0; 293 294 return Size; 295 } 296 297 /// FindLoopHeaders - We do not want jump threading to turn proper loop 298 /// structures into irreducible loops. Doing this breaks up the loop nesting 299 /// hierarchy and pessimizes later transformations. To prevent this from 300 /// happening, we first have to find the loop headers. Here we approximate this 301 /// by finding targets of backedges in the CFG. 302 /// 303 /// Note that there definitely are cases when we want to allow threading of 304 /// edges across a loop header. For example, threading a jump from outside the 305 /// loop (the preheader) to an exit block of the loop is definitely profitable. 306 /// It is also almost always profitable to thread backedges from within the loop 307 /// to exit blocks, and is often profitable to thread backedges to other blocks 308 /// within the loop (forming a nested loop). This simple analysis is not rich 309 /// enough to track all of these properties and keep it up-to-date as the CFG 310 /// mutates, so we don't allow any of these transformations. 311 /// 312 void JumpThreading::FindLoopHeaders(Function &F) { 313 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 314 FindFunctionBackedges(F, Edges); 315 316 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 317 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 318 } 319 320 /// getKnownConstant - Helper method to determine if we can thread over a 321 /// terminator with the given value as its condition, and if so what value to 322 /// use for that. What kind of value this is depends on whether we want an 323 /// integer or a block address, but an undef is always accepted. 324 /// Returns null if Val is null or not an appropriate constant. 325 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 326 if (!Val) 327 return nullptr; 328 329 // Undef is "known" enough. 330 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 331 return U; 332 333 if (Preference == WantBlockAddress) 334 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 335 336 return dyn_cast<ConstantInt>(Val); 337 } 338 339 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 340 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 341 /// in any of our predecessors. If so, return the known list of value and pred 342 /// BB in the result vector. 343 /// 344 /// This returns true if there were any known values. 345 /// 346 bool JumpThreading:: 347 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, 348 ConstantPreference Preference, 349 Instruction *CxtI) { 350 // This method walks up use-def chains recursively. Because of this, we could 351 // get into an infinite loop going around loops in the use-def chain. To 352 // prevent this, keep track of what (value, block) pairs we've already visited 353 // and terminate the search if we loop back to them 354 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 355 return false; 356 357 // An RAII help to remove this pair from the recursion set once the recursion 358 // stack pops back out again. 359 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 360 361 // If V is a constant, then it is known in all predecessors. 362 if (Constant *KC = getKnownConstant(V, Preference)) { 363 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 364 Result.push_back(std::make_pair(KC, *PI)); 365 366 return true; 367 } 368 369 // If V is a non-instruction value, or an instruction in a different block, 370 // then it can't be derived from a PHI. 371 Instruction *I = dyn_cast<Instruction>(V); 372 if (!I || I->getParent() != BB) { 373 374 // Okay, if this is a live-in value, see if it has a known value at the end 375 // of any of our predecessors. 376 // 377 // FIXME: This should be an edge property, not a block end property. 378 /// TODO: Per PR2563, we could infer value range information about a 379 /// predecessor based on its terminator. 380 // 381 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 382 // "I" is a non-local compare-with-a-constant instruction. This would be 383 // able to handle value inequalities better, for example if the compare is 384 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 385 // Perhaps getConstantOnEdge should be smart enough to do this? 386 387 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 388 BasicBlock *P = *PI; 389 // If the value is known by LazyValueInfo to be a constant in a 390 // predecessor, use that information to try to thread this block. 391 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 392 if (Constant *KC = getKnownConstant(PredCst, Preference)) 393 Result.push_back(std::make_pair(KC, P)); 394 } 395 396 return !Result.empty(); 397 } 398 399 /// If I is a PHI node, then we know the incoming values for any constants. 400 if (PHINode *PN = dyn_cast<PHINode>(I)) { 401 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 402 Value *InVal = PN->getIncomingValue(i); 403 if (Constant *KC = getKnownConstant(InVal, Preference)) { 404 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 405 } else { 406 Constant *CI = LVI->getConstantOnEdge(InVal, 407 PN->getIncomingBlock(i), 408 BB, CxtI); 409 if (Constant *KC = getKnownConstant(CI, Preference)) 410 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 411 } 412 } 413 414 return !Result.empty(); 415 } 416 417 PredValueInfoTy LHSVals, RHSVals; 418 419 // Handle some boolean conditions. 420 if (I->getType()->getPrimitiveSizeInBits() == 1) { 421 assert(Preference == WantInteger && "One-bit non-integer type?"); 422 // X | true -> true 423 // X & false -> false 424 if (I->getOpcode() == Instruction::Or || 425 I->getOpcode() == Instruction::And) { 426 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 427 WantInteger, CxtI); 428 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 429 WantInteger, CxtI); 430 431 if (LHSVals.empty() && RHSVals.empty()) 432 return false; 433 434 ConstantInt *InterestingVal; 435 if (I->getOpcode() == Instruction::Or) 436 InterestingVal = ConstantInt::getTrue(I->getContext()); 437 else 438 InterestingVal = ConstantInt::getFalse(I->getContext()); 439 440 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 441 442 // Scan for the sentinel. If we find an undef, force it to the 443 // interesting value: x|undef -> true and x&undef -> false. 444 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 445 if (LHSVals[i].first == InterestingVal || 446 isa<UndefValue>(LHSVals[i].first)) { 447 Result.push_back(LHSVals[i]); 448 Result.back().first = InterestingVal; 449 LHSKnownBBs.insert(LHSVals[i].second); 450 } 451 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 452 if (RHSVals[i].first == InterestingVal || 453 isa<UndefValue>(RHSVals[i].first)) { 454 // If we already inferred a value for this block on the LHS, don't 455 // re-add it. 456 if (!LHSKnownBBs.count(RHSVals[i].second)) { 457 Result.push_back(RHSVals[i]); 458 Result.back().first = InterestingVal; 459 } 460 } 461 462 return !Result.empty(); 463 } 464 465 // Handle the NOT form of XOR. 466 if (I->getOpcode() == Instruction::Xor && 467 isa<ConstantInt>(I->getOperand(1)) && 468 cast<ConstantInt>(I->getOperand(1))->isOne()) { 469 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 470 WantInteger, CxtI); 471 if (Result.empty()) 472 return false; 473 474 // Invert the known values. 475 for (unsigned i = 0, e = Result.size(); i != e; ++i) 476 Result[i].first = ConstantExpr::getNot(Result[i].first); 477 478 return true; 479 } 480 481 // Try to simplify some other binary operator values. 482 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 483 assert(Preference != WantBlockAddress 484 && "A binary operator creating a block address?"); 485 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 486 PredValueInfoTy LHSVals; 487 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 488 WantInteger, CxtI); 489 490 // Try to use constant folding to simplify the binary operator. 491 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 492 Constant *V = LHSVals[i].first; 493 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 494 495 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 496 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 497 } 498 } 499 500 return !Result.empty(); 501 } 502 503 // Handle compare with phi operand, where the PHI is defined in this block. 504 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 505 assert(Preference == WantInteger && "Compares only produce integers"); 506 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 507 if (PN && PN->getParent() == BB) { 508 // We can do this simplification if any comparisons fold to true or false. 509 // See if any do. 510 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 511 BasicBlock *PredBB = PN->getIncomingBlock(i); 512 Value *LHS = PN->getIncomingValue(i); 513 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 514 515 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL); 516 if (!Res) { 517 if (!isa<Constant>(RHS)) 518 continue; 519 520 LazyValueInfo::Tristate 521 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 522 cast<Constant>(RHS), PredBB, BB, 523 CxtI ? CxtI : Cmp); 524 if (ResT == LazyValueInfo::Unknown) 525 continue; 526 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 527 } 528 529 if (Constant *KC = getKnownConstant(Res, WantInteger)) 530 Result.push_back(std::make_pair(KC, PredBB)); 531 } 532 533 return !Result.empty(); 534 } 535 536 // If comparing a live-in value against a constant, see if we know the 537 // live-in value on any predecessors. 538 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 539 if (!isa<Instruction>(Cmp->getOperand(0)) || 540 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 541 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 542 543 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){ 544 BasicBlock *P = *PI; 545 // If the value is known by LazyValueInfo to be a constant in a 546 // predecessor, use that information to try to thread this block. 547 LazyValueInfo::Tristate Res = 548 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 549 RHSCst, P, BB, CxtI ? CxtI : Cmp); 550 if (Res == LazyValueInfo::Unknown) 551 continue; 552 553 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 554 Result.push_back(std::make_pair(ResC, P)); 555 } 556 557 return !Result.empty(); 558 } 559 560 // Try to find a constant value for the LHS of a comparison, 561 // and evaluate it statically if we can. 562 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 563 PredValueInfoTy LHSVals; 564 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 565 WantInteger, CxtI); 566 567 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 568 Constant *V = LHSVals[i].first; 569 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 570 V, CmpConst); 571 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 572 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 573 } 574 575 return !Result.empty(); 576 } 577 } 578 } 579 580 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 581 // Handle select instructions where at least one operand is a known constant 582 // and we can figure out the condition value for any predecessor block. 583 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 584 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 585 PredValueInfoTy Conds; 586 if ((TrueVal || FalseVal) && 587 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 588 WantInteger, CxtI)) { 589 for (unsigned i = 0, e = Conds.size(); i != e; ++i) { 590 Constant *Cond = Conds[i].first; 591 592 // Figure out what value to use for the condition. 593 bool KnownCond; 594 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 595 // A known boolean. 596 KnownCond = CI->isOne(); 597 } else { 598 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 599 // Either operand will do, so be sure to pick the one that's a known 600 // constant. 601 // FIXME: Do this more cleverly if both values are known constants? 602 KnownCond = (TrueVal != nullptr); 603 } 604 605 // See if the select has a known constant value for this predecessor. 606 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 607 Result.push_back(std::make_pair(Val, Conds[i].second)); 608 } 609 610 return !Result.empty(); 611 } 612 } 613 614 // If all else fails, see if LVI can figure out a constant value for us. 615 Constant *CI = LVI->getConstant(V, BB, CxtI); 616 if (Constant *KC = getKnownConstant(CI, Preference)) { 617 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 618 Result.push_back(std::make_pair(KC, *PI)); 619 } 620 621 return !Result.empty(); 622 } 623 624 625 626 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 627 /// in an undefined jump, decide which block is best to revector to. 628 /// 629 /// Since we can pick an arbitrary destination, we pick the successor with the 630 /// fewest predecessors. This should reduce the in-degree of the others. 631 /// 632 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 633 TerminatorInst *BBTerm = BB->getTerminator(); 634 unsigned MinSucc = 0; 635 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 636 // Compute the successor with the minimum number of predecessors. 637 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 638 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 639 TestBB = BBTerm->getSuccessor(i); 640 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 641 if (NumPreds < MinNumPreds) { 642 MinSucc = i; 643 MinNumPreds = NumPreds; 644 } 645 } 646 647 return MinSucc; 648 } 649 650 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 651 if (!BB->hasAddressTaken()) return false; 652 653 // If the block has its address taken, it may be a tree of dead constants 654 // hanging off of it. These shouldn't keep the block alive. 655 BlockAddress *BA = BlockAddress::get(BB); 656 BA->removeDeadConstantUsers(); 657 return !BA->use_empty(); 658 } 659 660 /// ProcessBlock - If there are any predecessors whose control can be threaded 661 /// through to a successor, transform them now. 662 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 663 // If the block is trivially dead, just return and let the caller nuke it. 664 // This simplifies other transformations. 665 if (pred_begin(BB) == pred_end(BB) && 666 BB != &BB->getParent()->getEntryBlock()) 667 return false; 668 669 // If this block has a single predecessor, and if that pred has a single 670 // successor, merge the blocks. This encourages recursive jump threading 671 // because now the condition in this block can be threaded through 672 // predecessors of our predecessor block. 673 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 674 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 675 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 676 // If SinglePred was a loop header, BB becomes one. 677 if (LoopHeaders.erase(SinglePred)) 678 LoopHeaders.insert(BB); 679 680 LVI->eraseBlock(SinglePred); 681 MergeBasicBlockIntoOnlyPred(BB); 682 683 return true; 684 } 685 } 686 687 // What kind of constant we're looking for. 688 ConstantPreference Preference = WantInteger; 689 690 // Look to see if the terminator is a conditional branch, switch or indirect 691 // branch, if not we can't thread it. 692 Value *Condition; 693 Instruction *Terminator = BB->getTerminator(); 694 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 695 // Can't thread an unconditional jump. 696 if (BI->isUnconditional()) return false; 697 Condition = BI->getCondition(); 698 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 699 Condition = SI->getCondition(); 700 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 701 // Can't thread indirect branch with no successors. 702 if (IB->getNumSuccessors() == 0) return false; 703 Condition = IB->getAddress()->stripPointerCasts(); 704 Preference = WantBlockAddress; 705 } else { 706 return false; // Must be an invoke. 707 } 708 709 // Run constant folding to see if we can reduce the condition to a simple 710 // constant. 711 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 712 Value *SimpleVal = ConstantFoldInstruction(I, DL, TLI); 713 if (SimpleVal) { 714 I->replaceAllUsesWith(SimpleVal); 715 I->eraseFromParent(); 716 Condition = SimpleVal; 717 } 718 } 719 720 // If the terminator is branching on an undef, we can pick any of the 721 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 722 if (isa<UndefValue>(Condition)) { 723 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 724 725 // Fold the branch/switch. 726 TerminatorInst *BBTerm = BB->getTerminator(); 727 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 728 if (i == BestSucc) continue; 729 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 730 } 731 732 DEBUG(dbgs() << " In block '" << BB->getName() 733 << "' folding undef terminator: " << *BBTerm << '\n'); 734 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 735 BBTerm->eraseFromParent(); 736 return true; 737 } 738 739 // If the terminator of this block is branching on a constant, simplify the 740 // terminator to an unconditional branch. This can occur due to threading in 741 // other blocks. 742 if (getKnownConstant(Condition, Preference)) { 743 DEBUG(dbgs() << " In block '" << BB->getName() 744 << "' folding terminator: " << *BB->getTerminator() << '\n'); 745 ++NumFolds; 746 ConstantFoldTerminator(BB, true); 747 return true; 748 } 749 750 Instruction *CondInst = dyn_cast<Instruction>(Condition); 751 752 // All the rest of our checks depend on the condition being an instruction. 753 if (!CondInst) { 754 // FIXME: Unify this with code below. 755 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 756 return true; 757 return false; 758 } 759 760 761 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 762 // For a comparison where the LHS is outside this block, it's possible 763 // that we've branched on it before. Used LVI to see if we can simplify 764 // the branch based on that. 765 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 766 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 767 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 768 if (CondBr && CondConst && CondBr->isConditional() && PI != PE && 769 (!isa<Instruction>(CondCmp->getOperand(0)) || 770 cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) { 771 // For predecessor edge, determine if the comparison is true or false 772 // on that edge. If they're all true or all false, we can simplify the 773 // branch. 774 // FIXME: We could handle mixed true/false by duplicating code. 775 LazyValueInfo::Tristate Baseline = 776 LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0), 777 CondConst, *PI, BB, CondCmp); 778 if (Baseline != LazyValueInfo::Unknown) { 779 // Check that all remaining incoming values match the first one. 780 while (++PI != PE) { 781 LazyValueInfo::Tristate Ret = 782 LVI->getPredicateOnEdge(CondCmp->getPredicate(), 783 CondCmp->getOperand(0), CondConst, *PI, BB, 784 CondCmp); 785 if (Ret != Baseline) break; 786 } 787 788 // If we terminated early, then one of the values didn't match. 789 if (PI == PE) { 790 unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0; 791 unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1; 792 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 793 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 794 CondBr->eraseFromParent(); 795 return true; 796 } 797 } 798 799 } else if (CondBr && CondConst && CondBr->isConditional()) { 800 // There might be an invairant in the same block with the conditional 801 // that can determine the predicate. 802 803 LazyValueInfo::Tristate Ret = 804 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 805 CondConst, CondCmp); 806 if (Ret != LazyValueInfo::Unknown) { 807 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 808 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 809 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 810 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 811 CondBr->eraseFromParent(); 812 return true; 813 } 814 } 815 816 if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB)) 817 return true; 818 } 819 820 // Check for some cases that are worth simplifying. Right now we want to look 821 // for loads that are used by a switch or by the condition for the branch. If 822 // we see one, check to see if it's partially redundant. If so, insert a PHI 823 // which can then be used to thread the values. 824 // 825 Value *SimplifyValue = CondInst; 826 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 827 if (isa<Constant>(CondCmp->getOperand(1))) 828 SimplifyValue = CondCmp->getOperand(0); 829 830 // TODO: There are other places where load PRE would be profitable, such as 831 // more complex comparisons. 832 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 833 if (SimplifyPartiallyRedundantLoad(LI)) 834 return true; 835 836 837 // Handle a variety of cases where we are branching on something derived from 838 // a PHI node in the current block. If we can prove that any predecessors 839 // compute a predictable value based on a PHI node, thread those predecessors. 840 // 841 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 842 return true; 843 844 // If this is an otherwise-unfoldable branch on a phi node in the current 845 // block, see if we can simplify. 846 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 847 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 848 return ProcessBranchOnPHI(PN); 849 850 851 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 852 if (CondInst->getOpcode() == Instruction::Xor && 853 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 854 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 855 856 857 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 858 // "(X == 4)", thread through this block. 859 860 return false; 861 } 862 863 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 864 /// load instruction, eliminate it by replacing it with a PHI node. This is an 865 /// important optimization that encourages jump threading, and needs to be run 866 /// interlaced with other jump threading tasks. 867 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 868 // Don't hack volatile/atomic loads. 869 if (!LI->isSimple()) return false; 870 871 // If the load is defined in a block with exactly one predecessor, it can't be 872 // partially redundant. 873 BasicBlock *LoadBB = LI->getParent(); 874 if (LoadBB->getSinglePredecessor()) 875 return false; 876 877 // If the load is defined in a landing pad, it can't be partially redundant, 878 // because the edges between the invoke and the landing pad cannot have other 879 // instructions between them. 880 if (LoadBB->isLandingPad()) 881 return false; 882 883 Value *LoadedPtr = LI->getOperand(0); 884 885 // If the loaded operand is defined in the LoadBB, it can't be available. 886 // TODO: Could do simple PHI translation, that would be fun :) 887 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 888 if (PtrOp->getParent() == LoadBB) 889 return false; 890 891 // Scan a few instructions up from the load, to see if it is obviously live at 892 // the entry to its block. 893 BasicBlock::iterator BBIt = LI; 894 895 if (Value *AvailableVal = 896 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { 897 // If the value if the load is locally available within the block, just use 898 // it. This frequently occurs for reg2mem'd allocas. 899 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 900 901 // If the returned value is the load itself, replace with an undef. This can 902 // only happen in dead loops. 903 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 904 LI->replaceAllUsesWith(AvailableVal); 905 LI->eraseFromParent(); 906 return true; 907 } 908 909 // Otherwise, if we scanned the whole block and got to the top of the block, 910 // we know the block is locally transparent to the load. If not, something 911 // might clobber its value. 912 if (BBIt != LoadBB->begin()) 913 return false; 914 915 // If all of the loads and stores that feed the value have the same AA tags, 916 // then we can propagate them onto any newly inserted loads. 917 AAMDNodes AATags; 918 LI->getAAMetadata(AATags); 919 920 SmallPtrSet<BasicBlock*, 8> PredsScanned; 921 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 922 AvailablePredsTy AvailablePreds; 923 BasicBlock *OneUnavailablePred = nullptr; 924 925 // If we got here, the loaded value is transparent through to the start of the 926 // block. Check to see if it is available in any of the predecessor blocks. 927 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 928 PI != PE; ++PI) { 929 BasicBlock *PredBB = *PI; 930 931 // If we already scanned this predecessor, skip it. 932 if (!PredsScanned.insert(PredBB)) 933 continue; 934 935 // Scan the predecessor to see if the value is available in the pred. 936 BBIt = PredBB->end(); 937 AAMDNodes ThisAATags; 938 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6, 939 nullptr, &ThisAATags); 940 if (!PredAvailable) { 941 OneUnavailablePred = PredBB; 942 continue; 943 } 944 945 // If AA tags disagree or are not present, forget about them. 946 if (AATags != ThisAATags) AATags = AAMDNodes(); 947 948 // If so, this load is partially redundant. Remember this info so that we 949 // can create a PHI node. 950 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 951 } 952 953 // If the loaded value isn't available in any predecessor, it isn't partially 954 // redundant. 955 if (AvailablePreds.empty()) return false; 956 957 // Okay, the loaded value is available in at least one (and maybe all!) 958 // predecessors. If the value is unavailable in more than one unique 959 // predecessor, we want to insert a merge block for those common predecessors. 960 // This ensures that we only have to insert one reload, thus not increasing 961 // code size. 962 BasicBlock *UnavailablePred = nullptr; 963 964 // If there is exactly one predecessor where the value is unavailable, the 965 // already computed 'OneUnavailablePred' block is it. If it ends in an 966 // unconditional branch, we know that it isn't a critical edge. 967 if (PredsScanned.size() == AvailablePreds.size()+1 && 968 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 969 UnavailablePred = OneUnavailablePred; 970 } else if (PredsScanned.size() != AvailablePreds.size()) { 971 // Otherwise, we had multiple unavailable predecessors or we had a critical 972 // edge from the one. 973 SmallVector<BasicBlock*, 8> PredsToSplit; 974 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 975 976 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 977 AvailablePredSet.insert(AvailablePreds[i].first); 978 979 // Add all the unavailable predecessors to the PredsToSplit list. 980 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 981 PI != PE; ++PI) { 982 BasicBlock *P = *PI; 983 // If the predecessor is an indirect goto, we can't split the edge. 984 if (isa<IndirectBrInst>(P->getTerminator())) 985 return false; 986 987 if (!AvailablePredSet.count(P)) 988 PredsToSplit.push_back(P); 989 } 990 991 // Split them out to their own block. 992 UnavailablePred = 993 SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split", this); 994 } 995 996 // If the value isn't available in all predecessors, then there will be 997 // exactly one where it isn't available. Insert a load on that edge and add 998 // it to the AvailablePreds list. 999 if (UnavailablePred) { 1000 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1001 "Can't handle critical edge here!"); 1002 LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 1003 LI->getAlignment(), 1004 UnavailablePred->getTerminator()); 1005 NewVal->setDebugLoc(LI->getDebugLoc()); 1006 if (AATags) 1007 NewVal->setAAMetadata(AATags); 1008 1009 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1010 } 1011 1012 // Now we know that each predecessor of this block has a value in 1013 // AvailablePreds, sort them for efficient access as we're walking the preds. 1014 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1015 1016 // Create a PHI node at the start of the block for the PRE'd load value. 1017 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1018 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 1019 LoadBB->begin()); 1020 PN->takeName(LI); 1021 PN->setDebugLoc(LI->getDebugLoc()); 1022 1023 // Insert new entries into the PHI for each predecessor. A single block may 1024 // have multiple entries here. 1025 for (pred_iterator PI = PB; PI != PE; ++PI) { 1026 BasicBlock *P = *PI; 1027 AvailablePredsTy::iterator I = 1028 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1029 std::make_pair(P, (Value*)nullptr)); 1030 1031 assert(I != AvailablePreds.end() && I->first == P && 1032 "Didn't find entry for predecessor!"); 1033 1034 PN->addIncoming(I->second, I->first); 1035 } 1036 1037 //cerr << "PRE: " << *LI << *PN << "\n"; 1038 1039 LI->replaceAllUsesWith(PN); 1040 LI->eraseFromParent(); 1041 1042 return true; 1043 } 1044 1045 /// FindMostPopularDest - The specified list contains multiple possible 1046 /// threadable destinations. Pick the one that occurs the most frequently in 1047 /// the list. 1048 static BasicBlock * 1049 FindMostPopularDest(BasicBlock *BB, 1050 const SmallVectorImpl<std::pair<BasicBlock*, 1051 BasicBlock*> > &PredToDestList) { 1052 assert(!PredToDestList.empty()); 1053 1054 // Determine popularity. If there are multiple possible destinations, we 1055 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1056 // blocks with known and real destinations to threading undef. We'll handle 1057 // them later if interesting. 1058 DenseMap<BasicBlock*, unsigned> DestPopularity; 1059 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1060 if (PredToDestList[i].second) 1061 DestPopularity[PredToDestList[i].second]++; 1062 1063 // Find the most popular dest. 1064 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1065 BasicBlock *MostPopularDest = DPI->first; 1066 unsigned Popularity = DPI->second; 1067 SmallVector<BasicBlock*, 4> SamePopularity; 1068 1069 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1070 // If the popularity of this entry isn't higher than the popularity we've 1071 // seen so far, ignore it. 1072 if (DPI->second < Popularity) 1073 ; // ignore. 1074 else if (DPI->second == Popularity) { 1075 // If it is the same as what we've seen so far, keep track of it. 1076 SamePopularity.push_back(DPI->first); 1077 } else { 1078 // If it is more popular, remember it. 1079 SamePopularity.clear(); 1080 MostPopularDest = DPI->first; 1081 Popularity = DPI->second; 1082 } 1083 } 1084 1085 // Okay, now we know the most popular destination. If there is more than one 1086 // destination, we need to determine one. This is arbitrary, but we need 1087 // to make a deterministic decision. Pick the first one that appears in the 1088 // successor list. 1089 if (!SamePopularity.empty()) { 1090 SamePopularity.push_back(MostPopularDest); 1091 TerminatorInst *TI = BB->getTerminator(); 1092 for (unsigned i = 0; ; ++i) { 1093 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1094 1095 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1096 TI->getSuccessor(i)) == SamePopularity.end()) 1097 continue; 1098 1099 MostPopularDest = TI->getSuccessor(i); 1100 break; 1101 } 1102 } 1103 1104 // Okay, we have finally picked the most popular destination. 1105 return MostPopularDest; 1106 } 1107 1108 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1109 ConstantPreference Preference, 1110 Instruction *CxtI) { 1111 // If threading this would thread across a loop header, don't even try to 1112 // thread the edge. 1113 if (LoopHeaders.count(BB)) 1114 return false; 1115 1116 PredValueInfoTy PredValues; 1117 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1118 return false; 1119 1120 assert(!PredValues.empty() && 1121 "ComputeValueKnownInPredecessors returned true with no values"); 1122 1123 DEBUG(dbgs() << "IN BB: " << *BB; 1124 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1125 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1126 << *PredValues[i].first 1127 << " for pred '" << PredValues[i].second->getName() << "'.\n"; 1128 }); 1129 1130 // Decide what we want to thread through. Convert our list of known values to 1131 // a list of known destinations for each pred. This also discards duplicate 1132 // predecessors and keeps track of the undefined inputs (which are represented 1133 // as a null dest in the PredToDestList). 1134 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1135 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1136 1137 BasicBlock *OnlyDest = nullptr; 1138 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1139 1140 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1141 BasicBlock *Pred = PredValues[i].second; 1142 if (!SeenPreds.insert(Pred)) 1143 continue; // Duplicate predecessor entry. 1144 1145 // If the predecessor ends with an indirect goto, we can't change its 1146 // destination. 1147 if (isa<IndirectBrInst>(Pred->getTerminator())) 1148 continue; 1149 1150 Constant *Val = PredValues[i].first; 1151 1152 BasicBlock *DestBB; 1153 if (isa<UndefValue>(Val)) 1154 DestBB = nullptr; 1155 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1156 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1157 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1158 DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor(); 1159 } else { 1160 assert(isa<IndirectBrInst>(BB->getTerminator()) 1161 && "Unexpected terminator"); 1162 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1163 } 1164 1165 // If we have exactly one destination, remember it for efficiency below. 1166 if (PredToDestList.empty()) 1167 OnlyDest = DestBB; 1168 else if (OnlyDest != DestBB) 1169 OnlyDest = MultipleDestSentinel; 1170 1171 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1172 } 1173 1174 // If all edges were unthreadable, we fail. 1175 if (PredToDestList.empty()) 1176 return false; 1177 1178 // Determine which is the most common successor. If we have many inputs and 1179 // this block is a switch, we want to start by threading the batch that goes 1180 // to the most popular destination first. If we only know about one 1181 // threadable destination (the common case) we can avoid this. 1182 BasicBlock *MostPopularDest = OnlyDest; 1183 1184 if (MostPopularDest == MultipleDestSentinel) 1185 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1186 1187 // Now that we know what the most popular destination is, factor all 1188 // predecessors that will jump to it into a single predecessor. 1189 SmallVector<BasicBlock*, 16> PredsToFactor; 1190 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1191 if (PredToDestList[i].second == MostPopularDest) { 1192 BasicBlock *Pred = PredToDestList[i].first; 1193 1194 // This predecessor may be a switch or something else that has multiple 1195 // edges to the block. Factor each of these edges by listing them 1196 // according to # occurrences in PredsToFactor. 1197 TerminatorInst *PredTI = Pred->getTerminator(); 1198 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1199 if (PredTI->getSuccessor(i) == BB) 1200 PredsToFactor.push_back(Pred); 1201 } 1202 1203 // If the threadable edges are branching on an undefined value, we get to pick 1204 // the destination that these predecessors should get to. 1205 if (!MostPopularDest) 1206 MostPopularDest = BB->getTerminator()-> 1207 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1208 1209 // Ok, try to thread it! 1210 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1211 } 1212 1213 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1214 /// a PHI node in the current block. See if there are any simplifications we 1215 /// can do based on inputs to the phi node. 1216 /// 1217 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1218 BasicBlock *BB = PN->getParent(); 1219 1220 // TODO: We could make use of this to do it once for blocks with common PHI 1221 // values. 1222 SmallVector<BasicBlock*, 1> PredBBs; 1223 PredBBs.resize(1); 1224 1225 // If any of the predecessor blocks end in an unconditional branch, we can 1226 // *duplicate* the conditional branch into that block in order to further 1227 // encourage jump threading and to eliminate cases where we have branch on a 1228 // phi of an icmp (branch on icmp is much better). 1229 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1230 BasicBlock *PredBB = PN->getIncomingBlock(i); 1231 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1232 if (PredBr->isUnconditional()) { 1233 PredBBs[0] = PredBB; 1234 // Try to duplicate BB into PredBB. 1235 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1236 return true; 1237 } 1238 } 1239 1240 return false; 1241 } 1242 1243 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1244 /// a xor instruction in the current block. See if there are any 1245 /// simplifications we can do based on inputs to the xor. 1246 /// 1247 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1248 BasicBlock *BB = BO->getParent(); 1249 1250 // If either the LHS or RHS of the xor is a constant, don't do this 1251 // optimization. 1252 if (isa<ConstantInt>(BO->getOperand(0)) || 1253 isa<ConstantInt>(BO->getOperand(1))) 1254 return false; 1255 1256 // If the first instruction in BB isn't a phi, we won't be able to infer 1257 // anything special about any particular predecessor. 1258 if (!isa<PHINode>(BB->front())) 1259 return false; 1260 1261 // If we have a xor as the branch input to this block, and we know that the 1262 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1263 // the condition into the predecessor and fix that value to true, saving some 1264 // logical ops on that path and encouraging other paths to simplify. 1265 // 1266 // This copies something like this: 1267 // 1268 // BB: 1269 // %X = phi i1 [1], [%X'] 1270 // %Y = icmp eq i32 %A, %B 1271 // %Z = xor i1 %X, %Y 1272 // br i1 %Z, ... 1273 // 1274 // Into: 1275 // BB': 1276 // %Y = icmp ne i32 %A, %B 1277 // br i1 %Z, ... 1278 1279 PredValueInfoTy XorOpValues; 1280 bool isLHS = true; 1281 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1282 WantInteger, BO)) { 1283 assert(XorOpValues.empty()); 1284 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1285 WantInteger, BO)) 1286 return false; 1287 isLHS = false; 1288 } 1289 1290 assert(!XorOpValues.empty() && 1291 "ComputeValueKnownInPredecessors returned true with no values"); 1292 1293 // Scan the information to see which is most popular: true or false. The 1294 // predecessors can be of the set true, false, or undef. 1295 unsigned NumTrue = 0, NumFalse = 0; 1296 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1297 if (isa<UndefValue>(XorOpValues[i].first)) 1298 // Ignore undefs for the count. 1299 continue; 1300 if (cast<ConstantInt>(XorOpValues[i].first)->isZero()) 1301 ++NumFalse; 1302 else 1303 ++NumTrue; 1304 } 1305 1306 // Determine which value to split on, true, false, or undef if neither. 1307 ConstantInt *SplitVal = nullptr; 1308 if (NumTrue > NumFalse) 1309 SplitVal = ConstantInt::getTrue(BB->getContext()); 1310 else if (NumTrue != 0 || NumFalse != 0) 1311 SplitVal = ConstantInt::getFalse(BB->getContext()); 1312 1313 // Collect all of the blocks that this can be folded into so that we can 1314 // factor this once and clone it once. 1315 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1316 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1317 if (XorOpValues[i].first != SplitVal && 1318 !isa<UndefValue>(XorOpValues[i].first)) 1319 continue; 1320 1321 BlocksToFoldInto.push_back(XorOpValues[i].second); 1322 } 1323 1324 // If we inferred a value for all of the predecessors, then duplication won't 1325 // help us. However, we can just replace the LHS or RHS with the constant. 1326 if (BlocksToFoldInto.size() == 1327 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1328 if (!SplitVal) { 1329 // If all preds provide undef, just nuke the xor, because it is undef too. 1330 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1331 BO->eraseFromParent(); 1332 } else if (SplitVal->isZero()) { 1333 // If all preds provide 0, replace the xor with the other input. 1334 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1335 BO->eraseFromParent(); 1336 } else { 1337 // If all preds provide 1, set the computed value to 1. 1338 BO->setOperand(!isLHS, SplitVal); 1339 } 1340 1341 return true; 1342 } 1343 1344 // Try to duplicate BB into PredBB. 1345 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1346 } 1347 1348 1349 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1350 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1351 /// NewPred using the entries from OldPred (suitably mapped). 1352 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1353 BasicBlock *OldPred, 1354 BasicBlock *NewPred, 1355 DenseMap<Instruction*, Value*> &ValueMap) { 1356 for (BasicBlock::iterator PNI = PHIBB->begin(); 1357 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1358 // Ok, we have a PHI node. Figure out what the incoming value was for the 1359 // DestBlock. 1360 Value *IV = PN->getIncomingValueForBlock(OldPred); 1361 1362 // Remap the value if necessary. 1363 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1364 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1365 if (I != ValueMap.end()) 1366 IV = I->second; 1367 } 1368 1369 PN->addIncoming(IV, NewPred); 1370 } 1371 } 1372 1373 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1374 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1375 /// across BB. Transform the IR to reflect this change. 1376 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1377 const SmallVectorImpl<BasicBlock*> &PredBBs, 1378 BasicBlock *SuccBB) { 1379 // If threading to the same block as we come from, we would infinite loop. 1380 if (SuccBB == BB) { 1381 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1382 << "' - would thread to self!\n"); 1383 return false; 1384 } 1385 1386 // If threading this would thread across a loop header, don't thread the edge. 1387 // See the comments above FindLoopHeaders for justifications and caveats. 1388 if (LoopHeaders.count(BB)) { 1389 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1390 << "' to dest BB '" << SuccBB->getName() 1391 << "' - it might create an irreducible loop!\n"); 1392 return false; 1393 } 1394 1395 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1396 if (JumpThreadCost > BBDupThreshold) { 1397 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1398 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1399 return false; 1400 } 1401 1402 // And finally, do it! Start by factoring the predecessors is needed. 1403 BasicBlock *PredBB; 1404 if (PredBBs.size() == 1) 1405 PredBB = PredBBs[0]; 1406 else { 1407 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1408 << " common predecessors.\n"); 1409 PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this); 1410 } 1411 1412 // And finally, do it! 1413 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1414 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1415 << ", across block:\n " 1416 << *BB << "\n"); 1417 1418 LVI->threadEdge(PredBB, BB, SuccBB); 1419 1420 // We are going to have to map operands from the original BB block to the new 1421 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1422 // account for entry from PredBB. 1423 DenseMap<Instruction*, Value*> ValueMapping; 1424 1425 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1426 BB->getName()+".thread", 1427 BB->getParent(), BB); 1428 NewBB->moveAfter(PredBB); 1429 1430 BasicBlock::iterator BI = BB->begin(); 1431 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1432 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1433 1434 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1435 // mapping and using it to remap operands in the cloned instructions. 1436 for (; !isa<TerminatorInst>(BI); ++BI) { 1437 Instruction *New = BI->clone(); 1438 New->setName(BI->getName()); 1439 NewBB->getInstList().push_back(New); 1440 ValueMapping[BI] = New; 1441 1442 // Remap operands to patch up intra-block references. 1443 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1444 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1445 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1446 if (I != ValueMapping.end()) 1447 New->setOperand(i, I->second); 1448 } 1449 } 1450 1451 // We didn't copy the terminator from BB over to NewBB, because there is now 1452 // an unconditional jump to SuccBB. Insert the unconditional jump. 1453 BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB); 1454 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1455 1456 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1457 // PHI nodes for NewBB now. 1458 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1459 1460 // If there were values defined in BB that are used outside the block, then we 1461 // now have to update all uses of the value to use either the original value, 1462 // the cloned value, or some PHI derived value. This can require arbitrary 1463 // PHI insertion, of which we are prepared to do, clean these up now. 1464 SSAUpdater SSAUpdate; 1465 SmallVector<Use*, 16> UsesToRename; 1466 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1467 // Scan all uses of this instruction to see if it is used outside of its 1468 // block, and if so, record them in UsesToRename. 1469 for (Use &U : I->uses()) { 1470 Instruction *User = cast<Instruction>(U.getUser()); 1471 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1472 if (UserPN->getIncomingBlock(U) == BB) 1473 continue; 1474 } else if (User->getParent() == BB) 1475 continue; 1476 1477 UsesToRename.push_back(&U); 1478 } 1479 1480 // If there are no uses outside the block, we're done with this instruction. 1481 if (UsesToRename.empty()) 1482 continue; 1483 1484 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1485 1486 // We found a use of I outside of BB. Rename all uses of I that are outside 1487 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1488 // with the two values we know. 1489 SSAUpdate.Initialize(I->getType(), I->getName()); 1490 SSAUpdate.AddAvailableValue(BB, I); 1491 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1492 1493 while (!UsesToRename.empty()) 1494 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1495 DEBUG(dbgs() << "\n"); 1496 } 1497 1498 1499 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1500 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1501 // us to simplify any PHI nodes in BB. 1502 TerminatorInst *PredTerm = PredBB->getTerminator(); 1503 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1504 if (PredTerm->getSuccessor(i) == BB) { 1505 BB->removePredecessor(PredBB, true); 1506 PredTerm->setSuccessor(i, NewBB); 1507 } 1508 1509 // At this point, the IR is fully up to date and consistent. Do a quick scan 1510 // over the new instructions and zap any that are constants or dead. This 1511 // frequently happens because of phi translation. 1512 SimplifyInstructionsInBlock(NewBB, DL, TLI); 1513 1514 // Threaded an edge! 1515 ++NumThreads; 1516 return true; 1517 } 1518 1519 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1520 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1521 /// If we can duplicate the contents of BB up into PredBB do so now, this 1522 /// improves the odds that the branch will be on an analyzable instruction like 1523 /// a compare. 1524 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1525 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1526 assert(!PredBBs.empty() && "Can't handle an empty set"); 1527 1528 // If BB is a loop header, then duplicating this block outside the loop would 1529 // cause us to transform this into an irreducible loop, don't do this. 1530 // See the comments above FindLoopHeaders for justifications and caveats. 1531 if (LoopHeaders.count(BB)) { 1532 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1533 << "' into predecessor block '" << PredBBs[0]->getName() 1534 << "' - it might create an irreducible loop!\n"); 1535 return false; 1536 } 1537 1538 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1539 if (DuplicationCost > BBDupThreshold) { 1540 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1541 << "' - Cost is too high: " << DuplicationCost << "\n"); 1542 return false; 1543 } 1544 1545 // And finally, do it! Start by factoring the predecessors is needed. 1546 BasicBlock *PredBB; 1547 if (PredBBs.size() == 1) 1548 PredBB = PredBBs[0]; 1549 else { 1550 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1551 << " common predecessors.\n"); 1552 PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this); 1553 } 1554 1555 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1556 // of PredBB. 1557 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1558 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1559 << DuplicationCost << " block is:" << *BB << "\n"); 1560 1561 // Unless PredBB ends with an unconditional branch, split the edge so that we 1562 // can just clone the bits from BB into the end of the new PredBB. 1563 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1564 1565 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 1566 PredBB = SplitEdge(PredBB, BB, this); 1567 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1568 } 1569 1570 // We are going to have to map operands from the original BB block into the 1571 // PredBB block. Evaluate PHI nodes in BB. 1572 DenseMap<Instruction*, Value*> ValueMapping; 1573 1574 BasicBlock::iterator BI = BB->begin(); 1575 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1576 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1577 1578 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1579 // mapping and using it to remap operands in the cloned instructions. 1580 for (; BI != BB->end(); ++BI) { 1581 Instruction *New = BI->clone(); 1582 1583 // Remap operands to patch up intra-block references. 1584 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1585 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1586 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1587 if (I != ValueMapping.end()) 1588 New->setOperand(i, I->second); 1589 } 1590 1591 // If this instruction can be simplified after the operands are updated, 1592 // just use the simplified value instead. This frequently happens due to 1593 // phi translation. 1594 if (Value *IV = SimplifyInstruction(New, DL)) { 1595 delete New; 1596 ValueMapping[BI] = IV; 1597 } else { 1598 // Otherwise, insert the new instruction into the block. 1599 New->setName(BI->getName()); 1600 PredBB->getInstList().insert(OldPredBranch, New); 1601 ValueMapping[BI] = New; 1602 } 1603 } 1604 1605 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1606 // add entries to the PHI nodes for branch from PredBB now. 1607 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1608 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1609 ValueMapping); 1610 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1611 ValueMapping); 1612 1613 // If there were values defined in BB that are used outside the block, then we 1614 // now have to update all uses of the value to use either the original value, 1615 // the cloned value, or some PHI derived value. This can require arbitrary 1616 // PHI insertion, of which we are prepared to do, clean these up now. 1617 SSAUpdater SSAUpdate; 1618 SmallVector<Use*, 16> UsesToRename; 1619 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1620 // Scan all uses of this instruction to see if it is used outside of its 1621 // block, and if so, record them in UsesToRename. 1622 for (Use &U : I->uses()) { 1623 Instruction *User = cast<Instruction>(U.getUser()); 1624 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1625 if (UserPN->getIncomingBlock(U) == BB) 1626 continue; 1627 } else if (User->getParent() == BB) 1628 continue; 1629 1630 UsesToRename.push_back(&U); 1631 } 1632 1633 // If there are no uses outside the block, we're done with this instruction. 1634 if (UsesToRename.empty()) 1635 continue; 1636 1637 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1638 1639 // We found a use of I outside of BB. Rename all uses of I that are outside 1640 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1641 // with the two values we know. 1642 SSAUpdate.Initialize(I->getType(), I->getName()); 1643 SSAUpdate.AddAvailableValue(BB, I); 1644 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1645 1646 while (!UsesToRename.empty()) 1647 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1648 DEBUG(dbgs() << "\n"); 1649 } 1650 1651 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1652 // that we nuked. 1653 BB->removePredecessor(PredBB, true); 1654 1655 // Remove the unconditional branch at the end of the PredBB block. 1656 OldPredBranch->eraseFromParent(); 1657 1658 ++NumDupes; 1659 return true; 1660 } 1661 1662 /// TryToUnfoldSelect - Look for blocks of the form 1663 /// bb1: 1664 /// %a = select 1665 /// br bb 1666 /// 1667 /// bb2: 1668 /// %p = phi [%a, %bb] ... 1669 /// %c = icmp %p 1670 /// br i1 %c 1671 /// 1672 /// And expand the select into a branch structure if one of its arms allows %c 1673 /// to be folded. This later enables threading from bb1 over bb2. 1674 bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 1675 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1676 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 1677 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 1678 1679 if (!CondBr || !CondBr->isConditional() || !CondLHS || 1680 CondLHS->getParent() != BB) 1681 return false; 1682 1683 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 1684 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 1685 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 1686 1687 // Look if one of the incoming values is a select in the corresponding 1688 // predecessor. 1689 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 1690 continue; 1691 1692 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 1693 if (!PredTerm || !PredTerm->isUnconditional()) 1694 continue; 1695 1696 // Now check if one of the select values would allow us to constant fold the 1697 // terminator in BB. We don't do the transform if both sides fold, those 1698 // cases will be threaded in any case. 1699 LazyValueInfo::Tristate LHSFolds = 1700 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 1701 CondRHS, Pred, BB, CondCmp); 1702 LazyValueInfo::Tristate RHSFolds = 1703 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 1704 CondRHS, Pred, BB, CondCmp); 1705 if ((LHSFolds != LazyValueInfo::Unknown || 1706 RHSFolds != LazyValueInfo::Unknown) && 1707 LHSFolds != RHSFolds) { 1708 // Expand the select. 1709 // 1710 // Pred -- 1711 // | v 1712 // | NewBB 1713 // | | 1714 // |----- 1715 // v 1716 // BB 1717 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 1718 BB->getParent(), BB); 1719 // Move the unconditional branch to NewBB. 1720 PredTerm->removeFromParent(); 1721 NewBB->getInstList().insert(NewBB->end(), PredTerm); 1722 // Create a conditional branch and update PHI nodes. 1723 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 1724 CondLHS->setIncomingValue(I, SI->getFalseValue()); 1725 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 1726 // The select is now dead. 1727 SI->eraseFromParent(); 1728 1729 // Update any other PHI nodes in BB. 1730 for (BasicBlock::iterator BI = BB->begin(); 1731 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 1732 if (Phi != CondLHS) 1733 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 1734 return true; 1735 } 1736 } 1737 return false; 1738 } 1739